JP2005312757A - Method of sampling intracerebral macromolecule - Google Patents
Method of sampling intracerebral macromolecule Download PDFInfo
- Publication number
- JP2005312757A JP2005312757A JP2004135718A JP2004135718A JP2005312757A JP 2005312757 A JP2005312757 A JP 2005312757A JP 2004135718 A JP2004135718 A JP 2004135718A JP 2004135718 A JP2004135718 A JP 2004135718A JP 2005312757 A JP2005312757 A JP 2005312757A
- Authority
- JP
- Japan
- Prior art keywords
- brain
- antibody
- fine particles
- nanomagnetic
- intracerebral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Peptides Or Proteins (AREA)
Abstract
Description
本発明は、脳内高分子をサンプリングできる方法に関する。 The present invention relates to a method capable of sampling brain macromolecules.
ラットやマウスなどの研究用動物の脳内のペプチドやタンパク質などの高分子は、神経科学研究や癌研究など、医学、生理学の分野において重要な意味をもっている。しかしながら、これらの脳内高分子類は生体中に極微量に存在し、脳内の多種多様な共存物質から選択的にサンプリングすることは、容易ではない。 Macromolecules such as peptides and proteins in the brain of research animals such as rats and mice have important meanings in the fields of medicine and physiology, such as neuroscience research and cancer research. However, these brain macromolecules exist in a very small amount in a living body, and it is not easy to selectively sample from various coexisting substances in the brain.
そこで、ラットやマウスなどの研究用動物の脳内高分子をサンプリングする方法として、1970年代に開発されたプッシュ−プル法がある。 Thus, there is a push-pull method developed in the 1970s as a method for sampling the brain macromolecules of research animals such as rats and mice.
このプッシュ−プル法は、目的物質を回収するために、脳内に微小の管を挿入し、この微小な管にチューブをジョイントさせリンゲル液等をシリンジポンプで1分間に約10 μlの速さで脳内に送液(プッシュ)し、別のポンプで目的物質を含むリンゲル溶液等を回収(プル)する方法である。しかしながら、プッシュ−プル法はリンゲル溶液等を送液することで脳へのダメージが大きく、また、目的物質以外の物質も回収され、とても非選択的な方法である。(非特許文献1を参照されたい。) In this push-pull method, in order to collect the target substance, a microtube is inserted into the brain, the tube is jointed to this microtube, and Ringer's solution is pumped at a rate of about 10 μl per minute with a syringe pump. This is a method of feeding (pushing) the solution into the brain and collecting (pulling) Ringer's solution containing the target substance with another pump. However, the push-pull method is a very non-selective method because the Ringer's solution or the like is sent to cause great damage to the brain, and substances other than the target substance are recovered. (See Non-Patent Document 1.)
現在は、1980年代中旬に開発されたマイクロダイアリシス(微小透析)法が現在の主流である。特に脳内のin vivoモニタリング解析の手法には、Ungerstedtらにより開発されたマイクロダイアリシス法が主流になっている。このマイクロダイアリシス法(図1を参照されたい)は、ラットやマウスなどの研究動物の脳内の目的部位に長さ0.5〜4 mm、直径0.1〜0.3 mmの微小な透析膜付きプローブ(透析プローブ)を埋め込み、ラットが無麻酔および無拘束の状態で、挿入した透析プローブにマイクロシリンジポンプを用いてリンゲル溶液等を0.5〜2 μl/分で送液し、脳内の目的物質を約30分間ごとに回収する。(非特許文献2および3を参照されたい。) Currently, the microdialysis method developed in the mid-1980s is the current mainstream. In particular, the microdialysis method developed by Ungerstedt et al. Has become the mainstream for in vivo monitoring analysis in the brain. This microdialysis method (see FIG. 1) is a probe with a microdialysis membrane (dialysis 0.5 to 4 mm in length and 0.1 to 0.3 mm in diameter) at the target site in the brain of a research animal such as a rat or mouse. The probe is implanted, and the rat is unanesthetized and unrestrained, and the Ringer's solution, etc., is fed to the inserted dialysis probe at 0.5-2 μl / min using a microsyringe pump, and the target substance in the brain is about 30 Collect every minute. (See Non-Patent Documents 2 and 3.)
