JP2005312757A - Method of sampling intracerebral macromolecule - Google Patents

Method of sampling intracerebral macromolecule Download PDF

Info

Publication number
JP2005312757A
JP2005312757A JP2004135718A JP2004135718A JP2005312757A JP 2005312757 A JP2005312757 A JP 2005312757A JP 2004135718 A JP2004135718 A JP 2004135718A JP 2004135718 A JP2004135718 A JP 2004135718A JP 2005312757 A JP2005312757 A JP 2005312757A
Authority
JP
Japan
Prior art keywords
brain
antibody
fine particles
nanomagnetic
intracerebral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004135718A
Other languages
Japanese (ja)
Other versions
JP4493009B2 (en
Inventor
Takashi Yoshitake
尚 吉武
Kehr Jan
ケール ヤン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004135718A priority Critical patent/JP4493009B2/en
Publication of JP2005312757A publication Critical patent/JP2005312757A/en
Application granted granted Critical
Publication of JP4493009B2 publication Critical patent/JP4493009B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for sampling intracerebral macromolecules specifically and efficiently. <P>SOLUTION: The antibody of "nano-magnetic particles with an antibody" obtained by linking the antibody with nano-magnetic particles with the antibody and the intracerebral macromolecules are selectively made to react to the intracerebral macromolecules (peptide, protein, etc.) of a laboratory animal such as a rat and a mouse. A magnetic needle is inserted to the brain of the laboratory animal to make the nano-magnetic particles of the nano-magnetic particles with the antibody which has reacted selectively with the intracerebral macromolecules react selectively with the magnetic needle. By taking out the magnetic needle from inside of the brain, the intracerebral macromolecules are efficiently sampled. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脳内高分子をサンプリングできる方法に関する。   The present invention relates to a method capable of sampling brain macromolecules.

ラットやマウスなどの研究用動物の脳内のペプチドやタンパク質などの高分子は、神経科学研究や癌研究など、医学、生理学の分野において重要な意味をもっている。しかしながら、これらの脳内高分子類は生体中に極微量に存在し、脳内の多種多様な共存物質から選択的にサンプリングすることは、容易ではない。   Macromolecules such as peptides and proteins in the brain of research animals such as rats and mice have important meanings in the fields of medicine and physiology, such as neuroscience research and cancer research. However, these brain macromolecules exist in a very small amount in a living body, and it is not easy to selectively sample from various coexisting substances in the brain.

そこで、ラットやマウスなどの研究用動物の脳内高分子をサンプリングする方法として、1970年代に開発されたプッシュ−プル法がある。   Thus, there is a push-pull method developed in the 1970s as a method for sampling the brain macromolecules of research animals such as rats and mice.

このプッシュ−プル法は、目的物質を回収するために、脳内に微小の管を挿入し、この微小な管にチューブをジョイントさせリンゲル液等をシリンジポンプで1分間に約10 μlの速さで脳内に送液(プッシュ)し、別のポンプで目的物質を含むリンゲル溶液等を回収(プル)する方法である。しかしながら、プッシュ−プル法はリンゲル溶液等を送液することで脳へのダメージが大きく、また、目的物質以外の物質も回収され、とても非選択的な方法である。(非特許文献1を参照されたい。)   In this push-pull method, in order to collect the target substance, a microtube is inserted into the brain, the tube is jointed to this microtube, and Ringer's solution is pumped at a rate of about 10 μl per minute with a syringe pump. This is a method of feeding (pushing) the solution into the brain and collecting (pulling) Ringer's solution containing the target substance with another pump. However, the push-pull method is a very non-selective method because the Ringer's solution or the like is sent to cause great damage to the brain, and substances other than the target substance are recovered. (See Non-Patent Document 1.)

現在は、1980年代中旬に開発されたマイクロダイアリシス(微小透析)法が現在の主流である。特に脳内のin vivoモニタリング解析の手法には、Ungerstedtらにより開発されたマイクロダイアリシス法が主流になっている。このマイクロダイアリシス法(図1を参照されたい)は、ラットやマウスなどの研究動物の脳内の目的部位に長さ0.5〜4 mm、直径0.1〜0.3 mmの微小な透析膜付きプローブ(透析プローブ)を埋め込み、ラットが無麻酔および無拘束の状態で、挿入した透析プローブにマイクロシリンジポンプを用いてリンゲル溶液等を0.5〜2 μl/分で送液し、脳内の目的物質を約30分間ごとに回収する。(非特許文献2および3を参照されたい。)   Currently, the microdialysis method developed in the mid-1980s is the current mainstream. In particular, the microdialysis method developed by Ungerstedt et al. Has become the mainstream for in vivo monitoring analysis in the brain. This microdialysis method (see FIG. 1) is a probe with a microdialysis membrane (dialysis 0.5 to 4 mm in length and 0.1 to 0.3 mm in diameter) at the target site in the brain of a research animal such as a rat or mouse. The probe is implanted, and the rat is unanesthetized and unrestrained, and the Ringer's solution, etc., is fed to the inserted dialysis probe at 0.5-2 μl / min using a microsyringe pump, and the target substance in the brain is about 30 Collect every minute. (See Non-Patent Documents 2 and 3.)

しかし、プッシュ−プル法及びマイクロダイアリシス(微小透析)法は、どちらの方法も目的物質に対して非選択的であり、特にマイクロダイアリシス法は高分子に対して非常に回収率は低い等の問題がある。
G. Bartholini, H. Stadler, M. G. Ciria, K. G. Lloyd, The use of the push-pull cannula to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacology, 15, 515-519, 1976. J. Kehr, T. Yoshitake, F. H. Wang, D. Wynick, K. Holmberg, U. Lendahl, T. Bartfai, M. Yamaguchi, T. Hokfelt, S.O.Ogren, Microdialysis in freely moving mice: determination of acetylcholine, serotoninan noradrenaline release in galanin transgenic mice. Journal of Neuroscience Methods, 109, 71-80, 2001. U. Ungerstedt, Measurement of neurotransmitter release by intracranial dialysis. Methods Neuroscience, 6, 81-105, 1984.
However, the push-pull method and the microdialysis (microdialysis) method are both non-selective for the target substance. In particular, the microdialysis method has a very low recovery rate for the polymer, etc. There is a problem.
G. Bartholini, H. Stadler, MG Ciria, KG Lloyd, The use of the push-pull cannula to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacology, 15, 515-519, 1976. J. Kehr, T. Yoshitake, FH Wang, D. Wynick, K. Holmberg, U. Lendahl, T. Bartfai, M. Yamaguchi, T. Hokfelt, SOOgren, Microdialysis in freely moving mice: determination of acetylcholine, serotoninan noradrenaline release in galanin transgenic mice. Journal of Neuroscience Methods, 109, 71-80, 2001. U. Ungerstedt, Measurement of neurotransmitter release by intracranial dialysis.Methods Neuroscience, 6, 81-105, 1984.

本発明は、上記問題を解決し、脳内高分子を特異的に効率よくサンプリングできる方法を提供することを課題とする。 An object of the present invention is to solve the above problems and to provide a method capable of specifically and efficiently sampling brain macromolecules.

本発明者らは、ナノ磁性微粒子が良く拡散し、抗体付きナノ磁性微粒子と脳内高分子が選択的に反応し、磁気ニードルと組み合わせることにより、上記課題を解決することができることを見出した。   The present inventors have found that the above problem can be solved by combining nanomagnetic fine particles with good diffusion, the antibody-attached nanomagnetic fine particles and the brain polymer selectively reacting and combining with the magnetic needle.

本発明の方法は、ラットやマウスなどの研究用動物の脳内高分子(ペプチドやタンパク質など)に対して、ナノ磁性微粒子に抗体をリンクさせた「抗体付きナノ磁性微粒子」(図3B)の抗体と脳内高分子を選択的に反応させ、磁気ニードルを研究用動物の脳内に挿入し、脳内高分子と選択的に反応した抗体付きナノ磁性微粒子のナノ磁性微粒子を磁気ニードルに選択的に反応させ、磁気ニードルを脳内から取り出す事により脳内高分子をサンプリングできる方法である。
回収されたナノ磁性微粒子の測定法に関しては、ナノ磁性微粒子と反応した磁気ニードルを脳内から取り出し、測定に適する溶液を入れたバイアル中に浸す。次いで、ニードルから永久磁石を取り外すことにより、ナノ磁性微粒子を溶液中に遊離させ、次いで化学的に測定する。
The method of the present invention is based on “nanomagnetic microparticles with antibodies” (FIG. 3B) obtained by linking antibodies to nanomagnetic microparticles in the brain macromolecules (peptides, proteins, etc.) of research animals such as rats and mice. The antibody and the brain polymer are selectively reacted, the magnetic needle is inserted into the brain of the research animal, and the nanomagnetic particle with the antibody that selectively reacts with the brain polymer is selected as the magnetic needle. It is a method which can sample a macromolecule in a brain by making it react and taking a magnetic needle out of the brain.
Regarding the method of measuring the collected nanomagnetic fine particles, the magnetic needle reacted with the nanomagnetic fine particles is taken out from the brain and immersed in a vial containing a solution suitable for measurement. The nanomagnetic fine particles are then released into the solution by removing the permanent magnet from the needle and then chemically measured.

本明細書中、ナノ磁性微粒子は、酸化鉄をデキストランや金などでコーティングして成るものである。該粒子は、直径約5〜200 nmの範囲であるが、できるだけ小さい範囲(5〜20 nm)が望ましい。
本明細書中、抗体とは、目的物質、特に脳内高分子と特異的に反応する物質を意味し、β-アミロイド蛋白(Aβ1-40、Aβ1-42)、IgG、IgE、ガラニン、ノシセプチン、カルシトニン、インターロイキン、TNF、テストステロンなどのタンパク質、ペプチド、サイトカイン及びホルモンなどが含まれるが、これらには制限されない。
In the present specification, the nanomagnetic fine particles are formed by coating iron oxide with dextran, gold or the like. The particles are in the range of about 5 to 200 nm in diameter, but the smallest possible range (5 to 20 nm) is desirable.
In the present specification, an antibody means a substance that specifically reacts with a target substance, particularly a brain polymer, β-amyloid protein (Aβ1-40, Aβ1-42), IgG, IgE, galanin, nociceptin, Examples include, but are not limited to, proteins such as calcitonin, interleukin, TNF, testosterone, peptides, cytokines and hormones.

本明細書中、リンクとは、ナノ磁性微粒子(ナノ粒子酸化鉄)と抗体の間の結合を意味するが、ナノ磁性微粒子に3-スルフヒドリルプロピルトリメトキシシラン(sulfhydrylpropyltrimethoxy silane) または3-アミノプロピルトリメトキシシラン(aminopropyltrimethoxy silane)等を加え、熱を加え反応させた後、メトキシポリエチレングリコール(methoxy polyethylene glycol)または4-[4-N-マレイミドフェニル]酪酸ヒドラジド塩酸塩(4-[4-N-maleimidophenyl]butyric hydrazide . HCl)等を加え、反応後、さらにカルボニル基付き抗体を加えることにより形成されるもの(図2を参照されたい)や、EDC: 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドヒドロクロライドなど、アミノ基やカルボニル基などを利用し反応させることにより形成されるものが含まれるが、これらには制限されない。
本明細書中、研究動物には、ラットやマウス以外にモルモット、ウサギ及びイヌ等の研究動物が挙げられるが、これらには制限されない。
In the present specification, the link means a bond between nanomagnetic fine particles (nanoparticle iron oxide) and an antibody, and the nanomagnetic fine particles are bonded to 3-sulfhydrylpropyltrimethoxysilane or 3-aminopropyltrimethoxysilane. After adding methoxysilane (aminopropyltrimethoxy silane), etc. and reacting with heat, methoxy polyethylene glycol or 4- [4-N-maleimidophenyl] butyric acid hydrazide hydrochloride (4- [4-N-maleimidophenyl) ] butyric hydrazide. HCl), etc., and after the reaction, an antibody with a carbonyl group is added (see FIG. 2), EDC: 1-ethyl-3- (3-dimethylaminopropyl) ) Examples include, but are not limited to, carbodiimide hydrochloride and the like formed by reacting using an amino group or a carbonyl group.
In this specification, research animals include, but are not limited to, research animals such as guinea pigs, rabbits, and dogs in addition to rats and mice.

本発明の抗体付きナノ磁性微粒子は、一般的には、微細なインジェクションカニューレを用いて研究動物の脳室内に投与または測定部位に直接投与するが、静脈内、皮下投与等も可能である。
磁気ニードルを脳内から取り出す時間は、基本的に抗体と目的物質が反応するのに最低必要な時間としての30分以上であるが、目的物質により変化してよい。一般に、反応時間が長いほど、抗体と目的物質との反応性は上がる。
回収されたナノ磁性微粒子の測定における、磁気ニードルを入れるバイアル中の測定に適する溶液は、水、メタノール、およびアセトニトリル等の水系有機溶媒である。
The antibody-coated nanomagnetic fine particles of the present invention are generally administered into the cerebral ventricle of a research animal or directly to a measurement site using a fine injection cannula, but can also be intravenously or subcutaneously administered.
The time for removing the magnetic needle from the brain is basically 30 minutes or more as the minimum time required for the antibody to react with the target substance, but may vary depending on the target substance. In general, the longer the reaction time, the higher the reactivity between the antibody and the target substance.
In the measurement of the collected nanomagnetic fine particles, a solution suitable for the measurement in the vial containing the magnetic needle is an aqueous organic solvent such as water, methanol, and acetonitrile.

本発明のサンプリング方法により、効率的に、即ち目的物質に対して選択的かつ高い回収率で、研究動物の脳内高分子をサンプリングすることが可能となる。   According to the sampling method of the present invention, it is possible to sample the macromolecules in the brain of a research animal efficiently, that is, selective to the target substance and with a high recovery rate.

1. 抗体付きナノ磁性微粒子の作製
1)塩化第二鉄六水化物及び塩化第一鉄四水化物を塩酸で溶解し、水酸化ナトリウムを加え共沈させ、遠心分離後、デキストランや金などを含む界面活性剤を加えコーティングさせることにより、酸化鉄をデキストランや金などでコーティングして成る、磁気を帯びたナノ磁性微粒子(図3A)を合成する。
1. Preparation of nano-magnetic fine particles with antibodies
1) Dissolve ferric chloride hexahydrate and ferrous chloride tetrahydrate with hydrochloric acid, add sodium hydroxide to coprecipitate, centrifuge, and add surfactant such as dextran or gold to coat. Thus, magnetic nanomagnetic fine particles (FIG. 3A) obtained by coating iron oxide with dextran or gold are synthesized.

2) ナノ磁性微粒子に3-スルフヒドリルプロピルトリメトキシシラン(sulfhydrylpropyltrimethoxy silane) または3-アミノプロピルトリメトキシシラン(aminopropyltrimethoxy silane)等を加え、熱を加え反応させた後、メトキシポリエチレングリコール(methoxy polyethylene glycol)または4-[4-N-マレイミドフェニル]酪酸ヒドラジド塩酸塩(4-[4-N-maleimidophenyl]butyric hydrazide . HCl)等を加える。反応後、さらにカルボニル基付き抗体を加える。こうして、リンクを介してナノ磁性微粒子と目的物質である高分子(ペプチドやタンパク質など)に特有の抗体を結合させ、抗体付きナノ磁性微粒子(図3B)を作製する。 2) After adding 3-sulfhydrylpropyltrimethoxysilane or 3-aminopropyltrimethoxysilane to nanomagnetic fine particles and reacting with heat, methoxy polyethylene glycol or methoxy polyethylene glycol or 4- [4-N-maleimidophenyl] butyric acid hydrazide hydrochloride (4- [4-N-maleimidophenyl] butyric hydrazide.HCl) or the like is added. After the reaction, an antibody with a carbonyl group is further added. In this way, the nanomagnetic fine particles and the specific antibody are bound to the target polymer (eg, peptide or protein) via the link, thereby producing the nanomagnetic fine particles with an antibody (FIG. 3B).

2. ナノ磁性微粒子の特性
以下の実施例に従い、本発明のナノ磁性微粒子の特性を評価する。
2. Characteristics of Nano Magnetic Fine Particles The characteristics of the nano magnetic fine particles of the present invention are evaluated according to the following examples.

[実施例1]
1) ナノ磁性微粒子のサイズの違いによる脳内への拡散
直径20及び150 nmのナノ磁性微粒子(図3A)それぞれ1及び5 μgをラット脳の線条体へ投与したときの脳内への拡散をfMRIを用いて確認した。投与容量は0.5 μlとし、投与の流速は0.5 μl/分とした。
脳のfMRIを図4に示す。
[Example 1]
1) Diffusion into the brain due to the difference in size of the nanomagnetic particles Diffusion into the brain when 1 and 5 μg of nanomagnetic particles with diameters of 20 and 150 nm (Fig. 3A) are administered to the striatum of the rat brain, respectively. Was confirmed using fMRI. The dosing volume was 0.5 μl and the dosing flow rate was 0.5 μl / min.
Brain fMRI is shown in FIG.

投与量5 μgでは直径20 nmのナノ磁性微粒子が、直径150 nmのナノ磁性微粒子を投与したときと比較して、明らかに広範囲に拡散する結果が得られた。
投与量1 μgでは、直径20 nmのナノ磁性微粒子の投与中心部が直径150 nmのナノ磁性微粒子投与時よりも画像が薄くなっていることがはっきりと確認できる。これは、5 μg投与のときと同じく、20 nmの方がよく拡散していることを示している。
以上の結果から、20 nmの方がより拡散していることがわかった。
At a dose of 5 μg, nanomagnetic fine particles with a diameter of 20 nm clearly diffused more widely than when nanomagnetic fine particles with a diameter of 150 nm were administered.
At a dose of 1 μg, it can be clearly confirmed that the center of administration of the 20 nm-diameter nanomagnetic fine particles is thinner than that at the administration of the 150 nm-diameter nanomagnetic fine particles. This indicates that 20 nm is more diffused as with 5 μg administration.
From the above results, it was found that 20 nm was more diffused.

[実施例2]
2) 脳内からのナノ磁性微粒子の回収
本実施例により、脳内からのナノ磁性微粒子が磁気ニードルを用いることにより回収されるかを調べた。
回収率を調べるためにナノ磁性微粒子(直径9 nm)とルテニウム(化学分析をするために用いた)の合成物質[Ru(bpy)3 +2] (図5)を研究用動物の脳(前頭葉)内及び脳内緩衝液中に0.5 μl、重量にして5 μgにて注入した。
永久磁石により磁気を帯びた磁気ニードルを動物の脳内又は脳内緩衝液中に挿入し、[Ru(bpy)3 +2]中のナノ磁性微粒子を選択的に磁気ニードルに反応させた(図6A)。
[Example 2]
2) Recovery of nanomagnetic fine particles from the brain According to this example, it was examined whether the nanomagnetic fine particles from the brain were recovered by using a magnetic needle.
In order to investigate the recovery rate, a synthetic substance [Ru (bpy) 3 +2 ] (Fig. 5) composed of nano-magnetic fine particles (diameter 9 nm) and ruthenium (used for chemical analysis) was used as a research animal brain (frontal lobe). ) Intra- and intracerebral buffer solution was injected at 0.5 μl and 5 μg in weight.
A magnetic needle magnetized by a permanent magnet was inserted into the animal brain or in the brain buffer, and the nanomagnetic particles in [Ru (bpy) 3 +2 ] were selectively reacted with the magnetic needle (Fig. 6A).

脳及び脳内緩衝液ともに磁気ニードルの挿入時を0時間(ただし、ナノ磁性微粒子とルテニウムの合成物質はニードル挿入の1時間前に投与した)とし、磁気ニードルの挿入時間は挿入後1、3及び24時間とした。
ナノ磁性微粒子と反応した磁気ニードルを脳内あるいは脳内緩衝液中から取り出し、測定に適する溶液を入れたバイアル中に浸した(図6B)。
ニードルから永久磁石を取り外すことにより、ナノ磁性微粒子を溶液中に遊離させ、溶液中の[Ru(bpy)3 +2]について、ルテニウムの化学発光強度を測定した(図6C、図6D)。
The insertion time of the magnetic needle for both the brain and the brain buffer is 0 hour (however, the nanomagnetic fine particles and ruthenium synthetic substance are administered 1 hour before the needle insertion), and the insertion time of the magnetic needle is 1, 3 after the insertion. And 24 hours.
The magnetic needle reacted with the nanomagnetic fine particles was taken out of the brain or the buffer solution in the brain and immersed in a vial containing a solution suitable for measurement (FIG. 6B).
By removing the permanent magnet from the needle, the nanomagnetic fine particles were released into the solution, and the chemiluminescence intensity of ruthenium was measured for [Ru (bpy) 3 +2 ] in the solution (FIGS. 6C and 6D).

脳内の[Ru(bpy)3 +2]も脳内緩衝液中の[Ru(bpy)3 +2]も、ともに、磁気ニードルの挿入時間に依存して回収率が高くなった(図7)。
これより、脳内と脳内緩衝液という、磁気ニードルを挿入した環境の違いに関わらず、磁気ニードルの挿入時間(1、3、および24時間)が長いほど、[Ru(bpy)3 +2]の回収率は高くなることが証明された。
In the brain [Ru (bpy) 3 +2] also in the buffer in the brain [Ru (bpy) 3 +2] also, both, the recovery rate in dependence on the insertion time of the magnetic needle is increased (FIG. 7 ).
Thus, the longer the insertion time (1, 3, and 24 hours) of the magnetic needle, regardless of the environment in which the magnetic needle is inserted, in the brain or in the brain buffer, the more [Ru (bpy) 3 +2 ] Proved to be higher.

[実施例3]
以下に、本発明の実際の適用例を説明する。
脳に図2の抗体付きナノ磁性微粒子を注入し、抗体とペプチド及びタンパク質が反応する(図8A)。
脳内にニードルを挿入し、数時間後、ニードルを脳から取り出す(図8B)。
化学発光物質や蛍光物質を用いてペプチド及びタンパク質を測定する(図8C)。
[Example 3]
Below, the actual application example of this invention is demonstrated.
2 are injected into the brain, and the antibody reacts with the peptide and protein (FIG. 8A).
The needle is inserted into the brain, and after a few hours, the needle is removed from the brain (FIG. 8B).
Peptides and proteins are measured using a chemiluminescent substance or a fluorescent substance (FIG. 8C).

Ungerstedtらにより開発されたマイクロダイアリシス法の概要を示す図面である。It is drawing which shows the outline | summary of the microdialysis method developed by Ungerstedt et al. MPBHを用いてナノ磁性微粒子(ナノ粒子酸化鉄)の表面に抗体を結合させることによる、抗体付きナノ磁性微粒子の作成工程を示す図である。It is a figure which shows the preparation process of the nano magnetic microparticle with an antibody by making an antibody couple | bond with the surface of a nano magnetic microparticle (nanoparticle iron oxide) using MPBH. ナノ磁性微粒子(A)および抗体付きナノ磁性微粒子(B)の概略図である。It is the schematic of a nanomagnetic microparticle (A) and a nanomagnetic microparticle (B) with an antibody. 直径20 nm又は150 nmのナノ磁性微粒子をラット脳の線条体に投与した時の脳のfMRIを示す。Fig. 3 shows brain fMRI when nanomagnetic fine particles having a diameter of 20 nm or 150 nm are administered to the striatum of a rat brain. 脳内からのナノ磁性微粒子の回収率を調べるためのナノ磁性微粒子とルテニウムの合成物質[Ru(bpy)3 +2]の化学式を示す。The chemical formula of nanomagnetic fine particles and ruthenium synthetic material [Ru (bpy) 3 +2 ] for examining the recovery rate of nanomagnetic fine particles from the brain is shown. 脳内からのナノ磁性微粒子の回収率を調べる方法を示す図である。It is a figure which shows the method of investigating the collection | recovery rate of the nano magnetic fine particles from the inside of a brain. ナノ磁性微粒子の回収率を示すグラフである。It is a graph which shows the collection | recovery rate of nano magnetic fine particles. 本発明の応用例を示す工程図である。It is process drawing which shows the application example of this invention.

Claims (1)

研究用動物の脳内高分子に対して、ナノ磁性微粒子に抗体をリンクさせた抗体付きナノ磁性微粒子の抗体を選択的に反応させ、磁気ニードルを研究用動物の脳内に挿入し、脳内高分子と選択的に反応した抗体付きナノ磁性微粒子のナノ磁性微粒子を磁気ニードルに選択的に反応させ、磁気ニードルを脳内から取り出すことを特徴とする脳内高分子のサンプリング方法。 The antibody in the nanomagnetic fine particles with antibodies linked to the nanomagnetic fine particles is selectively reacted with the macromolecules in the brain of the research animal, and the magnetic needle is inserted into the brain of the research animal. A method for sampling an intracerebral polymer, comprising selectively reacting nanomagnetic fine particles of an antibody-attached nanomagnetic fine particle with a polymer to a magnetic needle and removing the magnetic needle from the brain.
JP2004135718A 2004-04-30 2004-04-30 Sampling method of brain polymer Expired - Fee Related JP4493009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135718A JP4493009B2 (en) 2004-04-30 2004-04-30 Sampling method of brain polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004135718A JP4493009B2 (en) 2004-04-30 2004-04-30 Sampling method of brain polymer

Publications (2)

Publication Number Publication Date
JP2005312757A true JP2005312757A (en) 2005-11-10
JP4493009B2 JP4493009B2 (en) 2010-06-30

Family

ID=35440819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135718A Expired - Fee Related JP4493009B2 (en) 2004-04-30 2004-04-30 Sampling method of brain polymer

Country Status (1)

Country Link
JP (1) JP4493009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170839A (en) * 2005-12-19 2007-07-05 Asahi Kasei Corp Reagent with marker, and analyzing device and method using same
JP2011514815A (en) * 2008-02-26 2011-05-12 バイオステムズ リミテッド In-vivo minimally invasive testing device including a metal guide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151934A (en) * 1997-07-31 1999-02-26 Kagakuhin Kensa Kyokai Analytical method and analyzer for biological component
JP2005147686A (en) * 2003-11-11 2005-06-09 Nara Institute Of Science & Technology Apparatus for collecting intracerebral substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1151934A (en) * 1997-07-31 1999-02-26 Kagakuhin Kensa Kyokai Analytical method and analyzer for biological component
JP2005147686A (en) * 2003-11-11 2005-06-09 Nara Institute Of Science & Technology Apparatus for collecting intracerebral substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170839A (en) * 2005-12-19 2007-07-05 Asahi Kasei Corp Reagent with marker, and analyzing device and method using same
JP2011514815A (en) * 2008-02-26 2011-05-12 バイオステムズ リミテッド In-vivo minimally invasive testing device including a metal guide

Also Published As

Publication number Publication date
JP4493009B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
Yin et al. Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications
Gao et al. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications
Gao et al. Ultrasmall [64Cu] Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging
JP5008977B2 (en) Magnetic nanoparticles
Wang et al. Commercial nanoparticles for stem cell labeling and tracking
JP3943330B2 (en) Detection method of fibrin clot
US20110070657A1 (en) Detecting ions and measuring ion concentrations
Pang et al. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis
Wong et al. Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model
Fani et al. In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates
Surujpaul et al. Gold nanoparticles conjugated to [Tyr3] octreotide peptide
JP2017523181A (en) Metal (metalloid) chalcogen nanoparticles as universal binders for medical isotopes
Hrynchak et al. Nanobody-based theranostic agents for HER2-positive breast cancer: radiolabeling strategies
US20230138790A1 (en) Multimodal pet/mri contrast agent and a process for the synthesis thereof
US20070172427A1 (en) Biofunctionalized quantum dots for biological imaging
Abdellatif A plausible way for excretion of metal nanoparticles via active targeting
Tian et al. An albumin sandwich enhances in vivo circulation and stability of metabolically labile peptides
US11097019B2 (en) Helical polycarbodiimide polymers and associated imaging, diagnostic, and therapeutic methods
JP4493009B2 (en) Sampling method of brain polymer
CN110740756A (en) Nanoparticles directed against B Cell Maturation Antigen (BCMA)
TW588018B (en) Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof
Hofferber et al. Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms
Smithies et al. Stable oligomeric clusters of gold nanoparticles: preparation, size distribution, derivatization, and physical and biological properties
KR101233439B1 (en) Stimuli sensitive magnetic nanocomposites using pyrene conjugated polymer and contrast compositions
Elia Protein biotinylation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees