JP2005307398A - Water-absorbing composite composition and water-absorbing sheet-shaped material - Google Patents

Water-absorbing composite composition and water-absorbing sheet-shaped material Download PDF

Info

Publication number
JP2005307398A
JP2005307398A JP2004127071A JP2004127071A JP2005307398A JP 2005307398 A JP2005307398 A JP 2005307398A JP 2004127071 A JP2004127071 A JP 2004127071A JP 2004127071 A JP2004127071 A JP 2004127071A JP 2005307398 A JP2005307398 A JP 2005307398A
Authority
JP
Japan
Prior art keywords
water
absorbent
fibers
absorbing
resin particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004127071A
Other languages
Japanese (ja)
Inventor
Yasunari Sugiyou
保成 須堯
Kiichi Ito
喜一 伊藤
Shunichi Himori
俊一 檜森
Taisuke Ishii
泰助 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004127071A priority Critical patent/JP2005307398A/en
Publication of JP2005307398A publication Critical patent/JP2005307398A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-absorbing composite composition suitable for use as a water-absorbing element of a water-absorbing article such as a paper diaper and sanitary goods. <P>SOLUTION: The water-absorbing composite composition consists essentially of water-absorbing composites formed out of nearly spherical water-absorbing resin particles and fibers bonded to the particles and extended outward from the particles, and capable of being formed into a sheet shape by the entanglement of the fibers, and is regulated so that the content of the composites each composed of one particle and the fibers may be ≥50%, and the content of the composites each composed of four or more particles and the fibers may be ≤10%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は吸水性樹脂粒子とこれに結合している繊維から成る吸水性複合体から主として成る吸水性複合体組成物、及びこれを用いて形成された吸水性シート状物に関するものである。この吸水性シート状物は紙おむつや生理用品などの吸水性要素として用いるのに好適である。   The present invention relates to a water absorbent composite composition mainly comprising a water absorbent composite comprising water absorbent resin particles and fibers bonded thereto, and a water absorbent sheet-like material formed using the same. This water-absorbent sheet is suitable for use as a water-absorbing element such as paper diapers and sanitary products.

吸水性樹脂粒子を吸水性要素とする紙おむつや生理用品(以下、これらを総称して吸水性物品ということがある)が広く普及している。吸水性物品の基本的構造は、不透水性樹脂シートの上にパルプや不織布を載置し、その上に吸水性樹脂粒子を散布し、更にその上にパルプや不織布などを重ねたものである。この吸水性物品の問題点の一つは、取扱いや着用中に加わる衝撃により、吸水性樹脂粒子が内部で移動し易いことである。その結果、吸水性物品に局部的に吸水能に乏しい部分が生じ、全体としては十分な吸水能があるにもかかわらず、尿漏れなどを起こすことがある。   Paper diapers and sanitary products that use water-absorbing resin particles as a water-absorbing element (hereinafter, these may be collectively referred to as water-absorbing articles) are widely used. The basic structure of the water-absorbent article is such that pulp or non-woven fabric is placed on a water-impermeable resin sheet, water-absorbing resin particles are dispersed thereon, and further, pulp or non-woven fabric is stacked thereon. . One of the problems with this water-absorbent article is that the water-absorbent resin particles easily move inside due to an impact applied during handling or wearing. As a result, a portion having poor water absorption capability is locally generated in the water-absorbent article, and urine leakage or the like may occur despite having sufficient water absorption capability as a whole.

この問題の解決策として、不織布などに吸水性樹脂粒子が結合した複合体を吸水性要素として用いることが検討されている(特許文献1〜3参照)。この複合体は、典型的には重合塔の塔頂からアクリル酸の部分中和物の水溶液に重合触媒を含有させたものを液滴として落下させ、一方、重合塔の塔底には不織布を配置しておき、重合しつつ落下してくる液滴を不織布に付着させ、不織布上で重合を完了させることにより製造することができる。また不織布の代りに繊維そのものを重合塔の途中に供給し、落下してくる液滴を繊維に付着させて重合塔の底部に堆積させることにより複合体を製造することも検討されている(特許文献4参照)。
特開平2−138306号公報 特開2000−198805号公報 特開2000−328456号公報 特開平11−93073号公報 これらの複合体では、吸水性樹脂粒子は繊維に結合しているので、これを用いると吸水性物品中で吸水性樹脂粒子が移動するという問題は解決されると考えられる。しかしながら、これらの複合体では、繊維と吸水性樹脂粒子とが結合して、全体として目の粗い三次元ネットワークを形成しているので、剛性及び弾性が大きい。従って吸水性物品に加工するに際し複合体を圧縮して薄くしても、着用する際に圧縮が解除されるともとの厚さに戻り、かさばって着用に不都合を生じ易い。また、一般に複合体は嵩密度が小さいので、複合体の単位体積当りの吸水容量が小さいという問題もある。
As a solution to this problem, use of a composite in which water-absorbing resin particles are bonded to a nonwoven fabric or the like as a water-absorbing element has been studied (see Patent Documents 1 to 3). This composite is typically dropped from the top of the polymerization tower as a droplet of a partially neutralized acrylic acid solution containing a polymerization catalyst, while a non-woven fabric is placed at the bottom of the polymerization tower. It can be produced by placing the liquid droplets while dropping while adhering to the nonwoven fabric and completing the polymerization on the nonwoven fabric. In addition, it is also considered to produce a composite by supplying the fiber itself in the middle of the polymerization tower instead of the non-woven fabric, causing the falling droplets to adhere to the fiber and depositing on the bottom of the polymerization tower (patent) Reference 4).
JP-A-2-138306 JP 2000-198805 A JP 2000-328456 A In these composites, the water-absorbing resin particles are bonded to the fibers, so that the problem that the water-absorbing resin particles move in the water-absorbing article is solved by using these composites. It is done. However, in these composites, the fibers and the water-absorbing resin particles are combined to form a three-dimensional network with a coarse mesh as a whole, so that the rigidity and elasticity are large. Therefore, even if the composite is compressed and thinned when it is processed into a water-absorbent article, it returns to its original thickness when it is uncompressed, and it is bulky and tends to cause inconvenience in wearing. In addition, since the composite generally has a low bulk density, there is also a problem that the water absorption capacity per unit volume of the composite is small.

本発明は、内部で吸水性樹脂粒子が移動しない吸水性物品を提供できるという従来の複合体の長所を引き継ぎ、かつ従来の複合体で問題とされていた点が改良された、新たな構造の吸水性要素及びこれを用いた吸水性シート状物を提供しようとするものである。   The present invention inherits the advantages of the conventional composite that can provide a water-absorbent article in which the water-absorbent resin particles do not move inside, and has improved the point that has been a problem with the conventional composite. An object of the present invention is to provide a water absorbent element and a water absorbent sheet using the same.

本発明に係る吸水性要素は、略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維とから形成されており、繊維の絡み合いによりシート状に成形し得る吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の50重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成
されている吸水性複合体が吸水性複合体全体の10重量%以下であることを特徴とするものである。
The water-absorbing element according to the present invention is formed of substantially spherical water-absorbing resin particles and one or a plurality of fibers bonded to the water-absorbing resin particles and extending outward from the fibers. A water-absorbing composite composition mainly comprising a water-absorbing composite that can be formed into a sheet shape by entanglement of the water-absorbing composite, wherein the water-absorbing composite formed from one water-absorbing resin particle and fiber is a water-absorbing composite 50% by weight or more of the total, and the water-absorbing composite formed of four or more water-absorbing resin particles and fibers is 10% by weight or less of the whole water-absorbing composite It is.

また、本発明に係る吸水性シート状物は、この吸水性複合体組成物ないしはこれと繊維(=吸水性樹脂粒子に結合していない繊維)とから成り、繊維の絡み合いによってシート状に形成されていることを特徴とするものである。   Further, the water-absorbent sheet material according to the present invention is composed of the water-absorbent composite composition or the fiber (= fiber not bonded to the water-absorbent resin particles), and is formed into a sheet shape by the entanglement of the fibers. It is characterized by that.

本発明に係る吸水性複合体組成物は、基本的に1個、多くても4個程度の吸水性樹脂粒子とこれに結合している繊維とから成る独立した、すなわち個々に分離しうる吸水性複合体の集合体なので、繊維の絡み合いにより任意の厚さのシート状物に成形することができる。また、このシート状物は極めて柔軟であり、弾性が小さい。かつ、吸水性複合体組成物として吸水性樹脂粒子に結合していない繊維(=遊離繊維)を含むものを用いたり、シート状物に成形する際に吸水性複合体組成物に遊離繊維を混合することにより、単位体積当りの吸水容量を大幅に変化させることができる。   The water-absorbent composite composition according to the present invention is basically composed of one, at most about four, water-absorbent resin particles and fibers bonded to the water-absorbent composite particles. Since it is an assembly of a conductive composite, it can be formed into a sheet-like material having an arbitrary thickness by entanglement of fibers. Moreover, this sheet-like material is extremely flexible and has low elasticity. In addition, as the water-absorbing composite composition, those containing fibers (= free fibers) that are not bonded to the water-absorbing resin particles are used, or when forming into a sheet-like material, free fibers are mixed into the water-absorbing composite composition. By doing so, the water absorption capacity per unit volume can be changed greatly.

本発明に係る吸水性複合体組成物を形成する吸水性複合体は、1個ないしは多くても4個程度の略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている繊維とから成っている。吸水性複合体の大部分は1個の吸水性樹脂粒子しか含んでおらず、4個より多い吸水性樹脂粒子を含む吸水性複合体は存在するとしても僅かである。   The water-absorbent composite forming the water-absorbent composite composition according to the present invention is composed of one or at most about four substantially spherical water-absorbent resin particles, bonded to the water-absorbent resin particles and from now on. It consists of fibers that extend to the outside. Most of the water-absorbing composites contain only one water-absorbing resin particle, and there are few, if any, water-absorbing composites containing more than four water-absorbing resin particles.

すなわち吸水性複合体全体の50重量%以上は、1個の吸水性樹脂とこれに結合している繊維とから成っている。吸水性複合体全体の70重量%以上、特に85重量%以上が1個の吸水性樹脂粒子のみを含むものであるのが好ましい。他方において4個以上の吸水性樹脂粒子を含むものは、全吸水性複合体の10重量%以下であり、5重量%以下、更には1重量%以下であるのが好ましい。1個の吸水性樹脂粒子に結合している繊維の数は任意であるが、通常は数本ないし30本程度である。吸水性樹脂粒子と繊維との結合の態様は、通常の取扱いに際し加えられる衝撃により吸水性樹脂粒子と繊維が分離しない結合強度を有するものであれば任意である。すなわち繊維は吸水性樹脂粒子の表面に接着するように結合していてもよく、またビーズに糸を通したように繊維の一部が吸水性樹脂粒子の内部に包埋されていてもよい。吸水性複合体において、吸水性樹脂粒子は吸水能を付与し、繊維はシート状物形成能を付与する。吸水性複合体における吸水性樹脂粒子と繊維の重量比は任意であるが、通常は1:1〜100:1であり、2:1〜20:1であるのが好ましい。なお、繊維の比率が小さいと吸水性複合体のシート状物形成能が小さくなるが、これは吸水性複合体組成物中に遊離の繊維を含有させたり、シート状物の形成に際し吸水性複合体組成物に遊離の繊維を併用することにより補うことができる。   That is, 50% by weight or more of the entire water-absorbing composite is composed of one water-absorbing resin and fibers bonded thereto. It is preferable that 70% by weight or more, particularly 85% by weight or more of the entire water-absorbent composite contains only one water-absorbent resin particle. On the other hand, those containing 4 or more water-absorbing resin particles are 10% by weight or less, 5% by weight or less, more preferably 1% by weight or less of the total water-absorbing composite. The number of fibers bonded to one water-absorbent resin particle is arbitrary, but is usually about several to 30. The mode of bonding between the water-absorbing resin particles and the fiber is arbitrary as long as it has a bonding strength that prevents the water-absorbing resin particles and the fiber from being separated by an impact applied during normal handling. That is, the fibers may be bonded so as to adhere to the surface of the water-absorbent resin particles, or a part of the fibers may be embedded in the water-absorbent resin particles so that the yarn is passed through the beads. In the water-absorbing composite, the water-absorbing resin particles impart water absorbing ability, and the fibers impart sheet-form forming ability. The weight ratio of the water-absorbent resin particles to the fibers in the water-absorbent composite is arbitrary, but is usually 1: 1 to 100: 1, and preferably 2: 1 to 20: 1. If the fiber ratio is small, the sheet-like product forming ability of the water-absorbing composite is reduced. This is because the water-absorbing composite composition contains free fibers or the water-absorbing composite in forming the sheet-like product. It can be supplemented by using free fibers in combination with the body composition.

吸水性樹脂粒子の平均粒径は通常は50〜3,000μmである。製造の容易さ及び吸水性複合体の使用上の利便性からして、平均粒径は100μm以上であるのが好ましく、200μm以上であれば更に好ましい。また平均粒径の上限は2,000μm以下、更には1,000μm以下であるのが好ましい。用途にもよるが、一般に吸水性樹脂粒子の平均粒径は200〜800μmであるのが最も好ましい。なお、吸水性樹脂粒子は略球状であるが、略球状とは、アクリル酸の部分中和塩の水溶液を液滴状にして重合させつつ落下させ、重合途上で繊維に付着させ、この状態で重合させて形成した吸水性樹脂粒子のように、全体として丸みを帯びていて、破砕粒子のように角張っていない形状を意味する。   The average particle diameter of the water-absorbent resin particles is usually 50 to 3,000 μm. In view of ease of production and convenience in use of the water-absorbent composite, the average particle diameter is preferably 100 μm or more, more preferably 200 μm or more. The upper limit of the average particle diameter is preferably 2,000 μm or less, more preferably 1,000 μm or less. In general, the average particle diameter of the water-absorbent resin particles is most preferably 200 to 800 μm, although it depends on the application. The water-absorbing resin particles are substantially spherical. The substantially spherical shape means that an aqueous solution of a partially neutralized salt of acrylic acid is dropped in the form of droplets while being dropped, and is attached to fibers during polymerization. It means a shape that is rounded as a whole, such as water-absorbing resin particles formed by polymerization, and is not angular like crushed particles.

吸水性複合体を形成する繊維の長さは、通常は100〜30,00μmである。繊維の長さは、繊維が絡み合いによりシート状物を形成することからして、吸水性樹脂粒子の平
均粒径の2倍以上であるのが好ましく、5倍以上であれば更に好ましい。また繊維の長さは200μm以上であるのが好ましく、500μm以上であれば更に好ましい。繊維は長いほど相互の絡み合いが良好となり、吸水性複合体の吸水性シート状物の形成能が大きくなる。しかし繊維の長さが長くなると吸水性複合体に占める繊維の比率が大きくなり、吸水性複合体の吸水容量が低下する。また繊維が長いと、後記する方法で吸水性複合体を製造する際に、1本の繊維に複数個の吸水性樹脂粒子が結合したものが生成し易い。従って繊維の長さは20,000以下であるのが好ましく、10,000μm以下であれば更に好ましい。一般に繊維の長さは500〜5000μmであるのが最も好ましい。
The length of the fiber forming the water-absorbing composite is usually 100 to 30,000 μm. The length of the fiber is preferably not less than twice the average particle diameter of the water-absorbent resin particles, more preferably not less than 5 times, since the fiber forms a sheet-like material by entanglement. The length of the fiber is preferably 200 μm or more, more preferably 500 μm or more. The longer the fibers, the better the entanglement between them, and the greater the ability of the water-absorbent composite to form a water-absorbent sheet. However, when the length of the fiber becomes long, the ratio of the fiber to the water-absorbing composite increases, and the water absorption capacity of the water-absorbing composite decreases. If the fibers are long, when a water-absorbing composite is produced by the method described later, a product in which a plurality of water-absorbing resin particles are bonded to one fiber is likely to be produced. Accordingly, the length of the fiber is preferably 20,000 or less, and more preferably 10,000 μm or less. In general, the fiber length is most preferably 500 to 5000 μm.

繊維としてはセルロースのような親水性のもの、及びポリエステルやポリオレフィン等の疎水性のもののいずれであってもよく、また両者を併用することもできる。好ましくはセルロース繊維や疎水性繊維の表面を界面活性剤などで親水性に改質した親水性繊維を用いる。親水性繊維を用いた吸水性複合体は、吸水に際しこの繊維を経て水が吸水性樹脂粒子に到達し、かつ内部にまで浸透することが期待できる。親水性繊維としては、親水性の指標である水の接触角が60°以下のものを用いるのが好ましい。接触角が50°以下、特に40°以下であれば更に好ましい。   The fiber may be either a hydrophilic material such as cellulose, or a hydrophobic material such as polyester or polyolefin, or both may be used in combination. Preferably, a hydrophilic fiber obtained by modifying the surface of cellulose fiber or hydrophobic fiber to be hydrophilic with a surfactant or the like is used. In the water-absorbent composite using hydrophilic fibers, water can be expected to reach the water-absorbent resin particles through the fibers and penetrate into the water-absorbing resin particles. As the hydrophilic fiber, it is preferable to use one having a water contact angle of 60 ° or less, which is a hydrophilic index. More preferably, the contact angle is 50 ° or less, particularly 40 ° or less.

吸水性複合体は、重合途上の吸水性樹脂粒子を繊維と接触させて両者を結合し、この状態で重合を完了させる公知の吸水性複合体の製造方法において、繊維として開繊された繊維を用い、かつ一本の繊維に複数個の吸水性樹脂粒子が接触しないように、繊維と吸水性樹脂粒子との比率を制御することにより製造することができる。生成物は通常は吸水性樹脂粒子とこれに結合している繊維から成るものの外に、遊離繊維すなわち吸水性樹脂粒子に結合しなかった繊維を含んでいる。生成物を開繊して、吸水性樹脂粒子が結合した繊維及び遊離繊維のそれぞれを個々の単位にまで分散させ、次いで篩い分け又は風力分級することにより吸水性樹脂粒子が結合した繊維と遊離繊維とを分離することができる。このようにして得られた吸水性樹脂粒子とこれに結合した繊維とから成る吸水性複合体は、吸水性樹脂粒子と繊維との重量比が1:1〜100:1、特に2:1〜20:1であるのが好ましい。吸水性樹脂粒子の比率が小さいと吸水性複合体の吸水容量が小さくなる。逆に繊維の比率が小さ過ぎると繊維相互の絡み合いが弱くなり、この吸水性複合体で形成される吸水性シート状物の強度が弱くなる。なお、吸水性樹脂粒子が結合した繊維と遊離繊維とは完全に分離する必要は無い。何故ならば吸水性複合体組成物中に遊離繊維が混入することは、吸水性複合体組成物の吸水容量を低下させるが、逆に吸水性複合体組成物で吸水性シート状物を形成する際に、繊維相互の絡み合いを多くして吸水性シート状物の強度を向上させるという利点もあるからである。従って吸水性複合体組成物を用いて形成される吸水性シート状物の用途に応じて、吸水性樹脂粒子が結合した繊維と遊離繊維との分離の程度を決定すればよい。   The water-absorbing composite is obtained by bringing the water-absorbing resin particles being polymerized into contact with the fibers to bond them together, and in this state, in the known water-absorbing composite manufacturing method, the fibers opened as fibers are used. It can be manufactured by controlling the ratio of the fibers and the water-absorbent resin particles so that the plurality of water-absorbent resin particles are not in contact with one fiber. The product usually comprises free fibers, i.e., fibers that have not been bonded to the water-absorbent resin particles, in addition to those composed of water-absorbent resin particles and fibers bonded thereto. The product is opened to disperse the fibers and free fibers to which the water-absorbing resin particles are bound to individual units, and then sieved or wind-classified to bind the fibers and the free fibers to which the water-absorbing resin particles are bound. And can be separated. The water absorbent composite comprising the water absorbent resin particles thus obtained and the fibers bonded thereto has a weight ratio of the water absorbent resin particles to the fibers of 1: 1 to 100: 1, particularly 2: 1 to 1. It is preferably 20: 1. When the ratio of the water absorbent resin particles is small, the water absorption capacity of the water absorbent composite is reduced. On the contrary, if the ratio of the fibers is too small, the entanglement between the fibers becomes weak, and the strength of the water-absorbent sheet-like material formed from this water-absorbent composite becomes weak. Note that it is not necessary to completely separate the fibers and the free fibers to which the water-absorbent resin particles are bonded. This is because mixing free fibers in the water-absorbing composite composition decreases the water-absorbing capacity of the water-absorbing composite composition, but conversely forms a water-absorbing sheet with the water-absorbing composite composition. This is because there is also an advantage of increasing the strength of the water-absorbent sheet by increasing the entanglement between the fibers. Therefore, what is necessary is just to determine the grade of the isolation | separation of the fiber which the water absorbing resin particle couple | bonded, and the free fiber according to the use of the water absorbing sheet-like material formed using a water absorbing composite composition.

吸水性複合体の代表的な製造法の一つでは、重合塔の塔頂で触媒を含む重合性モノマー水溶液の液滴を形成し、これを重合塔内を重合させつつ落下させる。一方、重合塔には途中から繊維を開繊状態で供給し、空中で重合途上の粒子と繊維を接触させて両者を結合する。この際、重合塔内における重合途上の粒子の密度を小さくし、逆に繊維の密度は大きくして、1本の繊維に複数個の重合途上の粒子がなるべく付着しないようにする。繊維と結合した重合途上の粒子は引続き重合しつつ塔内を落下し、遊離繊維と一緒に塔底に設けたベルトコンベア上に堆積し、塔外に取出される。塔底に落下するまでに粒子が粘着力を失う程度に重合を進行させておくのが好ましい。しかし重合途上の粒子に空中で多量の繊維を付着させた場合には、粘着力のある状態で塔底に落下しても、表面の繊維に妨げられて他の樹脂粒子やこれに結合している繊維と結合して複数個の樹脂粒子を含む吸水性複合体が生成するおそれは小さい。また、別法として、重合塔の途中から繊維を供給する代りに、塔底のベルトコンベア上に開繊された繊維の薄層を形成しておき、この上に重合途上の粒子を粗に落下させて繊維に付着させるようにしてもよい。なお、重合性モノマーの種
類や重合性モノマー水溶液の濃度、この水溶液に含有させる触媒の種類や濃度、液滴の形成方法、重合塔内の雰囲気や温度などの重合条件、得られた吸水性複合体からの残存モノマーの除去や表面架橋による改質法などは、公知の範囲から適宜選択すればよい。繊維と重合途上の粒子とを接触させるときの粒子の重合率、すなわちモノマー転換率は、塔底の繊維上に粒子を落下させて結合させる場合には40〜95%が適当である。モノマー転換率が40%未満では、一般に粒子が軟弱過ぎて重力に抗して繊維上でその形状を維持させるのが困難である。またモノマー転換率が95%を超えると粒子の粘着性が弱くなり、粒子を繊維に強固に付着させるのが困難となる。一般にモノマー転換率45〜90%、特に50〜80%の状態で、重合途上の粒子と繊維を接触させるのが好ましい。なお、粒子と繊維とを空中で結合させる場合には、重力に抗して粒子の形状を維持することを考慮する必要はないので、モノマー転換率は40%より低くても差支えない。
In one of the typical methods for producing a water-absorbing composite, droplets of a polymerizable monomer aqueous solution containing a catalyst are formed at the top of a polymerization tower and dropped while polymerizing inside the polymerization tower. On the other hand, the fibers are supplied to the polymerization tower in the open state, and the particles in the process of polymerization are brought into contact with the fibers in the air to bond them together. At this time, the density of the particles in the polymerization column in the polymerization tower is reduced, and conversely, the density of the fibers is increased so that a plurality of particles in the polymerization process are not attached to one fiber as much as possible. The particles in the process of polymerization combined with the fibers continue to be polymerized and fall inside the tower, accumulate together with free fibers on a belt conveyor provided at the bottom of the tower, and are taken out of the tower. The polymerization is preferably allowed to proceed to such an extent that the particles lose their adhesive strength before falling to the bottom of the tower. However, when a large amount of fibers are attached to the particles in the middle of polymerization, even if they fall to the bottom of the tower in a sticky state, they are blocked by other fibers on the surface and bound to other resin particles. There is little risk of forming a water-absorbing composite containing a plurality of resin particles by combining with existing fibers. Alternatively, instead of supplying fibers from the middle of the polymerization tower, a thin layer of fibers opened on a belt conveyor at the bottom of the tower is formed, and particles in the course of polymerization are dropped roughly on this. You may make it adhere to a fiber. The type of polymerizable monomer, the concentration of the polymerizable monomer aqueous solution, the type and concentration of the catalyst contained in this aqueous solution, the method of forming droplets, the polymerization conditions such as the atmosphere and temperature in the polymerization tower, and the resulting water-absorbing composite What is necessary is just to select suitably the removal method of the residual monomer from a body, the modification method by surface crosslinking, etc. from a well-known range. When the fibers are brought into contact with the particles being polymerized, the polymerization rate of the particles, that is, the monomer conversion rate, is suitably 40 to 95% when the particles are dropped and bonded onto the fiber at the bottom of the column. If the monomer conversion is less than 40%, the particles are generally too soft to maintain their shape on the fiber against gravity. On the other hand, when the monomer conversion rate exceeds 95%, the adhesiveness of the particles becomes weak, and it becomes difficult to firmly adhere the particles to the fibers. In general, it is preferable to contact the particles and fibers during polymerization in a state where the monomer conversion is 45 to 90%, particularly 50 to 80%. When particles and fibers are bonded in the air, there is no need to consider maintaining the shape of the particles against gravity, so the monomer conversion may be lower than 40%.

吸水性樹脂粒子と繊維との結合の態様は、基本的に両者が接触するときの粒子のモノマー転換率により決定され、モノマー転換率の低い粒子ほど繊維が粒子内部に喰い込み易い。従って粒子のモノマー転換率が低い時点で粒子と繊維を接触させて繊維を粒子内部に喰い込ませ、次いでモノマー転換率が高くなった時点で再び粒子と繊維を接触させると、吸水性樹脂粒子の内部に喰い込んだ繊維と表面で結合している繊維とを有する吸水性複合体を生成させることができる。   The mode of bonding between the water-absorbent resin particles and the fibers is basically determined by the monomer conversion rate of the particles when they are in contact with each other, and the lower the monomer conversion rate, the easier the fibers to get into the particles. Accordingly, when the monomer conversion rate of the particle is low, the particle and the fiber are brought into contact with each other, the fiber is entrapped inside the particle, and when the monomer conversion rate becomes high, the particle and the fiber are brought into contact again. A water-absorbing composite having fibers encroached on the inside and fibers bonded on the surface can be generated.

本発明に係る吸水性シート状物は、上記の吸水性複合体から主として成る吸水性複合体組成物を繊維相互の絡み合いによりシート状に成形したものである。吸水性シート状物に要求される特性により、吸水性複合体組成物としては任意の量の遊離繊維を含むものを用いることができる。また吸水性シート状物の形成に際し、吸水性複合体組成物に遊離繊維を併用することもできる。遊離繊維としては吸水性複合体の製造に用いたものと同様のものを用いることができるが、絡み合いを良好にして強度を発現させるためには比較的長い繊維を用いるのが好ましい。通常は長さが100〜30,000μmのものを用いる。長さが200〜10,000μm、特に500〜5,000μmのものを用いるのが好ましい。   The water-absorbent sheet-like material according to the present invention is obtained by molding a water-absorbent composite composition mainly composed of the above-mentioned water-absorbent composite into a sheet shape by entanglement of fibers. Depending on the properties required for the water-absorbent sheet, a water-absorbent composite composition containing any amount of free fibers can be used. In forming the water-absorbent sheet-like material, free fibers can be used in combination with the water-absorbent composite composition. As the free fibers, the same fibers as those used in the production of the water-absorbent composite can be used, but it is preferable to use relatively long fibers in order to improve the entanglement and to develop the strength. Usually, a length of 100 to 30,000 μm is used. It is preferable to use one having a length of 200 to 10,000 μm, particularly 500 to 5,000 μm.

吸水性シート状物における吸水性樹脂粒子と繊維、すなわち吸水性樹脂粒子が結合している繊維と結合していない繊維との合計、との重量比は通常は1:1〜10:1であり2:1〜9:1であるのが好ましい。吸水性シート状物における吸水性樹脂粒子の比率が小さいと吸水容量が小さく、逆にこの比率が大き過ぎると吸水性シート状物の強度が弱くなる。吸水性シート状物の厚さは任意であるが、通常は0.5〜10mmであり、1〜5mmが好ましい。なお、厚さはJISI−1096に準じて次のようにして測定する。   The weight ratio of the water-absorbent resin particles and the fibers in the water-absorbent sheet material, that is, the total of the fibers to which the water-absorbent resin particles are bonded and the fibers not bonded, is usually 1: 1 to 10: 1. It is preferably 2: 1 to 9: 1. If the ratio of the water-absorbent resin particles in the water-absorbent sheet is small, the water-absorbing capacity is small, and conversely if the ratio is too large, the strength of the water-absorbent sheet is weakened. The thickness of the water-absorbent sheet is arbitrary, but is usually 0.5 to 10 mm, preferably 1 to 5 mm. The thickness is measured as follows in accordance with JISI-1096.

吸水性シート状物の厚さの測定;
図1に示すように、レオメーター(FUDOH社製、型番NRM−2003J)に直径30mmのアダプター11を取り付ける。サンプル台12を2cm/分の速度で上昇させ、0.2psiの圧力がかかった時点で停止するようにセットする。吸水性シート状物13をサンプル台上に載置する。サンプル台を上昇させ、停止した位置でのアダプターの上面からサンプル台の下面までの距離L(mm)をノギスで測定する。サンプルは5枚測定し、その平均値を求める。ブランクとしてサンプル台に吸水性シート状物を載置せずに同様の測定を行い、距離L′(mm)を測定する。
厚さ(mm)=L−L′
また、吸水性シート状物は、次式で算出される復元率が通常は50%以下である。
Measuring the thickness of the water absorbent sheet;
As shown in FIG. 1, an adapter 11 having a diameter of 30 mm is attached to a rheometer (manufactured by FUDOH, model number NRM-2003J). The sample stage 12 is raised at a speed of 2 cm / min and set to stop when a pressure of 0.2 psi is applied. The water-absorbent sheet-like material 13 is placed on the sample table. The sample table is raised, and the distance L (mm) from the upper surface of the adapter to the lower surface of the sample table at the stopped position is measured with a caliper. Measure five samples and determine the average value. The same measurement is performed without placing the water-absorbent sheet on the sample table as a blank, and the distance L ′ (mm) is measured.
Thickness (mm) = L−L ′
Further, the water-absorbent sheet-like material usually has a restoration rate calculated by the following formula of 50% or less.

復元率(%)={(A−B)/A}×100
(式中、Aは吸水性シート状物に100kg/cm2の荷重を10分間かけたのち荷重を
除き、温度25℃、湿度50%の雰囲気中で30日間保存した後の吸水性シート状物の厚
さであり、Bは荷重を除く直前の吸水性シート状物の厚さである。なお測定は5cm×5cmのサンプル5枚について行い、その平均値を求める。)
本発明に係る吸水性シート状物の復元率が50%以下であることは、このものが柔軟で圧縮に対する反撥力が小さいことを意味している。これは吸水性シート状物が短い繊維の絡み合いという固定的でない結合で形成されていることに基くものであり、従来の不織布等に吸水性樹脂粒子を結合させた吸水性複合体や、繊維の堆積物に重合途上の粒子を密に付着させて粒子で繊維を相互に結合させて一体化した吸水性複合体のような結合点が固定されているものとの大きな相異である。
Restoration rate (%) = {(A−B) / A} × 100
(In the formula, A is a water-absorbent sheet material after a load of 100 kg / cm 2 was applied to the water-absorbent sheet material for 10 minutes, the load was removed, and the product was stored for 30 days in an atmosphere at a temperature of 25 ° C. and a humidity of 50%. (B is the thickness of the water-absorbent sheet immediately before the load is removed. The measurement is performed on five 5 cm × 5 cm samples, and the average value is obtained.)
That the restoration rate of the water-absorbent sheet-like material according to the present invention is 50% or less means that the water-absorbent sheet material is flexible and has a small repulsive force against compression. This is based on the fact that the water-absorbent sheet is formed by non-fixed bonds such as entanglement of short fibers, such as a water-absorbing composite in which water-absorbing resin particles are bonded to a conventional non-woven fabric or the like. This is a great difference from the case where the bonding point is fixed, such as a water-absorbing composite in which the particles in the polymerization are closely attached to the deposit and the fibers are bonded to each other by the particles.

本発明に係る吸水性シート状物は、JISL−1096に規定する比較的柔らかい織物に適用されるハートループ法の剛柔性Lが、5.0〜9.5cmの範囲にあるのが好ましい。測定は、吸水性シート状物から2cm×25cmのサンプルを5枚切り出し、温度25℃、湿度50%の雰囲気に24時保管後、図2に示す水平棒の握み21にサンプル22を有効長が20cmとなるようにハートループ状に取り付ける。1分間経過後に水平棒の頂部とループの最下点との距離L(mm)を測定する。剛柔性は5枚のサンプルの平均値で表示する。サンプルが柔らかいほど剛柔性Lは大きくなる。   It is preferable that the water-absorbent sheet-like material according to the present invention has a heart loop stiffness L applied to a relatively soft fabric defined in JISL-1096 in the range of 5.0 to 9.5 cm. For measurement, 5 samples of 2 cm × 25 cm were cut out from the water-absorbent sheet, stored in an atmosphere at a temperature of 25 ° C. and a humidity of 50% for 24 hours, and then the sample 22 was put on the horizontal bar grip 21 shown in FIG. Attach it in the shape of a heart loop so that is 20cm. After 1 minute, the distance L (mm) between the top of the horizontal bar and the lowest point of the loop is measured. Rigidity is displayed as an average value of five samples. The softer the sample, the greater the flexibility L.

本発明に係る吸水性シート状物は、従来の不織布等に吸水性樹脂粒子を結合させたものと同じく、不透水性樹脂フィルム、紙、フラッフパルプ、不織布などと組合せて、積層構造の吸水性物品の製造に用いることができる。その基本的な構造は、不透水性樹脂シートの上にパルプ、紙又は不織布から成る層、本発明に係る吸水性シート状物、及びパルプ、紙又は不織布から成る層の少なくとも3層が、この順序で順次積層されたものである。本発明に係る吸水性シート状物は、前述のように圧縮に対する反撥力が弱いので、同じく反撥力の弱い材料と組合せて吸水性物品を構成し、これを強く圧縮して包装することにより、コンパクトでしかも圧縮を解除しても膨張の少ない吸水性物品とすることができる。   The water-absorbent sheet-like material according to the present invention is combined with a water-impermeable resin film, paper, fluff pulp, non-woven fabric, etc. in the same manner as a conventional non-woven fabric bonded with water-absorbent resin particles. It can be used for the manufacture of articles. The basic structure is that at least three layers of a layer made of pulp, paper or non-woven fabric, a water-absorbent sheet according to the present invention, and a layer made of pulp, paper or non-woven fabric are formed on this water-impermeable resin sheet. They are sequentially stacked in order. Since the water-absorbent sheet-like material according to the present invention has a weak repulsive force against compression as described above, it constitutes a water-absorbent article in combination with a material having a similarly low repulsive force, and compresses and packs it strongly. Even if the compression is released, the water-absorbent article can be obtained with little expansion.

本発明に係る吸水性複合体においては、前述のように繊維を吸水性樹脂粒子の内部に喰い込ませて両者を強固に結合させることができる。従ってこのような吸水性複合体で形成された吸水性シート状物を吸水性要素とする吸水性物品は、吸水状態においても吸水性樹脂粒子が繊維から脱落し難いという優れた性能を発現する。例えば本発明によれば、下記で測定した吸水粒子脱落率が10%未満の吸水性物品を容易に得ることができる。
吸水粒子脱落率の測定;
平滑な台上に、吸水性物品(100mm×400mm)の吸水面を上にして載置する。正方形のアクリル板(100×100×10mm)の中央に円径40mmの円筒が取付けられており、かつ円筒で囲まれたアクリル板部分に直径5mmの貫通孔が7個ほぼ等間隔に設けられているもの(重量150g)を吸水性物品の中央に載置する。人工尿150mlを円筒に入れ、30分間室温に放置して人工尿を吸水性物品に吸収させる。次いで吸水性物品からアクリル板の下になっていた部分(100×100mm)を切り出し、その重量を測定する。この切り出されたサンプルを200×200mmのアクリル板の中央に載置し、その上に底面積100×100mmの荷重(3kg)をサンプルがはみ出さないように載置する。これを振とう機(井内盛栄堂社製品、型番MS−1)にその移動方向に対してサンプルの切り口が垂直になるようにセットし、振幅50mm、振動数80回/分で左右に30分間振とうさせる。荷重を取除き、サンプルから脱落した吸水粒子の重量を測定し、下記式により粒子脱落率を算出する。
In the water-absorbent composite according to the present invention, the fibers can be entrapped inside the water-absorbent resin particles as described above to firmly bond the two. Therefore, a water-absorbent article using a water-absorbent sheet-like material formed of such a water-absorbent composite as a water-absorbing element exhibits an excellent performance that the water-absorbent resin particles hardly fall off from the fiber even in the water-absorbing state. For example, according to the present invention, it is possible to easily obtain a water-absorbing article having a water-absorbing particle dropout rate measured below of less than 10%.
Measurement of water absorption particle drop-off rate;
A water-absorbing article (100 mm × 400 mm) is placed on a smooth table with the water-absorbing surface facing up. A cylinder with a circular diameter of 40 mm is attached to the center of a square acrylic plate (100 × 100 × 10 mm), and seven through-holes with a diameter of 5 mm are provided at almost equal intervals in the acrylic plate portion surrounded by the cylinder. A thing (weight 150 g) is placed in the center of the water-absorbent article. 150 ml of artificial urine is placed in a cylinder and left at room temperature for 30 minutes to absorb the artificial urine in the water-absorbent article. Next, a portion (100 × 100 mm) that was under the acrylic plate is cut out from the water-absorbent article, and its weight is measured. The cut sample is placed at the center of a 200 × 200 mm acrylic plate, and a load (3 kg) having a bottom area of 100 × 100 mm is placed thereon so that the sample does not protrude. Set this on a shaker (product of Inoue Seieido, Model No. MS-1) so that the cut end of the sample is perpendicular to the moving direction, and amplitude is 50 mm, frequency is 80 times / min. Shake. The load is removed, the weight of the water-absorbing particles dropped from the sample is measured, and the particle drop-off rate is calculated by the following formula.

Figure 2005307398
Figure 2005307398

なお、人工尿としては下記組成のものを用いる。%は重量%である。
尿 素 1.94%
塩化ナトリウム 0.80%
塩化カルシウム 0.06%
硫酸マグネシウム 0.11%
蒸留水 97.09%
また、振とう前のサンプル中の粒子重量は、吸水性物品(100mm×400mm)の吸水が全て吸水性樹脂粒子によるものとして算出する。すなわち吸水性物品(100mm×400mm)中の吸水性樹脂粒子の重量と吸水量の合計の1/4を振とう前のサンプル(100mm×100mm)中の粒子重量とする。
Artificial urine having the following composition is used. % Is% by weight.
Urine 1.94%
Sodium chloride 0.80%
Calcium chloride 0.06%
Magnesium sulfate 0.11%
Distilled water 97.09%
The particle weight in the sample before shaking is calculated on the assumption that all of the water absorption of the water absorbent article (100 mm × 400 mm) is due to the water absorbent resin particles. That is, 1/4 of the total of the weight of the water-absorbent resin particles in the water-absorbent article (100 mm × 400 mm) and the amount of water absorbed is taken as the particle weight in the sample (100 mm × 100 mm) before shaking.

以下に実施例により本発明を更に具体的に説明する。
実施例1(吸水性複合体組成物の製造)
アクリル酸100重量部と水3.3重量部の混合物を25℃以下に冷却しつつ、これに25%水酸化ナトリウム水溶液133.3重量部を添加した。この部分中和アクリル酸水溶液にN,N′−メチレンビスアクリルアミド0.14重量部と31重量%過酸化水素水溶液4.55重量部を加えて溶液Aを調製した(モノマー濃度50重量%、中和度60%)。
The present invention will be described more specifically with reference to the following examples.
Example 1 (Production of a water-absorbing composite composition)
While cooling a mixture of 100 parts by weight of acrylic acid and 3.3 parts by weight of water to 25 ° C. or lower, 133.3 parts by weight of a 25% aqueous sodium hydroxide solution was added thereto. Solution A was prepared by adding 0.14 parts by weight of N, N'-methylenebisacrylamide and 4.55 parts by weight of 31% by weight aqueous hydrogen peroxide solution to this partially neutralized acrylic acid aqueous solution (monomer concentration: 50% by weight, medium 60% sum).

別に上記と同様にして調製した部分中和アクリル酸水溶液100重量部にN,N′−メチレンビスアクリルアミド0.14重量部とL−アスコルビン酸0.57重量部を加えて溶液Bを調製した。
溶液Aと溶液Bとをそれぞれ40℃に加熱し、重合塔の頂部に設置した図3に示すノズル装置の相対向するノズルから、それぞれ4.5m/秒で流出させた。各ノズルは内径0.125mmであり、1cm間隔で5本づつ配置されている。ノズルの交差角は30度、ノズルの先端間距離は4mmである。重合塔内は50℃に制御されている。各ノズルから流出した溶液は空中で衝突して液滴を形成し、重合しつつ塔内を落下した。液滴のモノマー転化率が約15%と約40%の位置で、重合塔に開繊したパルプ繊維(長さ約2500μm、太さ2.2デシデックス)を供給し、液滴を繊維に付着させた。繊維/樹脂供給比、すなわち溶液Aと溶液Bから生成する吸水性樹脂粒子(乾量基準)に対するパルプ繊維の供給重量比は、それぞれ2.5/lである。重合塔の塔底から落下物を取出し、重合を完了させたのち含水率が5%となるまで乾燥した。次いで開繊したのち篩分して、吸水性樹脂粒子とこれに結合した繊維とから成る吸水性複合体と遊離繊維とに分離し、吸水性複合体組成物を得た。吸水性複合体の吸水性樹脂粒子と繊維との重量比は55:45であった。なお、測定は下記の方法によった。
Separately, 0.14 parts by weight of N, N'-methylenebisacrylamide and 0.57 parts by weight of L-ascorbic acid were added to 100 parts by weight of a partially neutralized acrylic acid aqueous solution prepared in the same manner as above to prepare Solution B.
The solution A and the solution B were heated to 40 ° C., respectively, and flowed out at 4.5 m / second from the nozzles facing each other in the nozzle apparatus shown in FIG. 3 installed at the top of the polymerization tower. Each nozzle has an inner diameter of 0.125 mm, and five nozzles are arranged at intervals of 1 cm. The crossing angle of the nozzles is 30 degrees, and the distance between the nozzle tips is 4 mm. The inside of the polymerization tower is controlled at 50 ° C. The solution flowing out from each nozzle collided in the air to form droplets, and dropped in the tower while polymerizing. At a position where the monomer conversion rate of the droplets is about 15% and about 40%, pulp fibers (length: about 2500 μm, thickness: 2.2 decidex) are supplied to the polymerization tower, and the droplets are attached to the fibers. It was. The fiber / resin supply ratio, that is, the supply weight ratio of pulp fibers to the water-absorbent resin particles (dry basis) generated from the solution A and the solution B is 2.5 / l, respectively. The fallen matter was taken out from the bottom of the polymerization tower, and after the polymerization was completed, it was dried until the water content became 5%. Next, after opening the fiber, it was sieved and separated into a water-absorbing composite composed of water-absorbing resin particles and fibers bonded thereto, and free fibers to obtain a water-absorbing composite composition. The weight ratio of the water absorbent resin particles to the fibers of the water absorbent composite was 55:45. The measurement was performed according to the following method.

吸水性複合体の樹脂と繊維の比率の測定;
乾燥した吸水性複合体約1gをとり、その重さw1gを精秤したのち50mlのガラス
容器に入れる。25mlの純水にL−アスコルビン酸0.03gを溶解した溶液をガラス容器に加えて吸水性複合体を膨潤させ、密閉して40℃で24時間保持して吸水性樹脂を分解させる。ガラス容器の内容物を80メッシュの金網で濾過する。金網上の繊維を十分に水洗する。繊維を100℃で5時間乾燥したのちその重さw2gを精秤する。吸水性複
合体の吸水性樹脂と繊維の重量比は下記により算出される。
Measurement of the resin-to-fiber ratio of the water-absorbing composite;
About 1 g of the dried water-absorbing complex is taken, and its weight w 1 g is precisely weighed and put into a 50 ml glass container. A solution in which 0.03 g of L-ascorbic acid is dissolved in 25 ml of pure water is added to a glass container to swell the water-absorbent composite, sealed and kept at 40 ° C. for 24 hours to decompose the water-absorbent resin. Filter the contents of the glass container through an 80 mesh wire mesh. Thoroughly wash the fibers on the wire mesh. After drying the fibers at 100 ° C. for 5 hours, the weight w 2 g is precisely weighed. The weight ratio of the water-absorbent resin to the fiber of the water-absorbent composite is calculated as follows.

吸水性樹脂の重量/繊維の重量=(w1−w2)/w2
顕微鏡観察では、吸水性複合体は、ほぼ全量が1個の吸水性樹脂粒子とこれに結合している2本ないし20〜30本の繊維から成るものであり、繊維が結合していない吸水性樹脂粒子は見当らなかった。この吸水性複合体組成物の樹脂粒子の平均粒径は360μmであった。なお、平均粒径は吸水性複合体の顕微鏡写真(倍率50倍)について100個の
吸水性複合体をランダムに選択し、その長径の算術平均で表示した。
Weight of water absorbent resin / weight of fiber = (w 1 −w 2 ) / w 2
In the microscopic observation, the water-absorbing composite is composed of one water-absorbing resin particle and 2 to 20 to 30 fibers bonded to the water-absorbing resin particle, and the water-absorbing water is not bonded to the fibers. Resin particles were not found. The average particle diameter of the resin particles of this water-absorbing composite composition was 360 μm. In addition, 100 water-absorbing composites were selected at random from the microphotograph (50 times magnification) of the water-absorbing composites, and the average particle diameter was displayed as an arithmetic average of the long diameters.

なお、重合途上の液滴のモノマー転換率の測定は、落下してくる液滴をメタノールの入っているビーカーに受け、メタノール中に溶出したアクリル酸量(Mm)を液体クロマトグラフィーで分析し、一方、メタノール中のポリマーは130℃で3時間減圧乾燥したのち秤量してアクリル酸ポリマーとしての重量(Mp)を求め、下記式によりモノマー転換率を算出した。   In addition, the measurement of the monomer conversion rate of the droplet in the course of polymerization is performed by receiving the falling droplet in a beaker containing methanol and analyzing the amount of acrylic acid (Mm) eluted in the methanol by liquid chromatography. On the other hand, the polymer in methanol was dried under reduced pressure at 130 ° C. for 3 hours and then weighed to determine the weight (Mp) as an acrylic acid polymer, and the monomer conversion rate was calculated by the following formula.

モノマー転換率(%)={Mp/(Mp+Mm)}×100
また、この吸水性複合体組成物の下記の測定法による生理食塩水の吸水容量は45g/gであった。
Monomer conversion (%) = {Mp / (Mp + Mm)} × 100
Further, the water absorption capacity of the physiological saline according to the following measurement method of this water-absorbent composite composition was 45 g / g.

生理食塩水吸収容量の測定;
2,000mlのビーカーに0.9重量%生理食塩水1,000mlを入れる。250メッシュのナイロン袋(10cm×20cmの大きさ)に乾燥した吸水性複合体組成物約1g(w1g)を入れ、袋ごと上記の生理食塩水中に入れ、室温で30分間保持する。ナ
イロン袋を引上げ、空中で15分間保持して水切りしたのちその重さw2gを測定する。
また、吸水性複合体組成物を入れないナイロン袋について同様の操作を行い、水切り後の重さw3を測定する。吸水性複合体の生理食塩水吸収容量は下式により算出される。
生理食塩水吸収容量(g/g)=(w2−w3)/w1
Measurement of saline absorption capacity;
Place 1,000 ml of 0.9 wt% saline in a 2,000 ml beaker. About 1 g (w 1 g) of the dried water-absorbing composite composition is placed in a 250-mesh nylon bag (10 cm × 20 cm in size), and the whole bag is placed in the above physiological saline and held at room temperature for 30 minutes. Pull up the nylon bag, hold it in the air for 15 minutes, drain it, and then measure its weight w 2 g.
Further, the same operation on the nylon bag that does not put a water-absorbent composite composition, measuring the weight w 3 after draining. The physiological saline absorption capacity of the water-absorbing complex is calculated by the following equation.
Saline absorption capacity (g / g) = (w 2 −w 3 ) / w 1

実施例2〜4(吸水性複合体の製造)
実施例1において、重合塔に供給する繊維の種類、吸水性樹脂に対する繊維の供給比率、繊維を供給する位置におけるモノマー転換率等を表−1に示すように変更した以外は、実施例1と同様にして吸水性複合体組成物を製造した。得られた吸水性複合体はほぼ全量が1個の吸水性樹脂粒子とこれに結合している2本ないし20〜30本の繊維から成るものであり、繊維が結合していない吸水性樹脂粒子は殆んど見当らなかった。
Examples 2 to 4 (Production of water-absorbing composite)
In Example 1, except that the type of fiber supplied to the polymerization tower, the fiber supply ratio to the water-absorbent resin, the monomer conversion rate at the fiber supply position, etc. were changed as shown in Table 1, and Example 1 Similarly, a water-absorbing composite composition was produced. The obtained water-absorbing composite is composed of one water-absorbing resin particle and two to 20 to 30 fibers bonded to the water-absorbing resin particle, and the water-absorbing resin particles to which no fiber is bonded. Was hardly found.

比較例1(吸水性複合体組成物の製造)
アクリル酸45.0g及び蒸留水1.5gを200mlのビーカーに入れ、35℃以下に冷却しつつこれに25%水酸化ナトリウム水溶液60.0gを加えて、部分中和アクリル酸水溶液を調製した。これに更にN,N′−メチレンビスアクリルアミド41.9mg及びL−アスコルビン酸0.31gを添加した。300mlのステンレス製ビーカーの上面をポリエステルシートで完全に覆ったのちシートにゴム管を挿通し、このゴム管を経て窒素ガスを送入してビーカー内を窒素で置換した。ビーカーに先に調製した溶液を入れ、50℃の湯浴に浸しつつ、撹拌下これに30%過酸化水素溶液0.84gを添加し、重合を行わせた。重合物の温度は約1分後に最高温度110℃に達した。2時間重合させたのち20℃に冷却して含水吸水性樹脂を得た。
Comparative Example 1 (Production of water-absorbing composite composition)
45.0 g of acrylic acid and 1.5 g of distilled water were put in a 200 ml beaker, and 60.0 g of 25% aqueous sodium hydroxide solution was added to the solution while cooling to 35 ° C. or lower to prepare a partially neutralized aqueous acrylic acid solution. To this was further added 41.9 mg of N, N'-methylenebisacrylamide and 0.31 g of L-ascorbic acid. After completely covering the top surface of a 300 ml stainless steel beaker with a polyester sheet, a rubber tube was inserted into the sheet, and nitrogen gas was fed through the rubber tube to replace the inside of the beaker with nitrogen. The solution prepared previously was put in a beaker, and while being immersed in a hot water bath at 50 ° C., 0.84 g of a 30% hydrogen peroxide solution was added to the solution with stirring to perform polymerization. The temperature of the polymer reached a maximum temperature of 110 ° C. after about 1 minute. After polymerizing for 2 hours, it was cooled to 20 ° C. to obtain a water-containing water-absorbent resin.

この含水吸水性樹脂70g、水200g及びパルプ15gをスクリュー回転式混合機を用いて約2時間混練した。混練物を減圧乾燥機で100℃で8時間乾燥したのち、回転羽根式粉砕機で粉砕した。粉砕物を篩分し、遊離繊維を除去して吸水性複合体を得た。顕微鏡観察では、このものは繊維が部分的に樹脂粒子に包埋されているものであった。   70 g of this water-containing water-absorbing resin, 200 g of water and 15 g of pulp were kneaded for about 2 hours using a screw rotary mixer. The kneaded product was dried with a vacuum dryer at 100 ° C. for 8 hours, and then pulverized with a rotary blade pulverizer. The pulverized product was sieved to remove free fibers to obtain a water-absorbing composite. Under microscopic observation, the fiber was partially embedded in resin particles.

Figure 2005307398
Figure 2005307398

実施例6〜15及び比較例2
実施例1〜5及び比較例1で得られた吸水性複合体組成物を相互に絡ませて吸水性シート状物を作成した。この吸水性シート状物の厚さ、剛柔性及び復元率を表−2に示す。
また、この吸水性シート状物を300g/m2となるようにステンレス板上に積み重ね
、室温で10MPaの圧力を10分間かけて圧密化したのち、10cm×40cmの大きさに切断した。
Examples 6 to 15 and Comparative Example 2
The water-absorbing composite compositions obtained in Examples 1 to 5 and Comparative Example 1 were entangled with each other to prepare water-absorbing sheet-like materials. Table 2 shows the thickness, flexibility and restoration rate of this water-absorbent sheet.
Further, this water-absorbent sheet-like material was stacked on a stainless steel plate so as to be 300 g / m 2 , consolidated at a pressure of 10 MPa at room temperature for 10 minutes, and then cut into a size of 10 cm × 40 cm.

不透水性ポリエチレンシート(目付量18g/m2)上に、ティッシュ(目付量14g
/m2)、フラッフパルプ(目付量110g/m2)、上記の圧密化した吸水性シート状物、ティッシュ(目付量14g/m2)及び透水性ポリエステル繊維不織布(目付量23g
/m2)を順次重ねた。これをステンレス板で挟み、0.4MPaの荷重をかけて20分
間放置し、圧密化した。荷重を取り去ったのち、4辺を熱圧着して約10cm×40cmの吸水性物品を得た。この吸水性物品の吸水粒子脱落率、並びに下記により測定した吸水速度及び放水量を表−2に示す。
On a water-impermeable polyethylene sheet (weight per unit area: 18 g / m 2 ), tissue (weight per unit area: 14 g)
/ M 2 ), fluff pulp (weight per unit area 110 g / m 2 ), the above-mentioned compacted water-absorbent sheet, tissue (weight per unit area 14 g / m 2 ), and water-permeable polyester fiber nonwoven fabric (weight per unit area 23 g)
/ M 2 ) in order. This was sandwiched between stainless plates, left to stand for 20 minutes under a load of 0.4 MPa, and consolidated. After removing the load, the four sides were thermocompression bonded to obtain a water-absorbing article of about 10 cm × 40 cm. Table 2 shows the water-absorbing particle drop-off rate of the water-absorbing article, and the water absorption rate and water discharge amount measured as follows.

吸水速度及び放水量の測定;
平滑な台上に吸水性物品を吸水面を上にして載置する。アクリル板(10cm×10cm×1cm)の中央に内径40mmの円筒が取付けられており、かつ円筒で囲まれた部分のアクリル板に直径5mmの貫通孔が7個ほぼ等間隔に設けられているもの(全重量150g)を吸水性物品の中央に載置する。直径100mmで中央部に直径45mmの穴のある円板(重量500g)を、円筒に挿通してアクリル板に載置する。円筒に人工尿を25ml入れ、これが吸水されて円筒が空になるまでの時間をストップウオッチで測定し、吸水速度とする。
Measurement of water absorption rate and water discharge amount;
A water-absorbing article is placed on a smooth table with the water-absorbing surface facing up. A cylinder with an inner diameter of 40 mm is attached to the center of an acrylic plate (10 cm × 10 cm × 1 cm), and seven through holes with a diameter of 5 mm are provided at almost equal intervals in the acrylic plate surrounded by the cylinder. (Total weight 150 g) is placed in the center of the water-absorbent article. A disc (weight: 500 g) having a diameter of 100 mm and a hole having a diameter of 45 mm in the center is inserted into the cylinder and placed on the acrylic plate. 25 ml of artificial urine is put into a cylinder, and the time from when the artificial urine is absorbed until the cylinder becomes empty is measured with a stopwatch to obtain the water absorption speed.

円筒に人工尿を入れてから10分後に吸水性物品上のアクリル板を取除き、濾紙(東洋濾紙社製 ADVANTEC NO.424,100×100mm)を20枚重ねたものを吸水性物品上のアクリル板があった位置に置き、更にその上に荷重(底面積10cm×10cm、重さ4kg)を載せる。5分後に荷重を取除き、濾紙の重量を測定し、濾紙の重量増を放水量とする。なお吸水速度及び放水量の測定は3回反復してその平均値で表示する。また、人工尿としては下記の組成のものを用いる。%は重量%である。   Ten minutes after placing artificial urine in the cylinder, the acrylic plate on the water-absorbent article is removed, and 20 sheets of filter paper (ADVANTEC NO.424, 100 × 100 mm, manufactured by Toyo Roshi Kaisha, Ltd.) are stacked on the acrylic sheet on the water-absorbent article. Place the plate where it was, and place a load (bottom area 10 cm x 10 cm, weight 4 kg) on it. After 5 minutes, the load is removed, the weight of the filter paper is measured, and the increase in the weight of the filter paper is taken as the water discharge amount. The measurement of the water absorption rate and the water discharge amount is repeated three times and displayed as the average value. Artificial urine having the following composition is used. % Is% by weight.

尿 素 1.94%
塩化ナトリウム 0.80%
塩化カルシウム 0.06%
硫酸マグネシウム 0.11%
蒸留水 97.09%
Urine 1.94%
Sodium chloride 0.80%
Calcium chloride 0.06%
Magnesium sulfate 0.11%
Distilled water 97.09%

Figure 2005307398
Figure 2005307398

吸水性シート状物の厚さを測定する装置の図である。It is a figure of the apparatus which measures the thickness of a water absorbing sheet-like material. 吸水性シート状物の剛柔性を測定する装置の図である。It is a figure of the apparatus which measures the flexibility of a water absorbing sheet-like material. 実施例で用いたノズル装置の図である。It is a figure of the nozzle apparatus used in the Example. 吸水性複合体の1例の顕微鏡写真である。It is a microscope picture of one example of a water absorbing composite.

符号の説明Explanation of symbols

11 アダプー
12 サンプル台
13 吸水性シート状物
21 握み
22 サンプル
11 Adapoo 12 Sample stand 13 Water-absorbent sheet 21 Grip 22 Sample

Claims (25)

略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維とから形成されており、繊維の絡み合いによりシート状に成形し得る吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の50重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の10重量%以下であることを特徴とする吸水性複合体組成物。   It is formed from substantially spherical water-absorbing resin particles and one or a plurality of fibers bonded to the water-absorbing resin particles and extending to the outside, and can be formed into a sheet by entanglement of the fibers. A water-absorbent composite composition mainly comprising a water-absorbent composite, wherein the water-absorbent composite formed of one water-absorbent resin particle and fiber accounts for 50% by weight or more of the entire water-absorbent composite. A water-absorbing composite composition, wherein the water-absorbing composite formed of four or more water-absorbing resin particles and fibers is 10% by weight or less of the entire water-absorbing composite. 略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維とから形成されており、繊維の絡み合いによりシート状に成形し得る吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の70重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体10重量%以下であることを特徴とする吸水性複合体組成物。   It is formed from substantially spherical water-absorbing resin particles and one or a plurality of fibers bonded to the water-absorbing resin particles and extending to the outside, and can be formed into a sheet by entanglement of the fibers. A water-absorbent composite composition mainly comprising a water-absorbent composite, wherein the water-absorbent composite formed of one water-absorbent resin particle and fiber accounts for 70% by weight or more of the entire water-absorbent composite. A water-absorbing composite composition, wherein the water-absorbing composite formed of four or more water-absorbing resin particles and fibers is 10% by weight or less of the entire water-absorbing composite. 略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維とから形成されており、繊維の絡み合いによりシート状に成形し得る吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の85重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の5重量%以下であることを特徴とする吸水性複合体組成物。   It is formed of substantially spherical water-absorbing resin particles and one or a plurality of fibers bonded to the water-absorbing resin particles and extending to the outside, and can be formed into a sheet by entanglement of the fibers. A water-absorbent composite composition mainly comprising a water-absorbent composite, wherein the water-absorbent composite formed of one water-absorbent resin particle and fiber accounts for 85% by weight or more of the entire water-absorbent composite. A water-absorbing composite composition, wherein the water-absorbing composite formed of four or more water-absorbing resin particles and fibers is 5% by weight or less of the entire water-absorbing composite. 吸水性樹脂粒子の平均粒径が50〜3,000μmであることを特徴とする請求項1ないし3のいずれかに記載の吸水性複合体組成物。   The water-absorbent composite composition according to any one of claims 1 to 3, wherein the water-absorbent resin particles have an average particle size of 50 to 3,000 µm. 吸水性樹脂粒子の平均粒子径が100〜1,000μmであることを特徴とする請求項1ないし3のいずれかに記載の吸水性複合体組成物。   The water absorbent composite composition according to any one of claims 1 to 3, wherein the water absorbent resin particles have an average particle diameter of 100 to 1,000 µm. 吸水性樹脂粒子の平均粒径が200〜800μmであることを特徴とする請求項1ないし3のいずれかに記載の吸水性複合体組成物。   The water absorbent composite composition according to any one of claims 1 to 3, wherein the water absorbent resin particles have an average particle size of 200 to 800 µm. 繊維の長さが100〜30,000μmであり、且つ吸水性樹脂粒子の平均粒径の2倍以上であることを特徴とする請求項1ないし6のいずれかに記載の吸水性複合体組成物。   The water absorbent composite composition according to any one of claims 1 to 6, wherein the fiber has a length of 100 to 30,000 µm and is at least twice the average particle diameter of the water absorbent resin particles. . 繊維の長さが200〜10,000μmであり、且つ吸水性樹脂粒子の平均粒径の2倍以上であることを特徴とする請求項1ないし6のいずれかに記載の吸水性複合体組成物。   The water-absorbing composite composition according to any one of claims 1 to 6, wherein the fiber has a length of 200 to 10,000 µm and is at least twice the average particle diameter of the water-absorbing resin particles. . 繊維の長さが500〜5,000μmであり、且つ吸水性樹脂粒子の平均粒径の2倍以上であることを特徴とする請求項1ないし6のいずれかに記載の吸水性複合体組成物。   The water-absorbing composite composition according to any one of claims 1 to 6, wherein the fiber has a length of 500 to 5,000 µm and is at least twice the average particle diameter of the water-absorbing resin particles. . 吸水性樹脂粒子とこれに結合している繊維との重量比が1:1〜100:1であることを特徴とする請求項1ないし9のいずれかに記載の吸水性複合体組成物。   The water-absorbent composite composition according to any one of claims 1 to 9, wherein the weight ratio of the water-absorbent resin particles to the fibers bonded thereto is 1: 1 to 100: 1. 吸水性樹脂粒子とこれに結合している繊維との重量比が2:1〜20:1であることを特徴とする請求項1ないし9のいずれかに記載の吸水性複合体組成物。   The water-absorbent composite composition according to any one of claims 1 to 9, wherein the weight ratio of the water-absorbent resin particles to the fibers bonded thereto is 2: 1 to 20: 1. 吸水性樹脂粒子に結合していない繊維を含むことを特徴とする請求項1ないし11のいずれかに記載の吸水性複合体組成物。   The water-absorbent composite composition according to any one of claims 1 to 11, comprising fibers that are not bonded to the water-absorbent resin particles. 請求項1ないし12のいずれかに記載の吸水性複合体組成物ないしはこれと繊維とから成り、繊維の絡み合いによってシート状に形成されていることを特徴とする吸水性シート状物。   A water-absorbent composite material according to any one of claims 1 to 12, or a water-absorbent composite material or a fiber, and formed into a sheet shape by entanglement of fibers. 吸水性樹脂粒子に結合していない繊維を含有しており、かつその長さが100〜30,000μmであることを特徴とする請求項13に記載の吸水性シート状物。   14. The water-absorbent sheet-like material according to claim 13, comprising fibers not bonded to the water-absorbent resin particles and having a length of 100 to 30,000 μm. 吸水性樹脂粒子に結合していない繊維を含有しており、かつその長さが200〜10,000μmであることを特徴とする請求項13に記載の吸水性シート状物。   The water-absorbent sheet-like material according to claim 13, which contains fibers not bonded to the water-absorbent resin particles and has a length of 200 to 10,000 µm. 吸水性樹脂粒子と繊維(吸水性樹脂粒子に結合している繊維及び結合していない繊維の合計)との重量比が1:1〜10:1であることを特徴とする請求項13ないし15のいずれかに記載の吸水性シート状物。   16. The weight ratio of the water-absorbent resin particles to the fibers (the sum of the fibers bonded to the water-absorbent resin particles and the fibers not bonded) is 1: 1 to 10: 1. The water-absorbent sheet-like material according to any one of the above. 吸水性樹脂粒子と繊維(吸水性樹脂粒子に結合している繊維及び結合していない繊維の合計)との重量比が2:1〜9:1であることを特徴とする請求項13ないし15のいずれかに記載の吸水性シート状物。   16. The weight ratio of the water-absorbent resin particles to the fibers (the total of fibers bonded to the water-absorbent resin particles and fibers not bonded) is 2: 1 to 9: 1. The water-absorbent sheet-like material according to any one of the above. 平均粒径が100〜1,000μmの略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維であって、その平均長さが200〜10,000μmであり且つ吸水性樹脂粒子の平均粒径の2倍以上の長さを有する繊維とから形成されている吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の50重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の10重量%以下である吸水性複合体組成物、ないしはこの吸水性複合体組成物と繊維とから成り、吸水性樹脂粒子に結合していない繊維の長さが100〜30,000μmであり、吸水性樹脂粒子と繊維(吸水性樹脂粒子に結合している繊維及び結合していない繊維の合計)との重量比が1:1〜10:1であり、繊維の絡み合いによってシート状に形成されていることを特徴とする吸水性シート状物。   A substantially spherical water-absorbent resin particle having an average particle diameter of 100 to 1,000 μm, and one or a plurality of fibers bonded to the water-absorbent resin particle and extending to the outside thereof, the average length thereof A water-absorbing composite composition mainly comprising a water-absorbing composite formed of fibers having a length of 200 to 10,000 μm and a length of at least twice the average particle diameter of the water-absorbing resin particles. The water-absorbent composite formed from one water-absorbent resin particle and fiber accounts for 50% by weight or more of the entire water-absorbent composite, and is formed from four or more water-absorbent resin particles and fiber. A water-absorbing composite composition in which the water-absorbing composite is 10% by weight or less of the entire water-absorbing composite, or a fiber comprising the water-absorbing composite composition and fibers, and not bonded to the water-absorbing resin particles Length of 100-30,000μ The weight ratio of the water-absorbent resin particles and the fibers (the total of the fibers bonded to the water-absorbent resin particles and the fibers not bonded) is 1: 1 to 10: 1, and the sheet is formed by the entanglement of the fibers. A water-absorbent sheet-like material characterized in that it is formed. 平均粒径が200〜800μmの略球状の吸水性樹脂粒子と、この吸水性樹脂粒子に結合していて且つこれから外部に伸びている1本ないし複数本の繊維であって、その平均長さが500〜5,000μmであり且つ吸水性樹脂粒子の平均長さの2倍以上の長さを有する繊維とから形成されている吸水性複合体から主として成る吸水性複合体組成物であって、1個の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の85重量%以上を占めており、4個以上の吸水性樹脂粒子と繊維とから形成されている吸水性複合体が吸水性複合体全体の5重量%以下である吸水性複合体組成物、ないしはこの吸水性複合体組成物と繊維とから成り、吸水性樹脂粒子に結合していない繊維の長さが100〜30,000μmであり、吸水性樹脂粒子と繊維(吸水性樹脂粒子に結合している繊維及び結合していない繊維の合計)との重量比が2:1〜9:1であり、繊維の絡み合いによってシート状に形成されていることを特徴とする吸水性シート状物。   A substantially spherical water-absorbing resin particle having an average particle diameter of 200 to 800 μm, and one or a plurality of fibers bonded to the water-absorbing resin particle and extending outward from the water-absorbing resin particle. A water-absorbent composite composition mainly comprising a water-absorbent composite formed of fibers having a length of 500 to 5,000 μm and having a length twice or more the average length of the water-absorbent resin particles, The water-absorbing composite formed from one water-absorbing resin particle and fiber accounts for 85% by weight or more of the entire water-absorbing composite, and is formed from four or more water-absorbing resin particles and fibers. The water-absorbing composite composition having a water-absorbing composite content of 5% by weight or less of the entire water-absorbing composite, or the length of the fiber not composed of the water-absorbing resin particles, comprising the water-absorbing composite composition and fibers. Is 100-30,000 μm The weight ratio of the water-absorbent resin particles to the fibers (the total of the fibers bonded to the water-absorbent resin particles and the fibers not bonded) is 2: 1 to 9: 1, and is formed into a sheet shape by the entanglement of the fibers. A water-absorbent sheet-like material characterized by 厚さが0.5〜10mmであることを特徴とする請求項13ないし19のいずれかに記載の吸水性シート状物。   The water-absorbent sheet-like material according to any one of claims 13 to 19, wherein the thickness is 0.5 to 10 mm. 厚さが1〜5mmであることを特徴とする請求項13ないし19のいずれかに記載の吸水性シート状物。   The water-absorbent sheet-like material according to any one of claims 13 to 19, wherein the thickness is 1 to 5 mm. 下記式で算出される復元率が50%以下であることを特徴とする請求項13ないし21のいずれかに記載の吸水性シート状物。
復元率(%)={(A−B)/A}×100
(式中、Aは吸水性シート状物に100kg/cm2の荷重を10分間かけたのち荷重を
除き、温度25℃、湿度50%の雰囲気中で30日間保存した後の吸水性シート状物の厚さであり、Bは荷重を除く直前の吸水性シート状物の厚さである)
The water-absorbent sheet-like material according to any one of claims 13 to 21, wherein a restoration rate calculated by the following formula is 50% or less.
Restoration rate (%) = {(A−B) / A} × 100
(In the formula, A is a water-absorbent sheet material after a load of 100 kg / cm 2 was applied to the water-absorbent sheet material for 10 minutes, the load was removed, and the product was stored for 30 days in an atmosphere at a temperature of 25 ° C. and a humidity of 50%. And B is the thickness of the water-absorbent sheet just before the load is removed)
JISL−1096に規定するハートループ法による剛柔率が5.0〜9.5cmであることを特徴とする請求項13ないし22のいずれかに記載の吸水性シート状物。   The water-absorbent sheet-like material according to any one of claims 13 to 22, wherein the stiffness according to the heart loop method specified in JISL-1096 is 5.0 to 9.5 cm. 積層構造を有する吸水性物品であって、その少なくとも1層として請求項13ないし23のいずれかに記載の吸水性シート状物を含んでいることを特徴とする吸水性物品。   A water absorbent article having a laminated structure, wherein the water absorbent article according to any one of claims 13 to 23 is contained as at least one layer thereof. 不透水性樹脂シート上に、パルプ、紙又は不織布から成る層、請求項13ないし23のいずれかに記載の吸水性シート状物、及びパルプ、紙又は不織布から成る層の少なくとも3層が、この順序で積層された構造を有していることを特徴とする吸水性物品。   At least three layers of a layer made of pulp, paper or nonwoven fabric, a water-absorbent sheet-like material according to any one of claims 13 to 23, and a layer made of pulp, paper or nonwoven fabric are formed on the water-impermeable resin sheet. A water-absorbent article characterized by having a structure laminated in order.
JP2004127071A 2004-04-22 2004-04-22 Water-absorbing composite composition and water-absorbing sheet-shaped material Withdrawn JP2005307398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127071A JP2005307398A (en) 2004-04-22 2004-04-22 Water-absorbing composite composition and water-absorbing sheet-shaped material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127071A JP2005307398A (en) 2004-04-22 2004-04-22 Water-absorbing composite composition and water-absorbing sheet-shaped material

Publications (1)

Publication Number Publication Date
JP2005307398A true JP2005307398A (en) 2005-11-04

Family

ID=35436486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127071A Withdrawn JP2005307398A (en) 2004-04-22 2004-04-22 Water-absorbing composite composition and water-absorbing sheet-shaped material

Country Status (1)

Country Link
JP (1) JP2005307398A (en)

Similar Documents

Publication Publication Date Title
US8563127B2 (en) Absorbent composite material and bodily fluid-absorbing article comprising water-absorbent resin particles having specific surface strength
US9162007B2 (en) Superabsorbent polymer composite comprising a superabsorbent polymer and cellulosic nanofibrils
JP3386074B2 (en) Absorbent member containing interparticle crosslinked aggregates
US10881555B2 (en) Fluid-absorbent article
CN107260406B (en) Superabsorbent polymers for absorbent pant diaper cores having a high CRC/TAC ratio
WO2004108274A1 (en) Water-absorbent articles and process for the production thereof
WO1995034377A1 (en) Water absorbent, process for producing the same, and absorbent article containing the same
JPS58163438A (en) Absorbing sheet product
JP4261853B2 (en) Water absorbent resin, water absorbent resin particles, and production method thereof
SA91110387B1 (en) Microporous absorbent polymeric microstructures and methods for their fabrication
JP6549841B2 (en) Absorbent composite and method for producing the same
PL168265B1 (en) Disintegrated polymeric composition
JP4808011B2 (en) Body fluid absorbent article with excellent diffusivity
JP4863830B2 (en) Fabric-like high-speed absorbent composite and its production method
JP2008119860A (en) Thin highly absorbable composite material excellent in dry feeling and its manufacturing method
JP2005307398A (en) Water-absorbing composite composition and water-absorbing sheet-shaped material
WO2004094482A1 (en) Water-absorbing resin composite and process for producing accumulation thereof
WO2004092281A1 (en) Water-absorbing resin composite and compositions comprising such composites
JP2005015995A (en) Process for producing absorbent article
JP2005226042A (en) Water-absorbing resin composite, method for producing the same, water-absorbing resin composite composition and absorbing article
JP2005015994A (en) Absorbent article
JP2005015991A (en) Absorbent article
JP2005013724A (en) Absorptive article
JP2005015992A (en) Absorbent article
JP2005015993A (en) Absorbent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081105