JP2005311524A - Dielectric resonator antenna - Google Patents

Dielectric resonator antenna Download PDF

Info

Publication number
JP2005311524A
JP2005311524A JP2004123217A JP2004123217A JP2005311524A JP 2005311524 A JP2005311524 A JP 2005311524A JP 2004123217 A JP2004123217 A JP 2004123217A JP 2004123217 A JP2004123217 A JP 2004123217A JP 2005311524 A JP2005311524 A JP 2005311524A
Authority
JP
Japan
Prior art keywords
dielectric
dielectric resonator
plate
resonator antenna
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004123217A
Other languages
Japanese (ja)
Inventor
Gray Derek
デレック グレイ
Toshiaki Watanabe
俊明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004123217A priority Critical patent/JP2005311524A/en
Publication of JP2005311524A publication Critical patent/JP2005311524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small dielectric resonator antenna having a wide band. <P>SOLUTION: A first dielectric plate 2 having a disk-like hole 20 is provided on a grounding plate 1 having a hole 10, and a columnar dielectric resonator 3 having a columnar cavity 30 is provided thereon. The external surface and internal surface (side surfaces of the cavity 30) of the dielectric resonator 3 are the same in center axis. Since the hole 20 of the first dielectric plate 2 and the cavity 30 of the dielectric resonator 3 are the same in dimension of the bottom surface and one columnar space is formed by these, a conductor mass 4 is filled in the space. Also, a feeding probe 6 consisting of a linear or narrow strip-like conductor is provided parallel to the center axis on the external side surface of the dielectric resonator 3, and a center conductor 51 of a coaxial cable 5 is connected thereto. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は広帯域特性を有する誘電体を用いた共振器アンテナに関する。   The present invention relates to a resonator antenna using a dielectric having broadband characteristics.

従来技術による誘電体共振器アンテナ900の構成を図11に示す。接地板1上に円柱状の空洞部30を持つ円柱形の誘電体共振器3が形成され、その外周に誘電体共振器3の中心軸に平行な直線状又は細い帯状の導体から成る給電プローブ6が設けられ、同軸ケーブル5により給電される。この技術では、誘電体共振器3の外側面及び内側面(空洞部30側面)の大きさを適切に設定することにより、所定の共振周波数でTM01δモードで共振し、モノポールアンテナと同等な指向特性をもつアンテナとして動作する。このため誘電体共振器アンテナ900のTM01δモードはモノポールモードと称される。 A configuration of a dielectric resonator antenna 900 according to the prior art is shown in FIG. A cylindrical dielectric resonator 3 having a cylindrical cavity 30 is formed on the ground plate 1, and a feed probe comprising a linear or thin strip conductor parallel to the central axis of the dielectric resonator 3 on the outer periphery thereof. 6 is provided and is fed by the coaxial cable 5. In this technique, by appropriately setting the size of the outer side surface and inner side surface (side surface of the cavity 30) of the dielectric resonator 3, it resonates in the TM 01δ mode at a predetermined resonance frequency, and is equivalent to a monopole antenna. Operates as a directional antenna. Therefore, the TM 01δ mode of the dielectric resonator antenna 900 is referred to as a monopole mode.

図11の誘電体共振器アンテナ900は、モノボールアンテナに比較して、接地板からの長さ(高さ)が短い(低い)が、容積が大きいという問題がある。そこで小型化を可能とするため、図12に示すような誘電体共振器アンテナ910が提案されている。図12の誘電体共振器アンテナ910は、図11の誘電体共振器アンテナ900の誘電体共振器3の空洞部30に導体塊4を充填したものである。図12の誘電体共振器アンテナ910は、誘電体共振器3の空洞部30に導体塊4を充填したことで、図11の誘電体共振器アンテナ900に対し、モノポールモードで動作するTM01δモードの共振周波数を低下させることを可能としている。従って同一周波数で動作する場合、アンテナサイズが小さくなる。図11の誘電体共振器アンテナ900については特許文献1に、図12の誘電体共振器アンテナ910については非特許文献1に詳細を譲る。
WO 01/31746 A1 R.K. Mongia,“Small electric monopole mode dielectric resonator antenna,”Electron. Lett., 1996, vol. 32, No. 11, pp. 947-949
The dielectric resonator antenna 900 of FIG. 11 has a problem that the length (height) from the ground plate is shorter (lower) than the monoball antenna, but the volume is large. In order to reduce the size, a dielectric resonator antenna 910 as shown in FIG. 12 has been proposed. A dielectric resonator antenna 910 in FIG. 12 is obtained by filling the cavity portion 30 of the dielectric resonator 3 of the dielectric resonator antenna 900 in FIG. The dielectric resonator antenna 910 shown in FIG. 12 has a TM 01δ that operates in a monopole mode with respect to the dielectric resonator antenna 900 shown in FIG. 11 by filling the cavity 30 of the dielectric resonator 3 with the conductor block 4. It is possible to reduce the resonance frequency of the mode. Therefore, when operating at the same frequency, the antenna size is reduced. The details of the dielectric resonator antenna 900 in FIG. 11 are given in Patent Document 1, and the details of the dielectric resonator antenna 910 in FIG.
WO 01/31746 A1 RK Mongia, “Small electric monopole mode dielectric resonator antenna,” Electron. Lett., 1996, vol. 32, No. 11, pp. 947-949

特許文献1のような、図11に示す誘電体共振器アンテナ900では、TM01δモードでの共振時のサイズ(主に容積)が電気的にも物理的に大きく、車載用として用いるような場合では実用上問題があった。非特許文献1のような、図12に示す誘電体共振器アンテナ900では、アンテナサイズの小型化は実現できるものの、共振の帯域幅が減少し、例えば自動車電話や携帯電話等のアプリケーションによっては、帯域が不足するという問題があった。 In the dielectric resonator antenna 900 shown in FIG. 11 as in Patent Document 1, the size (mainly volume) at the time of resonance in the TM 01δ mode is physically large, and is used for in-vehicle use. Then there was a problem in practical use. In the dielectric resonator antenna 900 shown in FIG. 12 as in Non-Patent Document 1, although the antenna size can be reduced, the resonance bandwidth decreases. For example, depending on the application such as a car phone or a mobile phone, There was a problem of insufficient bandwidth.

本発明はこれらの課題を解決するために成されたものであり、その目的は車載用として用い得るような小型で、且つ広帯域の誘電体共振器アンテナを提供することである。   The present invention has been made to solve these problems, and an object of the present invention is to provide a dielectric resonator antenna having a small size and a wide band that can be used in a vehicle.

請求項1に記載の手段は、導体からなる接地板と、その接地板表面に配設された、比誘電率が略2以下の第1の誘電体から成り、孔部を有する第1の誘電体板と、誘電体板の上に垂直に配置され、その中心軸に沿って柱状の空洞部を有する比誘電率略10から略100の柱状の第2の誘電体から成る誘電体共振器と、一端が第1の誘電体板の孔部を通じて接地板に短絡され、少なくとも誘電体共振器の柱状の空洞部を充填するよう設けられた導体塊と、誘電体共振器に給電を行う給電手段とを備えたことを特徴とする誘電体共振器アンテナである。また、請求項2に記載の手段は、請求項1に記載の誘電体共振器アンテナにおいて第1の誘電体板は空気その他の気体又は空隙であることを特徴とする。請求項3に記載の手段は、誘電体共振器への給電が、誘電体共振器の外周側面において、柱状の誘電体共振器の中心軸と並行な直線状に結合された導体により行われることを特徴とする。   According to a first aspect of the present invention, there is provided a first dielectric comprising a ground plate made of a conductor and a first dielectric having a relative dielectric constant of about 2 or less and disposed on a surface of the ground plate. A dielectric resonator comprising a body plate and a columnar second dielectric having a relative permittivity of approximately 10 to approximately 100 and having a columnar cavity portion disposed vertically on the dielectric plate along a central axis thereof; , One end of which is short-circuited to the ground plate through the hole of the first dielectric plate, and a conductor block provided so as to fill at least the columnar cavity of the dielectric resonator, and a power supply means for supplying power to the dielectric resonator And a dielectric resonator antenna. According to a second aspect of the present invention, in the dielectric resonator antenna according to the first aspect, the first dielectric plate is air or other gas or air gap. According to the third aspect of the present invention, the power supply to the dielectric resonator is performed by a conductor coupled linearly in parallel with the central axis of the columnar dielectric resonator on the outer peripheral side surface of the dielectric resonator. It is characterized by.

請求項4に記載の手段は、接地板の裏面に配設された、第3の誘電体から成り、誘電体共振器下部にスロットを有する第2の誘電体板と、第2の誘電体板面上に設けられた、接地板と相まってストリップ線路を形成する導体線とを有し、誘電体共振器への給電が、ストリップ線路からのスロットを介した電磁結合によるものであることを特徴とする。請求項5に記載の手段は、請求項4に記載の誘電体共振器アンテナにおいて、スロットが環状に形成されていることを特徴とする。請求項6に記載の手段は、請求項4又は請求項5に記載の誘電体共振器アンテナにおいて、誘電体共振器の下部に配設され、形状が環状であって、第2の誘電体の比誘電率と等しい又はそれよりも大きい比誘電率を有する第4の誘電体を有し、誘電体共振器への給電が、ストリップ線路からのスロットと第4の誘電体とを介した電磁結合によるものであり、スロットが第4の誘電体の下部に位置することを特徴とする。   According to a fourth aspect of the present invention, there is provided a second dielectric plate comprising a third dielectric body disposed on the back surface of the ground plate and having a slot at the lower portion of the dielectric resonator, and the second dielectric plate. A conductor line that forms a strip line in combination with a ground plate provided on the surface, and the power supply to the dielectric resonator is due to electromagnetic coupling through the slot from the strip line To do. According to a fifth aspect of the present invention, in the dielectric resonator antenna according to the fourth aspect, the slot is formed in an annular shape. According to a sixth aspect of the present invention, there is provided the dielectric resonator antenna according to the fourth or fifth aspect, wherein the means is disposed at a lower portion of the dielectric resonator, has a ring shape, and is formed of the second dielectric. A fourth dielectric having a relative permittivity equal to or greater than the relative permittivity, wherein the feed to the dielectric resonator is electromagnetically coupled through the slot from the stripline and the fourth dielectric And the slot is located below the fourth dielectric.

請求項7に記載の手段は、誘電体共振器が円柱状の空洞部を有する円柱状であって、所望の周波数に対しTM01δの共振モードとなるよう設計されていることを特徴とする。 The means described in claim 7 is characterized in that the dielectric resonator has a cylindrical shape having a cylindrical cavity portion, and is designed to have a resonance mode of TM 01δ with respect to a desired frequency.

誘電体共振器アンテナの共振は、高比誘電率を有する第2の誘電体から成る誘電体共振器の、空洞部を有する柱状の形状に沿って磁界が形成するループによって共振周波数が決定される。誘電体共振器の空洞に導体塊を充填することにより、ループの周長が長くなりそのため共振周波数の低下を引き起こす。また、誘電体共振器と接地板の間に低比誘電率の第1の誘電体板を挿入することにより、共振のQ値が低下し、その結果として帯域が広がる。これはほぼ同一のサイズ(体積)で共振する、従来のモノポールモード誘電体共振器アンテナに比べ、共振周波数が大幅に低下することを意味する。結果、同一周波数で共振するモノポールモード誘電体共振器アンテナにくらべ大幅に小型化することができる。また、単に誘電体共振器の中心部に導体を充填したのみでは狭帯域化が問題となっていていたが、本発明によれば、小型化と広帯域化の両立が可能となる。   The resonance of the dielectric resonator antenna is determined by a loop formed by a magnetic field along a columnar shape having a hollow portion of a dielectric resonator composed of a second dielectric having a high relative dielectric constant. . Filling the cavity of the dielectric resonator with the conductor mass increases the circumference of the loop, which causes a decrease in the resonance frequency. Further, by inserting the first dielectric plate having a low relative dielectric constant between the dielectric resonator and the ground plate, the resonance Q value is lowered, and as a result, the band is widened. This means that the resonance frequency is greatly reduced as compared with a conventional monopole mode dielectric resonator antenna that resonates at approximately the same size (volume). As a result, the size can be greatly reduced compared to a monopole mode dielectric resonator antenna that resonates at the same frequency. Further, narrowing the bandwidth has become a problem simply by filling the conductor in the center of the dielectric resonator. However, according to the present invention, both downsizing and widening of the bandwidth can be achieved.

以下、図面を併用して、本発明の構成の具体例とシミュレーション結果を示す。尚、本発明は以下に示す実施例に限定されるものではない。また、誘電体板が孔部を有するとし、導体塊がそこに充填されるとして説明しているが、誘電体板が空気その他の気体又は単なる空隙である場合は、当該孔部は実質的には存在せず、想定された孔部の大きさの導体塊が存在するのみであることは当然である。   Hereinafter, specific examples of the configuration of the present invention and simulation results will be described with reference to the drawings. In addition, this invention is not limited to the Example shown below. In addition, it is assumed that the dielectric plate has a hole and the conductor block is filled therewith. However, if the dielectric plate is air or other gas or a simple gap, the hole is substantially Naturally, there is only a conductor block having the size of the assumed hole.

図1に本発明の具体的な第1の実施例に係る誘電体共振器アンテナ100の構成を示す。図1.Aは誘電体共振器アンテナ100の構成を示す斜視図、図1.Bは誘電体共振器アンテナ100の構成を示す断面図である。孔部10を有する接地板1の上に、円盤状の孔部20を有する第1の誘電体板2を設け、その上に円柱状の空洞部30を有する円柱状の誘電体共振器3を設ける。円柱状の誘電体共振器3の外側面31と内側面30(空洞部30の側面)は、中心軸が一致している。第1の誘電体板2の円盤状の孔部20と、誘電体共振器3の円柱状の空洞部30とは各々底面の直径が同一でこれらにより1の円柱状の空間を形成している。この第1の誘電体板2の円盤状の孔部20と、誘電体共振器3の円柱状の空洞部30とに、導体塊4を充填する。また、円柱状の誘電体共振器3の外側面に、直線状又は細い帯状導体から成る給電プローブ6を中心軸に平行に設け、ここに同軸ケーブル5の中心導体51を接続する。同軸ケーブル5の外部導体52は接地板1に接続し、同軸ケーブル5の絶縁体鞘53は中心導体51が接地板1に接触しないよう、接地板1の孔部10を充填するようにする。   FIG. 1 shows a configuration of a dielectric resonator antenna 100 according to a first specific example of the present invention. FIG. A is a perspective view showing the configuration of the dielectric resonator antenna 100, FIG. B is a cross-sectional view showing the configuration of the dielectric resonator antenna 100. FIG. A first dielectric plate 2 having a disk-shaped hole 20 is provided on a ground plate 1 having a hole 10, and a columnar dielectric resonator 3 having a columnar cavity 30 is provided thereon. Provide. The center axis of the outer side surface 31 and the inner side surface 30 (side surface of the hollow portion 30) of the cylindrical dielectric resonator 3 coincides. The disk-shaped hole 20 of the first dielectric plate 2 and the columnar cavity 30 of the dielectric resonator 3 have the same diameter at the bottom, thereby forming one columnar space. . The conductor lump 4 is filled into the disk-shaped hole 20 of the first dielectric plate 2 and the columnar cavity 30 of the dielectric resonator 3. A feeding probe 6 made of a linear or thin strip conductor is provided on the outer surface of the cylindrical dielectric resonator 3 in parallel to the central axis, and a central conductor 51 of the coaxial cable 5 is connected thereto. The outer conductor 52 of the coaxial cable 5 is connected to the ground plate 1, and the insulator sheath 53 of the coaxial cable 5 fills the hole 10 of the ground plate 1 so that the central conductor 51 does not contact the ground plate 1.

図1に示した誘電体共振器アンテナ100のシミュレーション結果を図2及び図3に示す。シミュレーションの条件は、次の通りとした。第1の誘電体板2については比誘電率εr2を1.0、厚みを2.0mmとし、誘電体共振器3については比誘電率εr3を21、高さを15mm、外径を47mm、内径(空洞部30の外径)を14mmとした。比誘電率εr2を1.0としたということは、第1の誘電体板として真空(空隙)を想定したものである。 The simulation results of the dielectric resonator antenna 100 shown in FIG. 1 are shown in FIGS. The simulation conditions were as follows. The first dielectric plate 2 has a relative dielectric constant ε r2 of 1.0 and a thickness of 2.0 mm, and the dielectric resonator 3 has a relative dielectric constant ε r3 of 21, a height of 15 mm, an outer diameter of 47 mm, an inner diameter ( The outer diameter of the cavity 30) was 14 mm. The relative dielectric constant ε r2 of 1.0 is assumed to be a vacuum (gap) as the first dielectric plate.

誘電体共振器アンテナ100について、TM01δモードの共振周波数は1.5GHzと計算された。誘電体共振器アンテナ100の構成から導体塊4を除き、第1の誘電体板2を除いて誘電体共振器3を接地板1上に設けた構成である図11の誘電体共振器アンテナ900については、TM01δモードの共振周波数は2.0GHzと計算された。更に、誘電体共振器アンテナ100の構成から第1の誘電体板2を除いて誘電体共振器3を接地板1上に設けた他は上記条件の構成とした図12の誘電体共振器アンテナ910については、TM01δモードの共振周波数は1.28GHzと計算された。 For the dielectric resonator antenna 100, the TM 01δ mode resonance frequency was calculated to be 1.5 GHz. The dielectric resonator antenna 900 shown in FIG. 11 has a configuration in which the conductor resonator 4 is excluded from the configuration of the dielectric resonator antenna 100 and the dielectric resonator 3 is provided on the ground plate 1 except for the first dielectric plate 2. For, the resonance frequency of the TM 01δ mode was calculated to be 2.0 GHz. Furthermore, the dielectric resonator antenna of FIG. 12 is configured as described above except that the dielectric resonator 3 is provided on the ground plate 1 except for the first dielectric plate 2 from the configuration of the dielectric resonator antenna 100. For 910, the TM 01δ mode resonance frequency was calculated to be 1.28 GHz.

図2に、上記条件での図1の誘電体共振器アンテナ100、図11の誘電体共振器アンテナ900及び図12の誘電体共振器アンテナ910の、50Ωの特性インピーダンスをもつ同軸ケーブルで給電した場合の入力反射特性S11の周波数特性を示す。TM01δモードの共振周波数の位置を、図1の誘電体共振器アンテナ100について符号aで、図11の誘電体共振器アンテナ900について符号bで、図12の誘電体共振器アンテナ910について符号cで示した。図12の誘電体共振器アンテナ910は、導体塊4を有することで、図11の誘電体共振器アンテナ900よりも共振周波数が約36%低下している。すなわち図12の誘電体共振器アンテナ910は図11の誘電体共振器アンテナ900の65%程度に小型化が可能である。しかしながら、入力反射特性S11が-10dB以下となる比帯域は0.1GHz程度と 中心周波数1.28GHzに対してわずか1%である。「比帯域」は共振周波数に対する帯域幅の比を示す。 In FIG. 2, the dielectric resonator antenna 100 of FIG. 1, the dielectric resonator antenna 900 of FIG. 11, and the dielectric resonator antenna 910 of FIG. 12 are fed by a coaxial cable having a characteristic impedance of 50Ω under the above conditions. In this case, the frequency characteristic of the input reflection characteristic S 11 is shown. The position of the resonance frequency of the TM 01δ mode is indicated by the symbol a for the dielectric resonator antenna 100 of FIG. 1, the symbol b for the dielectric resonator antenna 900 of FIG. 11, and the symbol c for the dielectric resonator antenna 910 of FIG. It showed in. Since the dielectric resonator antenna 910 of FIG. 12 has the conductor block 4, the resonance frequency is lowered by about 36% compared to the dielectric resonator antenna 900 of FIG. That is, the dielectric resonator antenna 910 of FIG. 12 can be downsized to about 65% of the dielectric resonator antenna 900 of FIG. However, the fractional bandwidth of the input reflection characteristic S 11 equal to or less than -10dB is only 1% relative to 0.1GHz about the center frequency 1.28GHz. The “ratio band” indicates the ratio of the bandwidth to the resonance frequency.

これに対し、本発明の実施例である図1の誘電体共振器アンテナ100は、図11の誘電体共振器アンテナ900に比べて共振周波数が約25%低下し、75%程度に小型化が可能である。これに加え、入力反射特性S11が-10dB以下となる比帯域が0.16GHz程度あり、中心周波数1.5GHzに対して11%と広帯域であることがわかる。これは、モノポールアンテナがもつ比帯域特性15%に匹敵する。また、アンテナの高さはモノポールに比べて34%程度に低姿勢化された。このように、本発明によれば小型化(容積及び高さ)と広帯域特性とを両立した、極めて有用な誘電体共振器アンテナを構成することができる。 On the other hand, the dielectric resonator antenna 100 of FIG. 1 which is an embodiment of the present invention has a resonance frequency reduced by about 25% compared to the dielectric resonator antenna 900 of FIG. Is possible. In addition to this, it can be seen that the ratio band where the input reflection characteristic S 11 is −10 dB or less is about 0.16 GHz, which is a wide band of 11% with respect to the center frequency of 1.5 GHz. This is comparable to the 15% specific band characteristic of a monopole antenna. Also, the height of the antenna has been lowered to about 34% compared to the monopole. As described above, according to the present invention, it is possible to configure a very useful dielectric resonator antenna that achieves both miniaturization (volume and height) and wideband characteristics.

図3に、図1の誘電体共振器アンテナ100の、誘電体共振器3の回転対称軸方向を0°として、接地板1に垂直な面内における、接地板と垂直な偏波の周波数をパラメータとする指向性パターンの一例を示す。尚、200mm×200mmの方形の接地板1の中心を誘電体共振器3の回転対称軸が通過するようにしてシミュレーションを行った。図1の誘電体共振器アンテナ100は、モノポールアンテナと同様の指向性パターンを呈していることがわかる。   FIG. 3 shows the frequency of the polarization perpendicular to the ground plate in the plane perpendicular to the ground plate 1 with the rotational symmetry axis direction of the dielectric resonator 3 of the dielectric resonator antenna 100 of FIG. An example of the directivity pattern used as a parameter is shown. The simulation was performed such that the rotational symmetry axis of the dielectric resonator 3 passes through the center of the square ground plate 1 of 200 mm × 200 mm. It can be seen that the dielectric resonator antenna 100 of FIG. 1 exhibits a directivity pattern similar to that of the monopole antenna.

本実施例では、第1の誘電体板2の厚みを2mm(共振周波数における電波の波長λの1/100程度)、比誘電率を1(空気相当)としたが、厚みを略0.02λより小さく、比誘電率を略2より小さくすれば同様の特性を実現することができる。   In this embodiment, the thickness of the first dielectric plate 2 is 2 mm (about 1/100 of the wavelength λ of the radio wave at the resonance frequency) and the relative dielectric constant is 1 (equivalent to air). Similar characteristics can be realized if the dielectric constant is small and the relative dielectric constant is smaller than about 2.

〔比較例〕
別の考察として、図4のような構成の誘電体共振器アンテナを構成し、入力反射特性S11が-10dB以下となる帯域が、第1の誘電体板2の半径aに対してどのように変化するかをシミュレーションした。ここで、上記シミュレーションと同様の条件のもと、誘電体共振器3の回転対称軸から半径aよりも遠い部分では、第1の誘電体板2ではなく、接地板1の厚い部分が誘電体共振器3に直接接触しているものとした。即ち、図1の構成のうち、第1の誘電体板2を、孔部20を有する外周半径aのドーナツ板状の誘電体板2とその外周の導体とに置き換えた物である。
[Comparative example]
As another consideration, the dielectric resonator antenna having the configuration as shown in FIG. 4 is configured, and how the band in which the input reflection characteristic S 11 is −10 dB or less with respect to the radius a of the first dielectric plate 2 is determined. It was simulated whether it changed to. Here, under the same conditions as in the above simulation, the thick portion of the ground plate 1 is not the first dielectric plate 2 but the thick portion of the ground plate 1 in the portion far from the radius a from the rotational symmetry axis of the dielectric resonator 3. It was assumed that it was in direct contact with the resonator 3. That is, in the configuration of FIG. 1, the first dielectric plate 2 is replaced with a doughnut-shaped dielectric plate 2 having a hole 20 and an outer peripheral radius a and a conductor on the outer periphery thereof.

図5にシミュレーション結果を示す。ドーナツ板状の誘電体板2の外周の半径aが導体塊4と一致する場合、即ちドーナツ板状の誘電体板2が全く無く、図12の従来例の誘電体共振器アンテナ910の場合から順に大きくして、誘電体共振器3の外周の半径a0を十分超えるまでを示す。ドーナツ板状の誘電体板2の外周の半径aが誘電体共振器3の外周の半径a0よりも十分小さい場合、即ち誘電体共振器3に接地板1が接している場合、誘電体共振器アンテナの比帯域は狭く、余り変化がない。ドーナツ板状の誘電体板2の外周の半径aが誘電体共振器3の外周の半径a0に近くづくと、比帯域が急に大きくなっていく。ドーナツ板状の誘電体板2の外周の半径aが誘電体共振器3の外周の半径a0より大きくなると、比帯域は広くなる。ドーナツ板状の誘電体板2の外周の半径aが誘電体共振器3の外周の半径a0よりも十分大きいと、比帯域は一定である。このように誘電体共振器3は導体塊4以外は、例えば接地板1とは接触しない方が良い。 FIG. 5 shows the simulation results. When the radius a of the outer periphery of the donut plate-like dielectric plate 2 coincides with the conductor block 4, that is, there is no donut plate-like dielectric plate 2 and the case of the dielectric resonator antenna 910 of the conventional example of FIG. This is increased in order until the radius a 0 of the outer periphery of the dielectric resonator 3 is sufficiently exceeded. When the radius a of the outer periphery of the doughnut-shaped dielectric plate 2 is sufficiently smaller than the radius a 0 of the outer periphery of the dielectric resonator 3, that is, when the ground plate 1 is in contact with the dielectric resonator 3, the dielectric resonance The bandwidth of the antenna is narrow and there is not much change. As the radius a of the outer periphery of the doughnut-shaped dielectric plate 2 approaches the radius a 0 of the outer periphery of the dielectric resonator 3, the specific band suddenly increases. When the radius a of the outer periphery of the doughnut-shaped dielectric plate 2 is larger than the radius a 0 of the outer periphery of the dielectric resonator 3, the specific band becomes wider. When the radius a of the outer periphery of the doughnut-shaped dielectric plate 2 is sufficiently larger than the radius a 0 of the outer periphery of the dielectric resonator 3, the specific band is constant. Thus, it is preferable that the dielectric resonator 3 is not in contact with, for example, the ground plate 1 except for the conductor block 4.

実施例1において、第1の誘電体板2を「空気その他の気体、又は空隙」とする場合は、図1の構成から誘電体板2が除かれた形となる。この際、誘電体共振器3を支持するものとして導体塊4を用いても良く、或いは任意の位置に誘電体共振器3を支持する絶縁体を設けても良い。   In the first embodiment, when the first dielectric plate 2 is “air or other gas or void”, the dielectric plate 2 is removed from the configuration of FIG. At this time, the conductor lump 4 may be used to support the dielectric resonator 3, or an insulator that supports the dielectric resonator 3 may be provided at an arbitrary position.

図6に本発明の具体的な第2の実施例による誘電体共振器アンテナ200の構成を示す。図6.Aは誘電体共振器アンテナ200の構成を示す斜視図、図6.Bは誘電体共振器アンテナ600の構成を示す断面図である。図6の誘電体共振器アンテナ200は、図1の誘電体共振器アンテナ100と比較して第1の誘電体板2が誘電体共振器3の下部のみに存在する以外は同一の構成である。本構成によれば、例えば第1の誘電体板2の比誘電率が略2よりも小さい場合、第1の実施例と同等の効果を得ることができる。また、少量の誘電体板2で済むため、コストを低減できる。   FIG. 6 shows a configuration of a dielectric resonator antenna 200 according to a second specific example of the present invention. FIG. FIG. 6A is a perspective view showing the configuration of the dielectric resonator antenna 200, FIG. B is a cross-sectional view showing the configuration of the dielectric resonator antenna 600. FIG. The dielectric resonator antenna 200 of FIG. 6 has the same configuration as the dielectric resonator antenna 100 of FIG. 1 except that the first dielectric plate 2 exists only below the dielectric resonator 3. . According to this configuration, for example, when the relative dielectric constant of the first dielectric plate 2 is smaller than about 2, the same effect as that of the first embodiment can be obtained. Further, since only a small amount of the dielectric plate 2 is required, the cost can be reduced.

図7に本発明の具体的な第3の実施例による誘電体共振器アンテナ300の構成を示す。図7.Aは誘電体共振器アンテナ300の構成を示す断面図、図7.Bは誘電体共振器アンテナ300の構成の一部である接地板1(実線で示す)の、他の構成要素(破線で示す)との位置関係を示す平面図である。図7の誘電体共振器アンテナ300は、図1の誘電体共振器アンテナ100と比較して、給電方法をマイクロストリップ線路により行うため、接地板1の裏面に第2の誘電体板7と、マイクロストリップ8を設け、接地板1に矩形形状のスロット10sを設けた点で異なる。第2の誘電体板7を挟んでマイクロストリップ8と接地板1とがマイクロストリップ線路を形成する。マイクロストリップ線路から、マイクロストリップ8、接地板1の矩形形状のスロット10sを介して誘電体共振器3に電磁結合により給電が行われる。本実施例によれば、板状でかつ接続点を有しない簡易な給電手段を実現できる。尚、本実施例では接地板1の厚みは波長に比べて極めて小さい(当該厚みは、使用周波数おける波長の千分の1未満)場合を想定しているが、接地板1の厚みが厚い場合は、スロット10sに高い比誘電率を持つ誘電体材料を充填しても良い。   FIG. 7 shows the configuration of a dielectric resonator antenna 300 according to a specific third embodiment of the present invention. FIG. FIG. 7A is a sectional view showing the configuration of the dielectric resonator antenna 300, FIG. B is a plan view showing the positional relationship between the ground plate 1 (shown by a solid line), which is a part of the configuration of the dielectric resonator antenna 300, and other components (shown by a broken line). Since the dielectric resonator antenna 300 of FIG. 7 performs a power feeding method using a microstrip line as compared with the dielectric resonator antenna 100 of FIG. 1, the second dielectric plate 7 on the back surface of the ground plate 1, The difference is that a microstrip 8 is provided and a rectangular slot 10 s is provided in the ground plate 1. The microstrip 8 and the ground plate 1 form a microstrip line across the second dielectric plate 7. Power is fed from the microstrip line to the dielectric resonator 3 by electromagnetic coupling through the microstrip 8 and the rectangular slot 10 s of the ground plate 1. According to the present embodiment, a simple power supply means that is plate-shaped and does not have a connection point can be realized. In the present embodiment, it is assumed that the thickness of the ground plate 1 is very small compared to the wavelength (the thickness is less than one thousandth of the wavelength at the operating frequency), but the thickness of the ground plate 1 is thick. The slot 10s may be filled with a dielectric material having a high relative dielectric constant.

図8に本発明の具体的な第4の実施例による誘電体共振器アンテナ400の構成を示す。図8.Aは誘電体共振器アンテナ400の構成を示す断面図、図8.Bは誘電体共振器アンテナ400の構成の一部である第1の誘電体板2及び環状誘電体9(いずれも実線で示す)の、他の構成要素(破線で示す)との位置関係を示す平面図である。図8の誘電体共振器アンテナ400は、図7の誘電体共振器アンテナ300と比較して、第1の誘電体板2の円環状の一部を、スロット10s上部を通過する領域において、第1の誘電体板2の比誘電率よりも高い誘電率を有する誘電体から成る環状誘電体9に置き換えた他は同一である。例えば接地板1は図7.Bの構成となる。図8の誘電体共振器アンテナ400においては、マイクロストリップ線路から、マイクロストリップ8、接地板1の矩形形状のスロット10sと環状誘電体9とを介して誘電体共振器3に電磁結合により給電が行われる。環状誘電体9の比誘電率は、第1の誘電体板2の比誘電率よりも大きくすることで、電磁結合を強くすることができる。本実施例では誘電体9を環状としたが、スロット上部にのみ存在する切片状としても良い。尚、本実施例では接地板1の厚みは波長に比べて極めて小さい(当該厚みは、使用周波数おける波長の千分の1未満)場合を想定しているが、接地板1の厚みが厚い場合は、スロット10sに高い比誘電率を持つ誘電体材料を充填しても良い。   FIG. 8 shows the configuration of a dielectric resonator antenna 400 according to a fourth specific example of the present invention. FIG. FIG. 8A is a sectional view showing the configuration of the dielectric resonator antenna 400, FIG. B shows the positional relationship between the first dielectric plate 2 and the annular dielectric 9 (both shown by solid lines), which are part of the configuration of the dielectric resonator antenna 400, with other components (shown by broken lines). FIG. The dielectric resonator antenna 400 of FIG. 8 is compared with the dielectric resonator antenna 300 of FIG. 7 in the region where the annular portion of the first dielectric plate 2 passes through the upper portion of the slot 10s. 1 except that it is replaced by an annular dielectric 9 made of a dielectric having a dielectric constant higher than that of the dielectric plate 2. For example, the ground plate 1 is shown in FIG. B is configured. In the dielectric resonator antenna 400 of FIG. 8, power is fed from the microstrip line to the dielectric resonator 3 by electromagnetic coupling via the microstrip 8, the rectangular slot 10 s of the ground plate 1 and the annular dielectric 9. Done. By making the relative dielectric constant of the annular dielectric 9 larger than the relative dielectric constant of the first dielectric plate 2, electromagnetic coupling can be strengthened. In this embodiment, the dielectric 9 is annular, but it may be in the form of a slice that exists only in the upper part of the slot. In the present embodiment, it is assumed that the thickness of the ground plate 1 is very small compared to the wavelength (the thickness is less than one thousandth of the wavelength at the operating frequency), but the thickness of the ground plate 1 is thick. The slot 10s may be filled with a dielectric material having a high relative dielectric constant.

図9に本発明の具体的な第5の実施例による誘電体共振器アンテナ500の構成を示す。図9.Aは誘電体共振器アンテナ500の構成を示す断面図、図9.Bは誘電体共振器アンテナ500の構成の一部である接地板1(実線で示す)の、他の構成要素(破線で示す)との位置関係を示す平面図である。図9の誘電体共振器アンテナ500は、図7の誘電体共振器アンテナ300と比較して、接地板1の矩形形状のスロット10sを環状のスロット10srとした他は同一である。図9の誘電体共振器アンテナ500においては、マイクロストリップ線路から、マイクロストリップ8、接地板1の環状のスロット10srとを介して誘電体共振器3に電磁結合により給電が行われる。尚、本実施例では接地板1の厚みは波長に比べて極めて小さい(当該厚みは、使用周波数おける波長の千分の1未満)場合を想定しているが、接地板1の厚みが厚い場合は、環状のスロット10srに高い比誘電率を持つ誘電体材料を充填しても良い。   FIG. 9 shows the configuration of a dielectric resonator antenna 500 according to a fifth specific embodiment of the present invention. FIG. FIG. 9A is a sectional view showing a configuration of a dielectric resonator antenna 500, FIG. B is a plan view showing a positional relationship between the ground plate 1 (shown by a solid line), which is a part of the configuration of the dielectric resonator antenna 500, and other components (shown by a broken line). The dielectric resonator antenna 500 of FIG. 9 is the same as the dielectric resonator antenna 300 of FIG. 7 except that the rectangular slot 10s of the ground plate 1 is an annular slot 10sr. In the dielectric resonator antenna 500 of FIG. 9, power is fed from the microstrip line to the dielectric resonator 3 by electromagnetic coupling via the microstrip 8 and the annular slot 10 sr of the ground plate 1. In the present embodiment, it is assumed that the thickness of the ground plate 1 is very small compared to the wavelength (the thickness is less than one thousandth of the wavelength at the operating frequency), but the thickness of the ground plate 1 is thick. The annular slot 10sr may be filled with a dielectric material having a high relative dielectric constant.

図10に本発明の具体的な第6の実施例による誘電体共振器アンテナ600の構成を示す。図10.Aは誘電体共振器アンテナ600の構成を示す断面図、図10.Bは誘電体共振器アンテナ600の構成の一部である第1の誘電体板2及び環状誘電体9(いずれも実線で示す)の、他の構成要素(破線で示す)との位置関係を示す平面図である。図10の誘電体共振器アンテナ600は、図8の誘電体共振器アンテナ400と比較して、接地板1の矩形形状のスロット10sを環状のスロット10srとした他は同一である。また、図10の誘電体共振器アンテナ600は、図9の誘電体共振器アンテナ500と比較して、第1の誘電体板2の円環状の一部を、環状のスロット10sr上部を通過する領域において、第1の誘電体板2の比誘電率よりも高い誘電率を有する誘電体から成る環状誘電体9に置き換えた他は同一である。例えば接地板1は図9.Bの構成となる。図10の誘電体共振器アンテナ600においては、マイクロストリップ線路から、マイクロストリップ8、接地板1の環状のスロット10srと環状誘電体9とを介して誘電体共振器3に電磁結合により給電が行われる。環状誘電体9の比誘電率は、第1の誘電体板2の比誘電率よりも大きくすることで、電磁結合を強くすることができる。   FIG. 10 shows a configuration of a dielectric resonator antenna 600 according to a sixth specific example of the present invention. FIG. 10A is a cross-sectional view showing the configuration of a dielectric resonator antenna 600, FIG. B shows the positional relationship between the first dielectric plate 2 and the annular dielectric 9 (both shown by solid lines), which are part of the configuration of the dielectric resonator antenna 600, with other components (shown by broken lines). FIG. The dielectric resonator antenna 600 of FIG. 10 is the same as the dielectric resonator antenna 400 of FIG. 8 except that the rectangular slot 10s of the ground plate 1 is an annular slot 10sr. Also, the dielectric resonator antenna 600 of FIG. 10 passes through a part of the annular shape of the first dielectric plate 2 above the annular slot 10sr, as compared with the dielectric resonator antenna 500 of FIG. The area is the same except that it is replaced with an annular dielectric 9 made of a dielectric having a dielectric constant higher than that of the first dielectric plate 2. For example, the ground plate 1 is shown in FIG. B is configured. In the dielectric resonator antenna 600 of FIG. 10, power is fed from the microstrip line to the dielectric resonator 3 by electromagnetic coupling via the microstrip 8, the annular slot 10 sr of the ground plate 1 and the annular dielectric 9. Is called. By making the relative dielectric constant of the annular dielectric 9 larger than the relative dielectric constant of the first dielectric plate 2, electromagnetic coupling can be strengthened.

上記実施例3及び4において、第1の誘電体板2を「空気その他の気体、又は空隙」とする場合は、図7.A及び図8.Aの構成から誘電体板2が除かれた形となる。この際、誘電体共振器3を支持するものとして導体塊4を用いても良く、或いは任意の位置に誘電体共振器3を支持する絶縁体を設けても良い。上記実施例5及び6において、第1の誘電体板2を「空気その他の気体、又は空隙」とする場合は、図9.A及び図10.Aの構成から誘電体板2が除かれた形となる。この際、誘電体共振器3を支持するものとして導体塊4及び/又は環状誘電体9を用いても良く、或いは任意の位置に誘電体共振器3を支持する他の絶縁体を設けても良い。   In the third and fourth embodiments, when the first dielectric plate 2 is “air or other gas or void”, FIG. A and FIG. The dielectric plate 2 is removed from the configuration of A. At this time, the conductor lump 4 may be used to support the dielectric resonator 3, or an insulator that supports the dielectric resonator 3 may be provided at an arbitrary position. In the fifth and sixth embodiments, when the first dielectric plate 2 is “air or other gas or air gap”, FIG. A and FIG. The dielectric plate 2 is removed from the configuration of A. At this time, the conductor lump 4 and / or the annular dielectric 9 may be used to support the dielectric resonator 3, or another insulator that supports the dielectric resonator 3 may be provided at an arbitrary position. good.

上記実施例では、第1の誘電体板2を「空気その他の気体、又は空隙」とする場合に導体塊4で誘電体共振器3を支持することを想定して、導体塊4を、誘電体共振器3の空洞部30と同一の半径を有する、より長い円柱状の構成としたが、導体塊4は十分に接地されていれば良いのであって、例えば誘電体共振器3の空洞部30に充填され、より小さな体積で接地板1と電気的に接続されていても良い。   In the above embodiment, assuming that the dielectric resonator 3 is supported by the conductor mass 4 when the first dielectric plate 2 is “air or other gas or air gap”, the conductor mass 4 is Although it has a longer cylindrical configuration having the same radius as the cavity 30 of the body resonator 3, the conductor lump 4 only needs to be sufficiently grounded, for example, the cavity of the dielectric resonator 3 30 and may be electrically connected to the ground plate 1 with a smaller volume.

本発明は、例えば車両に搭載して自動車電話や携帯電話などに用いるのに好適な送受信用アンテナである。   The present invention is a transmission / reception antenna suitable for use in, for example, a car phone or a mobile phone mounted on a vehicle.

1.Aは第1の実施例に係る誘電体共振器アンテナ100の構成を示す斜視図、1.Bは同じく断面図。1. 1A is a perspective view illustrating a configuration of a dielectric resonator antenna 100 according to a first embodiment; B is also a cross-sectional view. 誘電体共振器アンテナ100の反射特性を示すグラフ図。The graph which shows the reflective characteristic of the dielectric resonator antenna 100. FIG. 誘電体共振器アンテナ100の指向性パターンを示すグラフ図。The graph which shows the directivity pattern of the dielectric resonator antenna. 比較例に係る誘電体共振器アンテナの構成を示す断面図。Sectional drawing which shows the structure of the dielectric resonator antenna which concerns on a comparative example. 比較例に係る誘電体共振器アンテナの比帯域特性を示すグラフ図。The graph which shows the specific band characteristic of the dielectric resonator antenna which concerns on a comparative example. 6.Aは第2の実施例に係る誘電体共振器アンテナ200の構成を示す斜視図、6.Bは同じく断面図。6). 5A is a perspective view illustrating a configuration of a dielectric resonator antenna 200 according to a second embodiment, and FIG. B is also a cross-sectional view. 7.Aは第3の実施例に係る誘電体共振器アンテナ300の構成を示す断面図、7.Bは接地板1の形状及び他の構成要素との位置関係を示す平面図。7). 6A is a cross-sectional view showing the configuration of a dielectric resonator antenna 300 according to a third embodiment, and FIG. B is a plan view showing the shape of the ground plate 1 and the positional relationship with other components. 8.Aは第4の実施例に係る誘電体共振器アンテナ400の構成を示す断面図、8.Bは第1の誘電体板2及び環状誘電体9の形状及び他の構成要素との位置関係を示す平面図。8). 7A is a cross-sectional view showing a configuration of a dielectric resonator antenna 400 according to a fourth embodiment, and FIG. B is a plan view showing the shape of the first dielectric plate 2 and the annular dielectric 9 and the positional relationship with other components. 9.Aは第5の実施例に係る誘電体共振器アンテナ500の構成を示す断面図、9.Bは接地板1の形状及び他の構成要素との位置関係を示す平面図。9. FIG. 8A is a cross-sectional view showing the configuration of a dielectric resonator antenna 500 according to a fifth embodiment; B is a plan view showing the shape of the ground plate 1 and the positional relationship with other components. 10.Aは第5の実施例に係る誘電体共振器アンテナ600の構成を示す断面図、10.Bは第1の誘電体板2及び環状誘電体9の形状及び他の構成要素との位置関係を示す平面図。10. 10A is a cross-sectional view showing a configuration of a dielectric resonator antenna 600 according to a fifth embodiment; B is a plan view showing the shape of the first dielectric plate 2 and the annular dielectric 9 and the positional relationship with other components. 11.Aは従来の誘電体共振器アンテナ900の構成を示す斜視図、11.Bは同じく断面図。11. FIG. 11A is a perspective view illustrating a configuration of a conventional dielectric resonator antenna 900; B is also a cross-sectional view. 12.Aは従来の他の誘電体共振器アンテナ910の構成を示す斜視図、12.Bは同じく断面図。12 11A is a perspective view showing a configuration of another conventional dielectric resonator antenna 910, and FIG. B is also a cross-sectional view.

符号の説明Explanation of symbols

1:接地板
10:接地板の孔部
10s:接地板に形成されたスロット
10sr:環状に形成されたスロット
2:第1の誘電体板(或いは空隙)
20:第1の誘電体板の孔部
3:誘電体共振器
30:誘電体共振器の空洞部及びその側面(誘電体共振器の内側面)
31:誘電体共振器(誘電体共振器の外側面)
4:導体塊
5:同軸ケーブル
51:同軸ケーブルの中心導体
52:同軸ケーブルの外部導体
53:同軸ケーブルの絶縁体鞘
6:給電プローブ
7:第2の誘電体板
8:マイクロストリップ
9:環状誘電体
1: Ground plate 10: Hole portion of ground plate 10s: Slot formed in ground plate 10sr: Slot formed in ring 2: First dielectric plate (or gap)
20: Hole portion of first dielectric plate 3: Dielectric resonator 30: Cavity portion and side surface of dielectric resonator (inner surface of dielectric resonator)
31: Dielectric resonator (outer surface of dielectric resonator)
4: Conductor block 5: Coaxial cable 51: Coaxial cable central conductor 52: Coaxial cable outer conductor 53: Coaxial cable insulator sheath 6: Feed probe 7: Second dielectric plate 8: Microstrip 9: Ring dielectric body

Claims (7)

導体からなる接地板と、
その接地板表面に配設された、比誘電率が略2以下の第1の誘電体から成り、孔部を有する第1の誘電体板と、
前記誘電体板の上に垂直に配置され、その中心軸に沿って柱状の空洞部を有する比誘電率略10から略100の柱状の第2の誘電体から成る誘電体共振器と、
一端が前記第1の誘電体板の孔部を通じて前記接地板に短絡され、少なくとも前記誘電体共振器の柱状の空洞部を充填するよう設けられた導体塊と、
前記誘電体共振器に給電を行う給電手段とを備えたことを特徴とする誘電体共振器アンテナ。
A ground plate made of a conductor;
A first dielectric plate disposed on the surface of the ground plate and made of a first dielectric having a relative dielectric constant of about 2 or less and having a hole;
A dielectric resonator comprising a columnar second dielectric having a relative permittivity of approximately 10 to approximately 100 and having a columnar cavity portion disposed vertically on the dielectric plate and having a columnar cavity along its central axis;
One end of which is short-circuited to the ground plate through the hole of the first dielectric plate, and is provided so as to fill at least the columnar cavity of the dielectric resonator;
A dielectric resonator antenna, comprising: a power feeding means for feeding power to the dielectric resonator.
前記第1の誘電体板は空気その他の気体又は空隙であることを特徴とする請求項1に記載の誘電体共振器アンテナ。 2. The dielectric resonator antenna according to claim 1, wherein the first dielectric plate is air or other gas or air gap. 前記誘電体共振器への給電が、前記誘電体共振器の外側面において、柱状の前記誘電体共振器の中心軸と並行な直線状に結合された導体により行われることを特徴とする請求項1又は請求項2に記載の誘電体共振器アンテナ。 The power supply to the dielectric resonator is performed by a conductor coupled linearly in parallel with the central axis of the columnar dielectric resonator on the outer surface of the dielectric resonator. The dielectric resonator antenna according to claim 1 or 2. 前記接地板の裏面に配設された、第3の誘電体から成り、前記誘電体共振器下部にスロットを有する第2の誘電体板と、
前記第2の誘電体板面上に設けられた、前記接地板と相まってストリップ線路を形成する導体線とを有し、
前記誘電体共振器への給電が、前記ストリップ線路からの前記スロットを介した電磁結合によるものであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の誘電体共振器アンテナ。
A second dielectric plate disposed on the back surface of the ground plate, made of a third dielectric, and having a slot below the dielectric resonator;
A conductor line provided on the second dielectric plate surface, which forms a strip line in combination with the ground plate;
4. The dielectric resonator according to claim 1, wherein power feeding to the dielectric resonator is performed by electromagnetic coupling through the slot from the strip line. 5. antenna.
前記スロットが環状に形成されていることを特徴とする請求項4に記載の誘電体共振器アンテナ。 The dielectric resonator antenna according to claim 4, wherein the slot is formed in an annular shape. 前記誘電体共振器の下部に配設され、第2の誘電体の比誘電率と等しい又はそれよりも大きい比誘電率を有する第4の誘電体を有し、
前記誘電体共振器への給電が、前記ストリップ線路からの前記スロットと前記第4の電体とを介した電磁結合によるものであり、前記スロットが前記第4の誘電体の下部に位置することを特徴とする請求項4又は請求項5に記載の誘電体共振器アンテナ。
A fourth dielectric disposed at a lower portion of the dielectric resonator and having a relative dielectric constant equal to or greater than a relative dielectric constant of the second dielectric;
The power supply to the dielectric resonator is by electromagnetic coupling through the slot from the strip line and the fourth electric body, and the slot is positioned below the fourth dielectric. 6. The dielectric resonator antenna according to claim 4 or 5, wherein:
前記誘電体共振器が円柱状の空洞部を有する円柱状であって、所望の周波数に対しTM01δの共振モードとなるよう設計されていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の誘電体共振器アンテナ。 7. The dielectric resonator according to claim 1, wherein the dielectric resonator has a cylindrical shape having a cylindrical cavity, and is designed to have a TM 01δ resonance mode at a desired frequency. 2. The dielectric resonator antenna according to claim 1.
JP2004123217A 2004-04-19 2004-04-19 Dielectric resonator antenna Pending JP2005311524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123217A JP2005311524A (en) 2004-04-19 2004-04-19 Dielectric resonator antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123217A JP2005311524A (en) 2004-04-19 2004-04-19 Dielectric resonator antenna

Publications (1)

Publication Number Publication Date
JP2005311524A true JP2005311524A (en) 2005-11-04

Family

ID=35439818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123217A Pending JP2005311524A (en) 2004-04-19 2004-04-19 Dielectric resonator antenna

Country Status (1)

Country Link
JP (1) JP2005311524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371765B1 (en) 2007-11-15 2014-03-11 포항공과대학교 산학협력단 Apparatus and system for transfering power wirelessly
CN109616751A (en) * 2019-01-14 2019-04-12 南通至晟微电子技术有限公司 A kind of low section broadband medium resonant aerial

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371765B1 (en) 2007-11-15 2014-03-11 포항공과대학교 산학협력단 Apparatus and system for transfering power wirelessly
CN109616751A (en) * 2019-01-14 2019-04-12 南通至晟微电子技术有限公司 A kind of low section broadband medium resonant aerial

Similar Documents

Publication Publication Date Title
US7636063B2 (en) Compact broadband patch antenna
CN109390699B (en) Small-sized beam controllable patch antenna based on reconfigurable parasitic unit
US6788257B2 (en) Dual-frequency planar antenna
JP2007089234A (en) Antenna
CN105390809A (en) Broadband dielectric resonator antenna based on planar monopole patch excitation
KR20030080217A (en) Miniature broadband ring-like microstrip patch antenna
WO2014080360A2 (en) Miniaturized patch antenna
Kumar et al. Design of a self-diplexing antenna using SIW technique with high isolation
CN110676589B (en) High-gain differential dual-polarized dielectric patch antenna based on higher-order mode
TW200835054A (en) Slot antenna
WO2018082558A1 (en) Antenna and communication terminal
Kishk et al. Wideband stair-shaped dielectric resonator antennas
JP4690834B2 (en) Multi-frequency antenna
Martinis et al. Wideband antenna in cavity based on metasurfaces
Chavali et al. Wideband designs of regular shape microstrip antennas using modified ground plane
Chen et al. A wideband differential-fed microstrip patch antenna based on radiation of three resonant modes
Patin et al. Single feed aperture-coupled wideband dielectric resonator antenna with circular polarization for Ku-band applications
Leung et al. Low-profile high-permittivity dielectric resonator antenna excited by a disk-loaded coaxial aperture
Malfajani et al. Wideband substrate integrated cavity-backed dielectric resonator antenna at sub-6-GHz band
JP2005311524A (en) Dielectric resonator antenna
Singh et al. Cavity backed annular ring microstrip antenna loaded with concentric circular patch
Zou et al. Horizontally polarized omnidirectional dielectric resonator antenna
CN113659334A (en) Reconfigurable circularly polarized dielectric resonator antenna and terminal
US6965348B2 (en) Broadband antenna structures
Ding et al. A novel loop-like monopole antenna with dual-band circular polarization