JP2005315708A - Measuring apparatus for physical property using terahertz electromagnetic wave - Google Patents

Measuring apparatus for physical property using terahertz electromagnetic wave Download PDF

Info

Publication number
JP2005315708A
JP2005315708A JP2004133564A JP2004133564A JP2005315708A JP 2005315708 A JP2005315708 A JP 2005315708A JP 2004133564 A JP2004133564 A JP 2004133564A JP 2004133564 A JP2004133564 A JP 2004133564A JP 2005315708 A JP2005315708 A JP 2005315708A
Authority
JP
Japan
Prior art keywords
terahertz electromagnetic
electromagnetic wave
measured
physical property
measuring apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004133564A
Other languages
Japanese (ja)
Other versions
JP4147487B2 (en
Inventor
Akira Shimano
亮 島野
Makoto Ikami
真 五神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004133564A priority Critical patent/JP4147487B2/en
Publication of JP2005315708A publication Critical patent/JP2005315708A/en
Application granted granted Critical
Publication of JP4147487B2 publication Critical patent/JP4147487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring apparatus for physical properties using terahertz electromagnetic waves for precisely measuring Hall coefficients, or the like by a change in the polarization of reflection waves from a material to be measured irradiated with terahertz electromagnetic waves without any contact and with high sensitivity. <P>SOLUTION: The measuring apparatus includes an incidence optical system 10 for generating terahertz electromagnetic waves, a polarizer 25 for controlling the polarization of terahertz electromagnetic waves entering a material 2 to be measured from the incidence optical system 10 and for controlling the polarization of terahertz electromagnetic waves reflected from the material 2 to be measured, and a detection optical system 30 for detecting the polarization of reflection terahertz electromagnetic waves from the material 2 to be measured, thus detecting a change in the polarization of reflection waves by the material 2 to be measured in the terahertz electromagnetic waves by direct measurement and measuring a complex index of refraction or complex conductivity that is a physical property constant of the material 2 to be measured as a function of terahertz electromagnetic waves. And by applying a magnetic field 28 to the object 2 to be observed, Hall coefficients can be measured precisely without any contact and with high sensitivity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、テラヘルツ時間領域分光法を用いて半導体、金属、磁性体などの多様な物質に対して、電気伝導特性及び磁気特性とそれらの応答性能を非接触で精度よく測定できるテラヘルツ電磁波を用いた物性測定装置に関する。   The present invention uses terahertz electromagnetic waves that can accurately measure electrical conduction characteristics and magnetic characteristics and their response performance to various materials such as semiconductors, metals, and magnetic materials using terahertz time domain spectroscopy. The present invention relates to a physical property measuring apparatus.

近時、次世代のエレクトロニクスを開拓するために新しい機能性材料の開発が進められている。新規材料の伝導特性を広い周波数領域で決定することは、当該材料の潜在的な能力を評価する上で必須である。この新規機能とは、電場によって伝導特性、磁性、光学的性質を制御することである。このような新規材料として、各種のナノ構造材料、遷移金属酸化物に代表される強相関電子材料、半導体量子構造、機能性ガラスなどが注目されている。
これらの材料の電場に対する応答特性を通常の伝導測定で、直流からピコ秒の領域で調べることは、測定器の帯域、測定のための端子電極の設置など困難な問題があり、汎用性の高い簡便な方法は存在しない。これを解決する方法として、フーリエ変換分光法を応用した測定法の利用が知られている。
Recently, new functional materials are being developed to pioneer next-generation electronics. Determining the conductive properties of a new material over a wide frequency range is essential to assess the potential capabilities of the material. The new function is to control the conduction characteristics, magnetism, and optical properties by an electric field. As such new materials, various nanostructured materials, strongly correlated electronic materials typified by transition metal oxides, semiconductor quantum structures, functional glasses, and the like are attracting attention.
Examining the response characteristics of these materials to the electric field in the normal conduction measurement in the DC to picosecond region has difficult problems such as the bandwidth of the measuring instrument and the installation of terminal electrodes for measurement. There is no convenient method. As a method for solving this problem, it is known to use a measurement method applying Fourier transform spectroscopy.

さらに、光源として、極超短パルス光によって発生した遠赤外パルス電磁波(以下、テラヘルツ電磁波と呼ぶ)を用いた測定装置が数例報告されている(例えば、特許文献1及び非特許文献1参照)。非特許文献1には、テラヘルツ電磁波を被測定材料に透過させる配置による測定方法が報告されている。
しかしながら、透過法では、テラヘルツ電磁波を透過しない磁性体や金属などの不透明な被測定材料の測定を行うことができない。
Furthermore, several examples of measuring devices using far-infrared pulsed electromagnetic waves (hereinafter referred to as terahertz electromagnetic waves) generated by ultra-short pulse light as light sources have been reported (for example, see Patent Document 1 and Non-Patent Document 1). ). Non-Patent Document 1 reports a measurement method using an arrangement in which terahertz electromagnetic waves are transmitted through a material to be measured.
However, the transmission method cannot measure an opaque material to be measured such as a magnetic material or metal that does not transmit terahertz electromagnetic waves.

そこで、本発明者らにより、反射光のカー効果による偏光面の回転、所謂カー回転角を検出する分光法が提案され、透過法では測定できない磁性体や金属などの不透明な被測定材料の複素誘電率やホール(Hall)係数などを測定できることが報告されている(非特許文献2参照)。   Therefore, the present inventors have proposed a spectroscopic method for detecting the rotation of the polarization plane by the Kerr effect of reflected light, that is, the so-called Kerr rotation angle. It has been reported that a dielectric constant, a Hall coefficient, etc. can be measured (see Non-Patent Document 2).

図9は、非特許文献2で報告されたテラヘルツ電磁波を用いた反射法によるホール係数測定装置を模式的に示す図である。図9において、テラヘルツ電磁波を用いた反射法によるホール係数測定装置100は、入射光学系110と、被測定材料102に磁場を印加する磁石105と、検出光学系120と、から構成されている。
入射光学系110は、極短光パルスレーザ111を光源として、電気光学結晶(ZnTe)112の光整流効果によりテラヘルツ電磁波パルスを発生する。このテラヘルツ電磁波パルスはレンズ112,113により集光され、入力側偏光子114を介して被測定材料102に照射される。
また、被測定材料102の表面で反射したテラヘルツ電磁波パルスは、出射側偏光子121を介して、検出光学系120へ出射する。この出射側検光子121においては、偏光が45°,−45°に切り替え可能となっている。出射側検光子121を通過した反射テラヘルツ電磁波パルス122は、レンズ123,124により集光され、電気光学結晶(ZnTe)125に入射し、反射テラヘルツ電磁波パルス122の偏光が検出される。
この際、電気光学結晶(ZnTe)125には、極短光パルスレーザ111からの参照光126が印加され、所謂電気光学サンプリング(EOサンプリング)により、反射テラヘルツ電磁波122 の電場に関する時系列信号が得られる。この信号をフーリエ変換して、被測定材料102のテラヘルツ電磁波領域のホール係数を測定している。
FIG. 9 is a diagram schematically showing a Hall coefficient measuring device by a reflection method using a terahertz electromagnetic wave reported in Non-Patent Document 2. In FIG. 9, a Hall coefficient measurement apparatus 100 based on a reflection method using terahertz electromagnetic waves includes an incident optical system 110, a magnet 105 that applies a magnetic field to a material to be measured 102, and a detection optical system 120.
The incident optical system 110 generates a terahertz electromagnetic wave pulse by the optical rectification effect of the electro-optic crystal (ZnTe) 112 using the ultrashort light pulse laser 111 as a light source. The terahertz electromagnetic wave pulse is collected by the lenses 112 and 113, and irradiated to the material 102 to be measured through the input side polarizer 114.
Further, the terahertz electromagnetic wave pulse reflected from the surface of the material to be measured 102 is emitted to the detection optical system 120 through the emission side polarizer 121. In the exit side analyzer 121, the polarization can be switched between 45 ° and −45 °. The reflected terahertz electromagnetic wave pulse 122 that has passed through the emission-side analyzer 121 is collected by the lenses 123 and 124, enters the electro-optic crystal (ZnTe) 125, and the polarization of the reflected terahertz electromagnetic wave pulse 122 is detected.
At this time, the reference light 126 from the ultrashort optical pulse laser 111 is applied to the electro-optic crystal (ZnTe) 125, and a time-series signal related to the electric field of the reflected terahertz electromagnetic wave 12 2 is obtained by so-called electro-optic sampling (EO sampling). It is done. This signal is Fourier transformed to measure the Hall coefficient in the terahertz electromagnetic wave region of the material 102 to be measured.

特開2001−21503号公報Japanese Patent Laid-Open No. 2001-21503 S. Spielman 他7名, "Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ" 1994, Physical Review Letters, vo1.73, pp.1537-1540S. Spielman and 7 others, "Observation of the Quasiparticle Hall Effect in Superconducting YBa2Cu3O7- δ" 1994, Physical Review Letters, vo1.73, pp.1537-1540 R. Shimano, Y. P. Svirko, M. Kuwata-Gonokami, "Teraherz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs", 2002, Applied Physics Letters, vol.81, No.2, pp.199-201R. Shimano, Y. P. Svirko, M. Kuwata-Gonokami, "Teraherz frequency Hall measurement by magneto-optical Kerr spectroscopy in InAs", 2002, Applied Physics Letters, vol.81, No.2, pp.199-201

しかしながら、従来のテラヘルツ電磁波を用いた複素誘電率などの測定装置において透過法を用いた場合には、透明材料や超薄膜などしか測定できず、応用上重要なバルク材料や不透明材料の測定ができないという課題がある。   However, when the transmission method is used in a conventional measuring device such as a complex dielectric constant using terahertz electromagnetic waves, only transparent materials and ultrathin films can be measured, and bulk materials and opaque materials that are important in application cannot be measured. There is a problem.

また、上記従来の反射法においては、偏光子及び検光子の機械的振動により偏光検出感度が10-2radであり、十分な感度が得られないという課題がある。 Further, the conventional reflection method has a problem that the polarization detection sensitivity is 10 −2 rad due to mechanical vibration of the polarizer and the analyzer, and sufficient sensitivity cannot be obtained.

上記課題に鑑み、本発明は、テラヘルツ電磁波が照射される被測定材料からの反射波の偏光変化によるホール係数などを、非接触で、高感度で、かつ、高精度で測定できる、テラヘルツ電磁波を用いた物性測定装置を提供することを目的としている。   In view of the above problems, the present invention provides a terahertz electromagnetic wave that can be measured in a non-contact, highly sensitive and highly accurate manner, such as a Hall coefficient due to a change in polarization of a reflected wave from a measured material irradiated with the terahertz electromagnetic wave. It aims at providing the used physical property measuring apparatus.

上記目的を達成するために、本発明のテラヘルツ電磁波を用いた物性測定装置は、テラヘルツ電磁波を発生させる入射光学系と、入射光学系から被測定材料へ入射されるテラヘルツ電磁波の偏光を制御し、かつ、被測定材料から反射されるテラヘルツ電磁波の偏光を制御する偏光子と、被測定材料からの反射テラヘルツ電磁波の偏光を検出する検出光学系と、を含み構成され、テラヘルツ電磁波の被測定材料による反射波の偏光状態の変化を電場の直接測定によって検出し、被測定材料の物性定数である複素屈折率又は複素伝導度をテラヘルツ電磁波の関数として測定することを特徴とする。
上記構成において、テラヘルツ電磁波は、好ましくは、被測定材料へ垂直入射される。 また、テラヘルツ電磁波は、好ましくは、非線形光学結晶による光整流法を用いて発生されるテラヘルツ電磁波パルスである。または、テラヘルツ電磁波は、光伝導素子による光整流法を用いて発生されるテラヘルツ電磁波パルスであってもよい。
テラヘルツ電磁波の検出光学系は、好ましくは、非線形光学結晶による電気光学効果を用いる検知器を備える。或いは、光伝導素子を用いる検知器をそなえていてもよい。
In order to achieve the above object, the physical property measuring apparatus using the terahertz electromagnetic wave of the present invention controls the incident optical system that generates the terahertz electromagnetic wave, and the polarization of the terahertz electromagnetic wave that is incident on the measured material from the incident optical system, And a polarizer that controls the polarization of the terahertz electromagnetic wave reflected from the material to be measured and a detection optical system that detects the polarization of the reflected terahertz electromagnetic wave from the material to be measured. A change in the polarization state of the reflected wave is detected by direct measurement of an electric field, and a complex refractive index or a complex conductivity, which is a physical constant of the material to be measured, is measured as a function of a terahertz electromagnetic wave.
In the above configuration, the terahertz electromagnetic wave is preferably perpendicularly incident on the material to be measured. The terahertz electromagnetic wave is preferably a terahertz electromagnetic wave pulse generated by using an optical rectification method using a nonlinear optical crystal. Alternatively, the terahertz electromagnetic wave may be a terahertz electromagnetic wave pulse generated using an optical rectification method using a photoconductive element.
The terahertz electromagnetic wave detection optical system preferably includes a detector that uses the electro-optic effect of the nonlinear optical crystal. Alternatively, a detector using a photoconductive element may be provided.

上記構成によれば、テラヘルツ電磁波パルスを用い、被測定材料からの反射テラヘルツ電磁波の偏光の時間波形を直接測定することで、 電場強度測定の場合の限界を1桁以上超える測定ができる。また、参照測定を加えることで、 複素屈折率又は複素伝導度の実部と虚部を、同時に、高精度で測定できる。
また、被測定材料へテラヘルツ電磁波を垂直入射させることにより入射側の偏光子と反射側の検光子とを、同一の偏光子はすることができる。このため、偏光子の機械的振動による測定誤差を著しく低減できる。
According to the above configuration, by using the terahertz electromagnetic wave pulse and directly measuring the time waveform of the polarization of the reflected terahertz electromagnetic wave from the material to be measured, it is possible to perform measurement exceeding the limit in the case of electric field strength measurement by one digit or more. Moreover, by adding a reference measurement, the real part and imaginary part of the complex refractive index or complex conductivity can be measured simultaneously with high accuracy.
Further, by making the terahertz electromagnetic wave perpendicularly incident on the material to be measured, the same polarizer can be used as the incident-side polarizer and the reflecting-side analyzer. For this reason, the measurement error due to the mechanical vibration of the polarizer can be significantly reduced.

上記構成において、テラヘルツ電磁波を用いた物性測定装置は、さらに、好ましくは、ホール伝導度を測定するために、被測定材料に磁場を印加する磁場系を備える。
また、磁場系は、好ましくは、磁場の向きを反転させる手段を備える。また、磁場の向きが反転及び非反転のときの反射テラヘルツ電磁波の電場の差分によって、被測定材料のホール効果による偏光成分だけを測定するようにすれば好適である。
上記構成によれば、被測定材料へ磁場を印加することにより、ホール係数の測定を高精度で行うことができる。また、磁場の向きが反転及び非反転の差分測定によって、偏光素子の不完全性による非消光成分の除去を完全に行うことができる。
In the above configuration, the physical property measuring apparatus using the terahertz electromagnetic wave preferably further includes a magnetic field system that applies a magnetic field to the material to be measured in order to measure the hole conductivity.
The magnetic field system preferably includes means for reversing the direction of the magnetic field. In addition, it is preferable to measure only the polarization component due to the Hall effect of the material to be measured based on the difference between the electric fields of the reflected terahertz electromagnetic waves when the direction of the magnetic field is reversed and non-reversed.
According to the above configuration, the Hall coefficient can be measured with high accuracy by applying a magnetic field to the material to be measured. Moreover, the non-quenching component can be completely removed due to the incompleteness of the polarizing element by measuring the difference between the inversion and non-inversion of the direction of the magnetic field.

テラヘルツ電磁波を用いた物性測定装置は、さらに、好ましくは、コンピュータ系を備える。この構成によれば、ホール係数などの物性定数を高速かつ高感度で検出することが可能になる。   The physical property measuring apparatus using the terahertz electromagnetic wave preferably further includes a computer system. According to this configuration, it is possible to detect a physical constant such as a Hall coefficient at high speed and with high sensitivity.

本発明のテラヘルツ電磁波を用いた物性測定装置によれば、電極の設置をせずに非接触で、かつ、非破壊で、被測定材料の各種伝導特性をテラヘルツ電磁波の広帯域で測定できる。また、広い領域における伝導特性の空間分布の評価も可能である。さらに極限環境下(高温、 高磁場、 高圧下など)に配置された被測定材料の遠隔測定も可能である。   According to the physical property measuring apparatus using the terahertz electromagnetic wave of the present invention, various conductive characteristics of the material to be measured can be measured over a wide band of the terahertz electromagnetic wave without contact with and without destructing the electrode. It is also possible to evaluate the spatial distribution of conduction characteristics over a wide area. In addition, it is possible to remotely measure materials to be measured placed in extreme environments (high temperature, high magnetic field, high pressure, etc.).

以下、この発明の実施の形態を図面を参照して詳細に説明する。各図において同一又は対応する部材には同一符号を用いる。
最初に、本発明による第1の実施形態に係るテラヘルツ電磁波を用いた物性測定装置について説明する。図1は第1の実施形態によるテラヘルツ電磁波を用いた物性測定装置の構成を示す模式図である。
図1において、テラヘルツ電磁波を用いた物性測定装置1は、テラヘルツ電磁波を発生させる入射光学系10と、入射光学系10から被測定材料2へのテラヘルツ電磁波の偏光を制御し、かつ、被測定材料2から反射されるテラヘルツ電磁波の偏光を制御する偏光子25と、被測定材料2に磁場を印加する磁場系28と、この偏光されたテラヘルツ電磁波を検出する検出光学系30と、検出光学系30からの測定データの計算処理などを行うコンピュータ系40と、を含み構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same or corresponding members are denoted by the same reference numerals.
First, a physical property measuring apparatus using a terahertz electromagnetic wave according to the first embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing a configuration of a physical property measuring apparatus using a terahertz electromagnetic wave according to the first embodiment.
In FIG. 1, a physical property measuring apparatus 1 using a terahertz electromagnetic wave controls an incident optical system 10 that generates a terahertz electromagnetic wave, a polarization of the terahertz electromagnetic wave from the incident optical system 10 to a material 2 to be measured, and a material to be measured. 2, a polarizer 25 that controls the polarization of the terahertz electromagnetic wave reflected from the magnetic field 2, a magnetic field system 28 that applies a magnetic field to the material to be measured 2, a detection optical system 30 that detects the polarized terahertz electromagnetic wave, and a detection optical system 30. And a computer system 40 that performs calculation processing of measurement data from the computer.

入射光学系10は、パルスレーザ11と、ミラー12,13,14,15,18と、ビームスプリッター16と、光時間遅延回路17と、電気光学結晶19と、レンズ21、光強度変調器6などから構成されている。
パルスレーザ11から発生するパルスレーザ光は、ミラー12,13,14,15と、ビームスプリッター16と、により、光時間遅延回路17への入射光と、後述する検出光学系30への参照光39と、に分波される。
光時間遅延回路17を通過したパルスレーザ光は、光強度変調器6により光強度変調されたパルスレーザ光11aとなり、二次の非線形光学効果を有する電気光学結晶19に照射される。また、光強度変調器6は、光強度変調器ドライバ7により駆動される。さらに、光強度変調器ドライバ7の出力の一部が、後述する検出光学系30内の増幅器37へ参照信号8として出力される。
The incident optical system 10 includes a pulse laser 11, mirrors 12, 13, 14, 15, 18, a beam splitter 16, an optical time delay circuit 17, an electro-optic crystal 19, a lens 21, a light intensity modulator 6, and the like. It is composed of
The pulse laser beam generated from the pulse laser 11 is incident on the optical time delay circuit 17 by the mirrors 12, 13, 14, 15 and the beam splitter 16, and the reference beam 39 to the detection optical system 30 described later. And demultiplexed.
The pulsed laser light that has passed through the optical time delay circuit 17 becomes pulsed laser light 11a whose light intensity is modulated by the light intensity modulator 6, and is irradiated to the electro-optic crystal 19 having a second-order nonlinear optical effect. The light intensity modulator 6 is driven by a light intensity modulator driver 7. Further, a part of the output of the light intensity modulator driver 7 is output as a reference signal 8 to an amplifier 37 in the detection optical system 30 described later.

パルスレーザ光が照射された非線形光学結晶である電気光学結晶19に生じる過渡的な光電流、所謂光整流効果により、テラヘルツ電磁波パルス20(以下、適宜、テラヘルツ電磁波と呼ぶ)が発生する。このテラヘルツ電磁波は、凡そパルスレーザ光のパルス幅の逆数程度の帯域のテラヘルツ電磁波を発生させる。
このテラヘルツ電磁波はレンズ21aで集光され、平行光となり、さらに、レンズ21bにより被測定材料2に集光される。これらのレンズ21(21a,21b)の間には、フィルタ22が挿入され、パルスレーザ光11aを遮断し、テラヘルツ電磁波パルス20だけが被測定材料2に照射される。
ここで、パルスレーザ11は、例えばモード同期されたチタンサファイアレーザによる超短光パルスを発生できる光源を用いることができる。
なお、本発明におけるテラヘルツ電磁波は、波長3mm以下の短ミリ波からサブミリ波で、遠赤外光とも呼ばれる電磁波であり、周波数としては、0.1〜30THz程度の電磁波である。
A terahertz electromagnetic wave pulse 20 (hereinafter appropriately referred to as a terahertz electromagnetic wave) is generated by a transient photocurrent generated in the electro-optic crystal 19 which is a nonlinear optical crystal irradiated with the pulsed laser light, that is, a so-called photorectification effect. This terahertz electromagnetic wave generates a terahertz electromagnetic wave having a band approximately equal to the reciprocal of the pulse width of the pulsed laser beam.
This terahertz electromagnetic wave is condensed by the lens 21a, becomes parallel light, and further condensed by the lens 21b on the material 2 to be measured. Between these lenses 21 (21a, 21b), a filter 22 is inserted to block the pulse laser beam 11a, and only the terahertz electromagnetic wave pulse 20 is irradiated to the material 2 to be measured.
Here, as the pulse laser 11, for example, a light source capable of generating an ultrashort light pulse by a mode-synchronized titanium sapphire laser can be used.
In addition, the terahertz electromagnetic wave in this invention is an electromagnetic wave which is also called a far-infrared light from the short millimeter wave to a submillimeter wave with a wavelength of 3 mm or less, and is about 0.1-30 THz as a frequency.

偏光子25は、上記レンズ21bと被測定材料2との間の光路に配設されている。この偏光子25は、入射光学系10から被測定材料2へのテラヘルツ電磁波の偏光を制御し、かつ、被測定材料2から反射されるテラヘルツ電磁波の偏光を制御し、検出光学系30に出射させる。
また、偏光子25は、テラヘルツ電磁波、所謂遠赤外光やサブミリ波で使用できる偏光子であり、所謂ワイヤグリッド型偏光子を用いることができる。この偏光子25により入射テラヘルツ電磁波の垂直偏光成分23を被測定材料2に照射する。そして、この偏光子25には、被測定材料2からのテラヘルツ電磁波の反射波が再び入射し、反射テラヘルツ電磁波の垂直偏光成分24が取り出され、検出光学系30へ出射される(図1の偏光子25近傍部分の拡大図参照)。
The polarizer 25 is disposed in the optical path between the lens 21 b and the material to be measured 2. The polarizer 25 controls the polarization of the terahertz electromagnetic wave from the incident optical system 10 to the material to be measured 2, and controls the polarization of the terahertz electromagnetic wave reflected from the material to be measured 2 to be output to the detection optical system 30. .
The polarizer 25 is a polarizer that can be used in terahertz electromagnetic waves, so-called far infrared light or submillimeter waves, and a so-called wire grid polarizer can be used. The material to be measured 2 is irradiated with the vertical polarization component 23 of the incident terahertz electromagnetic wave by the polarizer 25. Then, the reflected wave of the terahertz electromagnetic wave from the material to be measured 2 is incident again on the polarizer 25, and the vertical polarization component 24 of the reflected terahertz electromagnetic wave is taken out and emitted to the detection optical system 30 (the polarization in FIG. 1). (See an enlarged view of the vicinity of the child 25).

したがって、本発明のテラヘルツ電磁波を用いた物性測定装置1においては、偏光子25が被測定材料2からの反射テラヘルツ電磁波の検光子を兼ねているので、被測定材料2にテラヘルツ電磁波23を垂直に入射させ、反射テラヘルツ電磁波も同一の偏光子25に出射させる光学配置となる。
このため、被測定材料2に磁化が存在する場合や後述するホール測定のために磁場を印加すると、被測定材料2からの反射テラヘルツ電磁波はホール効果によりその偏波面が傾き、かつ、楕円になり、その垂直の偏光成分24のみがワイヤグリッド偏光子25により検出光学系30へ出射する。
一方、被測定材料2に磁化がない場合や磁場を印加しない場合には、入射テラヘルツ電磁波23の垂直偏光成分が被測定材料から反射され、偏光子25によりその垂直偏光成分だけが取り出されるので、偏光の変化は理論的には生じなく、非消光成分のみが、偏光子25から出射する。
これにより、テラヘルツ電磁波の入射波と反射波にそれぞれ偏光子を設ける場合に比較すると、偏光子の機械的な振動による不安定性がなくなり、測定誤差を飛躍的に減少させることができる。
Therefore, in the physical property measuring apparatus 1 using the terahertz electromagnetic wave of the present invention, the polarizer 25 also serves as an analyzer of the reflected terahertz electromagnetic wave from the material to be measured 2, so that the terahertz electromagnetic wave 23 is perpendicular to the material to be measured 2. An optical arrangement is adopted in which incident and reflected terahertz electromagnetic waves are emitted to the same polarizer 25.
For this reason, when magnetization is present in the material to be measured 2 or when a magnetic field is applied for Hall measurement, which will be described later, the reflected terahertz electromagnetic wave from the material to be measured 2 has its polarization plane inclined and elliptical due to the Hall effect. Only the vertical polarization component 24 is emitted to the detection optical system 30 by the wire grid polarizer 25.
On the other hand, when the material to be measured 2 is not magnetized or a magnetic field is not applied, the vertical polarization component of the incident terahertz electromagnetic wave 23 is reflected from the material to be measured, and only the vertical polarization component is extracted by the polarizer 25. The change in polarization does not theoretically occur, and only the non-quenching component exits from the polarizer 25.
Thus, in comparison with the case where polarizers are provided for the incident wave and the reflected wave of the terahertz electromagnetic wave, instability due to mechanical vibration of the polarizer is eliminated, and measurement errors can be drastically reduced.

磁場系28は、被測定材料2のホール測定を行うために、磁場を印加するのに設けている。磁場系28は、電磁石や永久磁石などからなり、被測定材料2に垂直、つまり、紙面の水平方向に磁場を印加し、さらに、その磁場を反転する手段を備えている(図1の±B参照)。磁場の反転は、電磁石を用いる場合には、その磁場発生のために印加する直流電流を反転すればよく、コンピュータ系40により制御することができる。   The magnetic field system 28 is provided to apply a magnetic field in order to perform hole measurement of the material 2 to be measured. The magnetic field system 28 is composed of an electromagnet, a permanent magnet, or the like, and includes means for applying a magnetic field perpendicular to the material 2 to be measured, that is, in the horizontal direction of the paper, and reversing the magnetic field (± B in FIG. 1). reference). The reversal of the magnetic field can be controlled by the computer system 40 by reversing the direct current applied to generate the magnetic field when an electromagnet is used.

次に、被測定材料からのテラヘルツ電磁波の反射光を検出する検出光学系について説明する。
検出光学系30は、レンズ31,32と、テラヘルツ電磁波検知器33と、位相板34と、検光子35と、光検知器36と、増幅器37とを、含み構成されている。そして、ミラー18を介してパルスレーザ11から分波された参照光39がテラヘルツ電磁波検知器33へ入射している。
Next, a detection optical system that detects reflected light of the terahertz electromagnetic wave from the material to be measured will be described.
The detection optical system 30 includes lenses 31, 32, a terahertz electromagnetic wave detector 33, a phase plate 34, an analyzer 35, a photodetector 36, and an amplifier 37. Then, the reference light 39 demultiplexed from the pulse laser 11 through the mirror 18 is incident on the terahertz electromagnetic wave detector 33.

ここで、テラヘルツ電磁波検知器33としては、二次の非線形光学効果を有する電気光学結晶33を用いることができる。また、位相板34としては直線偏光を円偏光にする1/4波長板を用いることができる。さらに、検光子35としては、1/4波長板からの円偏光を互いに直交する偏光成分に分解するウォラストンプリズムを用いることができる。これにより、検光子35で分割された偏光成分35a,35bは、参照光39の光検知器であるバランスド・フォトダイオード36に入射して、その差分が検出される。この差分は、ロックインアンプなどの増幅器37により増幅され、A/D変換されて、コンピュータ系40に出力される。この際、ロックインアンプなどの増幅器37は、光強度変調器ドライバ7から参照信号8が入力され、その位相に基づく信号検出を行うので、雑音成分が減少する。
なお、バランスド・フォトダイオード36は、パルスレーザ光からの参照光39に対しての検知器であり、差分測定のために2個の特性の揃ったフォトダイオード36a,36bから成る。
Here, as the terahertz electromagnetic wave detector 33, an electro-optic crystal 33 having a second-order nonlinear optical effect can be used. Further, as the phase plate 34, a ¼ wavelength plate that converts linearly polarized light into circularly polarized light can be used. Further, as the analyzer 35, a Wollaston prism that decomposes the circularly polarized light from the quarter wave plate into polarized light components orthogonal to each other can be used. As a result, the polarization components 35a and 35b divided by the analyzer 35 enter the balanced photodiode 36, which is a photodetector of the reference light 39, and the difference between them is detected. This difference is amplified by an amplifier 37 such as a lock-in amplifier, A / D converted, and output to the computer system 40. At this time, the amplifier 37 such as a lock-in amplifier receives the reference signal 8 from the light intensity modulator driver 7 and performs signal detection based on the phase, so that the noise component is reduced.
The balanced photodiode 36 is a detector for the reference light 39 from the pulsed laser light, and includes two photodiodes 36a and 36b having two characteristics for the difference measurement.

上記検出光学系30に入射する被測定材料2からの反射テラヘルツ電磁波24は、被測定材料2への入射電場E(ω)と被測定材料2の複素反射率rsp(ω)との積、すなわち、E(ω)rsp(ω)である。ここで、rsp(ω)は、p偏光入射に対する反射テラヘルツ電磁波のs偏光成分である。
上記反射テラヘルツ電磁波24の電場成分は、電気光学結晶33と入射光学系10中の光時間遅延回路17と、による所謂電気光学サンプリング(EOサンプリング)により検出される。この電気光学サンプリングは、例えば光時間遅延回路17内のレンズを微小変位させるステージ17aをコンピュータ系40から制御し、ビームスプリッター16から被測定材料2に入射するまでの時間を変化させることにより行うことができる。
The reflected terahertz electromagnetic wave 24 incident on the detection optical system 30 from the material to be measured 2 is a product of the incident electric field E (ω) to the material to be measured 2 and the complex reflectance r sp (ω) of the material to be measured 2, That is, E (ω) r sp (ω). Here, r sp (ω) is the s-polarized component of the reflected terahertz electromagnetic wave with respect to p-polarized light incidence.
The electric field component of the reflected terahertz electromagnetic wave 24 is detected by so-called electro-optic sampling (EO sampling) by the electro-optic crystal 33 and the optical time delay circuit 17 in the incident optical system 10. This electro-optic sampling is performed, for example, by controlling the stage 17a for minutely displacing the lens in the optical time delay circuit 17 from the computer system 40 and changing the time from the beam splitter 16 until it enters the material 2 to be measured. Can do.

次に、検出光学系30の動作について説明する。
被測定材料2がなく、反射テラヘルツ電磁波24が検出光学系30に入射しない場合には、参照光39だけが検出光学系30に入射している。この場合には、直線偏光の参照光39は電気光学結晶33を通過し、1/4波長板34により円偏光へと変換される。その後、検光子35により互いに直交する偏光成分35a,35bに空間的に分解され、それぞれ2つのフォトダイオード36からなるバランスド・フォトダイオードへと入射する。そして、2つのフォトダイオード36a,36bの出力は、差動検出される。これにより、参照光39が完全に直線偏光の場合は、それぞれのフォトダイオード36a,36bの出力は等しく、これらを差動検出した出力はゼロとなる。
一方、反射テラヘルツ電磁波24のパルスが検出光学系30に入射し、電気光学結晶33に反射テラヘルツ電磁波24のパルスが照射される場合には、電気光学結晶33中のその電界成分による非線形効果により参照光39の偏光が直線から楕円偏光へと変化する。これにより、2つのフォトダイオード36a,36bの出力は相殺せず、反射テラヘルツ電磁波24の電場の振幅に比例した信号を出力する。
Next, the operation of the detection optical system 30 will be described.
When there is no material to be measured 2 and the reflected terahertz electromagnetic wave 24 does not enter the detection optical system 30, only the reference light 39 is incident on the detection optical system 30. In this case, the linearly polarized reference light 39 passes through the electro-optic crystal 33 and is converted into circularly polarized light by the quarter-wave plate 34. After that, the analyzer 35 spatially decomposes the polarization components 35a and 35b orthogonal to each other and enters each of the balanced photodiodes composed of two photodiodes 36. The outputs of the two photodiodes 36a and 36b are differentially detected. Thereby, when the reference light 39 is completely linearly polarized light, the outputs of the respective photodiodes 36a and 36b are equal, and the output obtained by differentially detecting them is zero.
On the other hand, when the pulse of the reflected terahertz electromagnetic wave 24 is incident on the detection optical system 30 and the electro-optic crystal 33 is irradiated with the pulse of the reflected terahertz electromagnetic wave 24, the reference is caused by the nonlinear effect due to the electric field component in the electro-optic crystal 33. The polarization of the light 39 changes from linear to elliptical polarization. As a result, the outputs of the two photodiodes 36a and 36b are not canceled out, and a signal proportional to the amplitude of the electric field of the reflected terahertz electromagnetic wave 24 is output.

コンピュータ系40は、コンピュータと、光時間遅延回路17のステージ制御部と、ディスプレイ装置と、記憶装置などを備えて構成されている。コンピュータにより、反射テラヘルツ電磁波24の電場波形である時系列信号の所定の時間を、高速フーリエ変換(FFT)のアルゴリズムによりフーリエ変換すれば、計算時間の短縮ができる。このフーリエスペクトルを得る手段は、コンピュータによらない専用のDSP(デジタルシグナルプロセッサ)やFFT装置でも良い。   The computer system 40 includes a computer, a stage controller of the optical time delay circuit 17, a display device, a storage device, and the like. If a predetermined time of a time-series signal that is an electric field waveform of the reflected terahertz electromagnetic wave 24 is Fourier-transformed by a computer using a fast Fourier transform (FFT) algorithm, the calculation time can be shortened. The means for obtaining the Fourier spectrum may be a dedicated DSP (digital signal processor) or FFT device that does not rely on a computer.

以上のように構成されている本発明のテラヘルツ電磁波を用いた物性測定装置1によれば、光時間遅延回路17によりパルスレーザ光に対して時間遅延を加えながら、反射テラヘルツ電磁波24の電場を測定することにより、この時間遅延に対する反射テラヘルツ電磁波24の電場波形、すなわち、時系列信号が得られる。
この時系列信号を、A/D変換によりデジタル変換し、コンピュータによりフーリエ変換をすることで、反射テラヘルツ電磁波24の周波数領域における振幅及び位相を得ることができる。そして、被測定材料2がない場合に生じる参照光スペクトルを基準として、被測定材料2による反射テラヘルツ電磁波24の振幅スペクトル及び位相スペクトルを得ることができる。
According to the physical property measuring apparatus 1 using the terahertz electromagnetic wave of the present invention configured as described above, the electric time of the reflected terahertz electromagnetic wave 24 is measured while applying a time delay to the pulse laser beam by the optical time delay circuit 17. Thus, the electric field waveform of the reflected terahertz electromagnetic wave 24 with respect to this time delay, that is, a time-series signal is obtained.
The time series signal is digitally converted by A / D conversion, and Fourier-transformed by a computer, whereby the amplitude and phase in the frequency domain of the reflected terahertz electromagnetic wave 24 can be obtained. Then, the amplitude spectrum and phase spectrum of the reflected terahertz electromagnetic wave 24 by the material to be measured 2 can be obtained with reference to the reference light spectrum generated when there is no material to be measured 2.

次に、本発明による第2の実施形態に係るテラヘルツ電磁波を用いた物性測定装置について説明する。
図2は、本発明に係る第2の実施形態によるテラヘルツ電磁波を用いた物性測定装置の構成を示す模式図である。図2において、第2の実施形態によるテラヘルツ電磁波を用いた物性測定装置50が第1の実施形態のテラヘルツ電磁波を用いた物性測定装置1と異なるのは、入射光学系10のテラヘルツ電磁波パルス発生用の光伝導素子26と、検出光学系30の光伝導素子53と、を用いる点である。
Next, a physical property measuring apparatus using terahertz electromagnetic waves according to a second embodiment of the present invention will be described.
FIG. 2 is a schematic diagram showing a configuration of a physical property measuring apparatus using terahertz electromagnetic waves according to the second embodiment of the present invention. In FIG. 2, the physical property measuring device 50 using the terahertz electromagnetic wave according to the second embodiment is different from the physical property measuring device 1 using the terahertz electromagnetic wave of the first embodiment for generating the terahertz electromagnetic wave pulse of the incident optical system 10. The photoconductive element 26 and the photoconductive element 53 of the detection optical system 30 are used.

図3は、第2の実施形態によるテラヘルツ電磁波パルス発生用の光伝導素子26の構造及び動作を模式的に示す図である。図示するように、光伝導素子26は半導体であるGaAsなどの絶縁性基板から成り、その表面には、中央に幅数μmの微小ギャップ26cを有する電極26a,26bが設けられている。この微小ギャップ26cには、電極26a,26bへ直流電圧27が印加されている。このため、微小ギャップ26cを有する電極26a,26b間には強い直流電界が加わっている。
これにより、微小ギャップ26c間に超短光パルスであるパルスレーザ光11aを照射すると、瞬間的に光キャリアが生成され導電性となる。そして微小ギャップ26c間には直流強電界が加わっているため、光照射によって瞬時的に電流が流れる。この瞬時電流を源としてテラヘルツ電磁放射が発生する。このようにして、光伝導素子26による光整流法を用いてテラヘルツ電磁波パルス20が発生し、GaAsなどの絶縁性基板の裏面から出射する。
なお、GaAsなどの絶縁性基板の厚さは、パルスレーザ光11aの侵入深さよりも厚くし、テラヘルツ電磁波パルス20の侵入深さよりも薄くしておけばよい。
FIG. 3 is a diagram schematically showing the structure and operation of the photoconductive element 26 for generating a terahertz electromagnetic wave pulse according to the second embodiment. As shown in the drawing, the photoconductive element 26 is made of an insulating substrate such as GaAs as a semiconductor, and electrodes 26a and 26b having a minute gap 26c having a width of several μm at the center are provided on the surface thereof. A DC voltage 27 is applied to the electrodes 26a and 26b in the minute gap 26c. For this reason, a strong DC electric field is applied between the electrodes 26a and 26b having the minute gap 26c.
Thereby, when the pulse laser beam 11a which is an ultrashort light pulse is irradiated between the minute gaps 26c, an optical carrier is instantaneously generated and becomes conductive. Since a strong DC electric field is applied between the minute gaps 26c, a current flows instantaneously by light irradiation. Terahertz electromagnetic radiation is generated using this instantaneous current as a source. In this way, the terahertz electromagnetic wave pulse 20 is generated by using the optical rectification method by the photoconductive element 26 and is emitted from the back surface of the insulating substrate such as GaAs.
Note that the thickness of the insulating substrate such as GaAs may be made thicker than the penetration depth of the pulsed laser light 11 a and thinner than the penetration depth of the terahertz electromagnetic wave pulse 20.

図4は、第2の実施形態によるテラヘルツ電磁波パルス検知用の光伝導素子53の構造及び動作を模式的に示す図である。
光伝導素子53は、光伝導素子26と同様の素子を使用できる。光伝導素子53は絶縁性の半導体GaAsなどから成る。図示するように、その表面には、中央に幅数μmの微小ギャップ53cを有する電極53a,53bが設けられている。光伝導素子29と異なるのは、この実施形態では、これらの電極53a,53b間に後述する光電流を検出する電流計54が接続され、その電流が増幅器37に出力される点である。
また、図2に示すように、パルスレーザ光は、パルスレーザ11からミラー12と、ビームスプリッター16と、ミラー18(18a,18b,18c)と、により参照光39として、直接光伝導素子53の表面側の微小ギャップ53cに入射している。この際、パルスレーザ光のパルス幅はテラヘルツ電磁波パルスの振動周期より約1桁以上短いものを用いる。また、テラヘルツ電磁波パルス検知用の光伝導素子53の裏面には、反射テラヘルツ電磁波の垂直偏光成分24が、同時に集光されている。
FIG. 4 is a diagram schematically showing the structure and operation of the photoconductive element 53 for detecting a terahertz electromagnetic wave pulse according to the second embodiment.
As the photoconductive element 53, an element similar to the photoconductive element 26 can be used. The photoconductive element 53 is made of an insulating semiconductor GaAs or the like. As shown in the figure, electrodes 53a and 53b having a minute gap 53c with a width of several μm in the center are provided on the surface. The difference from the photoconductive element 29 is that, in this embodiment, an ammeter 54 for detecting a photocurrent described later is connected between the electrodes 53 a and 53 b and the current is output to the amplifier 37.
Further, as shown in FIG. 2, the pulse laser beam is generated as a reference beam 39 by the pulse laser 11 to the mirror 12, the beam splitter 16, and the mirror 18 (18a, 18b, 18c). It is incident on the minute gap 53c on the surface side. At this time, the pulse width of the pulsed laser light is shorter by about one digit or more than the vibration period of the terahertz electromagnetic wave pulse. Further, the vertical polarization component 24 of the reflected terahertz electromagnetic wave is simultaneously collected on the back surface of the photoconductive element 53 for detecting the terahertz electromagnetic wave pulse.

これにより、光伝導素子53はパルスレーザ光により生成されるキャリアによって、パルスレーザ光の照射時のみ導電性となる。但し、テラヘルツ電磁波パルス検知用の光伝導素子26と異なり直流バイアス電界は加えていない。このため、光電流は反射テラヘルツ電磁波の垂直偏光成分24の電界により誘起されることになる。この光電流信号を、反射テラヘルツ電磁波24の垂直偏光成分パルスとパルスレーザ光からの参照光39とが光伝導素子53に到達する時刻の差の関数として計測することで、反射テラヘルツ電磁波の垂直偏光成分24の時間波形を計測することができる。この到達時刻の差は入射光学系10に設置された光時間遅延回路17を用いることで発生させる。
なお、GaAsなどの絶縁性基板の厚さは、パルスレーザ光の侵入深さよりも厚くし、テラヘルツ電磁波パルスの侵入深さよりも薄くしておけばよい。
As a result, the photoconductive element 53 becomes conductive only when irradiated with the pulse laser beam by the carrier generated by the pulse laser beam. However, unlike the photoconductive element 26 for detecting the terahertz electromagnetic wave pulse, no DC bias electric field is applied. For this reason, the photocurrent is induced by the electric field of the vertical polarization component 24 of the reflected terahertz electromagnetic wave. This photocurrent signal is measured as a function of the difference between the time at which the vertical polarization component pulse of the reflected terahertz electromagnetic wave 24 and the reference light 39 from the pulsed laser light reach the photoconductive element 53, so that the vertical polarization of the reflected terahertz electromagnetic wave is measured. The time waveform of the component 24 can be measured. This difference in arrival time is generated by using an optical time delay circuit 17 installed in the incident optical system 10.
Note that the thickness of the insulating substrate such as GaAs may be thicker than the penetration depth of the pulsed laser beam and thinner than the penetration depth of the terahertz electromagnetic wave pulse.

光伝導素子53は、第1の実施形態によるテラヘルツ電磁波を用いた物性測定装置10のテラヘルツ電磁波パルス検知器36である電気光学結晶19と置き換えた構成であるが、上記した検知方法により、位相板34,検光子35,光検知器36は不要である。なお、第2の実施形態によるテラヘルツ電磁波を用いた物性測定装置50において、テラヘルツ電磁波パルスの発生及び検知用の光伝導素子26,53以外の構成は、本発明の第1の実施形態によるテラヘルツ電磁波を用いた物性測定装置10と同じであるので、説明は省略する。   The photoconductive element 53 is configured to replace the electro-optic crystal 19 that is the terahertz electromagnetic wave pulse detector 36 of the physical property measuring apparatus 10 using the terahertz electromagnetic wave according to the first embodiment. 34, the analyzer 35, and the photodetector 36 are unnecessary. In the physical property measuring apparatus 50 using the terahertz electromagnetic wave according to the second embodiment, the configuration other than the photoconductive elements 26 and 53 for generating and detecting the terahertz electromagnetic wave is the same as the terahertz electromagnetic wave according to the first embodiment of the present invention. Since it is the same as the physical property measuring apparatus 10 using, the description is omitted.

以上のように構成されている本発明のテラヘルツ電磁波を用いた物性測定装置50によれば、光時間遅延回路17によりパルスレーザ光に対して時間遅延を加えながら、反射テラヘルツ電磁波24の電場を測定することにより、この時間遅延に対する反射テラヘルツ電磁波24の電場波形、すなわち、時系列信号を得ることができる。
この時系列信号を、A/D変換によりデジタル変換し、コンピュータによりフーリエ変換することにより、反射テラヘルツ電磁波24の周波数領域における振幅及び位相が得られる。そして、被測定材料2がない場合に生じる参照光スペクトルを基準として、被測定材料2による反射テラヘルツ電磁波24の振幅スペクトル及び位相スペクトルを得ることができる。
なお、本発明のテラヘルツ電磁波を用いた物性測定装置1,50において、テラヘルツ電磁波パルスの発生に電気光学結晶19や光伝導素子26を用い、また、テラヘルツ電磁波検知器として、電気光学結晶33や光伝導素子53を用いたが、これらは、その測定目的に応じて、適宜に組み合わせて使用できる。
According to the physical property measuring apparatus 50 using the terahertz electromagnetic wave of the present invention configured as described above, the electric time of the reflected terahertz electromagnetic wave 24 is measured while applying a time delay to the pulse laser beam by the optical time delay circuit 17. Thus, the electric field waveform of the reflected terahertz electromagnetic wave 24 with respect to this time delay, that is, a time-series signal can be obtained.
This time-series signal is digitally converted by A / D conversion and Fourier-transformed by a computer, whereby the amplitude and phase of the reflected terahertz electromagnetic wave 24 in the frequency domain can be obtained. Then, the amplitude spectrum and phase spectrum of the reflected terahertz electromagnetic wave 24 by the material to be measured 2 can be obtained with reference to the reference light spectrum generated when there is no material to be measured 2.
In the physical property measuring apparatuses 1 and 50 using the terahertz electromagnetic wave of the present invention, the electro-optic crystal 19 and the photoconductive element 26 are used for generating the terahertz electromagnetic wave pulse, and the electro-optic crystal 33 and the light are used as the terahertz electromagnetic wave detector. Although the conductive element 53 is used, these can be used in appropriate combination according to the measurement purpose.

次に、本発明のテラヘルツ電磁波を用いた物性測定装置1,50による被測定材料の伝導度テンソル及びホール係数の導出方法を説明する。
検出光学系30で観測される信号は、 複素反射率と入射電場との積であるrsp(ω)E(ω)に対応する。 rsp(ω)は、p偏光入射に対する反射波のs偏光成分を意味し、テラヘルツ時間領域分光法では電場の振幅と位相を同時に測定することができるため、 複素反射率rsp(ω)の実部、 虚部を同時に決定できる。ただし、 入射波E(ω)は後述するように、別途参照測定をしておく。
最初に通常のテラヘルツ反射測定により、下記式(1)により複素反射係数から、複素屈折率を計算する。

Figure 2005315708
ここで、r(ω)は複素反射率、niiは複素屈折率である。i=x,yである。 Next, a method for deriving the conductivity tensor and Hall coefficient of the material to be measured by the physical property measuring apparatuses 1 and 50 using the terahertz electromagnetic wave of the present invention will be described.
The signal observed by the detection optical system 30 corresponds to r sp (ω) E (ω) that is the product of the complex reflectance and the incident electric field. r sp (ω) means the s-polarized component of the reflected wave with respect to the incidence of p-polarized light, and since terahertz time domain spectroscopy can simultaneously measure the amplitude and phase of the electric field, the complex reflectance r sp (ω) Real part and imaginary part can be determined simultaneously. However, the incident wave E (ω) is separately measured for reference as will be described later.
First, the complex refractive index is calculated from the complex reflection coefficient by the following formula (1) by ordinary terahertz reflection measurement.
Figure 2005315708
Here, r (ω) is a complex reflectance, and n ii is a complex refractive index. i = x, y.

次に、上記入射波E(ω)の測定方法を説明する。
第1の方法は、ワイヤグリッド偏光子25を、ビームスプリッターに交換し、次に、被測定材料2を参照用素子(金ミラー、アルミミラーなど)に置き換える。この際、磁場は印加しない。この場合には、ワイヤグリッド偏光子25がなく、単にビームスプリッターだけを使用するので、入射テラヘルツ電磁波は偏光せずに、金ミラーによりテラヘルツ電磁波が100%の強度で反射して、検出光学系30に出射する。
このようにしてこの波形を測定することにより、磁場を加えることなく入射波E(ω)の時間波形が得られる。
第2の方法は、ワイヤグリッド偏光子25の非消光成分スペクトル特性を事前に調べておく方法である。この場合、被測定材料2を既知の参照用素子(金ミラー、アルミミラーなど)に置き換えるだけで、入射波E(ω)を決定することができる。
第3の方法は、被測定材料2と、ワイヤグリッド偏光子25との間に、適当な厚みの位相差板(水晶板など)を挿入する方法である。
例えば、特定の波長(λ)でλ/4の位相差を有する位相板を用いた場合に、その固有軸を入射テラヘルツ波23の偏光面に対して45度傾けて挿入する。被測定材料に入射するテラヘルツパルスは位相板を往復して、位相板の固有軸方向成分と直交する方向成分にλ/2の位相差を生じ、偏光面は90度回転する。この結果、被測定材料2を反射して戻ってきた反射テラヘルツ波24はワイヤグリッド偏光子25でほぼ100%反射され、検出光学系30に出射する。
これにより、被測定材料2を100%の反射波が得られる参照素子(金ミラー、アルミミラーなど)に切り替えておけば、入射波E(ω)を決定することができる。
なお、上記被測定材料2及びワイヤグリッド偏光子25間に挿入する位相板の屈折率と厚さが既知であれば、1/4波長板である必要はなく、任意の厚さで校正は可能である。
Next, a method for measuring the incident wave E (ω) will be described.
In the first method, the wire grid polarizer 25 is replaced with a beam splitter, and then the material to be measured 2 is replaced with a reference element (gold mirror, aluminum mirror, etc.). At this time, no magnetic field is applied. In this case, since there is no wire grid polarizer 25 and only a beam splitter is used, the incident terahertz electromagnetic wave is not polarized, and the terahertz electromagnetic wave is reflected at 100% intensity by the gold mirror, and the detection optical system 30 To exit.
By measuring this waveform in this manner, the time waveform of the incident wave E (ω) can be obtained without applying a magnetic field.
The second method is a method in which the non-quenching component spectral characteristics of the wire grid polarizer 25 are examined in advance. In this case, the incident wave E (ω) can be determined simply by replacing the material to be measured 2 with a known reference element (such as a gold mirror or an aluminum mirror).
The third method is a method of inserting a retardation plate (such as a crystal plate) having an appropriate thickness between the material to be measured 2 and the wire grid polarizer 25.
For example, when a phase plate having a phase difference of λ / 4 at a specific wavelength (λ) is used, the natural axis is inserted with an inclination of 45 degrees with respect to the polarization plane of the incident terahertz wave 23. The terahertz pulse incident on the material to be measured reciprocates through the phase plate to generate a phase difference of λ / 2 in the direction component orthogonal to the natural axis direction component of the phase plate, and the plane of polarization rotates 90 degrees. As a result, the reflected terahertz wave 24 that has been reflected back from the material to be measured 2 is reflected almost 100% by the wire grid polarizer 25 and is emitted to the detection optical system 30.
Thus, the incident wave E (ω) can be determined by switching the material to be measured 2 to a reference element (such as a gold mirror or an aluminum mirror) from which a reflected wave of 100% is obtained.
If the refractive index and thickness of the phase plate inserted between the material to be measured 2 and the wire grid polarizer 25 are known, it is not necessary to use a quarter wavelength plate, and calibration can be performed at any thickness. It is.

次に、複素屈折率から、下記式(2)により誘電関数(誘電率テンソル)εiiを計算する。

Figure 2005315708
Next, a dielectric function (dielectric constant tensor) ε ii is calculated from the complex refractive index by the following formula (2).
Figure 2005315708

上記rsp(ω)は、下記式(3)で表わされる誘電関数であるので、上記式(2)で求まる誘電率テンソルεii(ω)を用い、非対角誘電率εxy(ω)を求める。

Figure 2005315708
Since r sp (ω) is a dielectric function represented by the following equation (3), the non-diagonal dielectric constant ε xy (ω) is obtained using the dielectric constant tensor ε ii (ω) obtained by the above equation (2). Ask for.
Figure 2005315708

次に、上記(3)で求めた非対角誘電率εxy(ω)から、下記式(4)により一意的に伝導度テンソルが計算され、複素伝導度を求めることができる。

Figure 2005315708
ここで、δijはクロネッカのデルタであり、εb は下地の誘電率である。 Next, from the non-diagonal permittivity ε xy (ω) obtained in the above (3), a conductivity tensor is uniquely calculated by the following equation (4), and the complex conductivity can be obtained.
Figure 2005315708
Here, δ ij is the Kronecker delta, and ε b is the dielectric constant of the base.

次に、被測定材料2のホール係数の算出方法について説明する。
被測定材料2に磁場Bz を印加し、磁場の強度に対する上記式(4)により伝導度テンソルを求め、下記式(5)によりホール係数RH (ω)が求まる。

Figure 2005315708
Next, a method for calculating the Hall coefficient of the material to be measured 2 will be described.
A magnetic field B z is applied to the material 2 to be measured, a conductivity tensor is obtained by the above equation (4) with respect to the strength of the magnetic field, and a Hall coefficient R H (ω) is obtained by the following equation (5).
Figure 2005315708

被測定材料2が半導体である場合には、その伝導型によりホール係数の符号が異なるので被測定材料2の伝導型を判定することができる。また、下記式(6)及び(7)から、n型及びp型の不純物密度を、それぞれ、n、pとして計算することができる。

Figure 2005315708
Figure 2005315708
ここで、eは電子の単位電荷であり、1.602×10-19 C(クーロン)である。 When the material to be measured 2 is a semiconductor, the sign of the Hall coefficient differs depending on the conductivity type, so that the conductivity type of the material to be measured 2 can be determined. Further, from the following formulas (6) and (7), the n-type and p-type impurity densities can be calculated as n and p, respectively.
Figure 2005315708
Figure 2005315708
Here, e is a unit charge of electrons and is 1.602 × 10 −19 C (Coulomb).

この際、磁場の向きを反転させると、上記式(3)においてεxyの符号が反転する。このため、磁場の向きが反転及び非反転の場合に、上記式(3)で測定されるrsp(ω)の値に加えて、さらに偏光子25の不完全性により重畳して観測される非消光成分は同じであるので、その差分をとると、非消光成分が打ち消され、ホール係数RH (ω)に相当する時間系列信号だけが2倍の大きさとなる。
これにより、非消光成分を完全に除去でき、被測定材料2のホール係数RH (ω)の測定精度を著しく高めることができる。したがって、本発明のテラヘルツ電磁波による物性測定装置1,50を用いてホール係数を測定することによって、偏光子25の機械的な振動による不安定性と、偏光子25由来の不完全性がなくなり、測定誤差を飛躍的に減少させることができる。また、磁場の反転及び非反転による差分測定を行うことにより測定精度を著しく高めることができる。
At this time, if the direction of the magnetic field is reversed, the sign of ε xy in the above equation (3) is reversed. For this reason, when the direction of the magnetic field is reversed and non-reversed, in addition to the value of r sp (ω) measured by the above equation (3), the observation is further performed due to the imperfection of the polarizer 25. Since the non-quenching component is the same, if the difference is taken, the non-quenching component is canceled out, and only the time series signal corresponding to the Hall coefficient R H (ω) is doubled.
Thereby, the non-quenching component can be completely removed, and the measurement accuracy of the Hall coefficient R H (ω) of the material to be measured 2 can be remarkably increased. Therefore, by measuring the Hall coefficient using the terahertz electromagnetic property measuring apparatus 1, 50 according to the present invention, instability due to mechanical vibration of the polarizer 25 and imperfections derived from the polarizer 25 are eliminated, and measurement is performed. The error can be drastically reduced. Further, the measurement accuracy can be remarkably increased by performing the difference measurement by reversal and non-reversal of the magnetic field.

次に、実施例に基づいて本発明をさらに詳細に説明する。
実施例1として、本発明のテラヘルツ電磁波を用いた物性測定装置1を製作した。図1を参照して、その主要部分について説明する。
パルスレーザ11としては、モード同期されたチタンサファイアレーザ(米国コヒーレント社製、ReqA9000)による再生増幅システムを用い、波長800nm、パルス幅200fs、繰り返し周波数200kHzのパルスレーザ光を発生させた。このパルスレーザ光には、光強度変調器6により100kHzの強度変調を印加した。また、テラヘルツ電磁波パルス発生用及びテラヘルツ電磁波検知器用の電気光学結晶19,33は、何れもZnTeを用いた。テラヘルツ電磁波集光用のレンズ21,31,32は、何れも放物面鏡を使用した。さらに、偏光子25としては、ワイヤグリッド型偏光子を用いた。
Next, based on an Example, this invention is demonstrated further in detail.
As Example 1, a physical property measuring apparatus 1 using a terahertz electromagnetic wave of the present invention was manufactured. The main part will be described with reference to FIG.
As the pulse laser 11, a pulsed laser beam having a wavelength of 800 nm, a pulse width of 200 fs, and a repetition frequency of 200 kHz was generated using a reproduction amplification system using a mode-synchronized titanium sapphire laser (manufactured by Coherent, USA, ReqA9000). The pulse laser beam was applied with intensity modulation of 100 kHz by the light intensity modulator 6. The electro-optic crystals 19 and 33 for generating the terahertz electromagnetic wave pulse and for the terahertz electromagnetic wave detector both use ZnTe. The lenses 21, 31, and 32 for collecting the terahertz electromagnetic waves used parabolic mirrors. Further, as the polarizer 25, a wire grid type polarizer was used.

本実施例のテラヘルツ電磁波による物性測定装置1を用いて、被測定材料2として半導体のInAs基板の室温下でホール効果の検出を行った。InAs基板2は、市販されているノンドープの単結晶基板を用いた。室温でのキャリア(電子)濃度は、通常の4端子法による直流ホール測定によれば、2×1016cm-3であった。 Using the terahertz electromagnetic property measuring apparatus 1 of this example, the Hall effect was detected at room temperature of a semiconductor InAs substrate as the material to be measured 2. As the InAs substrate 2, a commercially available non-doped single crystal substrate was used. The carrier (electron) concentration at room temperature was 2 × 10 16 cm −3 according to the direct current Hall measurement by the four-terminal method.

図5は実施例2で測定した反射テラヘルツ電磁波による時間領域での電場波形を示す。図において、横軸は遅延時間(ps)を示し、縦軸は反射テラヘルツ電磁波24のテラヘルツ電場強度(任意目盛り)を示している。被測定材料2に磁場を印加しない場合(B=0ガウス)を実線で示し、90ガウスの磁場を加えた場合を点線で示している。
図から明らかなように、磁場がない場合にも観測される信号は、 被測定材料のInAsから反射されたテラヘルツ電磁波波24がワイヤグリッド偏光子25の不完全性により反射される非消光成分である。また、磁場を加えると、ホール効果による電場成分が生じることが分かる。
FIG. 5 shows an electric field waveform in the time domain due to the reflected terahertz electromagnetic wave measured in Example 2. In the figure, the horizontal axis represents the delay time (ps), and the vertical axis represents the terahertz electric field intensity (arbitrary scale) of the reflected terahertz electromagnetic wave 24. A case where a magnetic field is not applied to the material 2 to be measured (B = 0 Gauss) is indicated by a solid line, and a case where a magnetic field of 90 Gauss is applied is indicated by a dotted line.
As is apparent from the figure, the signal observed even in the absence of a magnetic field is a non-quenching component in which the terahertz electromagnetic wave 24 reflected from the InAs of the material to be measured is reflected by the imperfection of the wire grid polarizer 25. is there. It can also be seen that when a magnetic field is applied, an electric field component is generated due to the Hall effect.

図6は、実施例2で測定した反射テラヘルツ電磁波の時間領域での電場波形における印加磁場の方向依存性を示す図である。図において、横軸は遅延時間(ps)を示し、縦軸は反射テラヘルツ電磁波のテラヘルツ電場強度(任意目盛り)を示している。図では、被測定材料に90ガウスの磁場を加えた場合を実線で示し、−90ガウスの磁場を加えた場合を点線で示している。
図から明らかなように、ホール効果によるテラヘルツ波の偏光変化成分の時間軸上の波形において、その符号が磁場により反転していることが分かる。
FIG. 6 is a diagram illustrating the direction dependence of the applied magnetic field in the electric field waveform of the reflected terahertz electromagnetic wave measured in Example 2 in the time domain. In the figure, the horizontal axis represents the delay time (ps), and the vertical axis represents the terahertz electric field intensity (arbitrary scale) of the reflected terahertz electromagnetic wave. In the figure, a case where a 90 gauss magnetic field is applied to the material to be measured is indicated by a solid line, and a case where a −90 gauss magnetic field is applied is indicated by a dotted line.
As is apparent from the figure, in the waveform on the time axis of the polarization change component of the terahertz wave due to the Hall effect, it can be seen that the sign is inverted by the magnetic field.

図7は、実施例2において、磁場の符号を反転させて、それぞれ、反射テラヘルツ時間波形を測定し、その差分を記録して積算した波形を示す図である。図において、横軸は遅延時間(ps)を、縦軸は反射テラヘルツ電磁波のテラヘルツ電場強度(任意目盛り)を示している。磁場として11ガウス及び22ガウスの磁場を印加した。
図から明らかなように、非消光成分が除去され、ホール効果成分だけが明瞭に検知されていることが分かる。磁場強度が11ガウスと低いにもかかわらず、振幅からその偏光回転角が0.4mradと、従来の反射テラヘルツ電磁波による測定よりも約20倍以上高感度であることが分かった。
なお、本実施例では、磁場の反転、非反転を交互に行い、それぞれの場合のテラヘルツ時間波形の記録及び積算を50回繰り返した。そして、これらの時間波形の平均操作により得た時間波形をデータとして、FFTを行い、後述するホール係数やその導出に必要な誘電関数及び伝導度などの計算を行った。
FIG. 7 is a diagram illustrating waveforms obtained by inverting the sign of the magnetic field, measuring the reflected terahertz time waveform, and recording and integrating the difference in the second embodiment. In the figure, the horizontal axis represents the delay time (ps), and the vertical axis represents the terahertz electric field intensity (arbitrary scale) of the reflected terahertz electromagnetic wave. A magnetic field of 11 gauss and 22 gauss was applied as the magnetic field.
As can be seen from the figure, the non-quenching component is removed and only the Hall effect component is clearly detected. Despite the low magnetic field strength of 11 gauss, the amplitude of polarization rotation was 0.4 mrad from the amplitude, which was found to be about 20 times more sensitive than the measurement by the conventional reflected terahertz electromagnetic wave.
In this example, magnetic field inversion and non-inversion were alternately performed, and recording and integration of the terahertz time waveform in each case were repeated 50 times. Then, FFT was performed using the time waveform obtained by the average operation of these time waveforms as data, and the Hall coefficient described later and the dielectric function and conductivity necessary for its derivation were calculated.

次に、磁場強度を変化させて、反射テラヘルツ時間波形を測定し、観測されたホール効果信号からホール係数を測定した。
図8は、実施例2で測定したInAsのホール係数の周波数依存性を示す図である。図において、横軸は周波数(THz)を示し、縦軸はホール係数の実部(m3 /C)を示している。
図から明らかなように、反射テラヘルツ電磁波の約0.5〜2THzの領域においてホール係数の実部は、−300×10-63 /Cとほぼ一定であり、マイナスの符号からその導電型がn型であることが分かる。また、ホール係数の値から、キャリア密度が約2.1×1022-3、すなわち、約2.1×1016cm-3であることが分かる。この値は、直流電流印加による通常のホール効果測定と比較すると、妥当な値である。
Next, the reflection terahertz time waveform was measured by changing the magnetic field strength, and the Hall coefficient was measured from the observed Hall effect signal.
FIG. 8 is a diagram showing the frequency dependence of the Hall coefficient of InAs measured in Example 2. In FIG. In the figure, the horizontal axis indicates the frequency (THz), and the vertical axis indicates the real part (m 3 / C) of the Hall coefficient.
As is apparent from the figure, the real part of the Hall coefficient is substantially constant at −300 × 10 −6 m 3 / C in the region of about 0.5 to 2 THz of the reflected terahertz electromagnetic wave. Is n-type. Further, it can be seen from the value of the Hall coefficient that the carrier density is about 2.1 × 10 22 m −3 , that is, about 2.1 × 10 16 cm −3 . This value is reasonable when compared with a normal Hall effect measurement by applying a direct current.

上記結果から、本発明のテラヘルツ電磁波を用いた物性測定装置によれば、被測定材料に非接触で、高感度、かつ、高精度でホール係数の測定ができることが分かる。   From the above results, it can be seen that according to the physical property measuring apparatus using the terahertz electromagnetic wave of the present invention, the Hall coefficient can be measured with high sensitivity and high accuracy without contact with the material to be measured.

本発明は、上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。上述した実施形態においては、主としてホール係数の測定について説明したが、複素屈折率や複素伝導度テンソルの測定も行うことができる。   The present invention is not limited to the above-described embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Absent. In the embodiment described above, the measurement of the Hall coefficient is mainly described, but the complex refractive index and the complex conductivity tensor can also be measured.

産業上の利用の可能性Industrial applicability

本発明のテラヘルツ電磁波を用いた物性測定装置によれば、ホール伝導度をテラヘルツ周波数領域で非接触、 高感度、 高精度に決定することができる。また、不透明材料を含む様々な物質のホール伝導度、 移動度を高帯域で非接触に評価することが可能となる。さらに、電極の形成が困難な半導体、 種々の強相関電子材料、 磁性体材料、 金属材料、 有機材料等の幅広い材料系の非接触評価が可能となる。
また、本発明のテラヘルツ電磁波を用いた物性測定装置によれば、被測定材料に非接触で、その物性測定を高速に行うことができる。このため、 産業上、重要な半導体基板材料のホール伝導度を効率よくかつ非破壊で行うことができる。
According to the physical property measuring apparatus using the terahertz electromagnetic wave of the present invention, the hole conductivity can be determined in a non-contact, high sensitivity and high accuracy in the terahertz frequency region. In addition, the hole conductivity and mobility of various substances including opaque materials can be evaluated in a non-contact manner in a high band. In addition, non-contact evaluation of a wide range of materials such as semiconductors where electrodes are difficult to form, various strongly correlated electronic materials, magnetic materials, metal materials, and organic materials becomes possible.
Moreover, according to the physical property measuring apparatus using the terahertz electromagnetic wave of the present invention, the physical property measurement can be performed at high speed without contacting the material to be measured. For this reason, the hole conductivity of industrially important semiconductor substrate materials can be efficiently and nondestructively performed.

本発明に係る第1の実施形態によるテラヘルツ電磁波を用いた物性測定装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the physical property measuring apparatus using the terahertz electromagnetic wave by 1st Embodiment based on this invention. 本発明に係る第2の実施形態によるテラヘルツ電磁波を用いた物性測定装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the physical-property measuring apparatus using the terahertz electromagnetic wave by 2nd Embodiment which concerns on this invention. 第2の実施形態によるテラヘルツ電磁波パルス発生用の光伝導素子の構造及び動作を模式的に示す図である。It is a figure which shows typically the structure and operation | movement of the photoconductive element for the terahertz electromagnetic wave pulse generation by 2nd Embodiment. 第2の実施形態によるテラヘルツ電磁波パルス検知用の光伝導素子の構造及び動作を模式的に示す図である。It is a figure which shows typically the structure and operation | movement of the photoconductive element for terahertz electromagnetic wave pulse detection by 2nd Embodiment. 実施例2で測定した反射テラヘルツ電磁波による時間領域での電場波形を示す図である。6 is a diagram showing an electric field waveform in a time domain by a reflected terahertz electromagnetic wave measured in Example 2. FIG. 実施例2で測定した反射テラヘルツ電磁波の時間領域での電場波形における印加磁場の方向依存性を示す図である。It is a figure which shows the direction dependence of the applied magnetic field in the electric field waveform in the time domain of the reflected terahertz electromagnetic wave measured in Example 2. FIG. 実施例2において、磁場の符号を反転させて、それぞれ、反射テラヘルツ時間波形を測定し、その差分を記録して積算した波形を示す図である。In Example 2, it is a figure which shows the waveform which reversed the code | symbol of the magnetic field, measured each reflected terahertz time waveform, recorded the difference, and integrated | accumulated. 実施例2で測定したInAsのホール係数の周波数依存性を示す図である。It is a figure which shows the frequency dependence of the Hall coefficient of InAs measured in Example 2. FIG. 非特許文献2で報告されたテラヘルツ電磁波を用いた反射法によるホール係数測定装置を模式的に示す図である。It is a figure which shows typically the Hall coefficient measuring device by the reflection method using the terahertz electromagnetic wave reported by the nonpatent literature 2. FIG.

符号の説明Explanation of symbols

1,50:テラヘルツ電磁波を用いた物性測定装置
2:被測定材料
6:光強度変調器
7:光強度変調器ドライバ
8:参照信号
10:入射光学系
11:パルスレーザ
11a:パルスレーザ光
12,13,14,15,18:ミラー
16:ビームスプリッター
17:光時間遅延回路
17a:ステージ
19:電気光学結晶
20:テラヘルツ電磁波パルス
21,31,32:レンズ
22:フィルタ
23:入射テラヘルツ電磁波の垂直偏光成分
24:反射テラヘルツ電磁波の垂直偏光成分
25:偏光子
26:電磁波パルス発生用の光伝導素子
26a,26b:光伝導素子の電極
26c:光伝導素子電極間の微小ギャップ
27:直流電圧
28:磁場系
30:検出光学系
33:テラヘルツ電磁波検知器(電気光学結晶)
34:位相板(1/4波長板)
35:検光子(ウォラストンプリズム)
35a,35b:偏光成分
36:光検知器
36a,36b:光検知器出力
37:増幅器(ロックインアンプ)
39:参照光
40:コンピュータ系
53:光伝導素子
53a,53b:光伝導素子の電極
53c:光伝導素子電極間の微小ギャップ
54:電流計
DESCRIPTION OF SYMBOLS 1,50: Physical property measuring apparatus using terahertz electromagnetic wave 2: Material to be measured 6: Light intensity modulator 7: Light intensity modulator driver 8: Reference signal 10: Incident optical system 11: Pulse laser 11a: Pulse laser beam 12, 13, 14, 15, 18: mirror 16: beam splitter 17: optical time delay circuit 17a: stage 19: electro-optic crystal 20: terahertz electromagnetic wave pulse 21, 31, 32: lens 22: filter 23: vertical polarization of incident terahertz electromagnetic wave Component 24: Vertically polarized light of reflected terahertz electromagnetic wave 25: Polarizer 26: Photoconductive elements 26a and 26b for generating electromagnetic wave pulses: Electroconductive element electrode 26c: Micro gap 27 between photoconductive element electrodes 27: DC voltage 28: Magnetic field System 30: detection optical system 33: terahertz electromagnetic wave detector (electro-optic crystal)
34: Phase plate (1/4 wavelength plate)
35: Analyzer (Wollaston prism)
35a, 35b: Polarization component 36: Photo detectors 36a, 36b: Photo detector output 37: Amplifier (lock-in amplifier)
39: Reference beam 40: Computer system 53: Photoconductive elements 53a, 53b: Electroconductive element electrodes 53c: Micro gap 54 between photoconductive element electrodes: Ammeter

Claims (10)

テラヘルツ電磁波を発生させる入射光学系と、
該入射光学系から被測定材料へ入射されるテラヘルツ電磁波の偏光を制御し、かつ、該被測定材料から反射されるテラヘルツ電磁波の偏光を制御する偏光子と、
上記被測定材料からの反射テラヘルツ電磁波の偏光を検出する検出光学系と、を含み構成され、
上記テラヘルツ電磁波の上記被測定材料による反射波の偏光状態の変化を電場の直接測定によって検出し、上記被測定材料の物性定数である複素屈折率又は複素伝導度を上記テラヘルツ電磁波の関数として測定することを特徴とする、テラヘルツ電磁波を用いた物性測定装置。
An incident optical system that generates terahertz electromagnetic waves;
A polarizer for controlling the polarization of the terahertz electromagnetic wave incident on the material to be measured from the incident optical system, and for controlling the polarization of the terahertz electromagnetic wave reflected from the material to be measured;
A detection optical system for detecting the polarization of the reflected terahertz electromagnetic wave from the material to be measured,
A change in the polarization state of the reflected wave of the terahertz electromagnetic wave by the measured material is detected by direct measurement of an electric field, and a complex refractive index or a complex conductivity, which is a physical constant of the measured material, is measured as a function of the terahertz electromagnetic wave. An apparatus for measuring physical properties using terahertz electromagnetic waves.
前記テラヘルツ電磁波が、前記被測定材料へ垂直入射されることを特徴とする、請求項1に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using terahertz electromagnetic waves according to claim 1, wherein the terahertz electromagnetic waves are perpendicularly incident on the material to be measured. 前記テラヘルツ電磁波が、非線形光学結晶による光整流法を用いて発生されるテラヘルツ電磁波パルスであることを特徴とする、請求項1又は2に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using the terahertz electromagnetic wave according to claim 1, wherein the terahertz electromagnetic wave is a terahertz electromagnetic wave pulse generated using an optical rectification method using a nonlinear optical crystal. 前記テラヘルツ電磁波が、光伝導素子による光整流法を用いて発生されるテラヘルツ電磁波パルスであることを特徴とする、請求項1又は2に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using the terahertz electromagnetic wave according to claim 1, wherein the terahertz electromagnetic wave is a terahertz electromagnetic wave pulse generated using an optical rectification method using a photoconductive element. 前記テラヘルツ電磁波の検出光学系が、非線形光学結晶による電気光学効果を用いる検知器を備えることを特徴とする、請求項1又は2に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using the terahertz electromagnetic wave according to claim 1, wherein the terahertz electromagnetic wave detecting optical system includes a detector using an electro-optic effect by a nonlinear optical crystal. 前記テラヘルツ電磁波の検出光学系が、光伝導素子を用いた検知器を備えることを特徴とする、請求項1又は2に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using terahertz electromagnetic waves according to claim 1, wherein the terahertz electromagnetic wave detection optical system includes a detector using a photoconductive element. 前記テラヘルツ電磁波を用いた物性測定装置が、さらに、ホール伝導度を測定するために、前記被測定材料に磁場を印加する磁場系を備えることを特徴とする、請求項1〜6に記載のテラヘルツ電磁波を用いた物性測定装置。   7. The terahertz according to claim 1, wherein the physical property measuring apparatus using the terahertz electromagnetic wave further includes a magnetic field system that applies a magnetic field to the material to be measured in order to measure hole conductivity. An apparatus for measuring physical properties using electromagnetic waves. 前記磁場系が、磁場の向きを反転させる手段を備えることを特徴とする、請求項7に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using terahertz electromagnetic waves according to claim 7, wherein the magnetic field system includes means for reversing the direction of the magnetic field. 前記磁場の向きが反転及び非反転のときの前記反射テラヘルツ電磁波の電場の差分によって、前記被測定材料のホール効果による偏光成分だけを測定することを特徴とする、請求項7又は8に記載のテラヘルツ電磁波を用いた物性測定装置。   9. The polarization component due to the Hall effect of the material to be measured is measured based on the difference in electric field of the reflected terahertz electromagnetic wave when the direction of the magnetic field is inverted and non-inverted. Physical property measurement device using terahertz electromagnetic waves. 前記テラヘルツ電磁波を用いた物性測定装置が、さらに、コンピュータ系を備えることを特徴とする、請求項1〜9に記載のテラヘルツ電磁波を用いた物性測定装置。   The physical property measuring apparatus using the terahertz electromagnetic wave according to claim 1, wherein the physical property measuring apparatus using the terahertz electromagnetic wave further includes a computer system.
JP2004133564A 2004-04-28 2004-04-28 Physical property measuring device using terahertz electromagnetic wave Expired - Fee Related JP4147487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133564A JP4147487B2 (en) 2004-04-28 2004-04-28 Physical property measuring device using terahertz electromagnetic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133564A JP4147487B2 (en) 2004-04-28 2004-04-28 Physical property measuring device using terahertz electromagnetic wave

Publications (2)

Publication Number Publication Date
JP2005315708A true JP2005315708A (en) 2005-11-10
JP4147487B2 JP4147487B2 (en) 2008-09-10

Family

ID=35443298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133564A Expired - Fee Related JP4147487B2 (en) 2004-04-28 2004-04-28 Physical property measuring device using terahertz electromagnetic wave

Country Status (1)

Country Link
JP (1) JP4147487B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292425A (en) * 2007-05-28 2008-12-04 Ricoh Co Ltd Biosensor
JP2008298980A (en) * 2007-05-30 2008-12-11 Hamamatsu Photonics Kk Dimmer filter for terahertz wave
JP2009053096A (en) * 2007-08-28 2009-03-12 Otsuka Denshi Co Ltd Measuring instrument
WO2009078149A1 (en) 2007-12-14 2009-06-25 Riken Carrier concentration measuring device and carrier concentration measuring method
JP2009150873A (en) * 2007-11-30 2009-07-09 Canon Inc Inspection apparatus and inspection method using electromagnetic wave
JP2009300108A (en) * 2008-06-10 2009-12-24 Sony Corp Terahertz spectroscopic device
DE102006042642B4 (en) * 2006-09-12 2010-06-24 Batop Gmbh Terahertz time-domain spectrometer
JPWO2009050993A1 (en) * 2007-10-16 2011-03-03 アイシン精機株式会社 Non-contact film thickness measuring method and apparatus
WO2011122281A1 (en) * 2010-03-30 2011-10-06 株式会社村田製作所 Terahertz radiation analysis device and method of analyzing terahertz radiation
DE102010032382A1 (en) 2010-07-27 2012-02-02 Batop Gmbh Fiber-coupled terahertz time domain spectrometer has pulse laser that uses transmitting antenna and receiving antenna, where both antennas are assigned with collimating terahertz optics in each case
JP2014153314A (en) * 2013-02-13 2014-08-25 Dainippon Screen Mfg Co Ltd Inspection equipment and inspection method
CN104034686A (en) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 Magneto-optical modulation reflection spectrum device based on Fourier transform infrared spectrometer
KR101445239B1 (en) 2013-03-25 2014-09-29 국방과학연구소 Apparatus and method for the noncontact deformation measurement at high temperature
KR20180085122A (en) * 2017-01-17 2018-07-26 한양대학교 산학협력단 Method for detecting a defect and electronic device performing the same
CN109115682A (en) * 2018-08-20 2019-01-01 中国科学院上海技术物理研究所 A kind of spectrometer and its detection method for taking into account liquid and solid content detection
US20220175308A1 (en) * 2020-12-07 2022-06-09 Chien-Feng Lin Terahertz field effect non-invasive biofeedback diagnosis system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3964811A1 (en) 2020-09-07 2022-03-09 Imec VZW A circuit for optoelectronic down-conversion of thz signals

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042642B4 (en) * 2006-09-12 2010-06-24 Batop Gmbh Terahertz time-domain spectrometer
JP2008292425A (en) * 2007-05-28 2008-12-04 Ricoh Co Ltd Biosensor
JP2008298980A (en) * 2007-05-30 2008-12-11 Hamamatsu Photonics Kk Dimmer filter for terahertz wave
JP2009053096A (en) * 2007-08-28 2009-03-12 Otsuka Denshi Co Ltd Measuring instrument
JPWO2009050993A1 (en) * 2007-10-16 2011-03-03 アイシン精機株式会社 Non-contact film thickness measuring method and apparatus
JP2009150873A (en) * 2007-11-30 2009-07-09 Canon Inc Inspection apparatus and inspection method using electromagnetic wave
US8446576B2 (en) 2007-12-14 2013-05-21 Riken Carrier concentration measuring device and carrier concentration measuring method
WO2009078149A1 (en) 2007-12-14 2009-06-25 Riken Carrier concentration measuring device and carrier concentration measuring method
JP2009300108A (en) * 2008-06-10 2009-12-24 Sony Corp Terahertz spectroscopic device
WO2011122281A1 (en) * 2010-03-30 2011-10-06 株式会社村田製作所 Terahertz radiation analysis device and method of analyzing terahertz radiation
DE102010032382A1 (en) 2010-07-27 2012-02-02 Batop Gmbh Fiber-coupled terahertz time domain spectrometer has pulse laser that uses transmitting antenna and receiving antenna, where both antennas are assigned with collimating terahertz optics in each case
JP2014153314A (en) * 2013-02-13 2014-08-25 Dainippon Screen Mfg Co Ltd Inspection equipment and inspection method
KR101445239B1 (en) 2013-03-25 2014-09-29 국방과학연구소 Apparatus and method for the noncontact deformation measurement at high temperature
CN104034686A (en) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 Magneto-optical modulation reflection spectrum device based on Fourier transform infrared spectrometer
KR20180085122A (en) * 2017-01-17 2018-07-26 한양대학교 산학협력단 Method for detecting a defect and electronic device performing the same
KR101934628B1 (en) 2017-01-17 2019-03-26 한양대학교 산학협력단 Method for detecting a defect and electronic device performing the same
CN109115682A (en) * 2018-08-20 2019-01-01 中国科学院上海技术物理研究所 A kind of spectrometer and its detection method for taking into account liquid and solid content detection
US20220175308A1 (en) * 2020-12-07 2022-06-09 Chien-Feng Lin Terahertz field effect non-invasive biofeedback diagnosis system

Also Published As

Publication number Publication date
JP4147487B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP4147487B2 (en) Physical property measuring device using terahertz electromagnetic wave
Lubomirsky et al. Invited Review Article: Practical guide for pyroelectric measurements
US6573700B2 (en) Method of characterizing free-space radiation using a chirped optical pulse
WO2004106900A1 (en) Reflection type terahertz spectrometer and spectrometric method
RU2539678C2 (en) Method of generating electromagnetic radiation in terahertz range and apparatus for generating electromagnetic radiation in terahertz range
JP6875957B2 (en) Tunnel current controller and tunnel current control method
JPWO2003028173A1 (en) Terahertz light equipment
US8379215B2 (en) Rotaryfrog systems and methods
Riordan et al. Free-space transient magneto-optic sampling
Dadap et al. Homodyne detection of second-harmonic generation as a probe of electric fields.
Khatua et al. Filtering noise in time and frequency domain for ultrafast pump–probe performed using low repetition rate lasers
WO2006051766A1 (en) Optical measurement evaluating method and optical measurement evaluating device
Li et al. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling
Tyson et al. Time-resolved second harmonic generation with single-shot phase sensitivity
Yallapragada et al. Direct measurement of the Goos-Hänchen shift using a scanning quadrant detector and a polarization maintaining fiber
Lu et al. Phase measurement in nonlinear optics of molecules at air/water interface with femtosecond laser pulses
Funkner et al. Utilization of chirped laser pulses to measure stimulated Raman scattering of organic liquids in the terahertz regime
JP2810976B2 (en) Electrical signal measuring method and apparatus
Foster et al. Time-dependent electric field fluctuations at the subphoton level
Fofanov et al. Laser polarization-optical detection of the magnetization process of a magnetically ordered crystal
Nagai et al. Time-domain magnetic field-difference spectroscopy for semiconductors using circularly polarized terahertz pulses
JP6941004B2 (en) Tunnel current controller and tunnel current control method
WO1989012831A1 (en) Electrooptical effect element and device for measuring electric signal waveforms using said element
JP2021519523A (en) Generation and detection of terahertz radiation with arbitrary polarization directions
JP2006258641A (en) Optical measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4147487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees