JP2005315725A - Photoelectric sensor - Google Patents

Photoelectric sensor Download PDF

Info

Publication number
JP2005315725A
JP2005315725A JP2004133865A JP2004133865A JP2005315725A JP 2005315725 A JP2005315725 A JP 2005315725A JP 2004133865 A JP2004133865 A JP 2004133865A JP 2004133865 A JP2004133865 A JP 2004133865A JP 2005315725 A JP2005315725 A JP 2005315725A
Authority
JP
Japan
Prior art keywords
light
projecting
detection
signal level
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133865A
Other languages
Japanese (ja)
Inventor
Takayuki Ochiai
隆幸 落合
Yoshiharu Onoshima
芳治 小野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2004133865A priority Critical patent/JP2005315725A/en
Publication of JP2005315725A publication Critical patent/JP2005315725A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric sensor capable of comparatively accurate color detection with a simple circuit constitution even if a floodlighting interval is shortened. <P>SOLUTION: When a sheet used as a reference is arranged in a detection domain prior to detection operation, the magnitude of a received light signal level is compared relative to tricolor light received by a light receiving element 21 among lights floodlighted from floodlighting elements 11A, 11B, 11C, and the order from a smaller received light signal level of the tricolor light is stored based on the comparison result. At the detection operation time of a mark on the sheet W, a CPU 30 drives floodlighting circuits 12A, 12B, 12C in the stored order, and floodlights the tricolor light from the floodlighting elements 11A, 11B, 11C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検出物の色を検出可能な光電センサに関する。   The present invention relates to a photoelectric sensor capable of detecting the color of an object to be detected.

この種のものは、図8に示すように、赤、青、緑に発光する投光素子1,2,3がそれぞれ設けられており、中央演算処理装置(以下、CPU30という。)8から出力(ハイレベル)される投光信号f1,f2,f3に基づいて所定時間Tごとに被検出物に対して順次投光動作を行うようになっている。また、各投光動作に対する被検出物からの反射光を受光するために、受光素子4が設けられ、各投光信号f1,f2,f3に同期して受光回路5から受光した光に応じた信号aが出力(ロウレベル)されるようになっており、かかる3色の光による1周期の投光動作が終了した後、所定時間Tよりも長い時間が経過してから所定周期の投光動作を繰り返すようになっている。   As shown in FIG. 8, this type is provided with light projecting elements 1, 2, and 3 that emit red, blue, and green, respectively, and output from a central processing unit (hereinafter referred to as CPU 30) 8. Based on the (high level) light projection signals f1, f2, and f3, the light projecting operation is sequentially performed on the detection target at every predetermined time T. In addition, a light receiving element 4 is provided to receive the reflected light from the object to be detected for each light projecting operation, and according to the light received from the light receiving circuit 5 in synchronization with each light projecting signal f1, f2, f3. The signal a is output (low level), and after a period of light projecting with the three colors of light is completed, a light projecting operation with a predetermined period after a time longer than a predetermined time T has elapsed. Is to repeat.

さらに、受光される光の信号aは微小であるため、図9に示すように、この信号aを増幅するための演算増幅器Aからなる非反転型の交流の増幅回路7が複数段接続して構成されてなる増幅手段6が設けられており、この演算増幅器Aの正相入力側には外乱光成分である直流成分を除去するために結合コンデンサCと抵抗R1とからなる微分回路が構成され、信号aは増幅手段6で増幅された後、この増幅された受光信号がCPU8に出力されるようになっている。   Further, since the received light signal a is very small, as shown in FIG. 9, a plurality of non-inverting AC amplifier circuits 7 comprising operational amplifiers A for amplifying the signal a are connected. Amplifying means 6 is provided, and a differential circuit comprising a coupling capacitor C and a resistor R1 is formed on the positive phase input side of the operational amplifier A in order to remove a direct current component which is a disturbance light component. The signal a is amplified by the amplifying means 6 and the amplified light receiving signal is output to the CPU 8.

そして、被検出物の色を検出するには、検出動作に先だって、基準となる色の被検出物に3色(赤、緑、青)の光を順次投光し、この被検出物で反射した3色の光の受光信号レベル(増幅された信号の各ピーク値(ボトム値))の和に対する各色の受光信号レベルの比率をCPU8がそれぞれの光について求めてメモリ(図示しない)に記憶する。   In order to detect the color of the detected object, light of three colors (red, green, and blue) is sequentially projected onto the detected object of the reference color prior to the detection operation, and reflected by the detected object. The CPU 8 calculates the ratio of the light reception signal level of each color to the sum of the light reception signal levels of the three colors of light (each peak value (bottom value) of the amplified signal) and stores it in a memory (not shown). .

次に、検出時には、検出する被検出物上に3色(赤、緑、青)の光を順次投光し、被検出物上で反射した3色の光の受光信号レベルの和に対する各色の受光信号レベルの比率をCPU8がそれぞれの光について求めるとともに、この比率と検出前に記憶した比率とを比較して、両比率が略同一であれば、検出時の被検出物は基準となる被検出物の色と同じ色であることが判断されるものである。
特許3157463号公報
Next, at the time of detection, light of three colors (red, green, and blue) is sequentially projected onto the detected object to be detected, and each color with respect to the sum of the received light signal levels of the three colors reflected on the detected object. The CPU 8 obtains the ratio of the received light signal level for each light and compares this ratio with the ratio stored before detection. If both ratios are substantially the same, the object to be detected at the time of detection is the reference object. It is determined that the color is the same as the color of the detected object.
Japanese Patent No. 3157463

ところで、例えば、被検出物が搬送されるものである場合には、順次投光される各色の光の時間の間隔が長いと、被検出物上における測定ポイントが各色の光ごとにずれてしまい正確な各色の光ごとの受光信号レベルが得られないために精度の高い色判別をすることができない。したがって、順次投光される各色の光の時間の間隔はできる限り短いことが望ましい。   By the way, for example, when the object to be detected is transported, the measurement point on the object to be detected is shifted for each color of light when the time interval of the light of each color sequentially projected is long. Since an accurate received light signal level for each color of light cannot be obtained, highly accurate color discrimination cannot be performed. Therefore, it is desirable that the time interval of light of each color projected sequentially is as short as possible.

しかしながら、上記した構成では直流成分を除去するための結合コンデンサCは、交流増幅回路には必要不可欠なものではあるが、信号aの入力の終了時(ハイレベル)に、蓄積された電荷を放電することになるため、信号aの立ち上がり後に演算増幅器Aから出力される受光信号b(増幅後の信号)にオーバーシュートとアンダーシュートによるリンギングを誘発する(図10参照)。特に、上記構成のように交流増幅回路を多段に接続したものでは、その最終出力においてこのリンギングが相当に大きくなる。このことは、受光量(受光素子4に受光される量)の大きい光では蓄積される電荷の量も大きくなってしまい、一層顕著になる。   However, in the above configuration, the coupling capacitor C for removing the DC component is indispensable for the AC amplifier circuit, but the accumulated charge is discharged at the end of input of the signal a (high level). Therefore, ringing due to overshoot and undershoot is induced in the received light signal b (amplified signal) output from the operational amplifier A after the rise of the signal a (see FIG. 10). In particular, in the case where an AC amplifier circuit is connected in multiple stages as in the above configuration, this ringing becomes considerably large at the final output. This becomes even more pronounced because the amount of accumulated charge increases with light having a large amount of received light (the amount of light received by the light receiving element 4).

そのため、次の投光動作を行うためには、このリンギングが減衰した後、即ち、上記構成では受光信号bがVcc(基準電圧値)に安定するまで待たなくてならず、投光動作間隔Tを短縮するために、受光信号bがVccに安定する前に次の投受光動作を行った場合には、前に投光された色の光に起因したリンギングが次に投光された色の光の受光信号レベル(増幅された信号の各ピーク値(ボトム値))に影響を与えてしまい、被検出物の正確な色の検出ができないおそれがある。   Therefore, in order to perform the next light projecting operation, after the ringing attenuates, that is, in the above configuration, it is necessary to wait until the light reception signal b is stabilized at Vcc (reference voltage value). When the next light projecting / receiving operation is performed before the light receiving signal b is stabilized at Vcc, the ringing caused by the light of the previously projected color is reduced. The light reception signal level (each peak value (bottom value) of the amplified signal) is affected, and there is a possibility that accurate color detection of the object to be detected cannot be performed.

そこで、結合コンデンサCにグランドと接続された経路を設け、放電時にはかかる経路を短絡することで蓄積された電荷を放出し、リンギングを防止する構成とすることが考えられるが(上記特許文献1参照)、回路に新たに経路を設けるのでは回路構成が複雑化してしまい望ましくない。   In view of this, it is conceivable that a path connected to the ground is provided in the coupling capacitor C, and the accumulated charge is released by short-circuiting the path during discharging to prevent ringing (see Patent Document 1 above). It is not desirable to provide a new path in the circuit because the circuit configuration becomes complicated.

本発明は、上記事情に鑑みてなされたもので、その目的は、簡単な回路構成で、投光間隔を短縮しても比較的精度の高い色検出の可能な光電センサを提供するところにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoelectric sensor capable of color detection with relatively high accuracy even when the projection interval is shortened with a simple circuit configuration. .

上記の目的を達成するための手段として、請求項1の発明は、互いに異なる複数の波長の光を出射する投光手段と、前記投光手段に前記複数の波長の光を所定時間だけ間隔を空けて順次投光させる投光駆動動作を行わせるとともに、前記投光駆動動作を前記所定時間より長い間隔ごとに繰り返し行わせる投光駆動手段と、前記投光手段から投光された光のうち被検出物からの反射光又は透過光を受光する1つ以上の受光素子と、当該受光素子による受光量に応じて増幅された受光信号を出力する1つの受光増幅手段と、前記受光増幅手段から出力される前記異なる波長の光ごとの受光信号レベルに基づいて前記被検出物の検出を行う検出手段とを備える光電センサにおいて、前記検出手段による検出動作に先だって、基準となる被検出物が検出領域に配されたときに、前記投光手段から投光された光のうち前記受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較する比較手段と、前記比較手段による比較結果に基づいて前記異なる波長の光の受光信号レベルの小さいものからの順序を記憶する記憶手段とを備え、前記検出手段による検出動作時には、前記投光駆動手段は、前記記憶手段に記憶された順序で前記異なる波長の光を前記投光手段に投光させる構成としたところに特徴を有する。   As means for achieving the above object, the invention of claim 1 is characterized in that light projecting means for emitting light of a plurality of wavelengths different from each other, and light of the plurality of wavelengths are spaced from the light projecting means for a predetermined time. A light projecting drive unit that performs a light projecting drive operation for sequentially projecting the light and repeatedly performing the light projecting drive operation at intervals longer than the predetermined time; and the light projected from the light projecting unit One or more light receiving elements that receive reflected light or transmitted light from the object to be detected, one light receiving amplification means that outputs a light reception signal amplified according to the amount of light received by the light receiving elements, and the light receiving amplification means In a photoelectric sensor comprising detection means for detecting the detection object based on the received light signal level for each of the different wavelengths of light output, the detection object serving as a reference is detected prior to the detection operation by the detection means. Comparing means for comparing the magnitudes of received light signal levels of light of different wavelengths output from the light receiving amplification means among the light projected from the light projecting means when arranged in the region; and the comparing means And storing means for storing the order of light of different wavelengths from the light receiving signal level starting from the lowest, based on the comparison result of the above, and during the detection operation by the detecting means, the light projecting driving means is stored in the storing means It is characterized in that the light projecting means is configured to project the light of the different wavelengths in the order in which they are performed.

請求項2の発明は、互いに異なる複数の波長の光を出射する投光手段と、前記投光手段に前記複数の波長の光を所定時間だけ間隔を空けて同時に投光させる投光駆動動作を行わせるとともに、前記投光駆動動作を前記所定時間より長い間隔ごとに繰り返し行わせる投光駆動手段と、前記投光手段から投光された光のうち被検出物からの反射光又は透過光を異なる波長ごとに受光する複数の受光素子と、前記複数の受光素子で受光された前記複数の波長の光に基づく信号を前記投光手段の投光タイミングに同期して順次有効化する有効化手段と、前記有効化手段により有効化された信号を増幅して出力する受光増幅手段と、前記受光増幅手段により増幅されて出力される前記異なる波長の光ごとの受光信号レベルに基づいて前記被検出物の検出を行う検出手段とを備える光電センサにおいて、前記検出手段による検出動作に先だって、基準となる被検出物が検出領域に配されたときに、前記投光手段から投光された光のうち前記受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較する比較手段と、前記比較手段による比較結果に基づいて前記異なる波長の光の受光信号レベルの小さいものからの順序を記憶する記憶手段とを備え、前記検出手段による検出動作時には、前記有効化手段は、前記記憶手段に記憶された順序で前記異なる波長の光ごとの受光信号を有効化する構成としたところに特徴を有する。   According to a second aspect of the present invention, there is provided a light projecting unit that emits light having a plurality of different wavelengths, and a light projecting driving operation for causing the light projecting unit to simultaneously project the light having the plurality of wavelengths at a predetermined time interval. A light projecting drive means for repeatedly performing the light projecting driving operation at intervals longer than the predetermined time, and reflected light or transmitted light from an object to be detected among the light projected from the light projecting means. A plurality of light receiving elements that receive light at different wavelengths, and an enabling unit that sequentially enables signals based on the light of the plurality of wavelengths received by the plurality of light receiving elements in synchronization with the light projecting timing of the light projecting unit And a light receiving amplification means for amplifying and outputting the signal validated by the validation means, and the detected signal based on the light reception signal level for each light of the different wavelength amplified and outputted by the light reception amplification means Object detection In the photoelectric sensor comprising the detecting means to perform, the light receiving amplification of the light projected from the light projecting means when a reference object to be detected is arranged in the detection area prior to the detecting operation by the detecting means. The comparison means for comparing the magnitudes of the received light signal levels for the light of different wavelengths output from the means, and the order from the light receiving signal level for the light of the different wavelengths based on the comparison result by the comparing means is stored. And a storage means for performing the detection operation by the detection means, wherein the enabling means is configured to enable the received light signals for the lights of different wavelengths in the order stored in the storage means. Have.

<請求項1の発明>
本構成によれば、検出手段による検出動作に先だって、基準となる被検出物が検出領域に配されたときに、投光手段から投光された光のうち受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較手段により比較し、この比較結果に基づいて異なる波長の光の受光信号レベルの小さいものからの順序を記憶手段に記憶する。
<Invention of Claim 1>
According to this configuration, different wavelengths output from the light receiving and amplifying means out of the light projected from the light projecting means when the reference detection object is arranged in the detection area prior to the detection operation by the detecting means. The magnitudes of the received light signal levels of the light beams of the different wavelengths are compared by the comparing means, and the order from the light receiving signal level of the light having a different wavelength based on the comparison result is stored in the storage means.

そして、検出動作時には、投光駆動手段により、記憶手段に記憶された順序で、異なる波長の光を投光手段に投光させるから、オーバーシュート等の影響を受けやすい光、すなわち受光信号レベルの小さい光を先に投光させることになり、各波長の光を投光させる所定時間の間隔を短縮したとしても、後に受光する光の受光信号レベルに与える影響を少なくすることができ、比較的精度の高い被検出物の色検出が可能となる。   During the detection operation, the light projecting drive means projects light of different wavelengths onto the light projecting means in the order stored in the memory means. Even if the interval of the predetermined time for projecting the light of each wavelength is shortened, the influence on the light reception signal level of the light received later can be reduced. It is possible to detect the color of the detected object with high accuracy.

<請求項2の発明>
本構成によれば、検出手段による検出動作に先だって、基準となる被検出物がが検出領域に配されたときに、投光手段から投光された光のうち受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較手段により比較し、この比較結果に基づいて異なる波長の光の受光信号レベルの小さいものからの順序を記憶手段に記憶する。
<Invention of Claim 2>
According to this configuration, prior to the detection operation by the detection unit, when a detection target object serving as a reference is arranged in the detection area, the light output from the light reception amplification unit among the light projected from the light projection unit is different. The magnitude of the received light signal level for the light of the wavelength is compared by the comparison means, and the order from the light reception signal level of the light of the different wavelength from the smallest is stored in the storage means based on the comparison result.

そして、検出動作時には、有効化手段により、記憶手段に記憶された順序で、異なる複数の波長の光に基づく信号を有効化するから、受光信号レベルに基づくオーバーシュート等の影響を受けやすい光、すなわち受光信号レベルの小さい光に基づく信号を先に有効化させることになり、各波長の光を投光させる所定時間の間隔を短縮したとしても、後に受光する光の受光信号レベルに与える影響を少なくすることができ、比較的精度の高い被検出物の色検出が可能となる。   And, during the detection operation, since the signal based on the light of a plurality of different wavelengths is validated by the validating means in the order stored in the memory means, the light that is easily affected by overshoot based on the received light signal level, In other words, a signal based on light having a low light reception signal level is first activated, and even if the interval of a predetermined time for projecting light of each wavelength is shortened, the effect on the light reception signal level of light received later is affected. Therefore, it is possible to detect the color of the detection object with relatively high accuracy.

<実施形態1>
本発明の実施形態1を図1ないし図5を参照しつつ説明する。
本実施形態の光電センサは、例えばローラ(図示しない)によって搬送されるシートW(被検出物)上のマークを検出するために使用するものであり、図1に示すように、投光素子11A,11B,11C(投光手段)から順次出射された3色の光(異なる波長の光)のうち、シートW上(表面)で反射した光の受光素子21(受光手段)で受光した光の受光量に基づく信号が増幅され、この増幅された受光信号レベル(増幅された信号の各ピーク値(ボトム値))に基づいてシートWのマークの検出を行うものである。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIGS.
The photoelectric sensor of the present embodiment is used for detecting a mark on a sheet W (detected object) conveyed by, for example, a roller (not shown), and as shown in FIG. , 11B, 11C (light projecting means) of the three colors of light (lights of different wavelengths) sequentially reflected by the light receiving element 21 (light receiving means) of the light reflected on the sheet W (surface) A signal based on the amount of received light is amplified, and a mark on the sheet W is detected based on the amplified received light signal level (each peak value (bottom value) of the amplified signal).

1.光電センサの電気的構成
図中30は、中央演算処理装置(以下、CPU30という。)であり、投受光動作の制御、及び受光信号レベルに基づいて色判別等を行う。このCPU30には、それぞれ投光回路12A,12B,12C(本発明の「投光駆動手段」に相当)を介して赤色、緑色、青色に発光する投光素子11A,11B,11Cが接続されている。そして、CPU30から出力される投光信号f1,f2,f3(ハイレベル)に基づいてシートWに対して投光動作を行うようになっている。
1. Electrical Configuration of the Photoelectric Sensor 30 in the figure is a central processing unit (hereinafter referred to as CPU 30), which controls the light projecting / receiving operation and performs color discrimination based on the light receiving signal level. The CPU 30 is connected to light projecting elements 11A, 11B, and 11C that emit light in red, green, and blue through light projecting circuits 12A, 12B, and 12C (corresponding to the “light projecting drive unit” of the present invention), respectively. Yes. A light projection operation is performed on the sheet W based on the light projection signals f1, f2, and f3 (high level) output from the CPU 30.

また、各投光素子11A,11B,11CからシートWに対して照射される光の反射光を受光するために、受光素子21が一つ設けられており、この受光素子21は受光回路22に接続されている。受光回路22の出力側には、後述する交流増幅回路23を複数段に接続してなる受光増幅手段24が設けられており、受光回路22から出力される信号a(ロウレベル)が増幅された後、CPU30に受光信号cが送られるようになっている。   In addition, one light receiving element 21 is provided to receive the reflected light of the light irradiated to the sheet W from each of the light projecting elements 11A, 11B, and 11C. It is connected. On the output side of the light receiving circuit 22, there is provided light receiving amplifying means 24 formed by connecting an AC amplifier circuit 23 described later in a plurality of stages, and after the signal a (low level) output from the light receiving circuit 22 is amplified. The light reception signal c is sent to the CPU 30.

各交流増幅回路23は、図2に示すように、演算増幅器Aを一つ備えた非反転型の増幅回路であり、その正相入力側には、結合コンデンサCと抵抗R1が接続されている。抵抗R1の他方側は、電源(Vcc)に接続されている。即ち、受光回路22から出力される信号aは微分された後、演算増幅器Aの正相入力側に入力されることになる。これにより、外乱光成分である直流成分が除去され、交流成分のみが演算増幅器Aに入力されることになる。なお、抵抗R1は演算増幅器Aの正相入力側に微分回路を構成するとともに、演算増幅器Aにバイアス電流を流す働きを有する。   As shown in FIG. 2, each AC amplifier circuit 23 is a non-inverting amplifier circuit having one operational amplifier A, and a coupling capacitor C and a resistor R1 are connected to the positive phase input side. . The other side of the resistor R1 is connected to a power supply (Vcc). That is, the signal a output from the light receiving circuit 22 is differentiated and then input to the positive phase input side of the operational amplifier A. As a result, the DC component that is the disturbance light component is removed, and only the AC component is input to the operational amplifier A. The resistor R1 forms a differentiating circuit on the positive phase input side of the operational amplifier A and has a function of flowing a bias current to the operational amplifier A.

演算増幅器Aの逆相入力側には、出力側との間に帰還抵抗R2が挿入されており、また、帰還抵抗R2と抵抗R3によって演算増幅器Aの逆相入力側と正相入力側の電圧が非入力状態においてほぼ等しくなるように分圧回路が構成されている。   On the negative phase input side of the operational amplifier A, a feedback resistor R2 is inserted between the operational amplifier A and the output side, and the voltages on the negative phase input side and the positive phase input side of the operational amplifier A by the feedback resistors R2 and R3. Are divided so as to be substantially equal in the non-input state.

そして、CPU30から投光信号f1(f2,f3)が出力(ハイレベル)されると、シートWに対して投光素子11A(11B,11C)から赤色(緑色、青色)の光が照射される。すると、その投光された色の光のうちシートWからの反射光に基づいて受光回路22から信号aが出力(ロウレベル)される。そして、信号aは結合コンデンサCを介して演算増幅器Aの正相入力側に送られる。この際、外乱光成分である直流成分は結合コンデンサCで除去され、交流成分のみが演算増幅器Aに送られることになる。   Then, when the projection signal f1 (f2, f3) is output (high level) from the CPU 30, red (green, blue) light is emitted from the projection element 11A (11B, 11C) to the sheet W. . Then, a signal a is output (low level) from the light receiving circuit 22 based on the reflected light from the sheet W among the projected color light. The signal a is sent to the positive phase input side of the operational amplifier A through the coupling capacitor C. At this time, the DC component which is a disturbance light component is removed by the coupling capacitor C, and only the AC component is sent to the operational amplifier A.

ここで、結合コンデンサCは、受光回路22から信号aが入力(ロウレベル)されると充電される。そして、信号aが非入力状態(ハイレベル)に戻ると、結合コンデンサCの電位差により正相入力側に入力される電圧が基準電位よりも上昇した後に、結合コンデンサCに貯えられた電荷が徐々に放電されて、演算増幅器Aの正相入力側の電圧が基準電位に収束する。   Here, the coupling capacitor C is charged when the signal a is input (low level) from the light receiving circuit 22. When the signal a returns to the non-input state (high level), the voltage input to the positive phase input side rises above the reference potential due to the potential difference of the coupling capacitor C, and then the charge stored in the coupling capacitor C gradually increases. The voltage on the positive phase input side of the operational amplifier A converges to the reference potential.

次に、演算増幅器Aの正相入力側に信号が入力されると、演算増幅器Aにて増幅された信号bとして出力されるとともに、この信号bが演算増幅器Aの負相入力側に負帰還される。   Next, when a signal is input to the positive phase input side of the operational amplifier A, it is output as a signal b amplified by the operational amplifier A, and this signal b is negatively fed back to the negative phase input side of the operational amplifier A. Is done.

したがって、演算増幅器Aから出力される信号bの出力波形にはオーバーシュートが生じるとともに、信号bの負帰還によりこのオーバーシュートとアンダーシュートとを繰り返すリンギングが生じ、このリンギングは受光信号レベルの大きさに応じて収束するのにかかる時間が大きくなる。そして、受光増幅手段24は、交流増幅回路23が複数段構成されてなるために、信号bは更に増幅された受光信号cとされた後に、CPU30に出力される。   Accordingly, overshoot occurs in the output waveform of the signal b output from the operational amplifier A, and ringing that repeats this overshoot and undershoot occurs due to the negative feedback of the signal b, and this ringing is the magnitude of the received light signal level. The time required for convergence increases according to the time. The light receiving and amplifying means 24 is composed of a plurality of stages of AC amplifying circuits 23, so that the signal b is further amplified to the received light signal c and then output to the CPU 30.

また、CPU30には、記憶部31(本発明の「記憶手段」に相当)が接続されており、この記憶部31には、後述するティーチングの際に求められる、投光される3色の光のうち反射光の受光信号レベル(増幅された信号の大きさ)の小さいものからの順番が記憶されるようになっている。   Further, the CPU 30 is connected with a storage unit 31 (corresponding to the “storage unit” of the present invention), and the storage unit 31 emits light of three colors to be obtained that is obtained during teaching described later. Among them, the order from the smallest received light signal level (amplified signal magnitude) of the reflected light is stored.

さらに、この記憶部31には、予め測定されたリンギングが終了するのに必要な所定時間(受光信号レベルが最も大きいときにリンギングが収束するまでにかかる時間)が記憶されている。   Further, the storage unit 31 stores a predetermined time (a time required for the ringing to converge when the received light signal level is the highest) necessary for the completion of the ringing measured in advance.

2.CPUの処理
次にCPUの処理について、図3,4のフローチャートを参照しつつ説明する。
(a)ティーチングモード
ティーチングモードでは、図3に示すように、CPU30は、ティーチング開始の信号を入力すると、投光回路12Aに投光信号f1を出力する。すると、投光回路12Aは、投光素子11Aから赤色の光を投光させるとともに、作業者によってシート上の基準となる色のマークにスポットの位置が合わされた状態とされているから、投光された光がシート上のマークにて反射して、その反射光が受光素子21にて受光される。
2. CPU Processing Next, CPU processing will be described with reference to the flowcharts of FIGS.
(A) Teaching Mode In the teaching mode, as shown in FIG. 3, when the teaching start signal is input, the CPU 30 outputs the projecting signal f1 to the projecting circuit 12A. Then, the light projecting circuit 12A projects red light from the light projecting element 11A and the spot position is adjusted to the reference color mark on the sheet by the operator. The reflected light is reflected by the mark on the sheet, and the reflected light is received by the light receiving element 21.

そして、受光された光は、その受光量レベルに応じた受光信号として、CPU30にサンプリングされ、CPU30は、この受光信号レベルZr(受光信号のピーク値(ボトム値))をメモリ(図示しない)に記憶する(S11)。   The received light is sampled by the CPU 30 as a received light signal corresponding to the received light amount level, and the CPU 30 stores the received light signal level Zr (the peak value (bottom value) of the received light signal) in a memory (not shown). Store (S11).

次に、CPU30は、記憶部31に記憶されたリンギングが終了するのに必要な所定時間を読み出し、この時間が経過したことを検出すると(S12)、投光回路12Bに投光信号f2を出力する。すると、投光回路12Bは、投光素子11Bから緑色の光を投光させるとともに、投光された光がシート上の基準となるマークにて反射して、その反射光が受光素子21にて受光される。   Next, the CPU 30 reads a predetermined time required to complete the ringing stored in the storage unit 31, and when detecting that this time has passed (S12), outputs the light projection signal f2 to the light projection circuit 12B. To do. Then, the light projecting circuit 12B projects green light from the light projecting element 11B, and the projected light is reflected by a reference mark on the sheet, and the reflected light is reflected by the light receiving element 21. Received light.

そして、受光された光は、その受光量レベルに応じた受光信号として、CPU30にサンプリングされ、CPU30は、この受光信号レベルZgをメモリに記憶する(S13)。   The received light is sampled by the CPU 30 as a received light signal corresponding to the received light amount level, and the CPU 30 stores the received light signal level Zg in the memory (S13).

次に、CPU30は、記憶部31に記憶されたリンギングが終了するのに必要な所定時間を読み出し、この時間が経過したことを検出すると(S14)、投光回路12Cに投光信号f3を出力する。すると、投光回路12Cは、投光素子11Cから青色の光を投光させるとともに、投光された光がシート上の基準となるマークにて反射して、その反射光が受光素子21にて受光される。   Next, the CPU 30 reads a predetermined time required to complete the ringing stored in the storage unit 31, and when detecting that this time has elapsed (S14), outputs the light projection signal f3 to the light projection circuit 12C. To do. Then, the light projecting circuit 12C projects blue light from the light projecting element 11C, and the projected light is reflected by a reference mark on the sheet, and the reflected light is reflected by the light receiving element 21. Received light.

そして、受光された光は、その受光量レベルに応じた受光信号として、CPU30にサンプリングされ、CPU30は、この受光信号レベルZbをメモリに記憶する(S15)。   The received light is sampled by the CPU 30 as a received light signal corresponding to the received light amount level, and the CPU 30 stores the received light signal level Zb in the memory (S15).

次に、CPU30は、記憶部31に記憶されたリンギングが終了するのに必要な所定時間を読み出し、この時間が経過したことを検出すると(S16)、メモリに記憶した各色の光の受光信号レベルZr,Zg,Zbを読み出すとともに、読み出した各色の受光信号レベルZr,Zg,Zbを比較する(S17,本発明の「比較手段」に相当)。   Next, the CPU 30 reads a predetermined time required for the ringing stored in the storage unit 31 to end, and when detecting that this time has passed (S16), the light reception signal level of each color light stored in the memory. Zr, Zg, and Zb are read out, and the read-out light reception signal levels Zr, Zg, and Zb of each color are compared (S17, corresponding to “comparison means” of the present invention).

そして、CPU30は、各色の受光信号レベルZr,Zg,Zbの比較結果に基づいて(S17)、受光信号レベルの小さい色の光から所定時間T´(例えば10μs)ごとに順番に投光回路12A,12B,12Cに投光信号f1,f2,f3を送信し、これにより投光回路12A,12B,12Cは投光素子11A,11B,11Cに受光信号レベルの小さい色の光から順次投光させる投光駆動動作を行わせ、これにより投光された3色の光は、シートW上のマークにてそれぞれ反射して、その反射光が順次受光素子21にて受光される。   Then, based on the comparison result of the light reception signal levels Zr, Zg, and Zb of each color (S17), the CPU 30 sequentially projects the light projecting circuit 12A from the light of the light reception signal level having a small color level every predetermined time T ′ (eg, 10 μs). , 12B, and 12C are transmitted with the light projection signals f1, f2, and f3, so that the light projecting circuits 12A, 12B, and 12C cause the light projecting elements 11A, 11B, and 11C to sequentially project the light of the light receiving signal level from a small color. The light projection driving operation is performed, and the light of the three colors thus projected is reflected by the mark on the sheet W, and the reflected light is sequentially received by the light receiving element 21.

そして、受光された光は、その赤、緑、青の各受光量レベルに応じた受光信号として、CPU30にサンプリングされ、CPU30は、受光信号レベルYr,Yg,Yb(各色の光の受光信号のピーク値(ボトム値))を加算し、この加算した受光信号レベルYr+Yg+Ybで、各色の光ごとの受光信号レベルYr,Yg,Ybを割ることにより求められる比率Sr,Sb,Sgをそれぞれの光について求め、これらの比率Sr,Sg,Sbをメモリに記憶する(S18〜S23)。   The received light is sampled by the CPU 30 as a received light signal corresponding to the received light level of each of red, green, and blue, and the CPU 30 receives the received light signal levels Yr, Yg, Yb (the received light signal of each color). The peak value (bottom value)) is added, and the ratio Sr, Sb, Sg obtained by dividing the received light signal level Yr, Yg, Yb for each color light by the added received light signal level Yr + Yg + Yb for each light. The ratios Sr, Sg, and Sb are obtained and stored in the memory (S18 to S23).

そして、CPU30は、各色の受光信号レベルZr,Zg,Zbの比較結果に基づいて得られた受光信号レベルの小さい色の光から順番を記憶部31に記憶することにより(S24〜S29,本発明の「記憶手段」に相当)、ティーチングモードが終了する。   And CPU30 memorize | stores the order from the light of the light reception signal level small color obtained based on the comparison result of the light reception signal level Zr, Zg, Zb of each color in the memory | storage part 31 (S24-S29, this invention). The teaching mode ends.

(b)マーク検出
マークの検出動作時には、図4に示すように、搬送されるシートWが検出領域に進入したという信号をCPU30が受けると、CPU30は、記憶部31に記憶された受光信号レベルの小さい色の光からの順番を読み出し(以下では、受光信号レベルの小さい色の光からの順番は緑、青、赤の順であるとして説明する。)、この読み出した順番で所定時間T´(例えば10μs)ごとに、投光信号f2,f3,f1を各投光回路12B,12C,12Aに順次出力する。すると、各投光回路12B,12C,12Aは、順次各投光素子11B,11C,11Aを投光させる投光駆動動作を行わせるとともに、投光された光がシートW上のマークにて反射して、その反射光が順次受光素子21にて受光される。そして、受光された光は、赤、緑、青の各受光量レベルに応じた受光信号として、CPU30に出力され、CPU30は、この受光信号レベルXr,Xg,Xbをメモリに記憶する(S31〜S33)。
(B) Mark detection When the CPU 30 receives a signal that the conveyed sheet W has entered the detection area as shown in FIG. 4 during the mark detection operation, the CPU 30 receives the received light signal level stored in the storage unit 31. (In the following description, the order from the light of the color with the small received light signal level is the order of green, blue, and red), and the predetermined time T ′ in the read order. The projection signals f2, f3, and f1 are sequentially output to the projection circuits 12B, 12C, and 12A every (for example, 10 μs). Then, each of the light projecting circuits 12B, 12C, and 12A sequentially performs a light projecting driving operation for projecting the light projecting elements 11B, 11C, and 11A, and the projected light is reflected by the mark on the sheet W. Then, the reflected light is sequentially received by the light receiving element 21. The received light is output to the CPU 30 as a received light signal corresponding to each received light level of red, green, and blue, and the CPU 30 stores the received light signal levels Xr, Xg, and Xb in the memory (S31 to S31). S33).

次に、CPU30は、各色の光の受光信号レベルXr,Xg,Xbを読み出すとともに、読み出した各色の光の受光信号レベルXr,Xg,Xbを加算し、この加算した受光信号レベルXr+Xg+Xbと各色の光ごとの受光信号レベルXr,Xg,Xbとの比率Tr,Tg,Tbをそれぞれ求める。
そして、CPU30は、これらの比率Tr,Tg,Tbをメモリに記憶する(S34〜S36)。
Next, the CPU 30 reads out the light reception signal levels Xr, Xg, and Xb of each color light, adds the read light reception signal levels Xr, Xg, and Xb of each color light, and adds the received light reception signal levels Xr + Xg + Xb and each color. Ratios Tr, Tg, and Tb with the received light signal levels Xr, Xg, and Xb for each light are obtained.
Then, the CPU 30 stores these ratios Tr, Tg, Tb in the memory (S34 to S36).

次に、ティーチングのときにメモリに記憶した加算した受光信号レベルYr+Yg+Ybと各色の光ごとの受光信号レベルYr,Yg,Ybとの比率Sr,Sg,Sbを読み出し、この比率Sr,Sg,Sbが検出動作時にメモリに記憶した加算した受光信号レベルXr+Xg+Xbと各色の光ごとの受光信号レベルXr,Xg,Xbとの比率Tr,Tg,Tbと等しいかどうかを各色ごとに判断する(S37〜S39)。このとき、全ての色の光の比率が等しいときには、検出と判断し(S37〜S39のいずれも「Y」,S40)、いずれか1つの色の光の比率が異なるときには、非検出と判断する(S37〜S39のいずれかが「N」,S41)。なお、比率がほぼ等しい(略同一)かどうかの判断は、完全に一致していなくても所定の範囲内の違いであれば比率が等しいものと判断するようにしてもよく、具体的な「所定の範囲内」は基準となる比率に対して±5%の範囲を閾値として設定し、この範囲内にあるものを略同一と判定してもよい。   Next, the ratios Sr, Sg, Sb between the added light reception signal level Yr + Yg + Yb stored in the memory at the time of teaching and the light reception signal levels Yr, Yg, Yb for each color light are read, and the ratios Sr, Sg, Sb are read out. It is determined for each color whether or not the ratios Tr, Tg, Tb of the added light reception signal level Xr + Xg + Xb stored in the memory during the detection operation and the light reception signal levels Xr, Xg, Xb for each color light are equal (S37 to S39). . At this time, when the light ratios of all the colors are equal, it is determined that the light is detected (S37 to S39 are all “Y”, S40), and when the light ratio of any one color is different, it is determined that the light is not detected. (S37 to S39 are “N”, S41). Note that whether or not the ratios are substantially equal (substantially the same) may be determined to be equal if the ratios are not completely the same but are different within a predetermined range. For “within a predetermined range”, a range of ± 5% with respect to a reference ratio may be set as a threshold value, and those within this range may be determined to be substantially the same.

そして、検出と判断した場合には、CPU30は、出力回路32に検出信号を出力するとともに、デジタル表示器(図示しない)の動作表示灯を点灯させる。一方、非検出と判断した場合には、検出信号の出力等を行わない。   When it is determined that the detection is made, the CPU 30 outputs a detection signal to the output circuit 32 and turns on an operation indicator lamp of a digital display (not shown). On the other hand, when it is determined that the detection is not performed, the detection signal is not output.

そして、最後の投光素子11Aを投光(最も受光量(受光信号レベル)の大きい光を投光)させてから各色の光の所定時間の投光間隔T´よりも長い間隔T´´(最後に投光される光の最も長いリンギングが終了するまでの時間の経過後。例えば、20μs)ごとに、CPU30は、所定周期で各投光回路12B,12C,12Aへの投光信号f2,f3,f1の出力を繰り返し、これにより各投光回路12B,12C,12Aは、順次各投光素子11B,11C,11Aを投光させる投光駆動動作を所定周期で繰り返す。
以上の動作が検出終了の信号をCPU30が受けるまで継続される。
Then, after projecting the last light projecting element 11A (projecting light having the largest received light amount (light reception signal level)), an interval T ″ (which is longer than the projecting interval T ′ of the light of each color for a predetermined time) After the elapse of the time until the longest ringing of the last projected light ends (for example, 20 μs), the CPU 30 sends the light projection signals f2, f2 to the light projecting circuits 12B, 12C, 12A in a predetermined cycle. The outputs of f3 and f1 are repeated, whereby each of the light projecting circuits 12B, 12C, and 12A repeats the light projecting driving operation for sequentially projecting the light projecting elements 11B, 11C, and 11A at a predetermined cycle.
The above operation is continued until the CPU 30 receives a detection end signal.

3.本実施形態の効果
このように、本実施形態によれば、CPU30による検出動作に先だって、基準となるマークが検出領域に配されたときに、投光素子11A,11B,11Cから投光された光のうち受光素子21で受光される各色の光の受光信号レベルをCPU30により比較し、この比較結果に基づいて異なる色の光の受光信号レベル(受光量)の小さいものからの順序を記憶部31に記憶する。
3. As described above, according to this embodiment, prior to the detection operation by the CPU 30, when the reference mark is arranged in the detection area, the light is projected from the light projecting elements 11A, 11B, and 11C. The light receiving signal level of each color light received by the light receiving element 21 among the light is compared by the CPU 30, and the order from the light receiving signal level (light receiving amount) of the light of a different color based on the comparison result is stored in the storage unit. 31.

そして、検出動作時には、投光回路12A,12B,12Cにより、記憶部31に記憶された受光信号レベル(受光量)の小さい色の光からの順序で、異なる色の光を投光素子11A,11B,11Cに投光させる。   At the time of the detection operation, the light projecting elements 12A, 12B, and 12C emit light of different colors in the order from the light of the light receiving signal level (the amount of received light) stored in the storage unit 31. 11B and 11C are projected.

ここで、例えば、受光量(受光信号レベル)の小さい光から順番に投光させない場合には、図5(A)に示すように、受光信号レベルが大きい色の光、すなわち大きなオーバーシュートを生じる光の次に受光信号レベルが小さい色の光が投光されることになる(図5(A)の赤色(R)の光の次に緑色(G)の光が投光)。   Here, for example, when light is not projected in order from a light receiving amount (light receiving signal level), light of a color with a large light receiving signal level, that is, a large overshoot is generated as shown in FIG. The light having the light reception signal level next to the light is projected (the red (R) light and the green (G) light in FIG. 5A are projected).

オーバーシュートの大きい光はその後にダウンシュートとオーバーシュートを繰り返すリンギングが長時間に亘って生じ、このリンギングが収束するのにかかる時間はオーバーシュートの大きさに比例して大きくなる。したがって、リンギングが収束しないうちに次の色の光の信号を受光増幅手段24が受けてしまい、このリンギングによる基準電圧値Vccからのずれに応じて、受光信号レベルの大きさが変わってしまう(図5(A)の緑色(G)の光の受光信号レベル)。   In the case of light with a large overshoot, ringing that repeats a downshoot and overshoot thereafter occurs over a long period of time, and the time taken for the ringing to converge increases in proportion to the size of the overshoot. Therefore, the light receiving amplification means 24 receives the light signal of the next color before the ringing converges, and the magnitude of the light receiving signal level changes according to the deviation from the reference voltage value Vcc due to this ringing ( FIG. 5A shows a light reception signal level of green (G) light.

これにより、各色の光の受光信号レベルの比率も変わってしまうために、受光信号レベルの比率に基づいてシートWの色の検出を行うカラーセンサでは正確なマークの検出に支障をきたしてしまう。   As a result, the ratio of the light reception signal level of the light of each color also changes, so that the color sensor that detects the color of the sheet W based on the ratio of the light reception signal level hinders accurate mark detection.

このことは、特に、次に(後から)投光される光が受光量(受光信号レベル)の小さい光で有る場合には、リンギングにより受ける影響が大きい。具体的には、例えば、オーバーシュート等のレベルが5であったとすると、次の光が受光信号レベルが70の光であれば、受光信号レベルの受ける影響の割合が約7%であるのに対し、次の光が受光信号レベルが10の光であれば、その受ける影響の割合が50%となり、受光信号レベルのずれが大きくなって、シートWのマークの色の検出に及ぼす影響が大きくなる。   This is particularly affected by ringing when the light to be projected next (later) is light with a small received light amount (light reception signal level). Specifically, for example, if the level of overshoot or the like is 5, if the next light is light with a light reception signal level of 70, the ratio of the influence of the light reception signal level is about 7%. On the other hand, if the next light is light having a light reception signal level of 10, the influence ratio is 50%, the deviation of the light reception signal level is large, and the influence on the detection of the mark color of the sheet W is large. Become.

しかしながら、本実施形態によれば、図5(B)に示すように、3色の光のうち受光量(受光信号レベル)の小さい光、すなわちリンギングが収束する時間の短い光から順番に投光することにより、3番目の光を投光させるまでの所定時間の間隔を短縮しても、最後に投光される最も受光量(受光信号レベル)の大きい光により生じる大きなオーバーシュートによる収束時間の長いリンギングについては、次の周期の投光動作の開始までには比較的時間があるために、次の周期の受光信号レベルに及ぼす影響が少ない。   However, according to the present embodiment, as shown in FIG. 5B, light is projected in order from light of a small amount of received light (light reception signal level) among light of three colors, that is, light with a short time for ringing to converge. As a result, even if the interval of the predetermined time until the third light is projected is shortened, the convergence time due to the large overshoot caused by the light with the largest received light amount (light reception signal level) is finally projected. The long ringing has a relatively small time until the start of the light projection operation in the next cycle, and thus has little influence on the light reception signal level in the next cycle.

さらに、リンギングの影響を受けやすい受光量(受光信号レベル)の小さい光を先に投光し、リンギングの影響を比較的受けにくい受光量(受光信号レベル)の大きい光を後で投光することとしたから、投光間隔の短縮により次の(後の)光がリンギングの影響を受ける場合であっても、後の光の受光量(受光信号レベル)が大きいために後の光が受けるリンギングの影響は比較的少なくて済む。   Furthermore, light with a small received light amount (light reception signal level) that is easily affected by ringing is projected first, and light with a large light reception amount (light reception signal level) that is relatively less susceptible to ringing is projected later. Therefore, even if the next (subsequent) light is affected by ringing due to the shortening of the light projection interval, the ringing that the subsequent light receives due to the large amount of received light (received light signal level). The effect of is relatively small.

<実施形態2>
実施形態2では、図6に示すように、各色(赤、緑、青)の光を投光する投光素子11A,11B,11Cを3つ設ける一方で、前方に赤、緑、青の各色の光のみを透過するカラーフィルタ52A,52B,52Cをそれぞれに設けた受光素子51A,51B,51Cを3つ設け、各投光素子11A,11B,11Cから順次投光された色の光はそれぞれに応じた受光素子51A,51B,51Cに受光されるようになっている。
そして、各受光回路53A,53B,53Cは、スイッチング素子54A,54B,54Cを介して共通の(1つの)増幅手段25に接続されており、投光信号と同期して順番にスイッチング素子54A,54B,54Cをオンすることにより、各受光回路53A,53B,53Cから出力される信号が順番に有効化されて増幅手段25に入力するようになっている。
<Embodiment 2>
In the second embodiment, as shown in FIG. 6, while three light projecting elements 11A, 11B, and 11C that project light of each color (red, green, and blue) are provided, each color of red, green, and blue is provided in front. Three light receiving elements 51A, 51B, and 51C each provided with color filters 52A, 52B, and 52C that transmit only the light of each color are provided, and the light of the colors that are sequentially projected from the light projecting elements 11A, 11B, and 11C, respectively. The light receiving elements 51A, 51B, 51C corresponding to the light are received.
The light receiving circuits 53A, 53B, 53C are connected to the common (one) amplifying means 25 via the switching elements 54A, 54B, 54C, and are sequentially switched in synchronization with the light projection signal. By turning on 54B and 54C, signals output from the respective light receiving circuits 53A, 53B and 53C are validated in order and input to the amplifying means 25.

<実施形態3>
実施形態1では、3つの投光素子11A,11B,11Cから順次投光された異なる色の光のうちシートWで反射した光を1つの受光素子21で順次受光する構成とした。
<Embodiment 3>
In the first embodiment, the light reflected by the sheet W among the light of different colors sequentially projected from the three light projecting elements 11A, 11B, and 11C is sequentially received by one light receiving element 21.

一方、実施形態3では、図7に示すように、白色光を投光(複数の波長の光を同時に投光)する投光素子41を1つ設ける一方で、3つの受光素子51A,51B,51Cを設け、これらの受光素子51A,51B,51Cのそれぞれの前方に赤、緑、青の各色の光のみを透過するカラーフィルタ52A,52B,52Cを設ける。   On the other hand, in the third embodiment, as shown in FIG. 7, one light projecting element 41 for projecting white light (simultaneously projecting light of a plurality of wavelengths) is provided, while three light receiving elements 51A, 51B, 51C is provided, and color filters 52A, 52B, and 52C that transmit only light of each color of red, green, and blue are provided in front of each of the light receiving elements 51A, 51B, and 51C.

これにより、投光素子41から投光された光は、シートWに反射した後に、各受光素子51A,51B,51Cにて、それぞれ異なる色の光として受光され、このそれぞれの受光素子51A,51B,51Cに接続された受光回路53A,53B,53Cから各受光素子51A,51B,51Cの受光量(受光量レベル)に応じた信号が出力されるようになっている。   As a result, the light projected from the light projecting element 41 is reflected on the sheet W and then received as light of different colors by the respective light receiving elements 51A, 51B, 51C, and the respective light receiving elements 51A, 51B. , 51C is connected to the light receiving circuits 53A, 53B, 53C to output signals corresponding to the light receiving amounts (light receiving amount levels) of the light receiving elements 51A, 51B, 51C.

また、各受光回路53A,53B,53Cは、それぞれアナログスイッチからなるスイッチング素子54A,54B,54Cを介して共通の(1つの)増幅手段25に接続されており、この増幅手段25により増幅された受光信号がCPU30に出力されるようになっている。その他の点は前記実施形態1と同様であり、実施形態1と同一の構成については、同一符号を付して重複する説明を省略する。   Each light receiving circuit 53A, 53B, 53C is connected to a common (one) amplifying means 25 via switching elements 54A, 54B, 54C each consisting of an analog switch, and is amplified by the amplifying means 25. A light reception signal is output to the CPU 30. The other points are the same as those of the first embodiment, and the same components as those of the first embodiment are denoted by the same reference numerals and redundant description is omitted.

具体的には、CPU30が、所定時間T´ごとに投光回路42に投光信号を出力することにより、その都度投光素子41から白色光が投光されるとともに、3回白色光を投光した後は、所定時間2T´経過後に次の周期の投光信号を出力し、白色光の投光動作を繰り返す。一方、かかる投光信号の出力に同期して、各受光回路53A,53B,53Cと増幅手段25とをつなぐスイッチング素子54A,54B,54Cを順番にオンしており(本発明の「有効化手段」相当)、これにより各受光回路53A,53B,53Cから出力された各色の光の受光量に応じた信号が順次増幅手段25に入力されるようになっている。   Specifically, when the CPU 30 outputs a light projection signal to the light projection circuit 42 at every predetermined time T ′, white light is projected from the light projecting element 41 each time and white light is projected three times. After the light is emitted, a light projection signal of the next period is output after the elapse of a predetermined time 2T ′, and the white light projection operation is repeated. On the other hand, the switching elements 54A, 54B, 54C connecting the light receiving circuits 53A, 53B, 53C and the amplifying means 25 are turned on in order in synchronization with the output of the light projection signal (the “enabling means of the present invention”). Thus, signals corresponding to the amounts of received light of the respective colors output from the light receiving circuits 53A, 53B, and 53C are sequentially input to the amplifying means 25.

本実施形態によれば、CPU30による検出動作に先だって、基準となるシートWが検出領域に配されたときに、投光素子41から投光された光のうち増幅手段25から出力される異なる波長の光についての受光信号レベルの大きさをCPU30により比較し、この比較結果に基づいて異なる波長の光の受光信号レベルの小さいものからの順序を記憶手段に記憶する。   According to the present embodiment, prior to the detection operation by the CPU 30, when the reference sheet W is disposed in the detection region, different wavelengths output from the amplification unit 25 among the light projected from the light projecting element 41. The CPU 30 compares the magnitude of the received light signal level with respect to the light of, and the order from the light receiving signal level of the light of different wavelengths from the lowest is stored in the storage means based on the comparison result.

そして、検出動作時には、CPU30により、記憶部31に記憶された順序で、スイッチング素子54A,54B,54Cを順番にオンすることにより、3色の各光に基づく信号のうち、受光量(増幅されたときの受光信号レベル)の小さい光から順番に有効化し、この有効化された信号が増幅されるから、受光信号レベルに基づくオーバーシュート等の影響を受けやすい光、すなわち受光信号レベルの小さい光の信号を先に有効化させることになり、各波長の光を投光させる所定時間の間隔を短縮したとしても、後に受光する光の受光信号レベルに与える影響を少なくすることができ、比較的精度の高いシートWの色検出が可能となる。   During the detection operation, the CPU 30 turns on the switching elements 54A, 54B, and 54C in the order stored in the storage unit 31 to turn on the received light amount (amplified) among the signals based on the three colors of light. (Light reception signal level at the time of light reception) is activated in order from the light with the lowest light level, and the activated signal is amplified, so light that is easily affected by overshoot based on the light reception signal level, that is, light with a low light reception signal level Even if the interval of the predetermined time for projecting the light of each wavelength is shortened, the influence on the light reception signal level of the light received later can be reduced. The color of the sheet W can be detected with high accuracy.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)上記実施形態では、シートWのマークからの反射光を受光する構成としたが、透過光を受光することにより、シートWのマークを検出する構成としてもよい。   (1) In the above embodiment, the reflected light from the mark on the sheet W is received. However, the mark on the sheet W may be detected by receiving the transmitted light.

(2)上記実施形態では、異なる色の光が投光される所定時間の間隔T´は一定であることとしたが、これに限られない。例えば、前に投光された光の受光信号レベルの大きさに応じて、リンギングの影響を受けない間隔で次の光を投光させるようにしてもよい。   (2) In the above-described embodiment, the interval T ′ of the predetermined time at which light of different colors is projected is constant, but is not limited thereto. For example, the next light may be projected at intervals that are not affected by ringing in accordance with the magnitude of the light reception signal level of the previously projected light.

(3)上記実施形態では、シート(被検出物)のマークの色を検出する構成としたが、マーク以外の色を検出する構成としてもよい。例えば、シートWにおけるマーク以外の背景部分の色を検出する構成としてもよい。   (3) In the above embodiment, the mark color of the sheet (detected object) is detected. However, a color other than the mark may be detected. For example, the color of the background portion other than the mark on the sheet W may be detected.

(4)実施形態3では、1つの投光素子41から白色光を投光させる構成としたが、実施形態1のように3原色の光(赤、緑、青)を投光する3つの投光素子11A,11B,11Cを設け、これら3つの投光素子11A,11B,11Cを同時に投光させることにより、白色光を投光させる構成とし、実施形態3と同様の効果を奏するように構成してもよい。   (4) In the third embodiment, the configuration is such that white light is projected from one light projecting element 41. However, as in the first embodiment, three light projects that project light of three primary colors (red, green, and blue). The optical elements 11A, 11B, and 11C are provided, and the three light projecting elements 11A, 11B, and 11C are simultaneously projected to project white light, and the same effects as those of the third embodiment are achieved. May be.

(5)ティーチング時に、リンギングが収束したことを判断するに際して、予め測定された所定の時間が経過することにより、リンギングが収束したものとして、次の色の光を投光させることとしたが、CPU30によりリンギングが収束したことを検出したときに、次の色の光を投光させるようにしてもよい。   (5) At the time of teaching, when determining that the ringing has converged, it is assumed that the ringing has converged by elapse of a predetermined time measured in advance, and the next color light is projected. When the CPU 30 detects that the ringing has converged, light of the next color may be projected.

第1実施形態のカラーセンサの全体を示す回路図1 is a circuit diagram showing the entirety of a color sensor according to a first embodiment. 交流増幅回路を示す回路図Circuit diagram showing AC amplifier circuit ティーチング時におけるフローチャートFlow chart for teaching 検出動作時におけるフローチャートFlow chart during detection operation 信号の波形を示すタイミングチャートTiming chart showing signal waveform 第2実施形態の全体を示す回路図Circuit diagram showing the entire second embodiment 第3実施形態の全体を示す回路図Circuit diagram showing entire third embodiment 従来のカラーセンサの全体を示す回路図Circuit diagram showing the entire conventional color sensor 交流増幅回路を示す回路図Circuit diagram showing AC amplifier circuit 信号の波形を示すタイミングチャートTiming chart showing signal waveform

符号の説明Explanation of symbols

11A,11B,11C,41…投光素子(投光手段)
12A,12B,12C,42…投光回路(投光駆動手段)
21,51A,51B,51C…受光素子
22,53A,53B,53C…受光回路
23…交流増幅回路
24,25…受光増幅手段
30…CPU
31…記憶部(記憶手段)
52A,52B,52C…カラーフィルタ
54A,54B,54C…スイッチング素子
A…演算増幅器
C…結合コンデンサ
W…シート
11A, 11B, 11C, 41 ... Projection element (projection means)
12A, 12B, 12C, 42 ... Projection circuit (projection drive means)
21, 51A, 51B, 51C ... light receiving element 22, 53A, 53B, 53C ... light receiving circuit 23 ... AC amplifier circuit 24, 25 ... light receiving amplification means 30 ... CPU
31 ... Storage part (storage means)
52A, 52B, 52C ... Color filter 54A, 54B, 54C ... Switching element A ... Operational amplifier C ... Coupling capacitor W ... Sheet

Claims (2)

互いに異なる複数の波長の光を出射する投光手段と、
前記投光手段に前記複数の波長の光を所定時間だけ間隔を空けて順次投光させる投光駆動動作を行わせるとともに、前記投光駆動動作を前記所定時間より長い間隔ごとに繰り返し行わせる投光駆動手段と、
前記投光手段から投光された光のうち被検出物からの反射光又は透過光を受光する1つ以上の受光素子と、当該受光素子による受光量に応じて増幅された受光信号を出力する1つの受光増幅手段と、
前記受光増幅手段から出力される前記異なる波長の光ごとの受光信号レベルに基づいて前記被検出物の検出を行う検出手段とを備える光電センサにおいて、
前記検出手段による検出動作に先だって、
基準となる被検出物が検出領域に配されたときに、前記投光手段から投光された光のうち前記受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較する比較手段と、
前記比較手段による比較結果に基づいて前記異なる波長の光の受光信号レベルの小さいものからの順序を記憶する記憶手段とを備え、
前記検出手段による検出動作時には、
前記投光駆動手段は、前記記憶手段に記憶された順序で前記異なる波長の光を前記投光手段に投光させることを特徴とする光電センサ。
A light projecting means for emitting light of a plurality of different wavelengths;
The light projecting unit is caused to perform a light projecting drive operation for sequentially projecting the light of the plurality of wavelengths at intervals of a predetermined time, and the light projecting drive operation is repeatedly performed at intervals longer than the predetermined time. Light driving means;
One or more light receiving elements that receive reflected light or transmitted light from the detected object out of the light projected from the light projecting means, and a light reception signal amplified in accordance with the amount of light received by the light receiving element is output. One light receiving and amplifying means;
In a photoelectric sensor comprising detection means for detecting the object to be detected based on a light reception signal level for each light of the different wavelength output from the light reception amplification means,
Prior to the detection operation by the detection means,
When the object to be detected that is the reference is arranged in the detection region, the light reception signal levels of light of different wavelengths output from the light reception amplification unit among the light projected from the light projection unit are compared. Comparing means to
Storage means for storing the order from the light reception signal level of the light of the different wavelength based on the comparison result by the comparison means,
During the detection operation by the detection means,
The light projecting drive unit causes the light projecting unit to project light of the different wavelengths in the order stored in the storage unit.
互いに異なる複数の波長の光を出射する投光手段と、
前記投光手段に前記複数の波長の光を所定時間だけ間隔を空けて同時に投光させる投光駆動動作を行わせるとともに、前記投光駆動動作を前記所定時間より長い間隔ごとに繰り返し行わせる投光駆動手段と、
前記投光手段から投光された光のうち被検出物からの反射光又は透過光を異なる波長ごとに受光する複数の受光素子と、
前記複数の受光素子で受光された前記複数の波長の光に基づく信号を前記投光手段の投光タイミングに同期して順次有効化する有効化手段と、
前記有効化手段により有効化された信号を増幅して出力する受光増幅手段と、
前記受光増幅手段により増幅されて出力される前記異なる波長の光ごとの受光信号レベルに基づいて前記被検出物の検出を行う検出手段とを備える光電センサにおいて、
前記検出手段による検出動作に先だって、
基準となる被検出物が検出領域に配されたときに、前記投光手段から投光された光のうち前記受光増幅手段から出力される異なる波長の光についての受光信号レベルの大きさを比較する比較手段と、
前記比較手段による比較結果に基づいて前記異なる波長の光の受光信号レベルの小さいものからの順序を記憶する記憶手段とを備え、
前記検出手段による検出動作時には、
前記有効化手段は、前記記憶手段に記憶された順序で前記異なる波長の光ごとの受光信号を有効化することを特徴とする光電センサ。
A light projecting means for emitting light of a plurality of different wavelengths;
The light projecting means is configured to perform a light projecting drive operation for simultaneously projecting the light of the plurality of wavelengths with a predetermined time interval, and to perform the light projecting drive operation repeatedly at intervals longer than the predetermined time. Light driving means;
A plurality of light receiving elements for receiving reflected light or transmitted light from the detected object among the light projected from the light projecting means for each different wavelength;
Enabling means for sequentially enabling signals based on the light of the plurality of wavelengths received by the plurality of light receiving elements in synchronization with the light projection timing of the light projecting means;
A light receiving amplification means for amplifying and outputting the signal validated by the validation means;
In a photoelectric sensor comprising detection means for detecting the object to be detected based on a light reception signal level for each light of the different wavelength that is amplified and output by the light reception amplification means,
Prior to the detection operation by the detection means,
When the object to be detected that is the reference is arranged in the detection region, the light reception signal levels of light of different wavelengths output from the light reception amplification unit among the light projected from the light projection unit are compared. Comparing means to
Storage means for storing the order from the light reception signal level of the light of the different wavelength based on the comparison result by the comparison means,
During the detection operation by the detection means,
The photoelectric sensor is characterized in that the light-receiving signal for each light of the different wavelengths is validated in the order stored in the storage means.
JP2004133865A 2004-04-28 2004-04-28 Photoelectric sensor Pending JP2005315725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133865A JP2005315725A (en) 2004-04-28 2004-04-28 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133865A JP2005315725A (en) 2004-04-28 2004-04-28 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2005315725A true JP2005315725A (en) 2005-11-10

Family

ID=35443313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133865A Pending JP2005315725A (en) 2004-04-28 2004-04-28 Photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2005315725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509470A (en) * 2008-11-20 2012-04-19 セデス アーゲー Sensor device with distance sensor
JP2019076538A (en) * 2017-10-26 2019-05-23 セイコーエプソン株式会社 Signal processing circuit and living body analyzing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019673A (en) * 1996-07-02 1998-01-23 Sunx Ltd Photoelectric sensor and colour sensor
JP2002056428A (en) * 2000-08-07 2002-02-22 Nippon Conlux Co Ltd Bill identifying device, and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1019673A (en) * 1996-07-02 1998-01-23 Sunx Ltd Photoelectric sensor and colour sensor
JP2002056428A (en) * 2000-08-07 2002-02-22 Nippon Conlux Co Ltd Bill identifying device, and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509470A (en) * 2008-11-20 2012-04-19 セデス アーゲー Sensor device with distance sensor
JP2019076538A (en) * 2017-10-26 2019-05-23 セイコーエプソン株式会社 Signal processing circuit and living body analyzing device
JP7039925B2 (en) 2017-10-26 2022-03-23 セイコーエプソン株式会社 Bioanalyzer

Similar Documents

Publication Publication Date Title
JPS5835410A (en) Distance detecting device
US8801193B2 (en) Image display device and laser light source device including multiple laser elements whose light amounts are individually measured
JP4857579B2 (en) Light emitting element driving device and image forming apparatus
JP2005315725A (en) Photoelectric sensor
JP2007086778A (en) Display device
JP6785111B2 (en) Photoelectric sensor
US7852016B2 (en) Light emitting apparatus and control method therefor
JP2008160441A (en) Projector
JP2008092218A (en) Photoelectric sensor
JPH07264036A (en) Multiple optical axes photoelectric switch
JP3157463B2 (en) Photoelectric sensor and color sensor
JP2008062444A (en) Laser light quantity controlling apparatus
JP3181250B2 (en) Photoelectric sensor and color sensor
JP3509282B2 (en) Camera ranging device
JP2013195177A (en) Recording material determination sensor and image forming device
JP2006253591A (en) Channel data setting circuit and light emitting element driving circuit using it
JP2007101269A (en) Photoelectric sensor
JP2004343049A (en) Method of initialising control of supply voltage of light source, electronic circuit for controlling supply voltage of light source, and optical reader or recorder
JP2001208538A (en) Distace measuring equipment
JPH11142519A (en) Optical range finder
JP6812188B2 (en) Light receiving circuit and photoelectric sensor
JP3223306B2 (en) Camera ranging device
JP3961884B2 (en) Multi-axis photoelectric sensor
JPS60186720A (en) Color discriminating device
JP4047738B2 (en) Multi-optical axis photoelectric switch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120510