JP2005309432A - Liquid crystal optoelectronic device - Google Patents

Liquid crystal optoelectronic device Download PDF

Info

Publication number
JP2005309432A
JP2005309432A JP2005114867A JP2005114867A JP2005309432A JP 2005309432 A JP2005309432 A JP 2005309432A JP 2005114867 A JP2005114867 A JP 2005114867A JP 2005114867 A JP2005114867 A JP 2005114867A JP 2005309432 A JP2005309432 A JP 2005309432A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
substrate
electric field
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005114867A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Takeshi Nishi
毅 西
Rumo Satake
瑠茂 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2005114867A priority Critical patent/JP2005309432A/en
Publication of JP2005309432A publication Critical patent/JP2005309432A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active matrix type liquid crystal optoelectronic device of what is called a lateral electric field drive system which drives a liquid crystal material with a lateral electric field parallel to a substrate, the optoelectronic device being constituted to have excellent display characteristics by reducing alignment defects of the liquid crystal material and variance of operations. <P>SOLUTION: The active matrix type liquid crystal optoelectronic device has an inverse stagger type thin film transistor, a 2nd substrate opposed to the top of a 1st substrate, and a liquid crystal layer 413 which is sandwiched between the 1st substrate and 2nd substrate and driven with an electric field between a drain electrode 408 and a common electrode 404, the active matrix type liquid crystal optoelectronic device being characterized in that the 2nd substrate is provided with a light-transmissive electrode material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、良好な電気特性と視野角特性を持ち、画面全体に均一な表示が得られる液晶電気光学装置に関する。   The present invention relates to a liquid crystal electro-optical device having good electrical characteristics and viewing angle characteristics and capable of obtaining uniform display on the entire screen.

液晶電気光学装置の視野角を広くする方法として、液晶に印加する電界の方向を、基板面にほぼ平行にする方式(以下、スーパーTFT方式と呼ぶ)が、例えば特開平6−160878により開示されている。この場合、1枚の基板上に形成されたソース電極、コモン電極間に電界を誘起させ、その電界方向に液晶分子を配向させている。また、特開平6−214244では、電極をセル厚の高さとすることで、液晶に印加する電界を均一にしている。   As a method for widening the viewing angle of the liquid crystal electro-optical device, a method in which the direction of the electric field applied to the liquid crystal is substantially parallel to the substrate surface (hereinafter referred to as a super TFT method) is disclosed, for example, in JP-A-6-160878. ing. In this case, an electric field is induced between the source electrode and the common electrode formed on one substrate, and liquid crystal molecules are aligned in the direction of the electric field. In Japanese Patent Laid-Open No. 6-214244, the electric field applied to the liquid crystal is made uniform by setting the electrode to the height of the cell thickness.

このような電気光学装置では、液晶分子長軸を基板に平行な状態を維持したままスイッチングするため、視野角による液晶の光学特性の変化が少ない。このため、視野角による光漏れ、コントラストの低下等が、従来のTN、STN方式に比べ小さい。   In such an electro-optical device, since the liquid crystal molecule major axis is switched while maintaining a state parallel to the substrate, the change in the optical characteristics of the liquid crystal due to the viewing angle is small. For this reason, the light leakage due to the viewing angle, the decrease in contrast, and the like are small compared to the conventional TN and STN systems.

しかしながら、従来用いられているスーパーTFT方式の電極は、台形、もしくは矩形の構造をしており、この電極から発生する電界が台形、もしくは矩形の頂点を境に、非連続的になっていた。これにより、液晶に印加される電界が、ある点を境に変化する。つまり、電界(電束密度)が台形、もしくは矩形の頂点上下で急激に変化する。このため、電界による液晶スイッチングがセル内で一様に行われず、電界OFF→ON状態、もしくはON→OFF状態への時間(それぞれ立ち上がり時間、立ち下がり時間と称する。)がセル内でばらつくという現象が見られた。   However, the conventionally used Super TFT type electrode has a trapezoidal or rectangular structure, and the electric field generated from this electrode is not continuous with the trapezoidal or rectangular apex as a boundary. Thereby, the electric field applied to the liquid crystal changes at a certain point. That is, the electric field (electric flux density) changes rapidly above and below the top of the trapezoid or rectangle. For this reason, the liquid crystal switching by the electric field is not uniformly performed in the cell, and the time from the electric field OFF → ON state or the ON → OFF state (referred to as rise time and fall time, respectively) varies in the cell. It was observed.

これは、横電界を利用して液晶駆動を行う、スーパーTFT方式において、特に顕著に現れる欠点である。   This is a defect that appears particularly conspicuously in the super TFT method in which liquid crystal driving is performed using a lateral electric field.

上記電界の非連続性を図1をもって説明する。ここでは簡単のため、絶縁性を示す基板(103)上に形成された、高さa、幅cの矩形断面かつ電極間隔が2bの一対の平行電極(101、102)間に、電圧を印加した場合の、電極周囲の電気力線の態様について述べる。(電荷の形成する電気力線については、電磁気学の著書、例えば永田一清著『電磁気学』、朝倉書店、及び後藤・山崎共編『詳解電磁気学演習』、共立出版などを参照。)なお、ここでは基板に平行かつ電極に垂直な方向をx軸、基板表面に対し垂直な方向をy軸とする。さらに、基板に平行な電極面がy=0となるように、原点を定義する。
(1)y<0(−b≦x≦b)、即ち電極に挟まれた領域。
電荷は電極表面(104、105)で一様に分布しているとみなせるため、電気力線(106)は電極に垂直(基板に平行)である。
(2)y>0、即ち電極上部の領域。
ここでは簡単のため、xy平面上での電気力線の態様を調べる。
電荷は電極表面(107、108)で一様に分布しているとみなせる。
y>0の領域の任意の点について、原点からの距離をr、rとx軸のなす角をθとする。また、zを複素平面上の点としてx、y及びr、θを用いて表すと、

Figure 2005309432
The discontinuity of the electric field will be described with reference to FIG. Here, for simplicity, a voltage is applied between a pair of parallel electrodes (101, 102) formed on an insulating substrate (103) having a rectangular cross section of height a and width c and an electrode interval of 2b. In this case, the manner of lines of electric force around the electrodes will be described. (Refer to the books of electromagnetism, such as Kazuyoshi Nagata, "Electromagnetism", Asakura Shoten, Goto-Yamazaki, "Detailed Electromagnetism Exercise", Kyoritsu Publishing, etc.) Here, the direction parallel to the substrate and perpendicular to the electrodes is taken as the x-axis, and the direction perpendicular to the substrate surface is taken as the y-axis. Further, the origin is defined so that the electrode plane parallel to the substrate becomes y = 0.
(1) y <0 (−b ≦ x ≦ b), that is, a region sandwiched between electrodes.
Since electric charges can be considered to be uniformly distributed on the electrode surfaces (104, 105), the electric lines of force (106) are perpendicular to the electrodes (parallel to the substrate).
(2) y> 0, that is, the region above the electrode.
Here, for the sake of simplicity, the state of the electric lines of force on the xy plane is examined.
It can be considered that the electric charges are uniformly distributed on the electrode surfaces (107, 108).
For any point in the region where y> 0, the distance from the origin is r, and the angle between r and the x axis is θ. In addition, when z is expressed as a point on the complex plane using x, y, r, and θ,
Figure 2005309432

の関係が成り立つ。
ここで、解析を容易にするため、wなる値を、
The relationship holds.
Here, in order to facilitate the analysis, the value w is

Figure 2005309432
Figure 2005309432

として定義する(Aは比例定数)。wの実部、虚部をそれぞれu、vとすると、

Figure 2005309432
(A is a proportionality constant). If the real part and the imaginary part of w are u and v, respectively,
Figure 2005309432

と表され、 And

Figure 2005309432
Figure 2005309432

となる。よって、 It becomes. Therefore,

Figure 2005309432
Figure 2005309432

と表される。
従って、w平面でu=一定で表される曲線群はxy平面ではr=一定の曲線群、つまり、原点を中心とした同心円群となる。
上記の結果について示したのが図1であり、電極側面と電極上面とで電界分布が異なることが分かる。
It is expressed.
Therefore, the curve group represented by u = constant on the w plane is a curve group having r = constant on the xy plane, that is, a concentric circle group centered on the origin.
FIG. 1 shows the above result, and it can be seen that the electric field distribution differs between the electrode side surface and the electrode upper surface.

ここでは、一例として断面が矩形の電極間の電界を示したが、断面が台形の電極間でも同様である。なぜならば、電界は電極面に垂直に形成されるものであるから、テーパー部の電界と基板に平行な部分の電界は、電極頂点で非連続となる。   Here, as an example, an electric field between electrodes having a rectangular cross section is shown, but the same applies to an electrode having a trapezoidal cross section. This is because the electric field is formed perpendicular to the electrode surface, and the electric field in the tapered portion and the electric field in the portion parallel to the substrate are discontinuous at the electrode apex.

このような、電極頂点での電界の非連続性は、画素微細化の際に無視できない欠点となる。これは微細化により電極数が増加し、電極間距離が小さくなると非連続的な電界が高密度に分布してしまうからである。   Such discontinuity of the electric field at the electrode apex becomes a disadvantage that cannot be ignored in pixel miniaturization. This is because the number of electrodes increases due to miniaturization, and a discontinuous electric field is distributed at a high density when the distance between the electrodes decreases.

上記問題の別の解決法としては、液晶にセル厚方向に一様に電界を印加するために電極をセル厚の高さにする発明が、特開平6−214244で提案されている。しかし極端に高さの高い電極を作製するには、以下の技術的困難が生じる。   As another solution to the above problem, Japanese Patent Laid-Open No. 6-214244 proposes an invention in which the electrode is made to have a cell thickness height in order to apply an electric field uniformly to the liquid crystal in the cell thickness direction. However, the following technical difficulties arise in producing an extremely high electrode.

第一に、電極の高さをセル厚程度とすると、電極のトップとベースで、横方向の電極厚の差が大きくなりやすい。横電界で液晶を駆動するスーパーTFT方式では電極厚の差は、即ち電極間距離の差となる。従って、セル厚方向の電界強度が同一画素内で異なるため液晶駆動が難しくなる。   First, if the height of the electrode is about the cell thickness, the difference between the electrode thicknesses in the lateral direction tends to increase between the top and the base of the electrode. In the super TFT method in which the liquid crystal is driven by a horizontal electric field, the difference in electrode thickness is a difference in distance between electrodes. Therefore, since the electric field strength in the cell thickness direction is different within the same pixel, it becomes difficult to drive the liquid crystal.

第二に、電極高さが極端に高いと、その上に形成される層のカバレッジが悪く、断線を起こしやすい。   Second, if the electrode height is extremely high, the coverage of the layer formed thereon is poor, and disconnection is likely to occur.

第三に、画素の微細化にあたっても、極端に高さの高い電極で、横方向の膜厚を薄くし大きなテーパー角を得るのは、困難である。   Third, even in the miniaturization of pixels, it is difficult to obtain a large taper angle by reducing the film thickness in the lateral direction with an extremely high electrode.

画素の微細化にあたり、上述の問題を解決するため、簡便な方法で作成でき、なおかつ非連続的な電界を発生しない電極構造が求められている。   In order to solve the above-described problems in pixel miniaturization, an electrode structure that can be produced by a simple method and that does not generate a discontinuous electric field is required.

上記課題を解決するために、本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が曲断面を持つことを特徴とする液晶電気光学装置である。
In order to solve the above problems, the present invention provides:
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a curved cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が、半円もしくは半楕円の断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a semicircular or semi-elliptical cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が曲断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a curved cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が、半円もしくは半楕円の断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a semicircular or semi-elliptical cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備え、
前記電極には非線型素子が接続された液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が曲断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
Electric field applying means for applying an electric field to the liquid crystal layer through the electrode;
A liquid crystal electro-optical device having a non-linear element connected to the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a curved cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備え、
前記電極には非線型素子が接続され、
前記基板には液晶材料を駆動する周辺駆動回路が形成された液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が曲断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
Electric field applying means for applying an electric field to the liquid crystal layer through the electrode;
A non-linear element is connected to the electrode,
A liquid crystal electro-optical device in which a peripheral driving circuit for driving a liquid crystal material is formed on the substrate,
In the liquid crystal electro-optical device, at least one of the electrodes has a curved cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備え、
前記電極には非線型素子が接続された液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が、半円もしくは半楕円の断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
Electric field applying means for applying an electric field to the liquid crystal layer through the electrode;
A liquid crystal electro-optical device having a non-linear element connected to the electrode,
In the liquid crystal electro-optical device, at least one of the electrodes has a semicircular or semi-elliptical cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極のうち液晶駆動用電極と共通電極は少なくとも一つ以上の同一基板に平行に形成された部分を有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備え、
前記電極には非線型素子が接続され、
前記基板には液晶材料を駆動する周辺駆動回路が形成された液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が、半円もしくは半楕円の断面を持つことを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
Of the electrodes, the liquid crystal driving electrode and the common electrode have at least one portion formed in parallel on the same substrate,
Electric field applying means for applying an electric field to the liquid crystal layer through the electrode;
A non-linear element is connected to the electrode,
A liquid crystal electro-optical device in which a peripheral driving circuit for driving a liquid crystal material is formed on the substrate,
In the liquid crystal electro-optical device, at least one of the electrodes has a semicircular or semi-elliptical cross section.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が曲断面を有し、
前記電極面周囲の電気力線の接線方向が、電極全面に渡り連続的に変化することを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
At least one of the electrodes has a curved cross section,
In the liquid crystal electro-optical device, the tangential direction of the electric lines of force around the electrode surface continuously changes over the entire surface of the electrode.

また本発明は、
少なくとも一方が透明な一対の基板と、
該基板の少なくともいずれか一方、もしくは両方に形成された電極と、
前記基板間に狭持された液晶層とを有し、
前記電極を介して液晶層に電界を印加する電界印加手段を備えた液晶電気光学装置であって、
前記電極のうち少なくとも一つ以上が、半円もしくは半楕円の断面を有し、
前記電極面周囲の電気力線の接線方向が、電極全面に渡り連続的に変化することを特徴とする液晶電気光学装置である。
The present invention also provides
A pair of substrates at least one of which is transparent;
An electrode formed on at least one or both of the substrates;
A liquid crystal layer sandwiched between the substrates,
A liquid crystal electro-optical device provided with an electric field applying means for applying an electric field to the liquid crystal layer through the electrode,
At least one of the electrodes has a semicircular or semi-elliptical cross section,
In the liquid crystal electro-optical device, the tangential direction of the electric lines of force around the electrode surface continuously changes over the entire surface of the electrode.

本明細書に開示する発明を利用した構成の一例を図4及び図5に示す。図4に示すのは、ネマチック液晶を用い、横方向電界で前記液晶材料を駆動し、前記駆動素子としてa−SiTFTを用いたアクティブマトリクス型の液晶電気光学装置の画素部の概略であり、図5は図4においてA−A′方向の断面を示したものである。   An example of a configuration using the invention disclosed in this specification is shown in FIGS. FIG. 4 shows an outline of a pixel portion of an active matrix type liquid crystal electro-optical device using nematic liquid crystal, driving the liquid crystal material by a lateral electric field, and using a-Si TFT as the drive element. 5 shows a cross section in the AA 'direction in FIG.

図4及び図5に示す構成において、401は基板、402は下地SiO2 膜、403はゲート電極、404はコモン電極(共通電極)、405はゲート絶縁膜、406はa−Si、407はソース電極、408はドレイン電極、409は保護膜、411は配向膜、412は偏光板、413は液晶層である。 4 and 5, 401 is a substrate, 402 is a base SiO 2 film, 403 is a gate electrode, 404 is a common electrode (common electrode), 405 is a gate insulating film, 406 is a-Si, and 407 is a source. 409 is a drain electrode, 409 is a protective film, 411 is an alignment film, 412 is a polarizing plate, and 413 is a liquid crystal layer.

本発明の液晶電気光学装置は、TFT基板上に形成されたドレイン電極及びコモン電極間の電界(横方向電界)強度を制御し、液晶材料を動作させるものである。   The liquid crystal electro-optical device of the present invention controls the electric field (lateral electric field) strength between the drain electrode and the common electrode formed on the TFT substrate to operate the liquid crystal material.

上記第一、第二の基板には、透光性を有し、かつ外力に対しある程度の強度を有する材料、例えばガラス、石英などの無機材料などが用いられる。TFT等を形成する基板(以下TFT基板とする)には、無アルカリガラスや石英ガラスを用いる。また、液晶電気光学装置の軽量化を目的とする場合、複屈折性の少ないフィルム、例えばPES(ポリエチレンサルフェート)などを用いることもできる。   For the first and second substrates, a material having translucency and a certain degree of strength against external force, for example, an inorganic material such as glass or quartz is used. Non-alkali glass or quartz glass is used for a substrate on which a TFT or the like is formed (hereinafter referred to as a TFT substrate). For the purpose of reducing the weight of the liquid crystal electro-optical device, a film having low birefringence, such as PES (polyethylene sulfate), can also be used.

また、液晶材料の駆動方法としてはマルチプレックス方式でもアクティブマトリクス方式でも良い。   The liquid crystal material may be driven by a multiplex method or an active matrix method.

マルチプレックス方式では第一の基板上に形成するのは表示用電極、基準電極の2種だけでよいが、アクティブマトリクス方式の場合、このほかにスイッチング素子として非線形素子、例えば薄膜トランジスタ(TFT)やダイオードを各画素毎に形成する。   In the multiplex method, only two types of display electrodes and reference electrodes need be formed on the first substrate. However, in the case of the active matrix method, other non-linear elements such as thin film transistors (TFTs) and diodes are also used as switching elements. Is formed for each pixel.

TFTとしては活性層にアモルファスシリコン又はポリ(多結晶)シリコンを用いたトランジスタを用いることが出来る。アクティブマトリクス方式の場合上記駆動素子の構成は、スタガー型、逆スタガー型といった公知の構成を利用することが出来る。また、ポリシリコンを用いたトランジスタを用いた場合、液晶材料を駆動する周辺駆動回路をTFTを作製した基板に形成することが可能である。周辺駆動回路はTFTを作製するのと同じプロセスで作製することが可能となる。この周辺駆動回路は、n−ch及びp−chトランジスタを組み合わせた相補型素子から形成される。   As the TFT, a transistor using amorphous silicon or poly (polycrystalline) silicon as an active layer can be used. In the case of the active matrix system, a known configuration such as a stagger type or an inverted stagger type can be used as the configuration of the driving element. In addition, when a transistor using polysilicon is used, a peripheral driver circuit for driving a liquid crystal material can be formed on a substrate on which a TFT is manufactured. The peripheral driver circuit can be manufactured by the same process as that for manufacturing the TFT. This peripheral drive circuit is formed of complementary elements combining n-ch and p-ch transistors.

前記素子電極としてはCr、Al、ITO、Taを使用することが出来る。また、電極断面は以下に示す方法によりなだらかな断面もしくは曲断面を有するようにする。本明細書に示す、なだらかな面もしくは曲面を持つ断面を作製する方法としては、ドライプロセス、ウエットプロセスのいずれの方法でも可能である。このうちドライプロセスでは、
(a)異方性プラズマエッチングと、等方性プラズマエッチングを組み合わせる方法
(b)マスクを用いプラズマ等方エッチングを行う方法
が挙げられる。
Cr, Al, ITO, Ta can be used as the element electrode. The electrode cross section is made to have a gentle cross section or a curved cross section by the following method. As a method for manufacturing a cross section having a smooth surface or a curved surface shown in this specification, any of a dry process and a wet process can be used. Of these, the dry process
(A) A method of combining anisotropic plasma etching and isotropic plasma etching (b) A method of performing plasma isotropic etching using a mask.

(a)の方法としては、電極にマスクをパターニングし、異方性プラズマエッチングを行う。次にマスクをとり、等方性プラズマエッチングを行わない部分にレジストを塗布する。その後、曲断面を持たせたい部分に、マスクのない状態で等方性プラズマエッチングを行う。これにより、凸部が削られ、なだらかな曲断面を持つ電極を作製する事が出来る。その後前記レジストを剥離する。また、(b)の方法としては、放電ガス電圧を適切に定めることで、きれいな円弧断面を得ることが出来る。   As the method (a), a mask is patterned on the electrode, and anisotropic plasma etching is performed. Next, a mask is removed, and a resist is applied to a portion where isotropic plasma etching is not performed. Thereafter, isotropic plasma etching is performed in a state without a mask on a portion where a curved cross section is desired. Thereby, the convex part is shaved and an electrode having a gentle curved cross section can be produced. Thereafter, the resist is peeled off. Further, as the method (b), it is possible to obtain a clean arc cross section by appropriately determining the discharge gas voltage.

一方、ウエットプロセスではまず、レジストとして、被エッチング電極とのエッチング選択比の差が、あまり変わらないものを使用する。またレジストはテーパー角が小さめのものを使用する。すると、ウエットな等方的エッチングにより、マスクと被エッチング電極は、同程度の速度で、エッチングされていく。これにより、電極頂点に丸みのある、なだらかな曲断面を持つ電極を作製する事が出来る。   On the other hand, in the wet process, first, a resist whose difference in etching selectivity with the electrode to be etched is not changed so much is used. A resist having a smaller taper angle is used. Then, the mask and the electrode to be etched are etched at a similar rate by wet isotropic etching. This makes it possible to produce an electrode with a rounded electrode vertex and a gently curved cross section.

上記方法は、なだらかな曲断面を持つ電極の作製方法の一例であり、なだらかな曲断面を持つ電極の作製方法は、これらの方法に限定されるわけではない。   The above method is an example of a method for manufacturing an electrode having a gentle curved section, and a method for manufacturing an electrode having a gentle curved section is not limited to these methods.

また上記電極材料を用いれば、上記方法により曲断面を形成後、電極表面に陽極酸化などの手法により電極材料を構成する金属の酸化膜を形成することで、これを層間絶縁膜とすることも可能である。これによれば、隣接する電極や電極パターンが重なりあうような構成となった場合でも電極間の絶縁性を向上することが可能となる。   If the above electrode material is used, after forming a curved section by the above method, an oxide film of metal constituting the electrode material is formed on the electrode surface by a technique such as anodic oxidation, so that this can be used as an interlayer insulating film. Is possible. This makes it possible to improve the insulation between the electrodes even when adjacent electrodes and electrode patterns overlap each other.

また、各層間絶縁膜、TFT保護膜としては酸化珪素(SiO2 )または窒化珪素(SiN)を用いることが可能である。 Further, silicon oxide (SiO 2 ) or silicon nitride (SiN) can be used for each interlayer insulating film and TFT protective film.

次に、対向基板についてはTFTを形成した基板と同種の材料を用いることが可能である。また、対向基板には特に電極を形成する必要はないが、場合によっては基板の一部もしくは全面に電極を形成しても構わない。この時の電極材料としては上記の金属の他、透光性を有する材料、例えばITO等を使用することが出来る。   Next, for the counter substrate, the same type of material as that of the substrate on which the TFT is formed can be used. In addition, although it is not necessary to form an electrode on the counter substrate, the electrode may be formed on a part or the entire surface of the substrate depending on circumstances. As an electrode material at this time, in addition to the above metal, a light-transmitting material such as ITO can be used.

また、対向基板上もしくはTFT基板あるいは両方の基板上にコントラスト向上のため表示に関わらない部分を遮光するため、Cr等の金属もしくは黒色の顔料が分散された樹脂材料などにより、ブラックマトリクスを形成する(図示せず)。さらに、カラー表示の場合には各画素に対応する位置にR(赤)、G(緑)、B(青)もしくはC(シアン)、M(マジェンダ)、Y(黄)のカラーフィルターを形成する。カラーフィルターの各色の配置はストライプ配置又はデルタ配置などが利用できる。   In addition, a black matrix is formed by using a resin material in which a metal such as Cr or a black pigment is dispersed in order to shield a portion not related to display on the counter substrate or the TFT substrate or both substrates in order to improve contrast. (Not shown). Further, in the case of color display, color filters of R (red), G (green), B (blue) or C (cyan), M (magenta), and Y (yellow) are formed at positions corresponding to each pixel. . The arrangement of each color of the color filter can be a stripe arrangement or a delta arrangement.

その後前記駆動素子が形成された基板及び対向基板上に、配向処理を施した。前記配向処理は液晶分子が基板に対して平行かつ一軸に配向するように行う。前記配向処理としては基板面を直接、もしくはナイロン、ポリイミド等の有機樹脂よりなる膜(配向膜)(411)を塗布後前記樹脂面上を、一方向に擦るラビング処理が有効である。   Thereafter, alignment treatment was performed on the substrate on which the driving element was formed and the counter substrate. The alignment treatment is performed so that the liquid crystal molecules are aligned parallel to the substrate and uniaxially. As the alignment treatment, a rubbing treatment is effective in which the substrate surface is rubbed in one direction directly after coating a film (alignment film) (411) made of an organic resin such as nylon or polyimide.

ラビング方向については使用する液晶材料(413)により異なり、TFT基板側は、誘電率異方性が正の材料の場合、電界に非平行、望ましくは電界と45゜をなす方向とする。さらにまた、誘電率異方性が負の材料の場合、電界に垂直でない方向、望ましくは電界と45゜をなす方向とする。また対向基板側のラビング処理は、TFT基板のラビング方向に平行、もしくは反平行をなすようになされる。   The rubbing direction differs depending on the liquid crystal material (413) to be used, and the TFT substrate side is non-parallel to the electric field, preferably 45 ° to the electric field when the dielectric anisotropy is positive. Furthermore, in the case of a material having a negative dielectric anisotropy, the direction is not perpendicular to the electric field, preferably 45 ° with the electric field. The rubbing process on the counter substrate side is performed in parallel or antiparallel to the rubbing direction of the TFT substrate.

このようにして作製された前記一対の基板は、一定の間隔をもって重ね合わせ、これを液晶セルとする。前記一対の基板のいずれか一方に、接着剤としてシール剤(図示せず)を所望のパターンに形成する。シール剤としては熱硬化型、紫外線硬化型等の樹脂材料を使用する。前記樹脂材料としてはエポキシ系、ウレタンアクリレート系などの材料を使用することが可能である。また、他方の基板には前記一対の基板の間隔をセル全体に一定に保持するためスペーサー(図示せず)を散布する。シール剤硬化後、液晶材料を液晶セルに真空注入法等により注入する。   The pair of substrates thus manufactured are overlapped at a constant interval to form a liquid crystal cell. A sealing agent (not shown) is formed in a desired pattern as an adhesive on one of the pair of substrates. As the sealant, a resin material such as a thermosetting type or an ultraviolet curable type is used. As the resin material, it is possible to use an epoxy-based material, a urethane acrylate-based material, or the like. Further, a spacer (not shown) is sprayed on the other substrate in order to keep the distance between the pair of substrates constant throughout the cell. After the sealant is cured, the liquid crystal material is injected into the liquid crystal cell by a vacuum injection method or the like.

本発明で利用できる液晶材料としては、ネマチック、コレステリック、スメクチック性を示す材料が挙げられるが、特にネマチック材料を用いることが望ましい。さらに、ネマチック液晶の中でも、駆動方法によって誘電異方性が正もしくは負を示すものを適宜選択して使用する。さらに、複屈折の影響を小さくするため、屈折率異方性は小さいものが望ましい。   Examples of the liquid crystal material that can be used in the present invention include materials exhibiting nematic, cholesteric, and smectic properties, and it is particularly desirable to use a nematic material. Furthermore, among the nematic liquid crystals, those having a dielectric anisotropy that is positive or negative depending on the driving method are appropriately selected and used. Furthermore, in order to reduce the influence of birefringence, it is desirable that the refractive index anisotropy is small.

また、本発明の液晶電気光学装置は液晶材料の複屈折性を利用して表示を行うため、一対の偏光板(412)をその光軸が直交するように配置し、前記一対の偏光板の間に液晶セルを挟む。この時液晶材料の配向方向は、検光子即ち光源に近い方の偏光板の光軸に平行である。   In addition, since the liquid crystal electro-optical device of the present invention performs display using the birefringence of the liquid crystal material, a pair of polarizing plates (412) are arranged so that their optical axes are orthogonal to each other, and the pair of polarizing plates is interposed between the pair of polarizing plates. The liquid crystal cell is sandwiched. At this time, the orientation direction of the liquid crystal material is parallel to the optical axis of the polarizing plate closer to the analyzer, that is, the light source.

このようにして作製された液晶電気光学装置について、液晶材料の配向は、無電界時には液晶材料は長軸を基板に平行かつラビング方向に平行に一軸配向している。次に、電界印加時は、配向規制力が強い配向膜界面近傍の液晶分子は、ラビング方向に平行な向きを維持し、配向規制力が弱い液晶層中央近傍の液晶分子は電界により光軸が変化する。誘電異方性が正の液晶材料を用いた場合には液晶分子の長軸が電界方向に対して平行になるような向きとなり、誘電異方性が負の場合には液晶分子の長軸が電界方向に対して垂直になるような向きとなる。   In the liquid crystal electro-optical device manufactured in this way, the liquid crystal material is aligned uniaxially with the major axis parallel to the substrate and parallel to the rubbing direction when there is no electric field. Next, when an electric field is applied, the liquid crystal molecules in the vicinity of the alignment film interface having a strong alignment regulating force maintain the orientation parallel to the rubbing direction, and the liquid crystal molecules in the vicinity of the center of the liquid crystal layer having a weak alignment regulating force are aligned with the optical axis by the electric field. Change. When a liquid crystal material having a positive dielectric anisotropy is used, the major axis of the liquid crystal molecule is oriented in parallel to the electric field direction. When the dielectric anisotropy is negative, the major axis of the liquid crystal molecule is The orientation is perpendicular to the electric field direction.

このため、液晶電気光学装置を透過する光について、無電界時に液晶材料の配向はセル内で検光子の光軸に平行となるため、入射光は偏光子を透過できず、この時の透過光量はゼロとなる。一方、電界印加時は液晶材料の光軸の向きが変化することで入射光は楕円偏光となり、偏光子を透過する。   For this reason, with respect to the light transmitted through the liquid crystal electro-optical device, since the orientation of the liquid crystal material is parallel to the optical axis of the analyzer in the cell when there is no electric field, the incident light cannot pass through the polarizer. Becomes zero. On the other hand, when the electric field is applied, the direction of the optical axis of the liquid crystal material changes, so that incident light becomes elliptically polarized light and passes through the polarizer.

なお、上記には偏光板を2枚使用した構成としたが、前記一対の基板のうちいずれか一方に金属等からなる反射板を形成すれば、偏光板を1枚しか用いずに液晶電気光学装置を作製することが可能となり、明るいディスプレイを実現できる。また上記金属性の反射板は画素等の電極を兼ねることも可能である。   In the above description, two polarizing plates are used. However, if a reflector made of metal or the like is formed on one of the pair of substrates, only one polarizing plate is used and the liquid crystal electro-optic is used. The device can be manufactured and a bright display can be realized. The metallic reflector can also serve as an electrode for a pixel or the like.

(作用)
本明細書に示す液晶電気光学装置の構成とすると、従来の液晶電気光学装置において用いられた矩形、もしくは台形断面を有する電極に比べ、電極周囲の電界は連続的になる。この電界の連続性は、電極に電圧を印加した場合の、電極周囲の電気力線の態様を見れば明らかである。以下、図2をもって電極周囲の電気力線の態様を詳細に説明する。
(Function)
With the configuration of the liquid crystal electro-optical device shown in this specification, the electric field around the electrode is continuous as compared with the electrode having a rectangular or trapezoidal cross section used in the conventional liquid crystal electro-optical device. This continuity of the electric field is apparent from the appearance of lines of electric force around the electrode when a voltage is applied to the electrode. Hereinafter, the aspect of electric lines of force around the electrodes will be described in detail with reference to FIG.

まず、簡単のため点電荷q1 、q2 がO1 、O2 に存在する場合を考える。
ここでは、O1 、O2 を結ぶ直線をx軸、x軸に垂直な方向をy軸とする。また、O1 、O2 の中点を原点と定義する。
図2に示されるように任意のP点を通る電気力線を考える。これは、PとO1 、O2 軸の作る平面上にある。
この電気力線をO1 、O2 軸のまわりに、一回転させると一つの回転対称面が得られるが、この回転面の任意の断面を通る電束は一定となるはずである。
そこで、Pを通る垂直断面Sを貫く電束を求めてみる。
1 P及びO2 PがO1 2 軸となす角をそれぞれθ1 、θ2 とすると、q1 によるSを通る電束ψ1 は、
First, for the sake of simplicity, consider the case where point charges q 1 and q 2 are present in O 1 and O 2 .
Here, the straight line connecting O 1 and O 2 is the x axis, and the direction perpendicular to the x axis is the y axis. The midpoint of O 1 and O 2 is defined as the origin.
Consider electric lines of force that pass through an arbitrary point P as shown in FIG. This is on the plane formed by the P, O 1 and O 2 axes.
When this electric field line is rotated once around the O 1 and O 2 axes, one rotationally symmetric surface is obtained, but the electric flux passing through an arbitrary cross section of this rotating surface should be constant.
Therefore, the electric flux passing through the vertical cross section S passing through P is obtained.
O 1 P and O 2 P is O 1 O 2 axis and angle, respectively theta 1, When theta 2, the electric flux [psi 1 through S by q 1 is

Figure 2005309432
Figure 2005309432

2 によるSを通る電束ψ2 は、 The electric flux ψ 2 passing through S due to q 2 is

Figure 2005309432
Figure 2005309432

となり、従って、Sを通る全電束ψは、   Therefore, the total electric flux ψ passing through S is

Figure 2005309432
Figure 2005309432

と表される。よって、一つの電気力線上では、 It is expressed. Therefore, on one electric field line,

Figure 2005309432
Figure 2005309432

となる。 It becomes.

Figure 2005309432
Figure 2005309432

なら、電気力線は、 Then, the electric field lines are

Figure 2005309432
Figure 2005309432

となる関係を持つ。図3には前記一対の点電荷が形成する電気力線(110)、及び等電位面(111)を示した。 Have a relationship. FIG. 3 shows the lines of electric force (110) formed by the pair of point charges and the equipotential surface (111).

上記の電気力線の分布は、半径aの導体表面に上記点電荷と同じ電荷量の電荷が分布しているとしても変わりはない。さらに、y≧0の領域は、半円形の二つの電極の作り出す電界として近似する事が可能である。従って、電極断面が半円形であれば電気力線の分布は、セル厚方向に対して連続になる。   The distribution of the lines of electric force does not change even if charges having the same charge amount as the point charges are distributed on the surface of the conductor having the radius a. Furthermore, the region of y ≧ 0 can be approximated as an electric field generated by two semicircular electrodes. Therefore, if the electrode cross section is semicircular, the distribution of the electric lines of force is continuous in the cell thickness direction.

上記では一例として電極断面全体が円の曲率を利用した形状を示したが、これに限定されることはなく、楕円の曲率を利用したものでも同様の効果が得られる。また、断面形状が正半円なだけでなく、円弧をなすようにしても同様の効果が得られる。さらに電極のエッジ断面が円弧等の曲面を有するようにしても良い。もちろん、境界変化の緩やかな多角形形状を有する断面を持つ電極でも良い。   In the above description, the entire electrode cross section has a shape using the curvature of a circle as an example. However, the present invention is not limited to this, and the same effect can be obtained by using an ellipse curvature. Further, the same effect can be obtained not only when the cross-sectional shape is a regular semicircle but also when it is formed as an arc. Furthermore, the edge cross section of the electrode may have a curved surface such as an arc. Of course, an electrode having a polygonal shape with a gradual boundary change may be used.

さらに、なだらかな曲断面を持つ電極等薄膜の上に成膜される膜は、薄膜の丸みのため、カバレッジも良好である。そのため、カバレッジの悪さに起因する、不純物の混入、断線等を防ぐ効果もある。   Furthermore, a film formed on a thin film such as an electrode having a gentle curved section has good coverage due to the roundness of the thin film. For this reason, there is an effect of preventing contamination of impurities, disconnection, and the like due to poor coverage.

なお、電極断面を曲面もしくはなだらかな断面とするという本発明の技術は、上述のa−Si型TFTだけではなく、poly−Si型TFTにも利用出来ることはいうまでもない。   Needless to say, the technique of the present invention in which the electrode cross section is a curved surface or a gentle cross section can be used not only for the a-Si type TFT described above but also for a poly-Si type TFT.

特に、poly−SiをTFT活性層に用いた場合は、a−SiをTFT活性層に用いた場合に比べ活性層の移動度が大きく、a−Siと同等の特性をより小さい素子領域で得られるため、各素子の微細化、ひいては高開口率化が可能となる。また、横電界印加にあたっても、キャリヤ移動度の大きいpoly−SiをTFT活性層に用いた場合の方が、高速応答が実現できる。さらに、poly−Siを用いた場合、基板上に液晶材料を駆動するための周辺駆動回路をも形成することが可能となり、装置作製プロセスの低減、歩留りの向上、装置価格の低下に寄与する。   In particular, when poly-Si is used for the TFT active layer, the mobility of the active layer is larger than when a-Si is used for the TFT active layer, and characteristics equivalent to a-Si are obtained in a smaller element region. Therefore, each element can be miniaturized and, consequently, the aperture ratio can be increased. In addition, when applying a lateral electric field, a high-speed response can be realized when poly-Si having a high carrier mobility is used for the TFT active layer. Further, when poly-Si is used, a peripheral driver circuit for driving a liquid crystal material can be formed on the substrate, which contributes to a reduction in device manufacturing process, an improvement in yield, and a reduction in device price.

なお、本発明では、液晶材料に横電界を印加する方式の液晶電気光学装置について述べたが、これに限ることなく、例えば従来のTN方式等の縦電界を印加する方式の液晶電気光学装置に用いることでも、端部の電界の乱れを低減することが出来、また、カバレッジの良い電気光学装置を作製することが出来る。
以下に、本発明の実施例を挙げる。
In the present invention, a liquid crystal electro-optical device that applies a lateral electric field to a liquid crystal material has been described. However, the present invention is not limited to this, and for example, a conventional liquid crystal electro-optical device that applies a vertical electric field such as a TN method. Also by using, it is possible to reduce the disturbance of the electric field at the end and to manufacture an electro-optical device with good coverage.
Examples of the present invention will be given below.

上記で述べたように本発明は、従来の横電界駆動方式の液晶電気光学装置と比べ、液晶の立ち上がり特性がよく、簡便な工程で液晶電気光学装置が得られる。さらに本発明は、画素部の微細化にも対応できる。   As described above, the liquid crystal electro-optical device according to the present invention has better liquid crystal start-up characteristics than a conventional lateral electric field drive type liquid crystal electro-optical device, and can be obtained in a simple process. Furthermore, the present invention can cope with the miniaturization of the pixel portion.

絶縁基板としてコーニング#7059(401)上に下地酸化膜(402) として厚さ1000〜3000Åの酸化珪素膜を形成した。この酸化珪素膜の形成方法としては、酸素雰囲気中でのスパッタ法やプラズマCVD法を用いればよい。その上にCrを1000〜5000Å成膜し、パターニングした。その後、レジストをマスクとして用い等方性プラズマエッチングを行った。この時、放電ガス電圧を適切に設定し、電極に曲面を持たせた。これにより、ゲート電極(403)、コモン電極(共通電極)(404)を形成した。   A silicon oxide film having a thickness of 1000 to 3000 mm was formed as a base oxide film (402) on Corning # 7059 (401) as an insulating substrate. As a method for forming this silicon oxide film, a sputtering method or a plasma CVD method in an oxygen atmosphere may be used. On top of that, 1000 to 5000 liters of Cr was formed and patterned. Thereafter, isotropic plasma etching was performed using the resist as a mask. At this time, the discharge gas voltage was set appropriately, and the electrode was curved. Thus, a gate electrode (403) and a common electrode (common electrode) (404) were formed.

次にこれらの電極を覆うように、酸化珪素(SiO2 )よりなるゲート絶縁膜(405)を作製した。これは、窒化珪素(SiN)でも構わない。ゲート電極上にゲート絶縁膜を介して非晶質シリコン膜(406)を形成した。前記非晶質シリコン膜のパターンの一部に重畳するように、Alよりなるソース電極(407)、ドレイン電極(408)を形成した。この時、レジストをマスクとして用い等方性プラズマエッチングを行い、放電ガス電圧を適切に設定し、電極に曲面を持たせた。次にTFT保護膜として酸化珪素絶縁膜(409)を形成した。この絶縁膜はSiN膜でも構わない。 Next, a gate insulating film (405) made of silicon oxide (SiO 2 ) was produced so as to cover these electrodes. This may be silicon nitride (SiN). An amorphous silicon film (406) was formed on the gate electrode through a gate insulating film. A source electrode (407) and a drain electrode (408) made of Al were formed so as to overlap a part of the pattern of the amorphous silicon film. At this time, isotropic plasma etching was performed using the resist as a mask, the discharge gas voltage was set appropriately, and the electrode was curved. Next, a silicon oxide insulating film (409) was formed as a TFT protective film. This insulating film may be a SiN film.

また、対向基板上もしくはTFT基板あるいは両方の基板上には、コントラスト向上のため表示に関わらない部分を遮光するため、Cr等の金属もしくは黒色の顔料が分散された樹脂材料などにより、ブラックマトリクスを形成した。   In addition, on the counter substrate or the TFT substrate or both substrates, a black matrix is formed with a resin material in which a metal such as Cr or a black pigment is dispersed in order to shield a portion not related to display in order to improve contrast. Formed.

その後、TFTを形成した基板及び対向基板に、ポリイミドよりなる配向膜(411)を形成した。配向膜としてはポリイミドを公知のスピンコート法もしくはDIP法などにより形成した。次に配向膜表面をラビングした。   Thereafter, an alignment film (411) made of polyimide was formed on the substrate on which the TFT was formed and the counter substrate. As the alignment film, polyimide was formed by a known spin coating method or DIP method. Next, the alignment film surface was rubbed.

ラビング方向については使用する液晶材料により異なり、TFT基板側は、誘電率異方性が正の材料の場合、電界に非平行、望ましくは電界と45゜をなす方向とする。また、誘電率異方性が負の材料の場合、電界に垂直でない方向、望ましくは電界と45゜をなす方向とする。また対向基板側のラビング処理は、TFT基板のラビング方向に平行、もしくは反平行をなすようになされる。   The rubbing direction differs depending on the liquid crystal material used, and the TFT substrate side is not parallel to the electric field, preferably 45 ° to the electric field when the dielectric anisotropy is positive. In the case of a material having a negative dielectric anisotropy, the direction is not perpendicular to the electric field, preferably a direction that forms 45 ° with the electric field. The rubbing process on the counter substrate side is performed in parallel or antiparallel to the rubbing direction of the TFT substrate.

このようにして形成されたTFT基板と対向基板を重ね合わせて液晶パネルを形成した。前記一対の基板は、基板間に直径3μmの球状スペーサーを挟むことでパネル面内全体で均一な基板間隔となるようにした。また、前記一対に基板を接着固定するためにエポキシ系の接着剤でシールした。シールのパターンは画素領域、周辺駆動回路領域を囲むようにした。この後所定の形状に前記一対の基板を切断した後、基板間に液晶材料を注入した。   The TFT substrate thus formed and the counter substrate were overlapped to form a liquid crystal panel. The pair of substrates was made to have a uniform substrate spacing over the entire panel surface by sandwiching a spherical spacer having a diameter of 3 μm between the substrates. Further, in order to bond and fix the substrates to the pair, they were sealed with an epoxy adhesive. The seal pattern surrounds the pixel region and the peripheral drive circuit region. Then, after cutting the pair of substrates into a predetermined shape, a liquid crystal material was injected between the substrates.

次に偏光板(412)を基板の外側に二枚貼り合わせた。偏光板の配置ついて、一対の偏光板をその光軸が直交するように配置し、いずれか一方の偏光板の光軸をラビング方向に平行にした。   Next, two polarizing plates (412) were bonded to the outside of the substrate. Regarding the arrangement of the polarizing plates, a pair of polarizing plates were arranged so that their optical axes were orthogonal to each other, and the optical axis of one of the polarizing plates was made parallel to the rubbing direction.

この液晶電気光学装置の光学特性を測定したところ、従来の電極形状からなる液晶ディスプレイより、立ち上がり特性のバラツキの少ない良好な表示が得られた。   When the optical characteristics of the liquid crystal electro-optical device were measured, a good display with less variation in the start-up characteristics was obtained than a liquid crystal display having a conventional electrode shape.

本実施例では、周辺駆動回路をも基板上に形成するモノリシック型アクティブマトリクス回路とした。この制作工程について、図6及び図7を用いて説明する。図6は、本実施例画素部周辺の概略図である。また、図7は、図6のB−B′−B′′の断面を示したものであり、左側に駆動回路のTFTの作製工程を、右側にアクティブマトリクス回路のTFTの作製工程をそれぞれ示した。なお、この工程は低温ポリシリコンプロセスのものである。   In this embodiment, a monolithic active matrix circuit in which the peripheral drive circuit is also formed on the substrate is used. This production process will be described with reference to FIGS. FIG. 6 is a schematic view of the periphery of the pixel portion of this embodiment. FIG. 7 is a cross-sectional view taken along the line BB′-B ″ of FIG. 6. The left side shows the TFT manufacturing process of the drive circuit, and the right side shows the TFT manufacturing process of the active matrix circuit. It was. This process is for the low temperature polysilicon process.

まず、第一の絶縁基板(601)としてコーニング#1737の上に、下地酸化膜(402)を形成した。この酸化珪素膜の形成方法は、実施例1に示した方法と同じでよい。   First, a base oxide film (402) was formed on Corning # 1737 as a first insulating substrate (601). The method for forming this silicon oxide film may be the same as the method shown in the first embodiment.

その後、プラズマCVD法やLPCVD法によってアモルファスのシリコン膜を300〜1500Å、好ましくは500〜1000Åに形成した。そして、500℃以上、好ましくは、500〜600℃の温度で熱アニールを行い、シリコン膜を結晶化させた、もしくは、結晶性を高めた。熱アニールによって結晶化ののち、光(レーザーなど)アニールをおこなって、さらに結晶化を高めてもよい。また、熱アニールによる結晶化の際に特開平6−244103、同6−244104に記述されているように、ニッケル等のシリコンの結晶化を促進させる元素(触媒元素)を添加してもよい。   Thereafter, an amorphous silicon film was formed to 300 to 1500 mm, preferably 500 to 1000 mm, by plasma CVD or LPCVD. Then, thermal annealing was performed at a temperature of 500 ° C. or higher, preferably 500 to 600 ° C., to crystallize the silicon film or improve the crystallinity. After crystallization by thermal annealing, light (laser or the like) annealing may be performed to further increase crystallization. Further, at the time of crystallization by thermal annealing, as described in JP-A-6-244103 and 6-244104, an element (catalytic element) that promotes crystallization of silicon such as nickel may be added.

次にシリコン膜をエッチングして、島状の駆動回路のTFT の活性層(602)(Pチャネル型TFT用)、(603)(Nチャネル型TFT用)とマトリクス回路のTFT(画素TFT) の活性層(604)を形成した。さらに、酸素雰囲気中でのスパッタ法によって厚さ500〜2000Åの酸化珪素のゲート絶縁膜(605)を形成した。ゲート絶縁膜の形成方法としては、プラズマCVD法を用いてもよい。プラズマCVD法によって酸化珪素膜を形成する場合には、原料ガスとして、一酸化二窒素(N2 O)もしくは酸素(O2 )とモノシラン(SiH4 ) を用いることが好ましかった。 Next, the silicon film is etched, and the active layer (602) (for P-channel TFT) and (603) (for N-channel TFT) of the TFT of the island-shaped drive circuit and the TFT (pixel TFT) of the matrix circuit An active layer (604) was formed. Further, a silicon oxide gate insulating film (605) having a thickness of 500 to 2000 mm was formed by sputtering in an oxygen atmosphere. As a method for forming the gate insulating film, a plasma CVD method may be used. When forming a silicon oxide film by plasma CVD, it was preferable to use dinitrogen monoxide (N 2 O) or oxygen (O 2 ) and monosilane (SiH 4 ) as a source gas.

その後、厚さ2000〜6000Åのアルミニウムをスパッタ法によって基板全面に形成した。ここでアルミニウムはその後の熱プロセスによってヒロックが発生するのを防止するため、シリコンまたはスカンジウム、パラジウムなどを含有するものを用いてもよい。そして、等方性プラズマエッチングを行いゲート電極(606、607、608)と、コモン電極(609)(共通電極)を形成した(図7(A))。この時、放電ガス電圧を適切に設定し、電極に曲面を持たせた。その後、イオンドーピング法によって、全ての島状活性層に、ゲート電極をマスクとして自己整合的に、フォスフィン(PH3 )をドーピングガスとして、燐が注入される。ドーズ量は1×1012〜5×1013原子/cm2 する。
この結果、弱いN型領域(610、611、612) が形成された。(図7(B ))
Thereafter, aluminum having a thickness of 2000 to 6000 mm was formed on the entire surface of the substrate by sputtering. Here, aluminum may contain silicon, scandium, palladium, or the like in order to prevent hillocks from being generated by a subsequent thermal process. Then, isotropic plasma etching was performed to form gate electrodes (606, 607, 608) and a common electrode (609) (common electrode) (FIG. 7A). At this time, the discharge gas voltage was set appropriately, and the electrode was curved. Thereafter, phosphorus is implanted into all island-like active layers by ion doping in a self-aligning manner using the gate electrode as a mask and phosphine (PH 3 ) as a doping gas. The dose is 1 × 10 12 to 5 × 10 13 atoms / cm 2 .
As a result, weak N-type regions (610, 611, 612) were formed. (Fig. 7 (B))

次にPチャネル型の活性層を覆うフォトレジストのマスク(613)及び画素TFTの活性層(614)のうち、ゲート電極に平行にゲート電極(608)の端から3μm離れた部分まで覆うフォトレジストのマスク(614) が形成される。
そして、再びイオンドーピング法によってフォスフィンをドーピングガスとして燐を注入する。ドーズ量は1×1014〜5×1015原子/cm2 とする。この結果として、強いN型領域(ソース、ドレイン)(615、616)が形成される。画素TFT上のフォトレジスト(614)に覆われていた領域(617)は、今回のドーピングでは燐が注入されないので、弱いN型のままとなる。(図7(C ))
Next, of the photoresist mask (613) covering the P-channel type active layer and the active layer (614) of the pixel TFT, the photoresist covering a portion 3 μm away from the end of the gate electrode (608) parallel to the gate electrode. The mask (614) is formed.
Then, phosphorus is implanted again using phosphine as a doping gas by ion doping. The dose is 1 × 10 14 to 5 × 10 15 atoms / cm 2 . As a result, strong N-type regions (source, drain) (615, 616) are formed. The region (617) covered with the photoresist (614) on the pixel TFT remains weak N-type because phosphorus is not implanted in this doping. (Fig. 7 (C))

次に、Nチャネル型TFTの活性層(603、604)をフォトレジストのマスク(618)で覆い、ジボラン(B2 6 )をドーピングガスとして、イオンドーピング法により、島状領域(602)に硼素が注入される。ドーズ量は5×1014〜8×1015原子/cm2 とする。 このドーピングでは、硼素のドーズ量が図7(C)における燐のドーズ量が上回るため、先に形成されていた弱いN型領域(610)は強いP型領域(619)に反転する。
以上のドーピングにより、強いN型領域(ソース/ドレイン)(615、616)、強いP型領域(ソース/ドレイン)(619)、弱いN型領域(低濃度不純物領域)(617)が形成される。(図7(D))
Next, the active layer (603, 604) of the N-channel TFT is covered with a photoresist mask (618), and diborane (B 2 H 6 ) is used as a doping gas to form the island region (602) by ion doping. Boron is injected. The dose is 5 × 10 14 to 8 × 10 15 atoms / cm 2 . In this doping, since the dose amount of boron exceeds the dose amount of phosphorus in FIG. 7C, the weak N-type region (610) formed previously is inverted to the strong P-type region (619).
By the above doping, strong N-type regions (source / drain) (615, 616), strong P-type regions (source / drain) (619), and weak N-type regions (low-concentration impurity regions) (617) are formed. . (Fig. 7 (D))

その後、450〜850℃で0. 5〜3時間の熱アニールを施すことにより、ドーピングによるダメージを回復せしめ、ドーピング不純物を活性化、シリコンの結晶性を回復させた。その後、全面に層間絶縁物(620)として、プラズマCVD法によって酸化珪素膜を厚さ3000〜6000Å形成した。これは、窒化珪素膜あるいは酸化珪素膜と窒化珪素膜の多層膜であってもよい。そして、層間絶縁膜(620)をウエットエッチング法またはドライエッチング法によって、エッチングして、ソース/ドレインにコンタクトホールを形成した。   Thereafter, thermal annealing was performed at 450 to 850 ° C. for 0.5 to 3 hours to recover the damage caused by doping, to activate the doping impurities, and to recover the crystallinity of silicon. Thereafter, a silicon oxide film having a thickness of 3000 to 6000 mm was formed on the entire surface as an interlayer insulator (620) by plasma CVD. This may be a silicon nitride film or a multilayer film of a silicon oxide film and a silicon nitride film. Then, the interlayer insulating film (620) was etched by wet etching or dry etching to form contact holes in the source / drain.

そして、スパッタ法によって厚さ2000〜6000Åのアルミニウム膜、もしくはチタンとアルミニウムの多層膜を形成する。これをレジストマスクとして用い等方性プラズマエッチングした。この時、放電ガス電圧を適切に設定し、電極に曲面を持たせ、周辺回路の電極・配線(621、622、623)および画素TFTの電極・配線(624、625)を形成した。
さらに、プラズマCVD法によって、厚さ1000〜3000Åの窒化珪素膜(626)が層間膜として形成された。(図7(E))
Then, an aluminum film having a thickness of 2000 to 6000 mm or a multilayer film of titanium and aluminum is formed by sputtering. This was used as a resist mask for isotropic plasma etching. At this time, the discharge gas voltage was set appropriately, the electrodes were curved, and the peripheral circuit electrodes / wirings (621, 622, 623) and the pixel TFT electrodes / wirings (624, 625) were formed.
Further, a silicon nitride film (626) having a thickness of 1000 to 3000 mm was formed as an interlayer film by plasma CVD. (Fig. 7 (E))

以下、実施例1と同様な方法で、液晶セルを作製した。ここで、シールのパターンは画素領域及び周辺駆動回路領域を囲むようなパターンとした。さらにこの後、実施例1と同様に一対の基板上に偏光板それぞれ貼り付け、液晶電気光学装置とした。   Thereafter, a liquid crystal cell was produced in the same manner as in Example 1. Here, the seal pattern is a pattern surrounding the pixel region and the peripheral drive circuit region. Thereafter, in the same manner as in Example 1, each of the polarizing plates was pasted onto a pair of substrates to obtain a liquid crystal electro-optical device.

この液晶電気光学装置の光学特性を測定したところ、従来の電極形状からなる液晶ディスプレイより、立ち上がり特性のバラツキの少ない良好な表示が得られた。   When the optical characteristics of the liquid crystal electro-optical device were measured, a good display with less variation in the start-up characteristics was obtained than a liquid crystal display having a conventional electrode shape.

本実施例における構成とすれば、駆動回路を画素部TFTと同一基板内に作製しているため、作製コストが少なくてすむという利点がある。   The configuration in this embodiment has an advantage that the manufacturing cost can be reduced because the driving circuit is manufactured on the same substrate as the pixel portion TFT.

従来の液晶電気光学装置において、電極間に電界が印加されたときの電気力線を示す。In a conventional liquid crystal electro-optical device, electric lines of force when an electric field is applied between electrodes are shown. 二つの点電荷が形成する電気力線及び等電位面の簡略図を示す。A simplified diagram of the electric field lines and equipotential surfaces formed by two point charges is shown. 曲断面を有する一対の電極周囲の電気力線を示す。The electric lines of force around a pair of electrodes having a curved cross section are shown. 本発明の実施例1における液晶電気光学装置の画素領域の概略を示す。1 illustrates an outline of a pixel region of a liquid crystal electro-optical device according to Embodiment 1 of the present invention. 本発明の実施例1における液晶電気光学装置の断面の概略を示す。1 shows an outline of a cross section of a liquid crystal electro-optical device in Example 1 of the present invention. 本発明の実施例2における液晶電気光学装置の画素領域の概略を示す 。6 shows an outline of a pixel region of a liquid crystal electro-optical device in Example 2 of the present invention. 本発明の実施例2における液晶電気光学装置の断面の概略を示す。FIG. 3 shows a schematic cross section of a liquid crystal electro-optical device according to Example 2 of the present invention. FIG.

符号の説明Explanation of symbols

101、102 電極
103 基板表面
104、105 電極側面
106、109、110 電気力線
107、108 電極上面
111 等電位面
401、601 基板
402 下地膜
403 ゲート電極
404 コモン電極
405 ゲート絶縁膜
406 a−Siシリコン膜
407 ソース電極
408 ドレイン電極
409 TFT保護膜
411 配向膜
412 偏光板
413 液晶層
602、603、604 活性層
605 ゲート絶縁膜(酸化珪素)
606、607、608 ゲート線
608 コモン(共通)電極
610、611、612 弱いN型領域
613、614 フォトレジストのマスク
615、616 強いN型領域(ソース/ドレイン)
617 低濃度不純物領域
618 フォトレジストのマスク
619 強いP型領域(ソース/ドレイン)
620 層間絶縁膜
621〜625 周辺駆動回路、画素TFTの電極・配線
626 窒化珪素膜
101, 102 Electrode 103 Substrate surface 104, 105 Electrode side surface 106, 109, 110 Electric field lines 107, 108 Electrode upper surface 111 Equipotential surface 401, 601 Substrate 402 Base film 403 Gate electrode 404 Common electrode 405 Gate insulating film 406 a-Si Silicon film 407 Source electrode 408 Drain electrode 409 TFT protective film 411 Alignment film 412 Polarizing plate 413 Liquid crystal layer 602, 603, 604 Active layer 605 Gate insulating film (silicon oxide)
606, 607, 608 Gate line 608 Common (common) electrodes 610, 611, 612 Weak N-type regions 613, 614 Photoresist masks 615, 616 Strong N-type regions (source / drain)
617 Low-concentration impurity region 618 Photoresist mask 619 Strong P-type region (source / drain)
620 Interlayer insulating films 621 to 625 Peripheral drive circuit, pixel TFT electrode / wiring 626 Silicon nitride film

Claims (6)

第1の基板上に設けられたゲート電極、及びコモン電極と、
前記ゲート電極を覆うように設けられたゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極上に設けられた半導体膜と、
前記半導体膜の一部に重畳するように設けられたソース電極及びドレイン電極と、を有する逆スタガー型の薄膜トランジスタと、
前記第1の基板上と対向する第2の基板と、
前記第1の基板と前記第2の基板の間に挟持され、前記ドレイン電極と前記コモン電極との間の電界によって駆動される液晶層と、を有するアクティブマトリクス型液晶電気光学装置であって、
前記第2の基板には、透光性を有する電極材料が設けられていることを特徴とするアクティブマトリクス型液晶電気光学装置。
A gate electrode and a common electrode provided on the first substrate;
A gate insulating film provided to cover the gate electrode;
A semiconductor film provided on the gate electrode through the gate insulating film;
An inverted staggered thin film transistor having a source electrode and a drain electrode provided so as to overlap with a part of the semiconductor film;
A second substrate facing the first substrate;
An active matrix liquid crystal electro-optical device having a liquid crystal layer sandwiched between the first substrate and the second substrate and driven by an electric field between the drain electrode and the common electrode,
An active matrix type liquid crystal electro-optical device, wherein the second substrate is provided with a light-transmitting electrode material.
第1の基板上に設けられたゲート電極、及びコモン電極と、
前記ゲート電極を覆うように設けられたゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極上に設けられた半導体膜と、
前記半導体膜の一部に重畳するように設けられたソース電極及びドレイン電極と、を有する逆スタガー型の薄膜トランジスタと、
前記第1の基板上と対向する第2の基板と、
前記第1の基板と前記第2の基板の間に挟持され、前記ドレイン電極と前記コモン電極との間の電界によって駆動される液晶層と、を有するアクティブマトリクス型液晶電気光学装置であって、
前記第2の基板の全面には、透光性を有する電極材料が設けられていることを特徴とするアクティブマトリクス型液晶電気光学装置。
A gate electrode and a common electrode provided on the first substrate;
A gate insulating film provided to cover the gate electrode;
A semiconductor film provided on the gate electrode through the gate insulating film;
An inverted staggered thin film transistor having a source electrode and a drain electrode provided so as to overlap with a part of the semiconductor film;
A second substrate facing the first substrate;
An active matrix liquid crystal electro-optical device having a liquid crystal layer sandwiched between the first substrate and the second substrate and driven by an electric field between the drain electrode and the common electrode,
An active matrix liquid crystal electro-optical device, wherein a translucent electrode material is provided on the entire surface of the second substrate.
第1の基板上に設けられたゲート電極、及びコモン電極と、
前記ゲート電極を覆うように設けられたゲート絶縁膜と、
前記ゲート絶縁膜を介して前記ゲート電極上に設けられた半導体膜と、
前記半導体膜の一部に重畳するように設けられたソース電極及びドレイン電極と、を有する逆スタガー型の薄膜トランジスタと、
前記第1の基板上と対向する第2の基板と、
前記第1の基板と前記第2の基板の間に挟持され、前記ドレイン電極と前記コモン電極との間の電界によって駆動される液晶層と、を有するアクティブマトリクス型液晶電気光学装置であって、
前記第2の基板の一部には、透光性を有する電極材料が設けられていることを特徴とするアクティブマトリクス型液晶電気光学装置。
A gate electrode and a common electrode provided on the first substrate;
A gate insulating film provided to cover the gate electrode;
A semiconductor film provided on the gate electrode through the gate insulating film;
An inverted staggered thin film transistor having a source electrode and a drain electrode provided so as to overlap with a part of the semiconductor film;
A second substrate facing the first substrate;
An active matrix liquid crystal electro-optical device having a liquid crystal layer sandwiched between the first substrate and the second substrate and driven by an electric field between the drain electrode and the common electrode,
An active matrix liquid crystal electro-optical device, wherein a part of the second substrate is provided with a light-transmitting electrode material.
請求項1乃至3のいずれか一において、
前記ドレイン電極は、当該電極断面の頂点に丸みを有し且つ電極断面が円または楕円の曲率を利用した形状であることを特徴とするアクティブマトリクス型液晶電気光学装置。
In any one of Claims 1 thru | or 3,
2. The active matrix liquid crystal electro-optical device according to claim 1, wherein the drain electrode has a round shape at the apex of the electrode cross section, and the electrode cross section has a shape using a curvature of a circle or an ellipse.
請求項1乃至4のいずれか一において、
前記コモン電極は、当該電極断面の頂点に丸みを有し且つ電極断面が円または楕円の曲率を利用した形状であることを特徴とするアクティブマトリクス型液晶電気光学装置。
In any one of Claims 1 thru | or 4,
2. The active matrix liquid crystal electro-optical device according to claim 1, wherein the common electrode has a round shape at the apex of the electrode cross section, and the electrode cross section has a shape using a curvature of a circle or an ellipse.
請求項1乃至5のいずれか一において、
前記透光性を有する電極材料はITOであることを特徴とするアクティブマトリクス型液晶電気光学装置。
In any one of Claims 1 thru | or 5,
An active matrix type liquid crystal electro-optical device, wherein the translucent electrode material is ITO.
JP2005114867A 2005-04-12 2005-04-12 Liquid crystal optoelectronic device Withdrawn JP2005309432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114867A JP2005309432A (en) 2005-04-12 2005-04-12 Liquid crystal optoelectronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114867A JP2005309432A (en) 2005-04-12 2005-04-12 Liquid crystal optoelectronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34967095A Division JP3963974B2 (en) 1995-12-20 1995-12-20 Liquid crystal electro-optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006047613A Division JP4127557B2 (en) 2006-02-24 2006-02-24 Active matrix liquid crystal electro-optical device

Publications (1)

Publication Number Publication Date
JP2005309432A true JP2005309432A (en) 2005-11-04

Family

ID=35438223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114867A Withdrawn JP2005309432A (en) 2005-04-12 2005-04-12 Liquid crystal optoelectronic device

Country Status (1)

Country Link
JP (1) JP2005309432A (en)

Similar Documents

Publication Publication Date Title
JP3963974B2 (en) Liquid crystal electro-optical device
US7940359B2 (en) Liquid crystal display comprising a dielectric layer having a first opening surrounding a patterned structure and exposing a portion of a first pixel electrode and a second pixel electrode formed on the dielectric layer
US8004641B2 (en) Color filter substrate and liquid crystal display panel including the same
US8330930B2 (en) Liquid crystal display device having column spacer receiving members formed of the same material as a material of one of the pair of electrodes for applying an electric field to the liquid crystal material
US20090073374A1 (en) Liquid crystal display device and method for fabricating the same
EP2899588A1 (en) Liquid crystal display
KR100258063B1 (en) In plane switching mode liquid crystal display device and method of manufacturing thereof
US9627412B2 (en) Liquid crystal display device
US9508761B2 (en) Manufacturing method of display device
JP3608755B2 (en) Liquid crystal electro-optical device and driving method thereof
JP4127557B2 (en) Active matrix liquid crystal electro-optical device
JPH09185080A (en) Liquid crystal electro-optical device
JP2005309432A (en) Liquid crystal optoelectronic device
JP2003177421A (en) Active matrix type liquid crystal optoelectronic device
KR101232547B1 (en) An array substrate for In-Plane-Switching mode LCD and the fabrication method thereof
JP2005258463A (en) Liquid crystal electrooptical device
JPH11264993A (en) Liquid crystal display device and manufacture of liquid crystal display device
US10371987B2 (en) Liquid crystal display
JP4160101B2 (en) Active matrix liquid crystal display device
KR20030002498A (en) Liquid Crystal Display Device and Method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070704