JP2005314744A - Material for piston ring and piston ring obtained by using the material - Google Patents

Material for piston ring and piston ring obtained by using the material Download PDF

Info

Publication number
JP2005314744A
JP2005314744A JP2004133782A JP2004133782A JP2005314744A JP 2005314744 A JP2005314744 A JP 2005314744A JP 2004133782 A JP2004133782 A JP 2004133782A JP 2004133782 A JP2004133782 A JP 2004133782A JP 2005314744 A JP2005314744 A JP 2005314744A
Authority
JP
Japan
Prior art keywords
piston ring
hardness
weight
amount
cold workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004133782A
Other languages
Japanese (ja)
Inventor
Toshiki Onaka
年樹 大中
Hiroaki Hayashi
洋彰 林
Susumu Sakamoto
進 坂本
Mitsutaka Sasakura
充隆 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Tokusen Kogyo Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Tokusen Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd, Tokusen Kogyo Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP2004133782A priority Critical patent/JP2005314744A/en
Publication of JP2005314744A publication Critical patent/JP2005314744A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material for a piston ring which has sufficient wear resistance without comprising large quantities of expensive metals, further does not wear a piston ring groove, and has excellent cold workability. <P>SOLUTION: The material for a piston ring has a composition comprising, by weight, 0.4 to 0.5% C, ≤0.7% Si, ≤0.8% Mn, 3.0 to 4.0% Cr, 0.8 to 1.3% Mo, 0.2 to 0.7% V, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関や圧縮機等に使用されるピストンリング用材料に関し、特に、耐摩耗性等の摺動特性向上のために施されるイオンプレーティング処理に適応した耐熱へたり性を備えるとともに耐摩耗性に優れたピストンリング用材料及びその材料を用いたピストンリングに関する。   The present invention relates to a material for a piston ring used for an internal combustion engine, a compressor, and the like, and in particular, has a heat resistance sag suitable for an ion plating process performed for improving sliding characteristics such as wear resistance. In addition, the present invention relates to a piston ring material excellent in wear resistance and a piston ring using the material.

本発明はピストンリング用材料及びその材料を用いたピストンリングに関するものであり、本発明の理解を深めるために現在のピストンリングの製造工程について説明する。   The present invention relates to a material for a piston ring and a piston ring using the material, and in order to deepen the understanding of the present invention, the current manufacturing process of the piston ring will be described.

所定の組成の材料(例えば、高炭素鋼やマルテンサイト系ステンレス鋼組成)を溶解し、造塊後、圧延を行い、所定の温度で熱処理を施した後、冷間伸線により所定の線径の線材を得る。次ぎに、その線材は矩形断面形状に圧延された後、所定の条件で焼き入れと焼き戻しを行って線材の真直性と硬度を確保する。そして、この矩形断面の線材は、ピストンリングの外径に合致するようにコイリングされるが、コイリングに伴って歪みが生じるので、歪み取りのための熱処理が行われる。   A material having a predetermined composition (for example, high carbon steel or martensitic stainless steel composition) is melted, ingot-formed, rolled, heat-treated at a predetermined temperature, and then cold-drawn to a predetermined wire diameter. Get the wire. Next, after the wire is rolled into a rectangular cross-sectional shape, it is quenched and tempered under predetermined conditions to ensure the straightness and hardness of the wire. The wire having a rectangular cross section is coiled so as to match the outer diameter of the piston ring. However, since distortion occurs with the coiling, heat treatment for removing distortion is performed.

従来、内燃機関等に使用されるピストンリング用材料は、以前は鋳鉄が主流であったが、内燃機関の高出力化や高回転化のため、ピストンリングの薄幅化、軽量化が求められており、鋳鉄に比べて高強度が得られるSi−Cr鋼やマルテンサイト系ステンレス鋼などが用いられるようになった。しかし、それらのピストンリング用材料は、耐摩耗性や耐焼付性が充分ではないため、外周面に表面処理が施されている。通常、Si−Cr鋼には図15に示すような硬質クロムメッキ2、マルテンサイト系ステンレス鋼には図16に示すような窒化処理3が施されており、さらに、摺動特性の要求される内燃機関には、図17に示すように、窒化層3の外周面にイオンプレーティングによる硬質セラミックコーティング4(窒化クロムや窒化チタン等)を施したピストンリングが用いられている。   Conventionally, the main material for piston rings used in internal combustion engines has been cast iron, but in order to increase the output and rotation of internal combustion engines, piston rings must be made thinner and lighter. Therefore, Si-Cr steel, martensitic stainless steel, etc., which can obtain higher strength than cast iron, have come to be used. However, these piston ring materials do not have sufficient wear resistance and seizure resistance, so that the outer peripheral surface is subjected to surface treatment. Normally, hard chromium plating 2 as shown in FIG. 15 is applied to Si—Cr steel, and nitriding treatment 3 is applied to martensitic stainless steel as shown in FIG. As shown in FIG. 17, the internal combustion engine uses a piston ring in which a hard ceramic coating 4 (chromium nitride, titanium nitride, etc.) is applied to the outer peripheral surface of the nitride layer 3 by ion plating.

また、耐摩耗性を向上させるために、Crを7.0〜11.0%含有するピストンリング用材料が提案されている(例えば、特許文献1)。   In order to improve wear resistance, a piston ring material containing 7.0 to 11.0% of Cr has been proposed (for example, Patent Document 1).

さらに、ピストンリング用材料として熱間金型用素材であるSKD61を用いるものが提案されている(例えば、特許文献2、特許文献3、特許文献4参照)。
特開2002−348639号公報 特開平5−223172号公報 特開平6−293954号公報 特許第2711962号明細書
Furthermore, what uses SKD61 which is a raw material for hot molds as a material for piston rings is proposed (for example, refer patent document 2, patent document 3, patent document 4).
JP 2002-348639 A JP-A-5-223172 Japanese Patent Laid-Open No. 6-293554 Japanese Patent No. 2711962

ところで、Si−Cr鋼の場合、ピストンリングの製造工程におけるコイリングに伴う歪み取りのための熱処理(450℃で1時間保持)により、図15に示す約530HVの母材5の硬度が約500HVとなり、シリンダ壁に接する外周面に施されるCrメッキ層2の硬度は約1000HVである。このSi−Cr鋼の摺動特性を向上させるために、外周面にイオンプレーティングによる硬質セラミックコーティングを施す場合、高温でコーティングするほど被膜の密着性がよいため、例えば、550℃で4時間程度の高温条件でイオンプレーティングが行われる。ところが、そのイオンプレーティングに伴う熱へたりにより、約500HVの母材5の硬度が380HVに低下するという不都合がある。この程度の硬度では、耐摩耗性が不十分でピストンリングとして使用することはできない。   By the way, in the case of Si—Cr steel, the hardness of the base material 5 of about 530 HV shown in FIG. 15 becomes about 500 HV by heat treatment for removing distortion accompanying coiling in the manufacturing process of the piston ring (held at 450 ° C. for 1 hour). The hardness of the Cr plating layer 2 applied to the outer peripheral surface in contact with the cylinder wall is about 1000 HV. In order to improve the sliding characteristics of this Si-Cr steel, when the hard ceramic coating by ion plating is applied to the outer peripheral surface, the higher the coating temperature, the better the adhesion of the coating film. For example, at 550 ° C for about 4 hours Ion plating is performed under the high temperature conditions. However, there is an inconvenience that the hardness of the base material 5 of about 500 HV is reduced to 380 HV due to heat sag accompanying the ion plating. With this degree of hardness, the wear resistance is insufficient and it cannot be used as a piston ring.

また、高温強度がそれほど高くない低Cr(8〜13%Cr)マルテンサイト系ステンレス鋼の場合、ピストンリングの製造工程におけるコイリングに伴う歪み取りのための熱処理(600℃で1時間保持)により、図16に示す約400HVの母材6の硬度が約360HVとなるが、全周にわたって施される窒化処理3により多量のCrNが析出するので、表面硬度は1200HV程度に上昇する。1200HVという硬度はイオンプレーティングにより得られるセラミック被膜の硬度と同程度であるが、窒化処理は全周にわたって施される関係上、その高硬度の窒化層がピストンリング溝7(図16参照)を摩耗させてしまうことがある。   Moreover, in the case of low Cr (8-13% Cr) martensitic stainless steel, which does not have a very high high-temperature strength, heat treatment (retained at 600 ° C. for 1 hour) to remove strain associated with coiling in the manufacturing process of the piston ring, Although the hardness of the base material 6 of about 400 HV shown in FIG. 16 is about 360 HV, a large amount of CrN is precipitated by the nitriding treatment 3 performed over the entire circumference, so that the surface hardness increases to about 1200 HV. The hardness of 1200 HV is about the same as the hardness of the ceramic coating obtained by ion plating. However, since the nitriding treatment is performed over the entire circumference, the high hardness nitrided layer forms the piston ring groove 7 (see FIG. 16). It may be worn out.

その点で、高Cr(例えば、17%Cr)マルテンサイト系ステンレス鋼は高温強度が優れており、上記のような歪み取りのための熱処理(600℃で1時間保持)やイオンプレーティング処理時にも熱へたりを生じることはないが、図16に示すように、イオンプレーティングによる硬質セラミックコーティング4に先立って窒化処理3を施す場合、上記したように、窒化処理に伴って多量のCrNが全周にわたって析出するので、表面硬度が高くなりすぎ、それに伴ってピストンリング溝を摩耗させてしまうという弊害が懸念される。   In this regard, high Cr (for example, 17% Cr) martensitic stainless steel has excellent high-temperature strength, and is suitable for heat treatment for removing strain as described above (held at 600 ° C. for 1 hour) and ion plating treatment. However, as shown in FIG. 16, when the nitriding treatment 3 is performed prior to the hard ceramic coating 4 by ion plating, as described above, a large amount of CrN is generated along with the nitriding treatment. Since it is deposited over the entire circumference, there is a concern that the surface hardness becomes excessively high and the piston ring groove is worn accordingly.

しかも、高Crマルテンサイト系ステンレス鋼は、多量のCrの存在により冷間加工性が劣るという欠点がある。   Moreover, the high Cr martensitic stainless steel has the disadvantage that the cold workability is inferior due to the presence of a large amount of Cr.

Crは耐摩耗性の向上に効果のある元素であり、ピストンリングのような摺動部材に使用する場合、一定量のCrを含有することは好ましいが、一方で、Crは上記したような欠点をもちあわせている。さらに、Crは高価な元素であるから、その添加量は耐摩耗性を確保する上で必要な範囲にとどめるのが好ましい。   Cr is an element effective in improving wear resistance, and when used for a sliding member such as a piston ring, it is preferable to contain a certain amount of Cr, but on the other hand, Cr has the disadvantages described above. Have Furthermore, since Cr is an expensive element, it is preferable that the amount of addition is limited to a range necessary for ensuring wear resistance.

この点で、特許文献1に記載されたピストンリング用材料は、高Crマルテンサイト系ステンレス鋼よりCrの添加量は少ないが、それでもCrの添加量は7.0〜11.0%であって、いまだ十分に低いとは言えない。   In this respect, the piston ring material described in Patent Document 1 has a smaller amount of Cr added than high Cr martensitic stainless steel, but the amount of Cr added is still 7.0 to 11.0%. It's still not low enough.

さらに、SKD−61は耐熱へたり性に優れた材料であるが、高価なCrやMoやVの含有量がそれぞれ、4.5〜5.5%、1.0〜1.5%、0.8〜1.2%と多い。   Furthermore, although SKD-61 is a material having excellent heat resistance, the contents of expensive Cr, Mo, and V are 4.5 to 5.5%, 1.0 to 1.5%, and 0, respectively. .8-1.2%.

本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、高価な金属を多量に含有することなく十分な耐摩耗性を有し、しかも、ピストンリング溝を摩耗させることのない冷間加工性に優れたピストンリング用材料及びその材料を用いたピストンリングを提供することにある。   The present invention has been made in view of such problems of the prior art, and the object thereof is to have sufficient wear resistance without containing a large amount of expensive metal, and to provide a piston ring. An object of the present invention is to provide a piston ring material excellent in cold workability that does not wear a groove and a piston ring using the material.

上記目的を達成するために、本発明のピストンリング用材料は、Cが0.4〜0.5重量%、Siが0.7重量%以下、Mnが0.8重量%以下、Crが3.0〜4.0重量%、Moが0.8〜1.3重量%、Vが0.2〜0.7重量%、残部がFeおよび不可避的不純物からなる組成を有することを特徴としている。   In order to achieve the above object, the piston ring material of the present invention has C of 0.4 to 0.5% by weight, Si of 0.7% by weight or less, Mn of 0.8% by weight or less, and Cr of 3%. 0.0 to 4.0% by weight, Mo is 0.8 to 1.3% by weight, V is 0.2 to 0.7% by weight, and the balance is composed of Fe and inevitable impurities. .

すなわち、合金元素を適量含有するので、冷間加工性を低下させることなく、十分な耐摩耗性を備え、しかも、ピストンリング溝を摩耗させることもない。   That is, since an appropriate amount of the alloy element is contained, sufficient wear resistance is provided without lowering the cold workability, and the piston ring groove is not worn.

本発明は上記のとおり構成されているので、次ぎのような効果を奏する。
(1)CrやMoやVなどの高価な金属の含有量が適正であるから、低コストでありながら、耐摩耗性に優れている。しかも、イオンプレーティング処理による熱へたりがなく、熱処理による硬度低下がほとんどない。従って、イオンプレーティング処理時の電流値を増加することが可能であり、成膜速度を向上することができる。
(2)CrやMoやVの含有量を適度に抑えているので、冷間加工性に優れている。
(3)Crの含有量が多くないので、窒化処理によるCrNの析出量がマルテンサイト系ステンレス鋼に比して少なく、窒化層の硬度は700〜800HV程度である。従って、窒化層がピストンリング溝を摩耗させることはない。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) Since the content of expensive metals such as Cr, Mo, and V is appropriate, the wear resistance is excellent while the cost is low. Moreover, there is no heat sag due to the ion plating process, and there is almost no decrease in hardness due to the heat treatment. Accordingly, the current value during the ion plating process can be increased, and the film formation rate can be improved.
(2) Since the content of Cr, Mo and V is moderately suppressed, the cold workability is excellent.
(3) Since the Cr content is not large, the amount of CrN deposited by nitriding is less than that of martensitic stainless steel, and the hardness of the nitrided layer is about 700 to 800 HV. Therefore, the nitride layer does not wear the piston ring groove.

本発明のピストンリング用材料を構成する各元素の数値限定理由は、下記のとおりである。
(1) Cは、0.4〜0.5重量%とする。
The reasons for limiting the numerical values of each element constituting the piston ring material of the present invention are as follows.
(1) C is 0.4 to 0.5% by weight.

Cは侵入型の固溶元素であり、硬さや強度の向上に寄与する元素である。また、炭化物を生成して耐摩耗性を高める。これらの効果を享受するためには、Cは0.4重量%以上含有することが好ましい。しかし、多量に添加すると、粗大な炭化物を生成することにより疲労強度を低下させるので、その上限値は0.5重量%とするのが好ましい。
(2) Siは、0.7重量%以下とする。
C is an interstitial solid solution element that contributes to improvement in hardness and strength. In addition, carbide is generated to increase wear resistance. In order to enjoy these effects, C is preferably contained in an amount of 0.4% by weight or more. However, if added in a large amount, fatigue strength is reduced by generating coarse carbides, so the upper limit is preferably 0.5% by weight.
(2) Si is 0.7% by weight or less.

Siは鋼の溶製時において脱酸剤として添加されるとともに、基地中に固溶し、硬さや強度向上に寄与するが、多量に添加すると、冷間加工性を低下させるので、その上限値は0.7重量%とするのが好ましい。
(3) Mnは、0.8重量%以下とする。
Si is added as a deoxidizer during the melting of steel, and dissolves in the matrix, contributing to the improvement of hardness and strength. However, adding a large amount reduces the cold workability, so its upper limit value. Is preferably 0.7% by weight.
(3) Mn is 0.8% by weight or less.

Mnは、鋼の溶製時の脱酸および鋼中のSの固定のために添加されるが、多量に添加すると、冷間加工性を低下させるので、その上限値は0.8重量%とするのが好ましい。なお、合金元素量の低減による焼き入れ性の低下を補うためには、Mnは0.6重量%以上添加するのが好ましい。
(4) Crは、3.0〜4.0重量%とする。
Mn is added for deoxidation at the time of melting steel and fixing S in the steel, but if added in a large amount, the cold workability is lowered, so the upper limit is 0.8% by weight. It is preferable to do this. In order to compensate for the decrease in hardenability due to the reduction in the amount of alloy elements, it is preferable to add 0.6% by weight or more of Mn.
(4) Cr is 3.0 to 4.0% by weight.

CrはCと結合して炭化物を形成するとともに、窒化物を形成する元素であるから、耐摩耗性の向上に不可欠の元素である。これらの効果を享受するためには、Crは3.0重量%以上含有することが好ましい。しかし、多量に添加すると、冷間加工性を低下させるので、その上限値は4.0重量%とするのが好ましい。
(5) Moは、0.8〜1.3重量%とする。
Cr is an element that is combined with C to form carbides and nitrides, and is therefore an indispensable element for improving wear resistance. In order to enjoy these effects, Cr is preferably contained in an amount of 3.0% by weight or more. However, if added in a large amount, the cold workability is lowered, so the upper limit is preferably 4.0% by weight.
(5) Mo is 0.8 to 1.3% by weight.

Moは、焼き戻し軟化抵抗を向上させる効果があり、イオンプレーティング処理時の熱へたり性改善に効果がある。また、Crと同様に炭化物を形成し、耐摩耗性を向上させる。これらの効果を享受するためには、Moは0.8重量%以上含有することが好ましい。しかし、多量に添加すると、冷間加工性を低下させるので、その上限値は1.3重量%とするのが好ましい。
(6) Vは、0.2〜0.7重量%とする。
Mo has the effect of improving the temper softening resistance, and is effective in improving heat sag during the ion plating process. Moreover, carbide is formed similarly to Cr, and wear resistance is improved. In order to enjoy these effects, Mo is preferably contained in an amount of 0.8% by weight or more. However, if added in a large amount, the cold workability is lowered, so the upper limit is preferably 1.3% by weight.
(6) V is 0.2 to 0.7% by weight.

Vは、Moと同様に焼き戻し軟化抵抗を向上させる効果があり、イオンプレーティング処理時の熱へたり性改善に効果がある。また、Cr、Moと同様に炭化物を形成し、耐摩耗性を向上させる。これらの効果を享受するためには、Vは0.2重量%以上含有することが好ましい。しかし、多量に添加すると、冷間加工性を低下させるので、その上限値は0.7重量%とするのが好ましい。   V, like Mo, has the effect of improving the temper softening resistance, and is effective in improving heat sag during ion plating. Moreover, carbide is formed like Cr and Mo, and wear resistance is improved. In order to enjoy these effects, V is preferably contained in an amount of 0.2% by weight or more. However, if added in a large amount, the cold workability is lowered, so the upper limit is preferably 0.7% by weight.

上記組成の材料に以下のような処理を施すことにより、十分な耐摩耗性を有し、しかもピストンリング溝を摩耗させることがなく、冷間加工性に優れたピストンリング用材料を提供することができる。   To provide a material for a piston ring that has sufficient wear resistance and does not wear the piston ring groove and is excellent in cold workability by subjecting the material having the above composition to the following treatment. Can do.

耐摩耗性向上に寄与するCrとMoとVの含有量が適正である上記組成の材料を溶解し、熱間鍛造後、所定の直径の線材を得るように熱間圧延する。次いで、その線材を所定の直径の線材に冷間伸線する。次いで、その線材を所定の矩形断面に冷間圧延する。その矩形断面圧延材に焼き入れと焼き戻しを施すことにより、結晶粒内に炭化物を析出させて強度を向上させるとともに、真直性を改善する。次ぎに、その矩形断面圧延材を所定の外径にコイリングし、コイリング後、ピストンリングの形状に切断し、必要に応じて図16に示すような窒化処理3を施し、次いで、そのピストンリングに歪み取りのための熱処理を施した後、ピストンリング外周面に図17に示すようなイオンプレーティング処理4を施す。   A material having the above-described composition with appropriate contents of Cr, Mo, and V contributing to improvement in wear resistance is melted, and hot-rolled after hot forging to obtain a wire having a predetermined diameter. Next, the wire is cold-drawn into a wire having a predetermined diameter. Next, the wire is cold-rolled into a predetermined rectangular cross section. By quenching and tempering the rolled material having a rectangular cross section, carbides are precipitated in the crystal grains to improve the strength and improve straightness. Next, the rectangular cross-section rolled material is coiled to a predetermined outer diameter, and after coiling, it is cut into the shape of a piston ring and subjected to nitriding treatment 3 as shown in FIG. After heat treatment for strain relief, an ion plating process 4 as shown in FIG. 17 is performed on the outer peripheral surface of the piston ring.

このようにして得られたピストンリングは、C量を低く抑えているので、必要な疲労強度を備え、耐摩耗性向上に寄与するCrとMoとVの含有量が適正であるから冷間加工性と耐摩耗性に優れており、さらに、Crの含有量が多すぎないので、窒化処理により適量のCrNが析出し、窒化層の硬度が700〜800HV程度であるから、窒化処理を施してもピストンリング溝を摩耗させることはない。   The piston ring thus obtained keeps the amount of C low, so it has the necessary fatigue strength and cold work because the contents of Cr, Mo and V contributing to the improvement of wear resistance are appropriate. Since the Cr content is not too much, an appropriate amount of CrN is precipitated by nitriding treatment, and the hardness of the nitrided layer is about 700 to 800 HV. Will not wear the piston ring groove.

以下に本発明の実施例を説明するが、本発明は下記実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において適宜変更と修正が可能である。
(1)高温軟化抵抗と冷間加工性の評価
以下の表1に示す組成(重量%)の各鋼10kgを真空溶解炉で溶解し、インゴットにした後、直径20mmの丸棒に熱間鍛造し、さらに、球状化焼なましを施して、この試料について後記する冷間加工性の評価をした。
Examples of the present invention will be described below. However, the present invention is not limited to the following examples, and can be appropriately changed and modified without departing from the technical scope of the present invention.
(1) Evaluation of high-temperature softening resistance and cold workability 10 kg of each of the steel compositions (wt%) shown in Table 1 below are melted in a vacuum melting furnace and made into an ingot, and then hot forged into a 20 mm diameter round bar Further, spheroidizing annealing was performed, and the cold workability described later was evaluated for this sample.

また、上記焼なまし材を980℃で30分保持後に空冷して焼き入れし、さらに、580〜620℃に焼戻して、焼もどし後の硬さが480〜490HVとなるように調質した。この試料について、後記する高温軟化抵抗の評価をした。   The annealed material was kept at 980 ° C. for 30 minutes and then air-cooled and quenched, and further tempered to 580 to 620 ° C., so that the tempered hardness was 480 to 490 HV. About this sample, the high temperature softening resistance mentioned later was evaluated.

冷間加工性と高温軟化抵抗の評価結果を表2に示す。   Table 2 shows the evaluation results of cold workability and high temperature softening resistance.

Figure 2005314744
Figure 2005314744

Figure 2005314744
高温軟化抵抗については、硬さを調質した直径20mmの丸棒を長さ20mmに切断することにより、直径が20mmで長さが20mmの試料を各組成について複数個作製し、各試料に600℃で10時間の熱処理を施した後、熱処理前後の断面の硬さを測定することにより評価した。表2の硬さの数値は、3個の試料について、中心から半径方向に5mm離れるとともに円周方向に互いに72゜づつ等間隔で離れた5点のビッカース硬さ(HV5)を測定することによって得られた合計15点の硬さの平均値である。
Figure 2005314744
For high-temperature softening resistance, a 20 mm diameter round bar with a tempered hardness is cut into a length of 20 mm to produce a plurality of samples having a diameter of 20 mm and a length of 20 mm for each composition. After heat treatment at 10 ° C. for 10 hours, evaluation was made by measuring the hardness of the cross section before and after the heat treatment. The hardness values in Table 2 are obtained by measuring the five Vickers hardnesses (HV5) of three specimens that are 5 mm apart from the center in the radial direction and 72 ° apart from each other at equal intervals in the circumferential direction. It is an average value of the hardness of 15 points in total obtained.

冷間加工性については、焼なました直径20mmの丸棒をJISZ2201の4号の引張試験片に機械加工して引張試験を行い、絞り(%)の数値により評価した。表2の絞り(%)の数値は、3個の試料の平均値である。   The cold workability was evaluated by a drawing (%) numerical value by machining an annealed round bar having a diameter of 20 mm into a tensile test piece No. 4 of JISZ2201 and conducting a tensile test. The numerical value of the aperture (%) in Table 2 is an average value of three samples.

表2から以下の点が明らかである。   From Table 2, the following points are clear.

試料No7と8は、Cr量が少ないので、熱処理後の硬さ低下が大きい。   Samples Nos. 7 and 8 have a small decrease in hardness after heat treatment because of a small amount of Cr.

試料No9は、Cr量が多すぎるので、冷間加工性が良くない。   Since sample No. 9 has too much Cr, cold workability is not good.

試料No10は、Mo量が少ないので、熱処理後の硬さ低下が大きい。   Since sample No10 has a small amount of Mo, the hardness reduction after heat treatment is large.

試料No11、12、13、14はそれぞれ、Mo、V、Si、Mnの量が多いので、冷間加工性が良くない。   Since sample Nos. 11, 12, 13, and 14 have a large amount of Mo, V, Si, and Mn, respectively, cold workability is not good.

一方、試料No1〜6は、C、Si、Mn、Cr、Mo、Vの添加量が適正であるから、熱処理後の硬さ低下が少なく(高温軟化抵抗が大きく)、冷間加工性も良好である。
(2)高温軟化抵抗と冷間加工性に及ぼす各元素の効果
表1と表2の数値に基づいて、高温軟化抵抗と冷間加工性に及ぼす各元素の効果について整理したのが図1〜10である。
a.Crの効果(図1、図2)
図1に示すように、Cr量が多くなるほど△HVは小さくなるが、Crが3重量%を超えると、△HVの低下代は少なくなることが分かる。
On the other hand, sample Nos. 1 to 6 have appropriate addition amounts of C, Si, Mn, Cr, Mo, and V, so there is little decrease in hardness after heat treatment (high resistance to high-temperature softening) and good cold workability. It is.
(2) Effects of each element on high-temperature softening resistance and cold workability Based on the numerical values in Tables 1 and 2, the effects of each element on high-temperature softening resistance and cold workability are shown in FIG. 10.
a. Effect of Cr (Figs. 1 and 2)
As shown in FIG. 1, ΔHV decreases as the amount of Cr increases, but it can be seen that when Cr exceeds 3% by weight, the decrease in ΔHV decreases.

図2に示すように、Cr量が多くなるほど、絞り(%)の数値はほぼ直線的に小さくなることが分かる。
b.Moの効果(図3、図4)
図3に示すように、Mo量が多くなるほど、△HVはほぼ直線的に小さくなることが分かる。
As shown in FIG. 2, it can be seen that the numerical value of the aperture (%) decreases almost linearly as the Cr amount increases.
b. Effect of Mo (Figs. 3 and 4)
As shown in FIG. 3, it can be seen that ΔHV decreases substantially linearly as the Mo amount increases.

図4に示すように、Mo量が多くなるほど、絞り(%)の数値はほぼ直線的に小さくなることが分かる。
c.Vの効果(図5、図6)
図5に示すように、V量が多くなるほど、△HVはほぼ直線的に小さくなることが分かる。
As shown in FIG. 4, it can be seen that the numerical value of the aperture (%) decreases almost linearly as the amount of Mo increases.
c. Effect of V (FIGS. 5 and 6)
As shown in FIG. 5, it can be seen that ΔHV decreases substantially linearly as the V amount increases.

図6に示すように、V量が多くなるほど、絞り(%)の数値はほぼ直線的に小さくなることが分かる。
d.Siの効果(図7、図8)
図7に示すように、Si量によらず、△HVはほぼ一定である。
As shown in FIG. 6, it can be seen that the numerical value of the aperture (%) decreases almost linearly as the V amount increases.
d. Effect of Si (Figs. 7 and 8)
As shown in FIG. 7, ΔHV is substantially constant regardless of the amount of Si.

図8に示すように、Si量が多くなるほど、絞り(%)の数値はほぼ直線的に小さくなることが分かる。
e.Mnの効果(図9、図10)
図9に示すように、Mn量によらず、△HVはほぼ一定である。
As shown in FIG. 8, it can be seen that the numerical value of the aperture (%) decreases almost linearly as the Si amount increases.
e. Effect of Mn (FIGS. 9 and 10)
As shown in FIG. 9, ΔHV is substantially constant regardless of the amount of Mn.

図10に示すように、Mn量が多くなるほど、絞り(%)の数値はほぼ直線的に小さくなることが分かる。
(3)本発明の組成のピストンリング材料とSKD61の組成のピストンリング材料の高温軟化抵抗と冷間加工性の評価
a.高温軟化抵抗
次の表3に示すような組成(重量%)の鋼を10トン電気溶解炉で溶解し、熱間鍛造後、5.5mmの直径の線材を熱間圧延により得た。次いで、その線材を直径2.00mmの線材に冷間伸線した後、1.00mm×2.00mmの矩形断面に冷間圧延した。その矩形断面圧延材を1030℃に昇温して3分間保持して油冷した後に、図11に示すような範囲の焼もどし温度に昇温して4分間保持して空冷するという、焼き入れと焼き戻し処理を施したときのビッカース硬さ(HV10)を測定した。焼もどし温度を横軸にとったときのビッカース硬さ(HV10)の変化を図11に示す。図11において、記号○は本発明品を示し、●はSKD61を示す。また、図11の各点の実際の焼もどし温度(℃)とビッカース硬さ(HV10)の数値を表4に示す。
As shown in FIG. 10, it can be seen that the numerical value of the aperture (%) decreases almost linearly as the amount of Mn increases.
(3) Evaluation of high temperature softening resistance and cold workability of the piston ring material having the composition of the present invention and the piston ring material having the composition of SKD61 a. High-temperature softening resistance Steel having a composition (% by weight) as shown in Table 3 below was melted in a 10-ton electric melting furnace, and after hot forging, a wire having a diameter of 5.5 mm was obtained by hot rolling. Next, the wire was cold-drawn into a wire having a diameter of 2.00 mm, and then cold-rolled into a rectangular cross section of 1.00 mm × 2.00 mm. The rectangular cross-section rolled material is heated to 1030 ° C., held for 3 minutes and then oil-cooled, then heated to a tempering temperature in the range shown in FIG. 11 and held for 4 minutes to cool by air. And Vickers hardness (HV10) when tempering was performed. FIG. 11 shows the change in Vickers hardness (HV10) when the tempering temperature is taken on the horizontal axis. In FIG. 11, the symbol ◯ indicates the product of the present invention, and the ● indicates SKD61. In addition, Table 4 shows numerical values of actual tempering temperature (° C.) and Vickers hardness (HV10) at each point in FIG.

Figure 2005314744
Figure 2005314744

Figure 2005314744
図11に示すように、本発明品はSKD61と遜色ない程度のビッカース硬さ(HV10)を有し、SKD61とほぼ同程度の高温軟化抵抗を備えていることが分かる。
Figure 2005314744
As shown in FIG. 11, the product of the present invention has a Vickers hardness (HV10) comparable to that of SKD61, and has a high temperature softening resistance substantially equal to that of SKD61.

また、表3に示す組成の鋼から同上工程により1.00mm×2.00mmの矩形断面圧延材を得、その矩形断面圧延材を1030℃に昇温して3分間保持して油冷した後に600℃に昇温して4分間保持して空冷するという、焼き入れと焼き戻し処理を施した。次に、その矩形断面圧延材を外径70mmにコイリングし、コイリング後、図12に示すようなピストンリング1の形状に切断し、次いで、そのピストンリングに600℃×1時間の熱処理を施した後に室温まで空冷し、さらに、550℃×4時間の熱処理を施した。コイリング直前と、600℃×1時間の熱処理後と、550℃×4時間の熱処理後の硬さ(HV0.5)を表5に示す。   Moreover, after obtaining the rectangular cross-section rolled material of 1.00 mm x 2.00 mm from the steel having the composition shown in Table 3 by the same process, the rectangular cross-section rolled material was heated to 1030 ° C. and held for 3 minutes for oil cooling. A quenching and tempering treatment was performed in which the temperature was raised to 600 ° C., held for 4 minutes, and air cooled. Next, the rectangular cross-section rolled material was coiled to an outer diameter of 70 mm, and after coiling, it was cut into the shape of the piston ring 1 as shown in FIG. 12, and then the piston ring was heat-treated at 600 ° C. for 1 hour. Thereafter, it was air-cooled to room temperature and further subjected to heat treatment at 550 ° C. for 4 hours. Table 5 shows the hardness (HV0.5) immediately before coiling, after heat treatment at 600 ° C. × 1 hour, and after heat treatment at 550 ° C. × 4 hours.

Figure 2005314744
表5に示すように、本発明品は、熱処理による硬度低下が少なく、SKD61と同程度の高温軟化抵抗を有することが分かる。
b.冷間加工性
表3に示す組成の各鋼10kgを真空溶解炉で溶解し、インゴットにした後、直径20mmの丸棒に熱間鍛造し、さらに、球状化焼なましを施して、この試料について前記した冷間加工性の評価(引張試験による絞り(%)の数値の比較)をした。
Figure 2005314744
As shown in Table 5, it can be seen that the product of the present invention has a low hardness reduction due to heat treatment and has a high temperature softening resistance comparable to that of SKD61.
b. Cold workability 10 kg of each steel having the composition shown in Table 3 was melted in a vacuum melting furnace and made into an ingot, then hot forged into a round bar having a diameter of 20 mm, and further subjected to spheroidizing annealing. The cold workability described above was evaluated (comparison of numerical values of drawing (%) by a tensile test).

本発明品の絞り(%)は73〜77であり、SKD61の絞り(%)の数値は70であり、本発明品の絞り(%)の数値の方が高く、本発明品は冷間加工性に優れていることが分かる。
(4)本発明品の焼き入れ温度と硬さ(HV0.5)ならびに本発明品の焼き入れ時の加熱時間と硬さ(HV0.5)の関係
表3の組成を有する本発明のピストンリング用材料を溶解し、熱間鍛造後、5.5mmの直径の線材を熱間圧延により得た。次いで、その線材を直径2.00mmの線材に冷間伸線した後、1.00mm×2.00mmの矩形断面に冷間圧延した。その矩形断面圧延材を950〜1070℃に昇温して3分間保持して空冷または油冷した後に600℃に昇温して4分間保持して空冷するという、焼き入れと焼き戻し処理を施したものについて硬さ(HV0.5)を測定した結果を図13に示す。図13において、線(a)は油冷焼き入れ直後の硬さ、線(b)は空冷焼き入れ直後の硬さ、線(c)は油冷焼き戻し直後の硬さ、線(d)は空冷焼き戻し直後の硬さを示す。
The drawing (%) of the product of the present invention is 73 to 77, the numerical value of the drawing (%) of SKD61 is 70, the numerical value of the drawing (%) of the product of the present invention is higher, and the product of the present invention is cold worked. It turns out that it is excellent in property.
(4) Relationship between quenching temperature and hardness (HV0.5) of the product of the present invention and heating time and hardness (HV0.5) during quenching of the product of the present invention The piston ring of the present invention having the composition shown in Table 3 The material was melted, and after hot forging, a wire with a diameter of 5.5 mm was obtained by hot rolling. Next, the wire was cold-drawn into a wire having a diameter of 2.00 mm, and then cold-rolled into a rectangular cross section of 1.00 mm × 2.00 mm. The rectangular cross-section rolled material is subjected to quenching and tempering processes in which it is heated to 950 to 1070 ° C., held for 3 minutes, air cooled or oil cooled, then heated to 600 ° C. and held for 4 minutes to air cool. The result of having measured hardness (HV0.5) about what was done is shown in FIG. In FIG. 13, line (a) is the hardness immediately after oil-cooled quenching, line (b) is the hardness immediately after air-cooled quenching, line (c) is the hardness immediately after oil-cooled tempering, and line (d) is Indicates the hardness immediately after air cooling and tempering.

図13に明らかなように、980〜1070℃から焼き入れすれば、空冷であっても、油冷であっても、焼き戻し後の硬さとして500HV0.5以上を得ることができる。   As apparent from FIG. 13, if quenched from 980 to 1070 ° C., 500 HV0.5 or more can be obtained as the hardness after tempering, whether air cooling or oil cooling.

また、同上矩形断面圧延材を1030℃に昇温して2.64〜5.31分間保持して油冷した後に600℃に昇温して4分間保持して空冷するという、焼き入れと焼き戻し処理を施したものについて硬さ(HV0.5)を測定した結果を図14に示す。図14において、線(e)は油冷焼き入れ直後の硬さ、線(f)は油冷焼き戻し直後の硬さを示す。図14に示す程度の加熱時間の範囲では、焼き戻し後の硬さはほとんど変わらないことが分かる。   Also, the above-mentioned rectangular cross-section rolled material is heated to 1030 ° C., held for 2.64 to 5.31 minutes and then oil cooled, then heated to 600 ° C. and held for 4 minutes for air cooling, quenching and baking FIG. 14 shows the result of measuring the hardness (HV0.5) of the sample subjected to the return treatment. In FIG. 14, line (e) indicates the hardness immediately after oil-cooling and quenching, and line (f) indicates the hardness immediately after oil-cooling and tempering. It can be seen that the hardness after tempering hardly changes in the range of the heating time shown in FIG.

Cr含有量(%)と高温軟化抵抗(ビッカース硬さの変化)の関係を示す図である。It is a figure which shows the relationship between Cr content (%) and high temperature softening resistance (change of Vickers hardness). Cr含有量(%)と絞り(%)の関係を示す図である。It is a figure which shows the relationship between Cr content (%) and aperture_diaphragm | restriction (%). Mo含有量(%)と高温軟化抵抗(ビッカース硬さの変化)の関係を示す図である。It is a figure which shows the relationship between Mo content (%) and high temperature softening resistance (change of Vickers hardness). Mo含有量(%)と絞り(%)の関係を示す図である。It is a figure which shows the relationship between Mo content (%) and aperture_diaphragm | restriction (%). V含有量(%)と高温軟化抵抗(ビッカース硬さの変化)の関係を示す図である。It is a figure which shows the relationship between V content (%) and high temperature softening resistance (change of Vickers hardness). V含有量(%)と絞り(%)の関係を示す図である。It is a figure which shows the relationship between V content (%) and aperture_diaphragm | restriction (%). Si含有量(%)と高温軟化抵抗(ビッカース硬さの変化)の関係を示す図である。It is a figure which shows the relationship between Si content (%) and high temperature softening resistance (change of Vickers hardness). Si含有量(%)と絞り(%)の関係を示す図である。It is a figure which shows the relationship between Si content (%) and aperture_diaphragm | restriction (%). Mn含有量(%)と高温軟化抵抗(ビッカース硬さの変化)の関係を示す図である。It is a figure which shows the relationship between Mn content (%) and high temperature softening resistance (change of Vickers hardness). Mn含有量(%)と絞り(%)の関係を示す図である。It is a figure which shows the relationship between Mn content (%) and aperture (%). 焼もどし温度とビッカース硬さの関係を示す図である。It is a figure which shows the relationship between tempering temperature and Vickers hardness. ピストンリングの斜視図である。It is a perspective view of a piston ring. 焼き入れ温度と硬さとの関係を示す図である。It is a figure which shows the relationship between quenching temperature and hardness. 焼き入れ時の加熱時間と硬さとの関係を示す図である。It is a figure which shows the relationship between the heating time at the time of quenching, and hardness. Crメッキを施したSi−Cr鋼からなるピストンリングをピストンリング溝に挿入する状態を示す概略図である。It is the schematic which shows the state which inserts the piston ring which consists of Si-Cr steel which gave Cr plating into a piston ring groove | channel. 窒化処理を施したマルテンサイト−ステンレス鋼からなるピストンリングをピストンリング溝に挿入する状態を示す概略図である。It is the schematic which shows the state which inserts the piston ring which consists of martensite-stainless steel which performed the nitriding process into a piston ring groove | channel. 窒化処理後にイオンプレーティング処理を施したマルテンサイト−ステンレス鋼からなるピストンリングをピストンリング溝に挿入する状態を示す概略図である。It is the schematic which shows the state which inserts the piston ring which consists of martensite-stainless steel which performed the ion plating process after the nitriding process in a piston ring groove | channel.

符号の説明Explanation of symbols

1…ピストンリング
2…クロムメッキ
3…窒化処理
4…セラミックコーティング
5…母材
6…母材
7…ピストンリング溝
DESCRIPTION OF SYMBOLS 1 ... Piston ring 2 ... Chrome plating 3 ... Nitriding process 4 ... Ceramic coating 5 ... Base material 6 ... Base material 7 ... Piston ring groove

Claims (2)

Cが0.4〜0.5重量%、Siが0.7重量%以下、Mnが0.8重量%以下、Crが3.0〜4.0重量%、Moが0.8〜1.3重量%、Vが0.2〜0.7重量%、残部がFeおよび不可避的不純物からなる組成を有することを特徴とするピストンリング用材料。   C is 0.4 to 0.5% by weight, Si is 0.7% by weight or less, Mn is 0.8% by weight or less, Cr is 3.0 to 4.0% by weight, and Mo is 0.8 to 1.% by weight. A piston ring material having a composition of 3% by weight, V of 0.2 to 0.7% by weight, and the balance of Fe and inevitable impurities. 請求項1のピストンリング用材料を用いたピストンリング。   A piston ring using the piston ring material according to claim 1.
JP2004133782A 2004-04-28 2004-04-28 Material for piston ring and piston ring obtained by using the material Pending JP2005314744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133782A JP2005314744A (en) 2004-04-28 2004-04-28 Material for piston ring and piston ring obtained by using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133782A JP2005314744A (en) 2004-04-28 2004-04-28 Material for piston ring and piston ring obtained by using the material

Publications (1)

Publication Number Publication Date
JP2005314744A true JP2005314744A (en) 2005-11-10

Family

ID=35442472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133782A Pending JP2005314744A (en) 2004-04-28 2004-04-28 Material for piston ring and piston ring obtained by using the material

Country Status (1)

Country Link
JP (1) JP2005314744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196614A1 (en) * 2013-06-07 2014-12-11 株式会社リケン Piston ring, raw material therefor, and production method for both
JP2014237152A (en) * 2013-06-07 2014-12-18 株式会社リケン Method of manufacturing large-sized piston ring, large-sized piston ring material, and large-sized piston ring

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196614A1 (en) * 2013-06-07 2014-12-11 株式会社リケン Piston ring, raw material therefor, and production method for both
JP2014237152A (en) * 2013-06-07 2014-12-18 株式会社リケン Method of manufacturing large-sized piston ring, large-sized piston ring material, and large-sized piston ring
CN105283697A (en) * 2013-06-07 2016-01-27 株式会社理研 Piston ring, raw material therefor, and production method for both
EP3006787A4 (en) * 2013-06-07 2017-07-19 Kabushiki Kaisha Riken Piston ring, raw material therefor, and production method for both

Similar Documents

Publication Publication Date Title
CN100439540C (en) Steel material with excellent rolling fatigue life and method of producing the same
EP2679697B1 (en) Manufacturing method for cold-working die
JP5123335B2 (en) Crankshaft and manufacturing method thereof
JP6128291B2 (en) Martensitic stainless steel
JP5060083B2 (en) Piston ring manufacturing method
JPWO2007123164A1 (en) Piston ring material for internal combustion engines
WO2022219853A1 (en) Oil ring wire
JP4860774B1 (en) Cold work tool steel
JP3456028B2 (en) Piston ring material with excellent workability
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
KR20160022258A (en) Piercer plug for manufacturing a seamless pipe
JP2005314744A (en) Material for piston ring and piston ring obtained by using the material
KR20240027054A (en) Hard steel rolls for cold rolling
JP3579558B2 (en) Bearing steel with excellent resistance to fire cracking
JP4307329B2 (en) Piston ring wire and piston ring
KR101634055B1 (en) Wire for piston rings
JPH11152549A (en) Hot-working tool steel and member for high temperature use, made of the hot-working tool steel
JP7297808B2 (en) Wire for oil ring
JP7323850B2 (en) Steel and carburized steel parts
JP3484076B2 (en) Piston ring for internal combustion engine
JP2001131683A (en) Die steel for small lot production
JP2000345290A (en) Hot roll for copper and copper alloy
JPS63255345A (en) Bearing steel
JPH0813090A (en) Piston ring material
JPH0949051A (en) Roll for hot rolling