しかし、プッシュ−プル法及びマイクロダイアリシス(微小透析)法は、どちらの方法も目的物質に対して非選択的であり、特にマイクロダイアリシス法は高分子に対して非常に回収率は低い等の問題がある。
本発明は、上記問題を解決し、脳内高分子を特異的に効率よくサンプリングできる方法を提供することを課題とする。 An object of the present invention is to solve the above problems and to provide a method capable of specifically and efficiently sampling brain macromolecules.
本発明者らは、ナノ磁性微粒子が良く拡散し、抗体付きナノ磁性微粒子と脳内高分子が選択的に反応し、磁気ニードルと組み合わせることにより、上記課題を解決することができることを見出した。 The present inventors have found that the above problem can be solved by combining nanomagnetic fine particles with good diffusion, the antibody-attached nanomagnetic fine particles and the brain polymer selectively reacting and combining with the magnetic needle.
本発明の方法は、ラットやマウスなどの研究用動物の脳内高分子(ペプチドやタンパク質など)に対して、ナノ磁性微粒子に抗体をリンクさせた「抗体付きナノ磁性微粒子」(図3B)の抗体と脳内高分子を選択的に反応させ、磁気ニードルを研究用動物の脳内に挿入し、脳内高分子と選択的に反応した抗体付きナノ磁性微粒子のナノ磁性微粒子を磁気ニードルに選択的に反応させ、磁気ニードルを脳内から取り出す事により脳内高分子をサンプリングできる方法である。
回収されたナノ磁性微粒子の測定法に関しては、ナノ磁性微粒子と反応した磁気ニードルを脳内から取り出し、測定に適する溶液を入れたバイアル中に浸す。次いで、ニードルから永久磁石を取り外すことにより、ナノ磁性微粒子を溶液中に遊離させ、次いで化学的に測定する。
The method of the present invention is based on “nanomagnetic microparticles with antibodies” (FIG. 3B) obtained by linking antibodies to nanomagnetic microparticles in the brain macromolecules (peptides, proteins, etc.) of research animals such as rats and mice. The antibody and the brain polymer are selectively reacted, the magnetic needle is inserted into the brain of the research animal, and the nanomagnetic particle with the antibody that selectively reacts with the brain polymer is selected as the magnetic needle. It is a method which can sample a macromolecule in a brain by making it react and taking a magnetic needle out of the brain.
Regarding the method of measuring the collected nanomagnetic fine particles, the magnetic needle reacted with the nanomagnetic fine particles is taken out from the brain and immersed in a vial containing a solution suitable for measurement. The nanomagnetic fine particles are then released into the solution by removing the permanent magnet from the needle and then chemically measured.
本明細書中、ナノ磁性微粒子は、酸化鉄をデキストランや金などでコーティングして成るものである。該粒子は、直径約5〜200 nmの範囲であるが、できるだけ小さい範囲(5〜20 nm)が望ましい。
本明細書中、抗体とは、目的物質、特に脳内高分子と特異的に反応する物質を意味し、β-アミロイド蛋白(Aβ1-40、Aβ1-42)、IgG、IgE、ガラニン、ノシセプチン、カルシトニン、インターロイキン、TNF、テストステロンなどのタンパク質、ペプチド、サイトカイン及びホルモンなどが含まれるが、これらには制限されない。
In the present specification, the nanomagnetic fine particles are formed by coating iron oxide with dextran, gold or the like. The particles are in the range of about 5 to 200 nm in diameter, but the smallest possible range (5 to 20 nm) is desirable.
In the present specification, an antibody means a substance that specifically reacts with a target substance, particularly a brain polymer, β-amyloid protein (Aβ1-40, Aβ1-42), IgG, IgE, galanin, nociceptin, Examples include, but are not limited to, proteins such as calcitonin, interleukin, TNF, testosterone, peptides, cytokines and hormones.
本明細書中、リンクとは、ナノ磁性微粒子(ナノ粒子酸化鉄)と抗体の間の結合を意味するが、ナノ磁性微粒子に3-スルフヒドリルプロピルトリメトキシシラン(sulfhydrylpropyltrimethoxy silane) または3-アミノプロピルトリメトキシシラン(aminopropyltrimethoxy silane)等を加え、熱を加え反応させた後、メトキシポリエチレングリコール(methoxy polyethylene glycol)または4-[4-N-マレイミドフェニル]酪酸ヒドラジド塩酸塩(4-[4-N-maleimidophenyl]butyric hydrazide . HCl)等を加え、反応後、さらにカルボニル基付き抗体を加えることにより形成されるもの(図2を参照されたい)や、EDC: 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドヒドロクロライドなど、アミノ基やカルボニル基などを利用し反応させることにより形成されるものが含まれるが、これらには制限されない。
本明細書中、研究動物には、ラットやマウス以外にモルモット、ウサギ及びイヌ等の研究動物が挙げられるが、これらには制限されない。
In the present specification, the link means a bond between nanomagnetic fine particles (nanoparticle iron oxide) and an antibody, and the nanomagnetic fine particles are bonded to 3-sulfhydrylpropyltrimethoxysilane or 3-aminopropyltrimethoxysilane. After adding methoxysilane (aminopropyltrimethoxy silane), etc. and reacting with heat, methoxy polyethylene glycol or 4- [4-N-maleimidophenyl] butyric acid hydrazide hydrochloride (4- [4-N-maleimidophenyl) ] butyric hydrazide. HCl), etc., and after the reaction, an antibody with a carbonyl group is added (see FIG. 2), EDC: 1-ethyl-3- (3-dimethylaminopropyl) ) Examples include, but are not limited to, carbodiimide hydrochloride and the like formed by reacting using an amino group or a carbonyl group.
In this specification, research animals include, but are not limited to, research animals such as guinea pigs, rabbits, and dogs in addition to rats and mice.
本発明の抗体付きナノ磁性微粒子は、一般的には、微細なインジェクションカニューレを用いて研究動物の脳室内に投与または測定部位に直接投与するが、静脈内、皮下投与等も可能である。
磁気ニードルを脳内から取り出す時間は、基本的に抗体と目的物質が反応するのに最低必要な時間としての30分以上であるが、目的物質により変化してよい。一般に、反応時間が長いほど、抗体と目的物質との反応性は上がる。
回収されたナノ磁性微粒子の測定における、磁気ニードルを入れるバイアル中の測定に適する溶液は、水、メタノール、およびアセトニトリル等の水系有機溶媒である。
The antibody-coated nanomagnetic fine particles of the present invention are generally administered into the cerebral ventricle of a research animal or directly to a measurement site using a fine injection cannula, but can also be intravenously or subcutaneously administered.
The time for removing the magnetic needle from the brain is basically 30 minutes or more as the minimum time required for the antibody to react with the target substance, but may vary depending on the target substance. In general, the longer the reaction time, the higher the reactivity between the antibody and the target substance.
In the measurement of the collected nanomagnetic fine particles, a solution suitable for the measurement in the vial containing the magnetic needle is an aqueous organic solvent such as water, methanol, and acetonitrile.
本発明のサンプリング方法により、効率的に、即ち目的物質に対して選択的かつ高い回収率で、研究動物の脳内高分子をサンプリングすることが可能となる。 According to the sampling method of the present invention, it is possible to sample the macromolecules in the brain of a research animal efficiently, that is, selective to the target substance and with a high recovery rate.
1. 抗体付きナノ磁性微粒子の作製
1)塩化第二鉄六水化物及び塩化第一鉄四水化物を塩酸で溶解し、水酸化ナトリウムを加え共沈させ、遠心分離後、デキストランや金などを含む界面活性剤を加えコーティングさせることにより、酸化鉄をデキストランや金などでコーティングして成る、磁気を帯びたナノ磁性微粒子(図3A)を合成する。
1. Preparation of nano-magnetic fine particles with antibodies
1) Dissolve ferric chloride hexahydrate and ferrous chloride tetrahydrate with hydrochloric acid, add sodium hydroxide to coprecipitate, centrifuge, and add surfactant such as dextran or gold to coat. Thus, magnetic nanomagnetic fine particles (FIG. 3A) obtained by coating iron oxide with dextran or gold are synthesized.
2) ナノ磁性微粒子に3-スルフヒドリルプロピルトリメトキシシラン(sulfhydrylpropyltrimethoxy silane) または3-アミノプロピルトリメトキシシラン(aminopropyltrimethoxy silane)等を加え、熱を加え反応させた後、メトキシポリエチレングリコール(methoxy polyethylene glycol)または4-[4-N-マレイミドフェニル]酪酸ヒドラジド塩酸塩(4-[4-N-maleimidophenyl]butyric hydrazide . HCl)等を加える。反応後、さらにカルボニル基付き抗体を加える。こうして、リンクを介してナノ磁性微粒子と目的物質である高分子(ペプチドやタンパク質など)に特有の抗体を結合させ、抗体付きナノ磁性微粒子(図3B)を作製する。 2) After adding 3-sulfhydrylpropyltrimethoxysilane or 3-aminopropyltrimethoxysilane to nanomagnetic fine particles and reacting with heat, methoxy polyethylene glycol or methoxy polyethylene glycol or 4- [4-N-maleimidophenyl] butyric acid hydrazide hydrochloride (4- [4-N-maleimidophenyl] butyric hydrazide.HCl) or the like is added. After the reaction, an antibody with a carbonyl group is further added. In this way, the nanomagnetic fine particles and the specific antibody are bound to the target polymer (eg, peptide or protein) via the link, thereby producing the nanomagnetic fine particles with an antibody (FIG. 3B).
2. ナノ磁性微粒子の特性
以下の実施例に従い、本発明のナノ磁性微粒子の特性を評価する。
2. Characteristics of Nano Magnetic Fine Particles The characteristics of the nano magnetic fine particles of the present invention are evaluated according to the following examples.
[実施例1]
1) ナノ磁性微粒子のサイズの違いによる脳内への拡散
直径20及び150 nmのナノ磁性微粒子(図3A)それぞれ1及び5 μgをラット脳の線条体へ投与したときの脳内への拡散をfMRIを用いて確認した。投与容量は0.5 μlとし、投与の流速は0.5 μl/分とした。
脳のfMRIを図4に示す。
[Example 1]
1) Diffusion into the brain due to the difference in size of the nanomagnetic particles Diffusion into the brain when 1 and 5 μg of nanomagnetic particles with diameters of 20 and 150 nm (Fig. 3A) are administered to the striatum of the rat brain, respectively. Was confirmed using fMRI. The dosing volume was 0.5 μl and the dosing flow rate was 0.5 μl / min.
Brain fMRI is shown in FIG.
投与量5 μgでは直径20 nmのナノ磁性微粒子が、直径150 nmのナノ磁性微粒子を投与したときと比較して、明らかに広範囲に拡散する結果が得られた。
投与量1 μgでは、直径20 nmのナノ磁性微粒子の投与中心部が直径150 nmのナノ磁性微粒子投与時よりも画像が薄くなっていることがはっきりと確認できる。これは、5 μg投与のときと同じく、20 nmの方がよく拡散していることを示している。
以上の結果から、20 nmの方がより拡散していることがわかった。
At a dose of 5 μg, nanomagnetic fine particles with a diameter of 20 nm clearly diffused more widely than when nanomagnetic fine particles with a diameter of 150 nm were administered.
At a dose of 1 μg, it can be clearly confirmed that the center of administration of the 20 nm-diameter nanomagnetic fine particles is thinner than that at the administration of the 150 nm-diameter nanomagnetic fine particles. This indicates that 20 nm is more diffused as with 5 μg administration.
From the above results, it was found that 20 nm was more diffused.
[実施例2]
2) 脳内からのナノ磁性微粒子の回収
本実施例により、脳内からのナノ磁性微粒子が磁気ニードルを用いることにより回収されるかを調べた。
回収率を調べるためにナノ磁性微粒子(直径9 nm)とルテニウム(化学分析をするために用いた)の合成物質[Ru(bpy)3 +2] (図5)を研究用動物の脳(前頭葉)内及び脳内緩衝液中に0.5 μl、重量にして5 μgにて注入した。
永久磁石により磁気を帯びた磁気ニードルを動物の脳内又は脳内緩衝液中に挿入し、[Ru(bpy)3 +2]中のナノ磁性微粒子を選択的に磁気ニードルに反応させた(図6A)。
[Example 2]
2) Recovery of nanomagnetic fine particles from the brain According to this example, it was examined whether the nanomagnetic fine particles from the brain were recovered by using a magnetic needle.
In order to investigate the recovery rate, a synthetic substance [Ru (bpy) 3 +2 ] (Fig. 5) composed of nano-magnetic fine particles (diameter 9 nm) and ruthenium (used for chemical analysis) was used as a research animal brain (frontal lobe). ) Intra- and intracerebral buffer solution was injected at 0.5 μl and 5 μg in weight.
A magnetic needle magnetized by a permanent magnet was inserted into the animal brain or in the brain buffer, and the nanomagnetic particles in [Ru (bpy) 3 +2 ] were selectively reacted with the magnetic needle (Fig. 6A).
脳及び脳内緩衝液ともに磁気ニードルの挿入時を0時間(ただし、ナノ磁性微粒子とルテニウムの合成物質はニードル挿入の1時間前に投与した)とし、磁気ニードルの挿入時間は挿入後1、3及び24時間とした。
ナノ磁性微粒子と反応した磁気ニードルを脳内あるいは脳内緩衝液中から取り出し、測定に適する溶液を入れたバイアル中に浸した(図6B)。
ニードルから永久磁石を取り外すことにより、ナノ磁性微粒子を溶液中に遊離させ、溶液中の[Ru(bpy)3 +2]について、ルテニウムの化学発光強度を測定した(図6C、図6D)。
The insertion time of the magnetic needle for both the brain and the brain buffer is 0 hour (however, the nanomagnetic fine particles and ruthenium synthetic substance are administered 1 hour before the needle insertion), and the insertion time of the magnetic needle is 1, 3 after the insertion. And 24 hours.
The magnetic needle reacted with the nanomagnetic fine particles was taken out of the brain or the buffer solution in the brain and immersed in a vial containing a solution suitable for measurement (FIG. 6B).
By removing the permanent magnet from the needle, the nanomagnetic fine particles were released into the solution, and the chemiluminescence intensity of ruthenium was measured for [Ru (bpy) 3 +2 ] in the solution (FIGS. 6C and 6D).
脳内の[Ru(bpy)3 +2]も脳内緩衝液中の[Ru(bpy)3 +2]も、ともに、磁気ニードルの挿入時間に依存して回収率が高くなった(図7)。
これより、脳内と脳内緩衝液という、磁気ニードルを挿入した環境の違いに関わらず、磁気ニードルの挿入時間(1、3、および24時間)が長いほど、[Ru(bpy)3 +2]の回収率は高くなることが証明された。
In the brain [Ru (bpy) 3 +2] also in the buffer in the brain [Ru (bpy) 3 +2] also, both, the recovery rate in dependence on the insertion time of the magnetic needle is increased (FIG. 7 ).
Thus, the longer the insertion time (1, 3, and 24 hours) of the magnetic needle, regardless of the environment in which the magnetic needle is inserted, in the brain or in the brain buffer, the more [Ru (bpy) 3 +2 ] Proved to be higher.
[実施例3]
以下に、本発明の実際の適用例を説明する。
脳に図2の抗体付きナノ磁性微粒子を注入し、抗体とペプチド及びタンパク質が反応する(図8A)。
脳内にニードルを挿入し、数時間後、ニードルを脳から取り出す(図8B)。
化学発光物質や蛍光物質を用いてペプチド及びタンパク質を測定する(図8C)。
[Example 3]
Below, the actual application example of this invention is demonstrated.
2 are injected into the brain, and the antibody reacts with the peptide and protein (FIG. 8A).
The needle is inserted into the brain, and after a few hours, the needle is removed from the brain (FIG. 8B).
Peptides and proteins are measured using a chemiluminescent substance or a fluorescent substance (FIG. 8C).
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004135718A JP4493009B2 (en) | 2004-04-30 | 2004-04-30 | Sampling method of brain polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004135718A JP4493009B2 (en) | 2004-04-30 | 2004-04-30 | Sampling method of brain polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005312757A true JP2005312757A (en) | 2005-11-10 |
JP4493009B2 JP4493009B2 (en) | 2010-06-30 |
Family
ID=35440819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004135718A Expired - Fee Related JP4493009B2 (en) | 2004-04-30 | 2004-04-30 | Sampling method of brain polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4493009B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007170839A (en) * | 2005-12-19 | 2007-07-05 | Asahi Kasei Corp | Reagent with marker, and analyzing device and method using same |
JP2011514815A (en) * | 2008-02-26 | 2011-05-12 | バイオステムズ リミテッド | In-vivo minimally invasive testing device including a metal guide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151934A (en) * | 1997-07-31 | 1999-02-26 | Kagakuhin Kensa Kyokai | Analytical method and analyzer for biological component |
JP2005147686A (en) * | 2003-11-11 | 2005-06-09 | Nara Institute Of Science & Technology | Apparatus for collecting intracerebral substance |
-
2004
- 2004-04-30 JP JP2004135718A patent/JP4493009B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1151934A (en) * | 1997-07-31 | 1999-02-26 | Kagakuhin Kensa Kyokai | Analytical method and analyzer for biological component |
JP2005147686A (en) * | 2003-11-11 | 2005-06-09 | Nara Institute Of Science & Technology | Apparatus for collecting intracerebral substance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007170839A (en) * | 2005-12-19 | 2007-07-05 | Asahi Kasei Corp | Reagent with marker, and analyzing device and method using same |
JP2011514815A (en) * | 2008-02-26 | 2011-05-12 | バイオステムズ リミテッド | In-vivo minimally invasive testing device including a metal guide |
Also Published As
Publication number | Publication date |
---|---|
JP4493009B2 (en) | 2010-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yin et al. | Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications | |
Gao et al. | Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications | |
Gao et al. | Ultrasmall [64Cu] Cu nanoclusters for targeting orthotopic lung tumors using accurate positron emission tomography imaging | |
JP5008977B2 (en) | Magnetic nanoparticles | |
Wang et al. | Commercial nanoparticles for stem cell labeling and tracking | |
JP3943330B2 (en) | Detection method of fibrin clot | |
US20110070657A1 (en) | Detecting ions and measuring ion concentrations | |
Pang et al. | Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis | |
Wong et al. | Structure–activity relationships for biodistribution, pharmacokinetics, and excretion of atomically precise nanoclusters in a murine model | |
Fani et al. | In vivo imaging of folate receptor positive tumor xenografts using novel 68Ga-NODAGA-folate conjugates | |
Surujpaul et al. | Gold nanoparticles conjugated to [Tyr3] octreotide peptide | |
JP2017523181A (en) | Metal (metalloid) chalcogen nanoparticles as universal binders for medical isotopes | |
Hrynchak et al. | Nanobody-based theranostic agents for HER2-positive breast cancer: radiolabeling strategies | |
US20230138790A1 (en) | Multimodal pet/mri contrast agent and a process for the synthesis thereof | |
US20070172427A1 (en) | Biofunctionalized quantum dots for biological imaging | |
Abdellatif | A plausible way for excretion of metal nanoparticles via active targeting | |
Tian et al. | An albumin sandwich enhances in vivo circulation and stability of metabolically labile peptides | |
US11097019B2 (en) | Helical polycarbodiimide polymers and associated imaging, diagnostic, and therapeutic methods | |
JP4493009B2 (en) | Sampling method of brain polymer | |
CN110740756A (en) | Nanoparticles directed against B Cell Maturation Antigen (BCMA) | |
TW588018B (en) | Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof | |
Hofferber et al. | Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms | |
Smithies et al. | Stable oligomeric clusters of gold nanoparticles: preparation, size distribution, derivatization, and physical and biological properties | |
KR101233439B1 (en) | Stimuli sensitive magnetic nanocomposites using pyrene conjugated polymer and contrast compositions | |
Elia | Protein biotinylation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070309 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070309 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20091013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100402 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |