JP2005314685A - Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method - Google Patents

Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method Download PDF

Info

Publication number
JP2005314685A
JP2005314685A JP2005098807A JP2005098807A JP2005314685A JP 2005314685 A JP2005314685 A JP 2005314685A JP 2005098807 A JP2005098807 A JP 2005098807A JP 2005098807 A JP2005098807 A JP 2005098807A JP 2005314685 A JP2005314685 A JP 2005314685A
Authority
JP
Japan
Prior art keywords
resin
ppm
outgas
amount
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098807A
Other languages
Japanese (ja)
Inventor
Yoichi Takeyama
洋一 武山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2005098807A priority Critical patent/JP2005314685A/en
Publication of JP2005314685A publication Critical patent/JP2005314685A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a low outgassing resin, by which the resin can be treated with a simple apparatus at a low temperature to easily reduce the outgassing amount of the resin to a low concentration, and to provide vinyl chloride resin, polyethylene resin and a hydrogenated styrenic thermoplastic elastomer which are produced by the method and whose outgassing amounts are little. <P>SOLUTION: This method for producing the low outgassing resin is characterized by charging the resin into a drier having a stirring function and then heating the resin, while blowing in a gas. And the vinyl chloride resin is characterized by being produced by the method and having an outgassing amount of ≤5 wt. ppm. The polyethylene resin is characterized by being produced by the method and having an outgassing amount of ≤25 wt. ppm. The hydrogenated styrenic thermoplastic elastomer is characterized by being produced by the method and having an outgassing amount of ≤5 wt. ppm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低アウトガス樹脂の製造方法、並びに、該方法により製造されてなる塩化ビニル樹脂、ポリエチレン樹脂及び水添スチレン系熱可塑性エラストマーに関する。さらに詳しくは、本発明は、簡略な装置を用いて、低温で処理することにより、樹脂のアウトガス量を容易に低濃度まで減少することができる低アウトガス樹脂の製造方法、並びに、該方法により製造されてなるアウトガス量の少ない塩化ビニル樹脂、ポリエチレン樹脂及び水添スチレン系熱可塑性エラストマーに関する。   The present invention relates to a method for producing a low outgas resin, and a vinyl chloride resin, a polyethylene resin and a hydrogenated styrene-based thermoplastic elastomer produced by the method. More specifically, the present invention relates to a method for producing a low outgas resin capable of easily reducing the outgas amount of the resin to a low concentration by processing at a low temperature using a simple apparatus, and the method. The present invention relates to a vinyl chloride resin, a polyethylene resin, and a hydrogenated styrene thermoplastic elastomer with a small amount of outgas.

シリコンウェーハなどの半導体材料を収納する容器、クリーンルーム内で使用される電線及びケーブルなどには、極めて高度な清浄性が要求される。上記の容器には、プラスチック成形品が用いられる場合が多いが、半導体材料を収納する容器の場合、成形材料に含有されるごく微量の水分や、残留溶剤、残留モノマーなどが成形品からアウトガスとして揮散し、半導体材料などに吸着されて材料を汚染する。クリーンルーム内で使用される電線及びケーブルの被覆に用いられる塩化ビニル樹脂においても、クリーンルーム内を汚染する残留溶剤、残留モノマーは好ましくない。そのために、残留溶剤及び残留モノマーが数百重量ppm程度の樹脂から、さらに残留溶剤及び残留モノマーを極端に低いレベルにまで除去する技術の開発が試みられている。
例えば、低分子成分の含有量が少ないために溶出あるいは揮発量の極めて少ないスチレン系樹脂組成物として、分子量140〜400の低分子成分が1,000ppm未満であって、その内の非スチレンオリゴマー成分が500ppm未満であるスチレン系樹脂組成物が提案され、アニオン重合により得られたポリスチレンを減圧したフラッシングタンクの中で加熱処理して揮発成分を除去したのち、ベント付き押出機で残余の揮発成分を除去する例が示されている(特許文献1)。しかし、このようにして製造したポリスチレンとスチレン系ブロック共重合体の混合樹脂中の残存溶剤量は50ppm程度であり、十分な残留溶剤除去効果は得られていない。
ポリマー融体中から揮発分を効率よく除去することができる注水発泡脱揮方法として、押出機の注水分散ゾーンと脱揮ゾーンの間に減圧膨張ゾーンを設け、ポリマー融体中に分散された水の気泡を成長させるとともに、減圧膨張ゾーンの下流端部において気泡を崩壊させる注水発泡脱揮方法が提案されている(特許文献2)。また、溶融樹脂に添加された水の気泡と溶融樹脂との界面及びその近傍の溶融樹脂の温度上昇が速く、脱気効率を向上し得る溶融樹脂の脱気方法として、スクリュー押出機の水の分散発泡ゾーンの下流に、水の気泡を含む溶融樹脂を撹拌する撹拌ゾーンを設けて溶融樹脂を撹拌し、しかる後、その下流の脱気ゾーンにおいて樹脂中の揮発分を脱気する方法が提案されている(特許文献3)。しかし、溶融樹脂に水を添加すると、水との共沸により揮発分が除去されるが、製品中に水分が残留するおそれがある。また、二軸押出機は設備投資が高額であるのみならず、樹脂を溶融させるために高温での処理となることが避けられず、樹脂の品質劣化の面でも問題を有している。
さらに、空気媒介汚染物質の発生を抑止し、クリーンルーム内での使用に適したポリ塩化ビニル系樹脂組成物被覆電線・ケーブルとして、カルシウム石鹸、亜鉛石鹸又はハイドロタルサイトを含み、鉛化合物及び融点100℃以下のβ−ジケトン化合物のいずれをも含まないポリ塩化ビニル系樹脂組成物で被覆した電線・ケーブルが提案されている(特許文献4)。しかし、塩化ビニル樹脂への配合物の選択のみによっては、アウトガス量を400ppm未満に低減することは困難であった。
特開2002−53719号公報(第2、5、14頁) 特開平7−164509号公報(第2頁) 特開2002−326273号公報(第2、3頁) 特開2002−352629号公報(第2頁)
Containers for storing semiconductor materials such as silicon wafers, electric wires and cables used in clean rooms are required to have extremely high cleanliness. Plastic containers are often used for the above containers, but in the case of containers that contain semiconductor materials, very small amounts of moisture, residual solvents, residual monomers, etc. contained in the molding materials are outgassing from the molded articles. Volatilizes and is adsorbed by semiconductor materials and contaminates materials. Residual solvents and residual monomers that contaminate the inside of the clean room are also not preferred in the vinyl chloride resin used for covering the wires and cables used in the clean room. For this reason, attempts have been made to develop a technique for removing residual solvent and residual monomer to an extremely low level from a resin having residual solvent and residual monomer of about several hundred ppm by weight.
For example, since the content of low molecular components is small, the low molecular component having a molecular weight of 140 to 400 is less than 1,000 ppm as a styrene resin composition having a very low elution or volatilization amount. A styrene-based resin composition having a content of less than 500 ppm was proposed, and after removing the volatile components by heat-treating the polystyrene obtained by anionic polymerization in a flashing tank with reduced pressure, the remaining volatile components were removed with a vented extruder. An example of removal is shown (Patent Document 1). However, the amount of residual solvent in the mixed resin of polystyrene and styrene block copolymer produced in this way is about 50 ppm, and a sufficient residual solvent removing effect is not obtained.
As a water injection foaming devolatilization method that can efficiently remove volatile components from the polymer melt, a decompression expansion zone is provided between the water injection dispersion zone and the devolatilization zone of the extruder, and the water dispersed in the polymer melt A water injection foaming devolatilization method has been proposed in which bubbles are allowed to grow and bubbles are collapsed at the downstream end of the reduced pressure expansion zone (Patent Document 2). In addition, as a degassing method for the molten resin, the temperature of the molten resin at the interface between the bubble of water added to the molten resin and the molten resin and the temperature of the molten resin in the vicinity thereof can be improved, and the degassing efficiency is improved. Proposed a method to stir molten resin containing water bubbles downstream of the dispersion foaming zone to stir the molten resin, and then degas the volatiles in the resin in the downstream degassing zone (Patent Document 3). However, when water is added to the molten resin, volatile components are removed by azeotropy with water, but moisture may remain in the product. In addition, the twin-screw extruder is not only expensive in capital investment, but also inevitably becomes a high-temperature treatment in order to melt the resin, and has a problem in terms of resin quality deterioration.
Furthermore, as a polyvinyl chloride resin composition coated electric wire / cable suitable for use in a clean room that suppresses the generation of airborne contaminants, it contains calcium soap, zinc soap, or hydrotalcite, lead compounds, and a melting point of 100 There has been proposed an electric wire / cable coated with a polyvinyl chloride resin composition that does not contain any β-diketone compound at a temperature not higher than ° C. (Patent Document 4). However, it has been difficult to reduce the amount of outgas to less than 400 ppm only by selecting the compound for the vinyl chloride resin.
JP 2002-53719 A (pages 2, 5, 14) Japanese Patent Laid-Open No. 7-164509 (2nd page) JP 2002-326273 A (second and third pages) JP 2002-352629 A (2nd page)

本発明は、簡略な装置を用いて、低温で処理することにより、樹脂のアウトガス量を容易に低濃度まで減少することができる低アウトガス樹脂の製造方法、並びに、該方法により製造されてなるアウトガス量の少ない塩化ビニル樹脂、ポリエチレン樹脂及び水添スチレン系熱可塑性エラストマーを提供することを目的としてなされたものである。   The present invention relates to a method for producing a low outgas resin capable of easily reducing the outgas amount of the resin to a low concentration by processing at a low temperature using a simple apparatus, and an outgas produced by the method. The object of the present invention is to provide a small amount of vinyl chloride resin, polyethylene resin and hydrogenated styrene thermoplastic elastomer.

本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱することにより、樹脂中のアウトガス量を容易に25重量ppm以下に減少させ得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱することを特徴とする低アウトガス樹脂の製造方法、
(2)乾燥機内を101〜1kPaの減圧にする上記に記載の低アウトガス樹脂の製造方法、
(3)ガスの吹き込み量が、樹脂1kgあたり1〜16L(標準状態)/分である上記に記載の低アウトガス樹脂の製造方法、
(4)乾燥機内の樹脂の層中にガスを吹き込む上記に記載の低アウトガス樹脂の製造方法、
(5)撹拌機能を有する乾燥機が、コニカル乾燥機である上記に記載の低アウトガス樹脂の製造方法、
(6)ガスが、窒素である上記に記載の低アウトガス樹脂の製造方法、
(7)樹脂の残留有機物量が、1,000重量ppm以下である上記に記載の低アウトガス樹脂の製造方法、
(8)上記に記載の方法により製造されてなる、アウトガス量が5重量ppm以下であることを特徴とする塩化ビニル樹脂、
(9)上記に記載の方法により製造されてなる、アウトガス量が25重量ppm以下であることを特徴とするポリエチレン樹脂、及び、
(10)上記に記載の方法により製造されてなる、アウトガス量が5重量ppm以下であることを特徴とする水添スチレン系熱可塑性エラストマー、
を提供するものである。
As a result of intensive studies to solve the above-mentioned problems, the present inventor charged the resin into a dryer having a stirring function, and heated while blowing the gas, so that the amount of outgas in the resin was easily 25 ppm by weight. The inventors have found that it can be reduced below, and have completed the present invention based on this finding.
That is, the present invention
(1) A method for producing a low-outgas resin, comprising charging a resin into a dryer having a stirring function, and heating while blowing gas;
(2) The method for producing a low outgas resin as described above, wherein the inside of the dryer is depressurized to 101 to 1 kPa,
(3) The method for producing a low outgas resin as described above, wherein the amount of gas blown is 1 to 16 L (standard state) / min per 1 kg of resin;
(4) A method for producing a low-outgas resin as described above, wherein gas is blown into a resin layer in a dryer.
(5) The method for producing a low outgas resin according to the above, wherein the dryer having a stirring function is a conical dryer,
(6) The method for producing a low-outgas resin as described above, wherein the gas is nitrogen,
(7) The method for producing a low outgas resin as described above, wherein the amount of residual organic matter in the resin is 1,000 ppm by weight or less,
(8) A vinyl chloride resin produced by the method described above, wherein the amount of outgas is 5 ppm by weight or less,
(9) A polyethylene resin produced by the method described above, wherein the outgas amount is 25 ppm by weight or less, and
(10) A hydrogenated styrene-based thermoplastic elastomer produced by the method described above, wherein the outgas amount is 5 ppm by weight or less,
Is to provide.

本発明の低アウトガス樹脂の製造方法によれば、撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱するという簡単な操作により、樹脂の溶融による熱劣化のおそれがなく、樹脂が本来有する良好な物性を維持したまま、アウトガス量を低減することができる。本発明方法により製造された低アウトガス樹脂は、クリーンルーム内で使用されるプラスチック製品の原材料、クリーンルーム内で使用される電線・ケーブルの被覆材料、食品容器の原材料などとして有用である。本発明方法により製造されたアウトガス量が5重量ppm以下のポリ塩化ビニル樹脂及び水添スチレン系熱可塑性エラストマー、並びにアウトガス量が25重量ppm以下のポリエチレン樹脂は、これらの原材料として特に有用である。   According to the method for producing a low outgas resin of the present invention, a simple operation of charging a resin into a dryer having a stirring function and heating while blowing the gas, there is no fear of thermal degradation due to melting of the resin, and the resin is originally The outgas amount can be reduced while maintaining the good physical properties. The low outgas resin produced by the method of the present invention is useful as a raw material for plastic products used in a clean room, a coating material for electric wires and cables used in a clean room, and a raw material for food containers. The polyvinyl chloride resin and hydrogenated styrene thermoplastic elastomer having an outgas amount of 5 ppm by weight or less and the polyethylene resin having an outgas amount of 25 ppm by weight or less produced by the method of the present invention are particularly useful as these raw materials.

本発明の低アウトガス樹脂の製造方法においては、撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱する。
なお、本発明において、低アウトガス樹脂とは、アウトガス量が25重量ppm以下のものをいう。アウトガス量は、好ましくは10重量ppm以下、特に好ましくは5重量ppm以下である。
また、本発明において、「樹脂」とは、「樹脂ペレット」、「樹脂粉体」及び「砕いた樹脂」をいう。これらの中でも、「樹脂ペレット」又は「樹脂粉体」が好ましく、「樹脂ペレット」が特に好ましい。
上記アウトガス量は、(ア)樹脂を0.02g以下の小片又は小粒とし、(イ)表面に吸着していた水分や有機物を完全に除去した内径4mmのガラスチューブからなる試料容器に入れ、(ウ)該容器にヘリウムを30mL/分で流しつつ加熱し、温度100℃で60分間の保持する間に容器から流出する気体を捕集し、(エ)捕集した気体を熱脱着クロマトグラフィー質量分析計を用いて分析して求めた値をいう。
本発明方法に用いる撹拌機能を有する乾燥機としては、例えば、溝型撹拌乾燥機、円筒撹拌乾燥機、円錐型リボン撹拌乾燥機、円錐型スクリュー撹拌乾燥機、コニカル(円錐型回転)撹拌乾燥機、水蒸気管付回転乾燥機、外壁加熱回転乾燥機、振動流動乾燥機などの伝導伝熱型乾燥機、流動層乾燥機、回転乾燥機、ラピット乾燥機、通気回転乾燥機、及び多段円盤乾燥機などの対流伝熱型乾燥機などを挙げることができる。
本発明方法に用いる撹拌機能を有する乾燥機は、装置内に樹脂と気相を有し、樹脂を撹拌する装置であり、脱揮操作中に樹脂が樹脂の層を形成する乾燥機を好適に用いることができる。このような乾燥機としては、例えば、コニカル乾燥機、及びロータリーキルンなどの樹脂を入れた容器自体が回転して撹拌する乾燥機;パドルドライヤー、ディスクドライヤー、トーラスディスク、及びソリッドエアなどの横型又は縦型の容器に設置した撹拌翼を回転させて樹脂を撹拌する乾燥機;などを挙げることができる。これらの中で、樹脂を入れた容器自体が回転して撹拌する乾燥機を好適に用いることができ、コニカル乾燥機を特に好適に用いることができる。コニカル乾燥機は撹拌翼を有しないので、撹拌翼への樹脂の付着や、撹拌翼の剪断力による樹脂の凝集などがなく、脱揮効率が高く、クリーニング作業の頻度が少なく、高品質の低アウトガス樹脂を得ることができる。
本発明方法において、撹拌機能を有する乾燥機として樹脂を入れた容器自体が回転して撹拌する乾燥機を用いる場合、その回転数は6〜30rpmであることが好ましく、9〜20rpmであることがより好ましい。回転数が6rpm未満であると、アウトガス量を低減する効果が十分に発現しないおそれがある。回転数が30rpmを超えると、乾燥機から発せられる騒音が大きくなり、動力費が嵩むおそれがある。
In the method for producing a low outgas resin of the present invention, the resin is charged into a dryer having a stirring function and heated while blowing gas.
In the present invention, the low outgas resin means a resin having an outgas amount of 25 ppm by weight or less. The amount of outgas is preferably 10 ppm by weight or less, particularly preferably 5 ppm by weight or less.
In the present invention, “resin” means “resin pellet”, “resin powder” and “crushed resin”. Among these, “resin pellet” or “resin powder” is preferable, and “resin pellet” is particularly preferable.
The amount of outgas is as follows: (a) Small pieces or small particles of 0.02 g or less of resin, and (b) A sample container made of a glass tube with an inner diameter of 4 mm from which moisture and organic substances adsorbed on the surface are completely removed. C) The container is heated while flowing helium at 30 mL / min, and the gas flowing out from the container is collected while maintaining the temperature at 100 ° C. for 60 minutes. (D) The collected gas is subjected to thermal desorption chromatography. The value obtained by analysis using an analyzer.
Examples of the dryer having a stirring function used in the method of the present invention include a grooved stirring dryer, a cylindrical stirring dryer, a conical ribbon stirring dryer, a conical screw stirring dryer, and a conical (conical rotation) stirring dryer. , Rotary dryers with steam tubes, outer wall heating rotary dryers, conduction heat dryers such as vibratory fluid dryers, fluidized bed dryers, rotary dryers, rapid dryers, aeration rotary dryers, and multistage disk dryers And convection heat transfer dryers.
The dryer having a stirring function used in the method of the present invention is a device having a resin and a gas phase in the apparatus and stirring the resin, and preferably a dryer in which the resin forms a resin layer during the devolatilization operation. Can be used. Examples of such a dryer include a conical dryer and a dryer in which a container containing a resin such as a rotary kiln rotates and stirs; a horizontal type or vertical type such as a paddle dryer, a disc dryer, a torus disc, and solid air. And a dryer that rotates a stirring blade installed in a mold container to stir the resin. Among these, a dryer in which the container itself containing the resin rotates and agitates can be preferably used, and a conical dryer can be particularly preferably used. Since the conical dryer does not have a stirring blade, there is no adhesion of the resin to the stirring blade or aggregation of the resin due to the shearing force of the stirring blade, high devolatilization efficiency, low frequency of cleaning work, low quality and low quality. Outgas resin can be obtained.
In the method of the present invention, when a dryer in which a container containing resin is rotated and stirred is used as a dryer having a stirring function, the number of rotations is preferably 6 to 30 rpm, and preferably 9 to 20 rpm. More preferred. If the rotational speed is less than 6 rpm, the effect of reducing the outgas amount may not be sufficiently exhibited. When the rotation speed exceeds 30 rpm, noise generated from the dryer increases, which may increase the power cost.

本発明方法により製造する低アウトガス樹脂に特に制限はなく、例えば、ポリ塩化ビニル樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂(ABS)、メタクリル樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、脂環式構造を有する樹脂、ポリスチレン樹脂、ポリスルホン樹脂、水添スチレン系熱可塑性エラストマー(SEBS)、及びフッ素樹脂などを挙げることができる。本発明方法は、これらの中で、クリーンルーム用材料としての需要が多いにもかかわらず、アウトガス量の低減が容易ではないポリ塩化ビニル樹脂、ポリエチレン樹脂及び水添スチレン系熱可塑性エラストマーに特に好適に適用することができる。
本発明方法において、樹脂の加熱温度は、40〜300℃であることが好ましく、70〜140℃であることがより好ましく、90〜120℃であることが特に好ましい。加熱温度が上記範囲未満であると、アウトガス量が十分に減少しないおそれがある。加熱温度が上記範囲を超えると、樹脂が互いに融着して塊りを生ずるおそれがある。なお、加熱温度は、本発明方法を適用する樹脂の融点より5〜10℃低い温度にすることが好ましい。本発明方法において、樹脂を加熱する方法に特に制限はないが、例えば、樹脂を仕込む容器にジャケットを設けて熱媒、スチームなどを通ずることにより加熱することができる。
The low outgas resin produced by the method of the present invention is not particularly limited. For example, polyvinyl chloride resin, acrylonitrile-butadiene-styrene copolymer resin (ABS), methacrylic resin, polyamide resin, polycarbonate resin, polyester resin, polyethylene resin, A polypropylene resin, a resin having an alicyclic structure, a polystyrene resin, a polysulfone resin, a hydrogenated styrene thermoplastic elastomer (SEBS), a fluororesin, and the like can be given. Among these, the method of the present invention is particularly suitable for polyvinyl chloride resins, polyethylene resins, and hydrogenated styrene-based thermoplastic elastomers whose reduction in outgas amount is not easy despite the high demand for materials for clean rooms. Can be applied.
In the method of the present invention, the heating temperature of the resin is preferably 40 to 300 ° C, more preferably 70 to 140 ° C, and particularly preferably 90 to 120 ° C. If the heating temperature is less than the above range, the outgas amount may not be sufficiently reduced. If the heating temperature exceeds the above range, the resins may be fused together to cause lumps. The heating temperature is preferably 5 to 10 ° C. lower than the melting point of the resin to which the method of the present invention is applied. In the method of the present invention, the method of heating the resin is not particularly limited. For example, the resin can be heated by providing a jacket in a container charged with the resin and passing through a heating medium, steam or the like.

本発明方法においては、樹脂を仕込む乾燥機の容器内を減圧にすることが好ましい。樹脂を仕込む容器内を減圧にすることにより、樹脂からのアウトガス成分の除去効果を高めることができる。乾燥機の容器内の圧力は、絶対圧で101〜1kPaであることが好ましく、20〜5kPaであることがより好ましい。圧力を上記範囲未満とするためには、ガスを吹き込みながら低圧を維持するために大能力の真空ポンプが必要であり、初期投資や運転費などが嵩むおそれがある。
本発明方法に用いるガスとしては、窒素、ヘリウム、アルゴンなどの不活性ガス、空気などを挙げることができる。これらの中で、窒素は、加熱される樹脂の劣化を防ぐ効果を有し、不活性ガスの中では比較的安価であるので、好適に用いることができる。
本発明方法においては、ガスの吹き込み量が、樹脂1kgあたり1〜16L(標準状態)/分であることが好ましく、2〜8L(標準状態)/分であることがより好ましい。ガスの吹き込み量が樹脂1kgあたり1L(標準状態)/分未満であると、アウトガス量が十分に減少しないおそれがある。ガスの吹き込み量が樹脂1kgあたり16L(標準状態)/分を超えると、処理費用が過大になり、あるいは、樹脂のガス流への同伴が生ずるおそれがある。
本発明方法を適用してアウトガス量を低減させる原料樹脂の残留有機物量は、1,000重量ppm以下であることが好ましく、500重量ppm以下であることがより好ましく、300重量ppm以下であることがさらに好ましい。原料樹脂の残留有機物量が上記範囲を超えると、アウトガス量が十分に減少した低アウトガス樹脂を製造することが困難となるおそれがある。なお、上記残留有機物量は、前記アウトガス量と同じ方法で求めた値である。
In the method of the present invention, it is preferable to reduce the pressure in the container of the dryer for charging the resin. By reducing the pressure in the container in which the resin is charged, the effect of removing the outgas component from the resin can be enhanced. The pressure inside the container of the dryer is preferably 101 to 1 kPa, more preferably 20 to 5 kPa as an absolute pressure. In order to make the pressure less than the above range, a high-capacity vacuum pump is necessary to maintain a low pressure while blowing gas, which may increase initial investment and operating costs.
Examples of the gas used in the method of the present invention include inert gases such as nitrogen, helium, and argon, and air. Among these, nitrogen has an effect of preventing deterioration of the resin to be heated, and can be suitably used because it is relatively inexpensive among inert gases.
In the method of the present invention, the amount of gas blown is preferably 1 to 16 L (standard state) / min per kg of resin, and more preferably 2 to 8 L (standard state) / min. If the amount of gas blown is less than 1 L (standard state) / min per kg of resin, the outgas amount may not be sufficiently reduced. If the amount of gas blown exceeds 16 L (standard state) / min per kg of resin, the processing cost may be excessive, or the resin may be entrained in the gas flow.
The amount of residual organic matter in the raw material resin that reduces the outgas amount by applying the method of the present invention is preferably 1,000 ppm by weight or less, more preferably 500 ppm by weight or less, and 300 ppm by weight or less. Is more preferable. If the amount of residual organic matter in the raw material resin exceeds the above range, it may be difficult to produce a low outgas resin with a sufficiently reduced outgas amount. The amount of residual organic matter is a value determined by the same method as the amount of outgas.

本発明方法において、乾燥機に仕込まれた樹脂にガスを吹き込む手段に特に制限はなく、例えば、樹脂を仕込んだ容器内にガス吹き込みノズルを設けることができる。真空ラインに接続された吸引配管の中に、ガス吹き込み配管が設置された二重管構造を好適に用いることができる。
本発明方法において、樹脂を仕込んだ容器内(乾燥機内)で、ガスを吹き込む位置に特に制限はなく、例えば、樹脂の層中にガスを吹き込むことができ、あるいは、気相中にガスを吹き込むこともできる。これらのガス吹き込み位置の中で、樹脂の層中にガスを吹き込むことが好ましい。樹脂の層中にガスを吹き込むことにより、脱揮効率を高め、アウトガス量の少ない樹脂を効率的に製造することができる。樹脂の層中へのガス吹き込みは、連続的に行うことができ、あるいは、断続的に行うこともできる。例えば、コニカル乾燥機を用いた場合、容器の回転に従って樹脂の層が移動し、樹脂の層中へガスを吹き込む状態と、気相中へガスを吹き込む状態が交互に現われる場合もあるが、樹脂の層中へガスを吹き込む状態が断続的にせよ確保できれば効率的な脱揮を行うことができる。
図1は、本発明の低アウトガス樹脂の製造方法に用いる装置の一態様の系統図である。原料となる樹脂がコニカル容器8に仕込まれる。コニカル容器は、スチーム導入部3からスチームがジャケットに導入されることにより加熱される。スチームの凝縮により発生したドレインは、ドレイン排出管4から排出される。窒素導入部1からコニカル容器に窒素が送られ、気相中に設けられた吹き込みノズル5又は樹脂の層中に設けられた吹き込みノズル6から、窒素が吹き込まれる。コニカル容器内のガスは、吸引口7から吸引され、真空ライン2を経由して系外に排出される。所定の時間ガスを吹き込みつつ加熱することにより脱揮したのち、コニカル容器のジャケットへ冷水を送って冷却し、コニカル容器から低アウトガス樹脂を取り出す。
In the method of the present invention, the means for blowing gas into the resin charged in the dryer is not particularly limited. For example, a gas blowing nozzle can be provided in a container charged with resin. A double pipe structure in which a gas blowing pipe is installed in the suction pipe connected to the vacuum line can be suitably used.
In the method of the present invention, there is no particular limitation on the position where the gas is blown in the container charged with the resin (in the dryer). For example, the gas can be blown into the resin layer, or the gas is blown into the gas phase. You can also. Of these gas blowing positions, gas is preferably blown into the resin layer. By blowing gas into the resin layer, the devolatilization efficiency can be increased and a resin with a small outgas amount can be efficiently produced. The gas blowing into the resin layer can be carried out continuously or intermittently. For example, when a conical dryer is used, the resin layer moves as the container rotates, and the state where the gas is blown into the resin layer and the state where the gas is blown into the gas phase may appear alternately. Efficient devolatilization can be performed if the state of blowing gas into the layer can be ensured intermittently.
FIG. 1 is a system diagram of one embodiment of an apparatus used in the method for producing a low outgas resin of the present invention. Resin as a raw material is charged into the conical container 8. The conical container is heated by introducing steam from the steam introducing unit 3 into the jacket. The drain generated by the condensation of steam is discharged from the drain discharge pipe 4. Nitrogen is sent from the nitrogen introduction part 1 to the conical container, and nitrogen is blown from the blowing nozzle 5 provided in the gas phase or the blowing nozzle 6 provided in the resin layer. The gas in the conical container is sucked from the suction port 7 and discharged out of the system via the vacuum line 2. After devolatilization by heating while blowing gas for a predetermined time, cold water is sent to the jacket of the conical container to cool it, and the low outgas resin is taken out from the conical container.

本発明の塩化ビニル樹脂は、本発明方法により製造されてなるアウトガス量が5重量ppm以下である塩化ビニル樹脂である。本発明のポリエチレン樹脂は、本発明方法により製造されてなるアウトガス量が25重量ppm以下であるポリエチレン樹脂である。本発明の水添スチレン系熱可塑性エラストマー(SEBS)は、本発明方法により製造されてなるアウトガス量が5重量ppm以下である水添スチレン系熱可塑性エラストマーである。アウトガス量が上記範囲以下の樹脂を使用して、射出成形、押出成形、圧縮成形、押出被覆加工などにより製造されたプラスチック成形品、プラスチック被覆電線・ケーブルなどは、成形加工中の樹脂の解重合などの副反応によりアウトガス量が増加しても、なおクリーンルーム内の備品や、食品包装容器として要求されるアウトガス量の水準を下回り、安全に使用することができる。
本発明方法により製造されたアウトガス量が上記範囲以下の樹脂は、二軸押出機を用いて注水脱揮法により製造された低アウトガス樹脂に比べて、同一の原料樹脂から出発した場合、受けている熱履歴が格段に少ないために、熱劣化による重合度の低下や副生成物の発生が少なく、良好な物性を維持している。また、注水脱揮法により製造された低アウトガス樹脂には、僅少といえども水分の残留が避けられないのに対して、本発明方法により製造された低アウトガス樹脂は、水分を全く含有せず、良好な外観を有する成形品とすることができる。
The vinyl chloride resin of the present invention is a vinyl chloride resin having an outgas amount of 5 ppm by weight or less produced by the method of the present invention. The polyethylene resin of the present invention is a polyethylene resin having an outgas amount of 25 ppm by weight or less produced by the method of the present invention. The hydrogenated styrene thermoplastic elastomer (SEBS) of the present invention is a hydrogenated styrene thermoplastic elastomer produced by the method of the present invention and having an outgas amount of 5 ppm by weight or less. For plastic molded products, plastic-coated wires and cables manufactured by injection molding, extrusion molding, compression molding, extrusion coating processing, etc., using resin whose outgas amount is below the above range, depolymerization of the resin during molding processing Even if the outgas amount increases due to side reactions such as the above, it can still be safely used because it is below the level of outgas amount required for equipment in a clean room or as a food packaging container.
Resin with the outgas amount produced by the method of the present invention below the above range is received when starting from the same raw resin as compared to the low outgas resin produced by the water injection devolatilization method using a twin screw extruder. Since the heat history is remarkably small, there is little decrease in the degree of polymerization and generation of by-products due to thermal deterioration, and good physical properties are maintained. In addition, the low outgas resin produced by the water injection devolatilization method cannot avoid the residual moisture even though it is small, whereas the low outgas resin produced by the method of the present invention does not contain any moisture. A molded product having a good appearance can be obtained.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、評価は下記の方法により行った。
(1)アウトガス量
直径約4mm、長さ約4mmの円柱状の樹脂ペレット0.05gを精秤し、円柱の中心軸を含む直交する2平面で4つに裁断し、表面に吸着していた水分や有機物を完全に除去した内径4mmのガラスチューブからなる試料容器に入れる。次に、その容器に不活性ガスとしてヘリウムを流量30mL/分で流しつつ、温度100℃で60分間加熱し、容器から流出する気体を連続的に捕集する。次いで、捕集した気体を熱脱着ガスクロマトグラフィー質量分析計[横河アナリティカルシステムズ(株)製]を用いて分析し、有機物放出量を測定し、重量ppm(μg有機物/g樹脂)の単位で示す。なお、樹脂粉末は、裁断することなく、そのままの状態で分析する。
(2)水分量
直径約4mm、長さ約4mmの円柱状の樹脂ペレット1個を精秤し、円柱の中心軸と垂直な平面で厚さ約1mmに裁断し、真空中でステージ温度120℃で30分加熱し、昇温脱離ガス分析装置[(株)リガク、TPD type R]を用いて分析し、水分放出量を測定し、重量ppm(μg水分/g樹脂)の単位で示す。なお、樹脂粉末は、裁断することなく、そのままの状態で分析する。
また、乾燥機能を有する乾燥機として、図1に示す系統に組み込まれたコニカル乾燥機[(株)楠木機械製作所、バキューム・タンブル・ドライヤー、内容積250L]を用いた。コニカル本体中心を軸に、コニカル容器8を回転させることによって樹脂を流動させ、真空ライン2に接続した真空ポンプで減圧とし、コニカル本体のジャケットに温水又はスチームを通じて加温し、樹脂中の残留溶剤、残留モノマー及び水分を除去した。ガス吹き込みラインは吸引配管との二重管構造になっており、コニカル容器8を回転させても吸引口7とガス吹き込みノズルの先端位置5又は6は変化しない。樹脂の層中にガスを吹き込む場合は、6位置に吹き込みノズル先端を設け、気相中に吹き込む場合は、5位置に吹き込みノズル先端を設けた。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, evaluation was performed by the following method.
(1) Outgas amount 0.05 g of cylindrical resin pellets having a diameter of about 4 mm and a length of about 4 mm were precisely weighed, cut into four on two orthogonal planes including the central axis of the cylinder, and adsorbed on the surface The sample container is made of a glass tube having an inner diameter of 4 mm from which moisture and organic substances have been completely removed. Next, while flowing helium as an inert gas in the container at a flow rate of 30 mL / min, the container is heated at a temperature of 100 ° C. for 60 minutes to continuously collect gas flowing out from the container. Next, the collected gas is analyzed using a thermal desorption gas chromatography mass spectrometer [manufactured by Yokogawa Analytical Systems Co., Ltd.], the amount of organic matter released is measured, and the unit of weight ppm (μg organic matter / g resin) It shows with. The resin powder is analyzed as it is without being cut.
(2) Moisture content A cylindrical resin pellet having a diameter of about 4 mm and a length of about 4 mm is precisely weighed, cut into a thickness of about 1 mm on a plane perpendicular to the central axis of the cylinder, and a stage temperature of 120 ° C. in a vacuum. For 30 minutes, and then analyzed using a temperature-programmed desorption gas analyzer [Rigaku Corp., TPD type R] to measure the amount of water released and expressed in units of ppm by weight (μg moisture / g resin). The resin powder is analyzed as it is without being cut.
Further, as a dryer having a drying function, a conical dryer (manufactured by Kashiwagi Machinery Co., Ltd., vacuum tumble dryer, internal volume 250 L) incorporated in the system shown in FIG. 1 was used. The resin is flowed by rotating the conical container 8 around the center of the conical main body, and the pressure is reduced by a vacuum pump connected to the vacuum line 2, and the conical main body jacket is heated through hot water or steam, and the residual solvent in the resin Residual monomer and moisture were removed. The gas blowing line has a double pipe structure with a suction pipe, and even if the conical container 8 is rotated, the suction port 7 and the tip position 5 or 6 of the gas blowing nozzle do not change. When gas was blown into the resin layer, the tip of the blow nozzle was provided at position 6, and when the gas was blown into the gas phase, the tip of the blow nozzle was provided at position 5.

実施例1
樹脂ペレットとして、水添スチレン系熱可塑性エラストマー[旭化成(株)、タフテックH1062]ペレットを用いて、低アウトガス樹脂を製造した。この水添スチレン系熱可塑性エラストマーペレットは、直径約4mm、長さ約4mmの円柱状、アウトガス量176重量ppm、水分量35重量ppm、分解開始温度245℃であった。
コニカル乾燥機のガス吹き込みノズル先端を樹脂ペレットの層中(図1の6位置)に設け、コニカル容器に樹脂ペレット50kgを投入した。工業用窒素を流量120L(標準状態)/分で吹き込み、コニカル容器を12rpmで回転させ、コニカル容器内部を減圧にし、ジャケットにスチームを流した。ジャケット入口の圧力制御弁と出口バルブ開度を調整し、ジャケット圧力を絶対圧力で0.20MPaに制御した。定常運転までに約30分を要し、このときのジャケット温度は120℃、樹脂ペレット温度は112℃であった。また、コニカル容器内の絶対圧力は5.3kPaであった。この状態を6時間保ったのち、ジャケットに約30分間冷却水を流して樹脂ペレットを30℃以下まで冷却し、この樹脂ペレットを分析した。シクロヘキサン、エチルシクロヘキサン、エチルベンゼン、スチレン、ヘキシルベンゼンはいずれも検出されず、アウトガス量としてスチレンダイマーなどの高沸点物3.2重量ppmが検出された。水分は、検出されなかった。
Example 1
A low outgas resin was produced using hydrogenated styrene thermoplastic elastomer [Asahi Kasei Co., Ltd., Tuftec H1062] pellets as resin pellets. This hydrogenated styrene-based thermoplastic elastomer pellet had a columnar shape with a diameter of about 4 mm and a length of about 4 mm, an outgas amount of 176 ppm by weight, a moisture content of 35 ppm by weight, and a decomposition start temperature of 245 ° C.
The tip of the gas blowing nozzle of the conical dryer was provided in the layer of resin pellets (position 6 in FIG. 1), and 50 kg of resin pellets were charged into the conical container. Industrial nitrogen was blown at a flow rate of 120 L (standard state) / min, the conical container was rotated at 12 rpm, the inside of the conical container was depressurized, and steam was passed through the jacket. The pressure control valve at the jacket inlet and the outlet valve opening were adjusted, and the jacket pressure was controlled to 0.20 MPa as an absolute pressure. About 30 minutes were required until steady operation, and the jacket temperature at this time was 120 ° C. and the resin pellet temperature was 112 ° C. The absolute pressure in the conical container was 5.3 kPa. After maintaining this state for 6 hours, cooling water was passed through the jacket for about 30 minutes to cool the resin pellets to 30 ° C. or less, and the resin pellets were analyzed. None of cyclohexane, ethylcyclohexane, ethylbenzene, styrene, and hexylbenzene was detected, and 3.2 ppm by weight of a high boiling point substance such as styrene dimer was detected as an outgas amount. Moisture was not detected.

実施例2
ガス吹き込みノズル先端を気相中(図1の5位置)に設けた以外は、実施例1と同じ操作を行った。アウトガス量は4.9重量ppmであり、水分は検出されなかった。
実施例3
ジャケット温度を130℃、樹脂温度を122℃とした以外は、実施例1と同じ操作を行った。アウトガス量は2.3重量ppmであり、水分は検出されなかった。
実施例4
窒素吹き込み量を60L(標準状態)/分とした以外は、実施例1と同じ操作を行った。シクロヘキサン0.7重量ppm、スチレン0.1重量ppm、ヘキシルベンゼン0.1重量ppm、スチレンダイマーなどの高沸点物7.1重量ppmが検出され、アウトガス量は8.0重量ppmであった。水分は、検出されなかった。
実施例5
窒素吹き込み量を240L(標準状態)/分とした以外は、実施例1と同じ操作を行った。アウトガス量は2.3重量ppmであり、水分は検出されなかった。なお、真空ポンプの能力以上に窒素を吹き込んだために、コニカル容器内の圧力が絶対圧力で10.6kPaまで上昇した。
実施例6
窒素吹き込み量を480L(標準状態)/分とした以外は、実施例1と同じ操作を行った。アウトガス量は2.8重量ppmであり、水分は検出されなかった。なお、真空ポンプの能力以上に窒素を吹き込んだために、コニカル容器内の圧力が絶対圧力で19.8kPaまで上昇した。
Example 2
The same operation as in Example 1 was performed except that the gas blowing nozzle tip was provided in the gas phase (5 position in FIG. 1). The amount of outgas was 4.9 ppm by weight, and no water was detected.
Example 3
The same operation as in Example 1 was performed except that the jacket temperature was 130 ° C. and the resin temperature was 122 ° C. The amount of outgas was 2.3 ppm by weight, and no water was detected.
Example 4
The same operation as in Example 1 was performed except that the nitrogen blowing amount was 60 L (standard state) / min. Cyclohexane 0.7 wt ppm, styrene 0.1 wt ppm, hexylbenzene 0.1 wt ppm, high boiling point 7.1 wt ppm such as styrene dimer were detected, and the outgas amount was 8.0 wt ppm. Moisture was not detected.
Example 5
The same operation as in Example 1 was performed except that the nitrogen blowing amount was 240 L (standard state) / min. The amount of outgas was 2.3 ppm by weight, and no water was detected. Since nitrogen was blown in excess of the capacity of the vacuum pump, the pressure in the conical container rose to 10.6 kPa in absolute pressure.
Example 6
The same operation as in Example 1 was performed except that the nitrogen blowing amount was 480 L (standard state) / min. The amount of outgas was 2.8 ppm by weight, and no water was detected. Since nitrogen was blown in excess of the capacity of the vacuum pump, the pressure in the conical container rose to 19.8 kPa in absolute pressure.

実施例7
コニカル容器内の絶対圧力を13.3kPaとした以外は、実施例1と同じ操作を行った。シクロヘキサン1.3重量ppm、スチレンダイマーなどの高沸点物6.0重量ppmが検出され、アウトガス量は7.3重量ppmであった。水分は、検出されなかった。
実施例8
窒素吹き込み量を30L(標準状態)/分とした以外は、実施例1と同じ操作を行った。シクロヘキサン2.9重量ppm、エチルシクロヘキサン0.1重量ppm、ヘキシルベンゼン2.4重量ppm、スチレンダイマーなどの高沸点物14.0重量ppmが検出され、アウトガス量は19.4重量ppmであった。水分は、検出されなかった。
実施例9
樹脂ペレットとして、水添スチレン系熱可塑性エラストマー[旭化成(株)、タフテックH1051]ペレットを用いた以外は、実施例1と同様にして、低アウトガス樹脂を製造した。この水添スチレン系熱可塑性エラストマーペレットは、直径約4mm、長さ約4mmの円柱状、アウトガス量106重量ppm、水分量40重量ppm、分解開始温度245℃であった。アウトガス量は3.5重量ppmであり、水分は検出されなかった。
実施例10
樹脂粉体として、水添スチレン系熱可塑性エラストマー[旭化成(株)、タフテックH1051G]粉体を用い、実施例1と同様にして、低アウトガス樹脂を製造した。この水添スチレン系熱可塑性エラストマー粉体は、粒径約0.5mm、アウトガス量41重量ppm、水分量35重量ppm、分解開始温度245℃であった。アウトガス量は2.0重量ppmであり、水分は検出されなかった。
Example 7
The same operation as in Example 1 was performed except that the absolute pressure in the conical container was 13.3 kPa. Cyclohexane 1.3 ppm by weight, styrene dimer and other high-boiling compounds 6.0 ppm by weight were detected, and the outgas amount was 7.3 ppm by weight. Moisture was not detected.
Example 8
The same operation as in Example 1 was performed except that the nitrogen blowing amount was 30 L (standard state) / min. 2.9 ppm by weight of cyclohexane, 0.1 ppm by weight of ethylcyclohexane, 2.4 ppm by weight of hexylbenzene, 14.0 ppm by weight of high-boiling substances such as styrene dimer were detected, and the amount of outgas was 19.4 ppm by weight. . Moisture was not detected.
Example 9
A low outgas resin was produced in the same manner as in Example 1 except that a hydrogenated styrene thermoplastic elastomer [Asahi Kasei Corporation, Tuftec H1051] pellet was used as the resin pellet. This hydrogenated styrene-based thermoplastic elastomer pellet had a columnar shape with a diameter of about 4 mm and a length of about 4 mm, an outgas amount of 106 ppm by weight, a moisture content of 40 ppm by weight, and a decomposition start temperature of 245 ° C. The outgas amount was 3.5 ppm by weight, and no water was detected.
Example 10
As the resin powder, a hydrogenated styrene thermoplastic elastomer [Asahi Kasei Co., Ltd., Tuftec H1051G] powder was used, and a low outgas resin was produced in the same manner as in Example 1. This hydrogenated styrene thermoplastic elastomer powder had a particle size of about 0.5 mm, an outgas amount of 41 ppm by weight, a moisture content of 35 ppm by weight, and a decomposition start temperature of 245 ° C. The amount of outgas was 2.0 ppm by weight, and moisture was not detected.

比較例1
窒素の吹き込みを行わなかった以外は、実施例1と同じ操作を行った。シクロヘキサン27.6重量ppm、エチルシクロヘキサン11.5重量ppm、エチルベンゼン18.5重量ppm、スチレン0.4重量ppm、ヘキシルベンゼン52.3重量ppm、スチレンダイマーなどの高沸点物66.2重量ppmが検出され、アウトガス量は176.5重量ppmであり、残留有機物は全く除去できなかった。水分は、25重量ppmであった。
比較例2
スクリュー径56mm、スクリュー全長2,340mmで、スクリュー回転方向が、出口正面に向かって同方向右回転の二軸完全噛合型押出機[東芝機械(株)、TEM−50B]のバレルに、注水ゾーン及び脱揮ゾーンを各2箇所に設けた。
バレル温度を220℃に設定し、実施例1と同じ樹脂ペレットを50kg/hで供給し、回転数を200rpmとし、各注水ゾーンから8.3mL/分ずつの水を供給し、各脱揮ゾーンの絶対圧力を5.3kPaに保って脱揮した。その結果、樹脂温度245℃で排出された。スチレン0.3重量ppm、ヘキシルベンゼン5.2重量ppm、スチレンダイマーなどの高沸点物7.7重量ppmが検出され、アウトガス量は13.2重量ppmであった。水分量は、75重量ppmであった。
実施例1〜10及び比較例1〜2の結果を、第1表に示す。
Comparative Example 1
The same operation as in Example 1 was performed except that nitrogen was not blown. 27.6 wtppm of cyclohexane, 11.5 wtppm of ethylcyclohexane, 18.5 wtppm of ethylbenzene, 0.4 wtppm of styrene, 52.3 wtppm of hexylbenzene, 66.2 wtppm of high boiling point substances such as styrene dimer The amount of outgas detected was 176.5 ppm by weight, and no residual organic matter could be removed. The moisture was 25 ppm by weight.
Comparative Example 2
Water injection zone on the barrel of a twin-screw fully meshing extruder [Toshiba Machine Co., Ltd., TEM-50B] with a screw diameter of 56 mm and a screw length of 2,340 mm and rotating in the same direction to the front of the outlet. And two devolatilization zones were provided.
The barrel temperature was set to 220 ° C., the same resin pellets as in Example 1 were supplied at 50 kg / h, the rotation speed was 200 rpm, and 8.3 mL / min of water was supplied from each water injection zone. The absolute pressure of was maintained at 5.3 kPa and devolatilized. As a result, it was discharged at a resin temperature of 245 ° C. Styrene 0.3 ppm by weight, hexylbenzene 5.2 ppm by weight, high boiling point substances 7.7 ppm by weight such as styrene dimer were detected, and the outgas amount was 13.2 ppm by weight. The water content was 75 ppm by weight.
The results of Examples 1 to 10 and Comparative Examples 1 and 2 are shown in Table 1.

Figure 2005314685
Figure 2005314685

第1表に見られるように、コニカル乾燥機に水添スチレン系熱可塑性エラストマーペレット又は粉体を仕込み、窒素を吹き込みつつ加熱した実施例1〜10では、大部分の製品樹脂のアウトガス量が5重量ppm以下となっている。
樹脂ペレットの層中に窒素を吹き込んだ実施例1と、気相中に窒素を吹き込んだ実施例2を比較すると、樹脂の層中に窒素を吹き込む方がアウトガス量減少効果が大きいことが分かる。ジャケット温度を高めた実施例3では、実施例1よりアウトガス量が減少するが、ジャケット温度が高すぎると、樹脂ペレットの融着を生ずるおそれがある。窒素の吹き込み量が異なる実施例1、実施例4〜6、実施例8を比較すると、窒素の吹き込み量が多いほどアウトガス量減少効果が大きいことが分かる。ただし、真空ポンプの能力を超えて窒素を吹き込むと、容器の圧力が十分に低下せず、アウトガス量減少効果が小さくなる。窒素の吹き込みを行わなかった比較例1では、製品樹脂のアウトガス量が原料樹脂のアウトガス量と変わらず、減圧下に加熱するだけではアウトガス量減少効果が全くないことが分かる。二軸押出機を用いて注水脱揮した比較例2では、アウトガス量減少効果が大きくなく、製品樹脂の水分量が原料樹脂の水分量より増えている。
As can be seen in Table 1, in Examples 1 to 10 in which hydrogenated styrene thermoplastic elastomer pellets or powders were charged into a conical dryer and heated while blowing nitrogen, the outgas amount of most product resins was 5 Weight ppm or less.
Comparing Example 1 in which nitrogen was blown into the resin pellet layer and Example 2 in which nitrogen was blown into the gas phase, it was found that blowing out nitrogen into the resin layer had a greater effect of reducing the outgas amount. In Example 3 in which the jacket temperature was increased, the amount of outgas decreased from that in Example 1. However, if the jacket temperature is too high, resin pellets may be fused. When Example 1, Examples 4 to 6, and Example 8 having different nitrogen blowing amounts are compared, it can be seen that the larger the nitrogen blowing amount, the greater the effect of reducing the outgas amount. However, if nitrogen is blown in excess of the capacity of the vacuum pump, the pressure of the container is not sufficiently reduced, and the effect of reducing the outgas amount is reduced. In Comparative Example 1 in which nitrogen was not blown in, the outgas amount of the product resin was not changed from the outgas amount of the raw resin, and it was found that there was no effect of reducing the outgas amount by simply heating under reduced pressure. In Comparative Example 2 in which water injection and devolatilization was performed using a twin screw extruder, the effect of reducing the outgas amount was not large, and the moisture content of the product resin increased from the moisture content of the raw resin.

実施例11
樹脂ペレットとして、硬質塩化ビニル樹脂コンパウンドペレットを用いて、低アウトガス樹脂を製造した。この硬質塩化ビニル樹脂コンパウンドペレットは、直径約2.5mm、長さ約2.5mmの円柱状であり、アウトガス成分として、2−エチルヘキシルアルデヒド1.7重量ppm、2−エチルヘキサノール3.1重量ppm、アセトフェノン1.3重量ppm、α−メチルスチレン1.6重量ppm、保持時間16.6分のピーク成分0.9重量ppm、保持時間16.8〜16.9分のピーク成分1.1重量ppm、安息香酸オクチル1.9重量ppm、ビスフェノールA0.3重量ppm、その他3.5重量ppmを含み、合計のアウトガス量は15.4重量ppmであった。
コニカル乾燥機のガス吹き込みノズル先端を樹脂ペレットの層中(図1の6位置)に設け、コニカル容器に樹脂ペレット25kgを投入した。温度20℃の工業用窒素を流量120L(標準状態)/分で吹き込み、コニカル容器を12rpmで回転させ、コニカル容器内部を絶対圧力で8.0kPaの減圧にし、ジャケットを125℃に加熱した。この状態を24時間保ったのち、ジャケットに約30分間冷却水を流して樹脂ペレットを30℃以下まで冷却し、この樹脂ペレットを分析した。2−エチルヘキサノール0.1重量ppm、安息香酸オクチル0.1重量ppm、ビスフェノールA0.3重量ppm、その他0.6重量ppmが検出され、アウトガス量は1.1重量ppmであった。水分は、検出されなかった。
実施例12
ジャケット温度を135℃とした以外は、実施例11と同じ操作を行った。2−エチルヘキサノール0.1重量ppm、ビスフェノールA0.4重量ppm、その他0.6重量ppmが検出され、アウトガス量は1.1重量ppmであった。水分は、検出されなかった。
実施例13
コニカル容器を3rpmで回転させ、ジャケット温度を90℃とした以外は、実施例11と同じ操作を行った。保持時間16.8〜16.9分のピーク成分0.1重量ppm、安息香酸オクチル0.2重量ppm、ビスフェノールA0.2重量ppm、その他0.8重量ppmが検出され、アウトガス量は1.3重量ppmであった。水分は、検出されなかった。
実施例14
窒素の代わりに50℃に加温した空気を流量120L(標準状態)/分で吹き込み、コニカル容器を3rpmで回転させ、コニカル容器内部を絶対圧力で12.0kPaの減圧にし、ジャケットを90℃に加熱した以外は、実施例11と同じ操作を行った。安息香酸オクチル0.2重量ppm、ビスフェノールA0.3重量ppm、その他0.9重量ppmが検出され、アウトガス量は1.4重量ppmであった。水分は、検出されなかった。
実施例11〜14の結果を、第2表に示す。
Example 11
A low outgas resin was produced using a hard vinyl chloride resin compound pellet as the resin pellet. This hard vinyl chloride resin compound pellet has a cylindrical shape with a diameter of about 2.5 mm and a length of about 2.5 mm. As an outgas component, 2-ethylhexylaldehyde is 1.7 wtppm, 2-ethylhexanol is 3.1 wtppm. Acetophenone 1.3 wt ppm, α-methylstyrene 1.6 wt ppm, retention time 16.6 min peak component 0.9 wt ppm, retention time 16.8 to 16.9 min peak component 1.1 wt. The total outgas amount was 15.4 ppm by weight, including ppm, octyl benzoate 1.9 ppm by weight, bisphenol A 0.3 ppm by weight, and other 3.5 ppm by weight.
The tip of the gas blowing nozzle of the conical dryer was provided in the layer of resin pellets (position 6 in FIG. 1), and 25 kg of resin pellets were charged into the conical container. Industrial nitrogen at a temperature of 20 ° C. was blown at a flow rate of 120 L (standard state) / min, the conical container was rotated at 12 rpm, the inside of the conical container was reduced to 8.0 kPa in absolute pressure, and the jacket was heated to 125 ° C. After maintaining this state for 24 hours, cooling water was passed through the jacket for about 30 minutes to cool the resin pellets to 30 ° C. or less, and the resin pellets were analyzed. 2-ethylhexanol 0.1 wt ppm, octyl benzoate 0.1 wt ppm, bisphenol A 0.3 wt ppm and other 0.6 wt ppm were detected, and the outgas amount was 1.1 wt ppm. Moisture was not detected.
Example 12
The same operation as in Example 11 was performed except that the jacket temperature was set to 135 ° C. 2-ethylhexanol 0.1 ppm by weight, bisphenol A 0.4 ppm by weight, and other 0.6 ppm by weight were detected, and the outgas amount was 1.1 ppm by weight. Moisture was not detected.
Example 13
The same operation as in Example 11 was performed except that the conical container was rotated at 3 rpm and the jacket temperature was 90 ° C. Retention time of 16.8 to 16.9 minutes peak component 0.1 wtppm, octyl benzoate 0.2 wtppm, bisphenol A 0.2 wtppm, and other 0.8 wtppm were detected, and the outgas amount was 1. It was 3 ppm by weight. Moisture was not detected.
Example 14
Instead of nitrogen, air heated to 50 ° C. was blown at a flow rate of 120 L (standard state) / min, the conical vessel was rotated at 3 rpm, the inside of the conical vessel was reduced to 12.0 kPa in absolute pressure, and the jacket was brought to 90 ° C. The same operation as in Example 11 was performed except for heating. Octyl benzoate, 0.2 ppm by weight, 0.3 ppm by weight of bisphenol A, 0.9 ppm by weight of other components were detected, and the amount of outgas was 1.4 ppm by weight. Moisture was not detected.
The results of Examples 11-14 are shown in Table 2.

Figure 2005314685
Figure 2005314685

第2表に見られるように、コニカル乾燥機に硬質塩化ビニル樹脂コンパウンドペレットを仕込み、窒素又は空気を吹き込みつつ、減圧下に加熱した実施例11〜14では、製品樹脂のアウトガス量が1.4重量ppm以下となっている。
実施例15
樹脂ペレットとして、高密度ポリエチレン樹脂[三井化学(株)製]ペレットを用いて、低アウトガス樹脂を製造した。この高密度ポリエチレン樹脂ペレットは、直径約3mm、長さ約3mmの円柱状であり、アウトガス成分として、炭素数10の炭化水素(C10)85.3重量ppm、炭素数12の炭化水素(C12)106.0重量ppm、炭素数14の炭化水素(C14)118.0重量ppm、2,6−ジ−t−ブチル−4−メチルフェノール(BHT)498.0重量ppm、炭素数16の炭化水素(C16)120.0重量ppm、炭素数18の炭化水素(C18)108.0重量ppm、炭素数20の炭化水素(C20)64.5重量ppm、炭素数22の炭化水素(C22)24.4重量ppm、その他102.8重量ppmを含み、合計のアウトガス量は1,227.0重量ppmであった。
コニカル乾燥機のガス吹き込みノズル先端を樹脂ペレットの層中(図1の6位置)に設け、コニカル容器に樹脂ペレット25kgを投入した。工業用窒素を流量120L(標準状態)/分で吹き込み、コニカル容器を12rpmで回転させ、コニカル容器内部を8.0kPaの減圧にし、ジャケット圧力を0.30MPaに制御してジャケット温度を133℃とした。この状態を24時間保ったのち、ジャケットに約30分間冷却水を流して樹脂ペレットを30℃以下まで冷却し、この樹脂ペレットを分析した。C183.0重量ppm、C209.5重量ppm、C225.8重量ppm、その他4.4重量ppmが検出され、アウトガス量は22.7重量ppmであった。水分は、検出されなかった。
コニカル乾燥機に高密度ポリエチレン樹脂ペレットを仕込み、窒素を吹き込みつつ減圧下に加熱した実施例15では、製品樹脂のアウトガス量が原料樹脂より大幅に減少し、24時間処理後には、原料樹脂のアウトガス量の2%以下となり、アウトガスが25重量ppm以下の樹脂ペレットが得られている。
As can be seen in Table 2, in Examples 11 to 14, in which hard vinyl chloride resin compound pellets were charged into a conical dryer and heated under reduced pressure while blowing nitrogen or air, the outgas amount of the product resin was 1.4. Weight ppm or less.
Example 15
A low-outgas resin was produced using a high-density polyethylene resin [manufactured by Mitsui Chemicals, Inc.] pellet as the resin pellet. This high-density polyethylene resin pellet has a cylindrical shape with a diameter of about 3 mm and a length of about 3 mm, and as an outgas component, a hydrocarbon having 10 carbon atoms (C 10 ), 85.3 ppm by weight, and a hydrocarbon having 12 carbon atoms (C 12 ) 106.0 ppm by weight, hydrocarbon having 14 carbon atoms (C 14 ) 118.0 ppm by weight, 2,6-di-t-butyl-4-methylphenol (BHT) 498.0 ppm by weight, 16 carbon atoms Hydrocarbon (C 16 ) 120.0 ppm by weight, Carbon 18 hydrocarbon (C 18 ) 108.0 ppm by weight, Carbon 20 hydrocarbon (C 20 ) 64.5 ppm by weight, Carbon 22 Hydrogen (C 22 ) 24.4 ppm by weight and other 102.8 ppm by weight were contained, and the total outgas amount was 1,227.0 ppm by weight.
The tip of the gas blowing nozzle of the conical dryer was provided in the layer of resin pellets (position 6 in FIG. 1), and 25 kg of resin pellets were charged into the conical container. Industrial nitrogen was blown at a flow rate of 120 L (standard state) / min, the conical container was rotated at 12 rpm, the inside of the conical container was reduced to 8.0 kPa, the jacket pressure was controlled to 0.30 MPa, and the jacket temperature was 133 ° C. did. After maintaining this state for 24 hours, cooling water was passed through the jacket for about 30 minutes to cool the resin pellets to 30 ° C. or less, and the resin pellets were analyzed. C 18 3.0 wt ppm, C 20 9.5 wt ppm, C 22 5.8 wt ppm, is detected other 4.4 wt ppm, outgas amount was 22.7 wt ppm. Moisture was not detected.
In Example 15 in which high-density polyethylene resin pellets were charged into a conical dryer and heated under reduced pressure while blowing nitrogen, the outgas amount of the product resin was significantly reduced from that of the raw material resin, and after 24 hours of treatment, the outgas of the raw material resin was reduced. Resin pellets having an amount of 2% or less of the amount and an outgas of 25 ppm by weight or less are obtained.

本発明の低アウトガス樹脂の製造方法によれば、撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱するという簡単な操作により、樹脂の溶融による熱劣化のおそれがなく、樹脂が本来有する良好な物性を維持したまま、アウトガス量を低減することができる。本発明方法により製造された低アウトガス樹脂は、クリーンルーム内で使用されるプラスチック製品の原材料、クリーンルーム内で使用される電線・ケーブルの被覆材料、食品容器の原材料などとして有用である。本発明方法により製造されたアウトガス量が5重量ppm以下のポリ塩化ビニル樹脂、25重量ppm以下のポリエチレン樹脂及び5重量ppm以下の水添スチレン系熱可塑性エラストマーは、これらの原材料として特に有用である。   According to the method for producing a low outgas resin of the present invention, a simple operation of charging a resin into a dryer having a stirring function and heating while blowing the gas, there is no fear of thermal degradation due to melting of the resin, and the resin is originally The outgas amount can be reduced while maintaining the good physical properties. The low outgas resin produced by the method of the present invention is useful as a raw material for plastic products used in a clean room, a coating material for electric wires and cables used in a clean room, and a raw material for food containers. Polyvinyl chloride resin having an outgas amount of 5 ppm by weight or less, polyethylene resin having 25 ppm by weight or less, and hydrogenated styrene thermoplastic elastomer having 5 ppm by weight or less produced by the method of the present invention are particularly useful as these raw materials. .

本発明方法に用いる装置の一態様の系統図である。It is a systematic diagram of the one aspect | mode of the apparatus used for this invention method.

符号の説明Explanation of symbols

1 窒素導入部
2 真空ライン
3 スチーム導入部
4 ドレイン排出管
5 吹き込みノズル
6 吹き込みノズル
7 吸引口
8 コニカル容器(コニカル乾燥機)
DESCRIPTION OF SYMBOLS 1 Nitrogen introduction part 2 Vacuum line 3 Steam introduction part 4 Drain discharge pipe 5 Blowing nozzle 6 Blowing nozzle 7 Suction port 8 Conical container (conical dryer)

Claims (10)

撹拌機能を有する乾燥機に樹脂を仕込み、ガスを吹き込みつつ加熱することを特徴とする低アウトガス樹脂の製造方法。   A method for producing a low-outgas resin, comprising charging a resin into a dryer having a stirring function and heating the resin while blowing the gas. 乾燥機内を101〜1kPaの減圧にする請求項1記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to claim 1, wherein the inside of the dryer is depressurized to 101 to 1 kPa. ガスの吹き込み量が、樹脂1kgあたり1〜16L(標準状態)/分である請求項1記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to claim 1, wherein the amount of gas blown is 1 to 16 L (standard state) / min per kg of the resin. 乾燥機内の樹脂の層中にガスを吹き込む請求項1記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to claim 1, wherein gas is blown into the resin layer in the dryer. 撹拌機能を有する乾燥機が、コニカル乾燥機である請求項1記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to claim 1, wherein the dryer having a stirring function is a conical dryer. ガスが、窒素である請求項1〜5のいずれかに記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to any one of claims 1 to 5, wherein the gas is nitrogen. 樹脂の残留有機物量が、1,000重量ppm以下である請求項1〜5のいずれかに記載の低アウトガス樹脂の製造方法。   The method for producing a low outgas resin according to any one of claims 1 to 5, wherein the amount of residual organic matter in the resin is 1,000 ppm by weight or less. 請求項1ないし請求項7のいずれか1項に記載の方法により製造されてなる、アウトガス量が5重量ppm以下であることを特徴とする塩化ビニル樹脂。   A vinyl chloride resin produced by the method according to any one of claims 1 to 7, wherein an outgas amount is 5 ppm by weight or less. 請求項1ないし請求項7のいずれか1項に記載の方法により製造されてなる、アウトガス量が25重量ppm以下であることを特徴とするポリエチレン樹脂。   A polyethylene resin produced by the method according to any one of claims 1 to 7, wherein an outgas amount is 25 ppm by weight or less. 請求項1ないし請求項7のいずれか1項に記載の方法により製造されてなる、アウトガス量が5重量ppm以下であることを特徴とする水添スチレン系熱可塑性エラストマー。   A hydrogenated styrenic thermoplastic elastomer produced by the method according to any one of claims 1 to 7, wherein the amount of outgas is 5 ppm by weight or less.
JP2005098807A 2004-03-30 2005-03-30 Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method Pending JP2005314685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098807A JP2005314685A (en) 2004-03-30 2005-03-30 Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004101014 2004-03-30
JP2005098807A JP2005314685A (en) 2004-03-30 2005-03-30 Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method

Publications (1)

Publication Number Publication Date
JP2005314685A true JP2005314685A (en) 2005-11-10

Family

ID=35442426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098807A Pending JP2005314685A (en) 2004-03-30 2005-03-30 Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method

Country Status (1)

Country Link
JP (1) JP2005314685A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185597A (en) * 2004-12-24 2006-07-13 Nippon Polyethylene Kk Polyethylene resin material for electric wire and power cable, and its composition, and electric wire and power cable using them
JP2006185626A (en) * 2004-12-24 2006-07-13 Nippon Polyethylene Kk Polyethylene resin material for electric wire and power cable, and its composition, and electric wire and power cable using them
JP2015086335A (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Resin composition and organic electroluminescent device
WO2020145425A1 (en) * 2019-01-08 2020-07-16 주식회사 아이엠기술 Coating method for preventing degassing of aerospace part made of resin

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143403A (en) * 1984-12-17 1986-07-01 Kanegafuchi Chem Ind Co Ltd Method of removing high-boiling point organic compound
JPS627704A (en) * 1985-07-04 1987-01-14 Kanegafuchi Chem Ind Co Ltd Removal of organic compound having high boiling point
JPH0976324A (en) * 1995-09-18 1997-03-25 Mitsubishi Chem Corp Manufacture of deodorized thermoplastic polymer
JP2000199981A (en) * 1998-08-25 2000-07-18 Canon Inc Manufacture of toner
JP2001250428A (en) * 2000-03-03 2001-09-14 Fujikura Ltd Electric wire and cable
JP2001521577A (en) * 1997-04-18 2001-11-06 ザ ダウ ケミカル カンパニー Finishing treatment method for syndiotactic vinyl aromatic polymer
JP2002148857A (en) * 2000-11-06 2002-05-22 Nippon Zeon Co Ltd Method of manufacturing toner
JP2003137923A (en) * 2001-11-01 2003-05-14 Gantsu Kasei Kk Method for drying polymer powder
JP2003313227A (en) * 2002-04-19 2003-11-06 Sumitomo Chem Co Ltd Deaeration and drying method for polymer powder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143403A (en) * 1984-12-17 1986-07-01 Kanegafuchi Chem Ind Co Ltd Method of removing high-boiling point organic compound
JPS627704A (en) * 1985-07-04 1987-01-14 Kanegafuchi Chem Ind Co Ltd Removal of organic compound having high boiling point
JPH0976324A (en) * 1995-09-18 1997-03-25 Mitsubishi Chem Corp Manufacture of deodorized thermoplastic polymer
JP2001521577A (en) * 1997-04-18 2001-11-06 ザ ダウ ケミカル カンパニー Finishing treatment method for syndiotactic vinyl aromatic polymer
JP2000199981A (en) * 1998-08-25 2000-07-18 Canon Inc Manufacture of toner
JP2001250428A (en) * 2000-03-03 2001-09-14 Fujikura Ltd Electric wire and cable
JP2002148857A (en) * 2000-11-06 2002-05-22 Nippon Zeon Co Ltd Method of manufacturing toner
JP2003137923A (en) * 2001-11-01 2003-05-14 Gantsu Kasei Kk Method for drying polymer powder
JP2003313227A (en) * 2002-04-19 2003-11-06 Sumitomo Chem Co Ltd Deaeration and drying method for polymer powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185597A (en) * 2004-12-24 2006-07-13 Nippon Polyethylene Kk Polyethylene resin material for electric wire and power cable, and its composition, and electric wire and power cable using them
JP2006185626A (en) * 2004-12-24 2006-07-13 Nippon Polyethylene Kk Polyethylene resin material for electric wire and power cable, and its composition, and electric wire and power cable using them
JP2015086335A (en) * 2013-11-01 2015-05-07 パナソニックIpマネジメント株式会社 Resin composition and organic electroluminescent device
WO2020145425A1 (en) * 2019-01-08 2020-07-16 주식회사 아이엠기술 Coating method for preventing degassing of aerospace part made of resin

Similar Documents

Publication Publication Date Title
KR101146788B1 (en) Removing volatile compounds from polymer pellets
RU2474494C2 (en) Method of pelletising of expandable thermoplastic polymers and related product
JP3547761B2 (en) Method for producing polyester article with low acetaldehyde content
JP5591536B2 (en) Process technology for recovering brominated styrenic polymers from the reaction mixture in which they are produced and / or converting such mixtures into pellets or granules or globules
JP6397022B2 (en) Continuous production method of rubber masterbatch
TWI621471B (en) A devolatilisation apparatus and a process for use thereof
TWI413655B (en) Process for the compounding of polymers
JP2015166180A (en) Continuous processing method of mixture
JP2010537014A (en) Method for producing low-hydrolyzable polyester granules made of high-viscosity polyester melt, and apparatus for producing the polyester granules
SA109300573B1 (en) Process for the Production of Water and Solvent-Free Polymers
JP2005314685A (en) Method for producing low outgassing resin, and vinyl chloride resin, polyethylene resin and hydrogenated styrenic thermoplastic elastomer produced by the method
CN1083458C (en) Method for removing volatile substances from polymer composition
EP3559057A1 (en) Process for obtaining low volatile plastomers
Woyuan et al. Process intensification of VOC removal from high viscous media by rotating packed bed
TW200535165A (en) A process for stripping monomers and other volatile constituents from polymer melts
US7822583B2 (en) Method of batch falling strand devolatilizer
JP2007535599A (en) Polyolefin treatment to separate volatile materials
JP4224284B2 (en) Method for producing isobutylene-based thermoplastic elastomer resin
KR100562699B1 (en) Finishing process for syndiotactic vinyl aromatic polymers
KR20130135824A (en) Process for thermal separation of a solution consisting of thermoplastic polymer and solvent
Curry et al. Devolatilization in co-rotating twin-screw extruders
KR20180035586A (en) Removing method of by-products from olefin oligomerization reaction or (co)polymerization reaction
JP2007023116A (en) Method of preventing blocking of styrenic elastomer resin pellet
JPH069771A (en) Method for eliminating residual solvent from polycarbonate powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101022