JP2005306702A - Method of forming micro-hole having tapered shape - Google Patents

Method of forming micro-hole having tapered shape Download PDF

Info

Publication number
JP2005306702A
JP2005306702A JP2004129894A JP2004129894A JP2005306702A JP 2005306702 A JP2005306702 A JP 2005306702A JP 2004129894 A JP2004129894 A JP 2004129894A JP 2004129894 A JP2004129894 A JP 2004129894A JP 2005306702 A JP2005306702 A JP 2005306702A
Authority
JP
Japan
Prior art keywords
quartz glass
hole
laser
etching
microhole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004129894A
Other languages
Japanese (ja)
Inventor
Takayuki Nakatani
隆幸 中谷
Toshiro Furutaki
敏郎 古滝
Kazuhiko Sunakawa
和彦 砂川
Yoichi Yaguchi
洋一 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2004129894A priority Critical patent/JP2005306702A/en
Publication of JP2005306702A publication Critical patent/JP2005306702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adjust an angle of a taper produced in a micro-hole in the machining of the micro-hole having the taper by laser using a simple optical system. <P>SOLUTION: In the method of forming the micro-hole on a material to be worked by convergently irradiating quartz glass with pulse laser to modify the quartz glass existed near the focus of the pulse laser and etching and removing the modified part, the relation among C, θ and the etching time (t) is expressed by a mathematical expression when the concentration of hydrofluoric acid which is an etchant is expressed by C, the angle of the taper produced on the side surface of the formed micro-hole is expressed by θ. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、テーパー形状を有する微小穴の製造方法に関し、特に、石英ガラスへのパルスレーザの集光照射によって、石英ガラスを局所的に改質させ、その改質部分をエッチングにより除去する、テーパー形状を有する微小穴の形成方法に関する。   The present invention relates to a method of manufacturing a microscopic hole having a tapered shape, and in particular, a tapered glass in which quartz glass is locally modified by focused irradiation of a pulsed laser onto quartz glass, and the modified portion is removed by etching. The present invention relates to a method for forming a minute hole having a shape.

パルスレーザを用いて、材料にテーパーを有する穴を形成する手法としては、例えば特許文献1に示す技術が従来知られている。この方法は、材料の表面にパルス幅が1ps未満のパルスレーザ、すなわちフェムト秒レーザを集光照射することによって穴を形成するものであり、光路中にコーン形状レンズ対を導入し、これらの間隔を変化させることによってビーム強度を変化させ、穴のテーパー角度を制御するという手法である。   As a technique for forming a hole having a taper in a material using a pulse laser, for example, a technique disclosed in Patent Document 1 is conventionally known. In this method, a hole is formed by focusing and irradiating a pulse laser having a pulse width of less than 1 ps, that is, a femtosecond laser, on the surface of the material. This is a method of changing the beam intensity by changing the angle and controlling the taper angle of the hole.

また、特許文献2に係る従来技術によると、シリカガラスにフェムト秒レーザを照射してシリカの構造に変化を与え、その後にフッ酸やバッファードフッ酸によってエッチングを行い、穴を形成している。   Further, according to the prior art according to Patent Document 2, the silica glass is irradiated with a femtosecond laser to change the structure of the silica, and then etched with hydrofluoric acid or buffered hydrofluoric acid to form a hole. .

特開2001−219282号公報JP 2001-219282 A

特開2002−210730号公報JP 2002-210730 A

しかしながら特許文献1に係る技術においては、形成される穴の内周面は荒いものとなる。一般に、フェムト秒レーザのレーザアブレーションでは、パルス幅が極端に短いために、レンズにより集光すると、焦点付近ではレーザ強度が10TW/cm↑2に達する。これにより焦点付近では、プラズマの発生を伴う材料の改質が極めて短時間で発生するが、テーパーを有する穴の内周面を鏡面レベルの平滑面にしたという報告は今までにない。また従来の、テーパーを有する穴の形成方法では、コーン形状レンズ対を導入するなど複雑な光学系を用いる上、これらの調整は困難であるという問題点があった。   However, in the technique according to Patent Document 1, the inner peripheral surface of the hole to be formed is rough. Generally, in laser ablation of a femtosecond laser, since the pulse width is extremely short, when focused by a lens, the laser intensity reaches 10 TW / cm ↑ 2 near the focal point. As a result, in the vicinity of the focal point, the material modification accompanied by the generation of plasma occurs in a very short time, but there has never been a report that the inner peripheral surface of the tapered hole has been made a smooth surface at a mirror surface level. Further, the conventional method for forming a hole having a taper has a problem that it is difficult to adjust these in addition to using a complicated optical system such as introducing a cone-shaped lens pair.

また、特許文献2に係る技術は、ストレートな穴の形成方法に関する技術であるが、形成された穴は、わずかにテーパーを有する形状であった。   Moreover, although the technique which concerns on patent document 2 is a technique regarding the formation method of a straight hole, the formed hole was a shape which has a taper slightly.

本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、第1には簡素な光学系を用いたレーザによる、テーパーを有する微小穴の加工において、微小穴に生じたテーパーの角度量を調節することである。第2には、鏡面レベルで平滑な内周面を有する、テーパーを有する微小穴を形成することである。   The present invention has been made in view of the above-mentioned problems, and the object of the present invention is first to occur in a minute hole in processing of a minute hole having a taper by a laser using a simple optical system. Adjusting the amount of taper angle. The second is to form a tapered microhole having a smooth inner peripheral surface at a mirror surface level.

請求項1記載の発明は、石英ガラスにパルスレーザの集光照射を行って、パルスレーザの焦点近傍の石英ガラスを改質させ、該改質部分をエッチングにより除去して該被加工物に微小穴を形成する方法において、エッチャントであるフッ酸の濃度をC[wt%]、該改質部分の直径をD[μm]、該改質部分の直径方向のエッチングレートをE[μm/h]、該改質部分の長さ方向のエッチングレートをE[μm/h]、非改質部分のエッチングレートをE[μm/h]、そして形成される微小穴の側面に生じるテーパー角度をθ[deg]とすると、Cとθ及びエッチング時間t[h]との関係が、以下の式で表されることを特徴とする、石英ガラスへの微小穴の形成方法である。 According to the first aspect of the present invention, the quartz glass is irradiated with focused laser light to modify the quartz glass in the vicinity of the focal point of the pulse laser, and the modified portion is removed by etching so that the work piece is minutely formed. In the method of forming a hole, the concentration of hydrofluoric acid as an etchant is C [wt%], the diameter of the modified portion is D 0 [μm], and the etching rate in the diameter direction of the modified portion is E D [μm / h], the etching rate in the length direction of the modified portion is E L [μm / h], the etching rate of the non-modified portion is E 0 [μm / h], and the taper generated on the side surface of the formed microhole When the angle is θ [deg], the relationship between C, θ, and etching time t [h] is expressed by the following equation, and this is a method for forming a microhole in quartz glass.

形成される微小穴は、石英ガラス表面と内部のエッチングの時間差と、改質部分と非改質部分のエッチング速度の違いにより、表面の直径が大きく中心の直径が小さい、テーパー形状の微小穴が形成される。   Due to the difference in etching time between the quartz glass surface and inside, and the difference in etching rate between the modified part and the non-modified part, the formed microhole is a tapered microhole with a large surface diameter and a small central diameter. It is formed.

ここで、濃度C[wt%]のフッ酸を用いた場合のエッチングレートは、微小穴の直径が石英ガラスの改質部分の直径D[μm]よりも小さいうちは、改質部分の直径方向のエッチングレートE[μm/h]となる。一方、改質部分がエッチングにより除去され、微小穴の直径がDより大きくなると、フッ酸は未改質部分のエッチングを行うため、エッチングレートはEよりも小さいE[μm/h]となる。すなわち、各々の場合の微小穴の直径D[μm]とE、E、Cおよび時間t[h]との関係は、微小穴の直径D0である時の時間t=D/E(C)[h]を境にして、以下のように表される。 Here, the etching rate in the case of using hydrofluoric acid having a concentration of C [wt%] is as long as the diameter of the minute hole is smaller than the diameter D 0 [μm] of the modified portion of the quartz glass. The etching rate E D in the direction is [μm / h]. On the other hand, modified portion is removed by etching, the diameter of the minute hole is greater than D 0, hydrofluoric acid for etching the unmodified portion, the etching rate is smaller E [μm / h] than E D Become. That is, the diameter D [[mu] m] and E D of the micro holes in each case, E, relation between the C and the time t [h], the time t = D 0 / E D when the diameter D 0 of the minute hole (C) Expressed as follows, with [h] as the boundary.

一方、エッチングで形成される微小穴の深さは、レーザ照射部の深さ方向のエッチングレートE[μm/h]より求められ、微小穴の深さL[μm]とc、t[h]との関係は、以下のように表される。 On the other hand, the depth of the minute hole formed by etching is obtained from the etching rate E L [μm / h] in the depth direction of the laser irradiation portion, and the depth L [μm] of the minute hole and c, t [h] ] Is expressed as follows.

ここで、上記のD,Lとテーパー角度θは、幾何的に以下の式により求められる。   Here, the above D and L and the taper angle θ are obtained geometrically by the following equations.

従って、上式にD,Lの値を代入することにより、θとc,tの関係は、以下のように表される。 Therefore, by substituting the values of D and L into the above equation, the relationship between θ and c, t is expressed as follows.

請求項2記載の発明は、請求項1記載の構成に加えて、前記パルスレーザのパルス幅が、1ps以下であることを特徴とする、石英ガラスへの微小穴の形成方法である。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the pulse width of the pulse laser is 1 ps or less, and the method for forming a microhole in quartz glass.

本発明に用いるパルス幅の短いレーザ、特に1ps以下のパルス幅を持つパルスレーザでは、10TW/cm以上のレーザ強度を容易に実現できる。このようなパルスレーザを用いるとき、石英ガラスにおいてパルスレーザの多光子吸収が生じ、石英ガラスの改質を引き起こすことができる。またパルス幅が極端に短いために、多光子吸収されたパルスレーザは熱拡散をほとんど起こさず、レーザ集光照射部近傍のみを改質させることができる。 With a laser having a short pulse width used in the present invention, particularly a pulse laser having a pulse width of 1 ps or less, a laser intensity of 10 TW / cm 2 or more can be easily realized. When such a pulse laser is used, multiphoton absorption of the pulse laser occurs in the quartz glass, which can cause modification of the quartz glass. Further, since the pulse width is extremely short, the pulsed laser that has absorbed multiphotons hardly causes thermal diffusion, and only the vicinity of the laser focused irradiation part can be modified.

請求項3記載の発明は、請求項1〜2のいずれかに記載の構成に加えて、前記パルスレーザの波長が、該被加工物を透過する波長を有することを特徴とする、石英ガラスへの微小穴の形成方法である。   According to a third aspect of the present invention, in addition to the structure of the first or second aspect, the wavelength of the pulse laser has a wavelength that transmits the workpiece. This is a method of forming a microhole.

石英ガラスにパルスレーザを照射する際に、使用するパルスレーザの波長が石英ガラスの固有吸収内であると、石英ガラスの表面でレーザの吸収が起こり、改質が行われて、石英ガラス内部への加工を行う際の妨げになりやすい。したがって、石英ガラス内部での改質を空間選択的に起こすためには、パルスレーザの波長が石英ガラスを透過する波長であることがより好ましい。   When irradiating the quartz glass with a pulsed laser, if the wavelength of the pulsed laser used is within the intrinsic absorption of the quartz glass, the laser will be absorbed on the surface of the quartz glass, and the modification will be carried out. It tends to be a hindrance when performing the processing. Therefore, in order to cause spatial modification selectively in the quartz glass, it is more preferable that the wavelength of the pulse laser is a wavelength that transmits the quartz glass.

本発明の石英ガラスへの微小穴の形成方法によれば、エッチング液の濃度を選択することにより、石英ガラスに形成される微小穴のテーパー角度をコントロールできるため、テーパー量のコントロールを光学系に委ねる必要がなくなる。これにより、簡素な光学系を用いたレーザ加工で、微小穴に生じたテーパーの角度量を調節することが出来るという効果を奏する。   According to the method for forming microholes in the quartz glass of the present invention, the taper angle of the microholes formed in the quartz glass can be controlled by selecting the concentration of the etching solution. There is no need to leave it. Thereby, there is an effect that the angle amount of the taper generated in the minute hole can be adjusted by laser processing using a simple optical system.

また本発明によれば、平均面粗さRaが5nm未満の、非常に平滑な内面を有する、テーパーを有する微小穴を得ることができるという効果を奏する。   Moreover, according to this invention, there exists an effect that the micro hole which has a very smooth inner surface whose average surface roughness Ra is less than 5 nm, and has a taper can be obtained.

以下、本発明を実施するための最良の形態について説明する。本実施形態は、予め全面研磨を行った石英ガラス1に対して、載置台2とパルスレーザ3、エッチング液槽4を用いた、テーパーを有する微小穴の形成方法である。   Hereinafter, the best mode for carrying out the present invention will be described. The present embodiment is a method for forming a microscopic hole having a taper using a mounting table 2, a pulse laser 3, and an etching solution tank 4 with respect to quartz glass 1 which has been polished on the whole surface in advance.

本実施形態に用いるパルスレーザ3は、加工閾値以上のレーザ強度を有している必要がある。具体的には、パルスレーザ3のパルス幅は150fs〜1psで、繰返し周期1kHz〜250kHz、波長800nm前後、平均出力1W前後のものが使用可能である。しかしながら、エッチング速度の制御をより精密にして、テーパーを有する微小穴を安定的に形成するためには、またテーパーを有する微小穴の内面をより平滑にするためには、パルスレーザ3の繰返し周期を大きくして、レーザ強度は小さく抑えることが好ましい。   The pulse laser 3 used in the present embodiment needs to have a laser intensity equal to or higher than a processing threshold. Specifically, the pulse width of the pulse laser 3 is 150 fs to 1 ps, a repetition period of 1 kHz to 250 kHz, a wavelength of about 800 nm, and an average output of about 1 W can be used. However, in order to make the control of the etching rate more precise and form a tapered microhole stably, and to make the inner surface of the tapered microhole more smooth, the repetition period of the pulse laser 3 It is preferable to keep the laser intensity small by increasing.

図1に示すように、本実施形態1に用いる石英ガラス1は、予め研磨を行い、載置台2に設置する。上記条件に適合したパルスレーザ3を、レンズ3bで集光して石英ガラス1に照射し、パルスレーザの焦点3cの近傍の石英ガラスの改質を行う。そして載置台をXYZステージ等の手段により移動させて焦点3cを走査させることで、石英ガラス1の表面の少なくとも1ヶ所を含んだ所望の領域に、石英ガラス1の改質領域4を形成する。ここでパルスレーザ3による改質は、石英ガラス裏面1aを起点として、表側に向かって焦点を走査させて行うことが好ましい。その理由は、改質された石英ガラスによるレーザの屈折・散乱を防ぐためである。   As shown in FIG. 1, the quartz glass 1 used in Embodiment 1 is previously polished and placed on the mounting table 2. The pulsed laser 3 conforming to the above conditions is condensed by the lens 3b and irradiated onto the quartz glass 1 to modify the quartz glass near the focal point 3c of the pulsed laser. Then, by moving the mounting table by means such as an XYZ stage and scanning the focal point 3c, the modified region 4 of the quartz glass 1 is formed in a desired region including at least one place on the surface of the quartz glass 1. Here, the modification by the pulse laser 3 is preferably performed by scanning the focal point from the quartz glass back surface 1a to the front side. The reason is to prevent laser refraction and scattering by the modified quartz glass.

石英ガラス1はパルスレーザ3の集光照射後、エッチング槽4内に浸漬させる。エッチング層の中は、数式1で求められる濃度のフッ酸水溶液を用いる。フッ酸水溶液の濃度は、10wt%のものから0.1wt%の希薄な水溶液まで適用可能である。エッチングは石英ガラス1の表面の改質部分から内部に進行していくが、石英ガラスの表面と内部とのエッチングの時間差が生じるため、またパルスレーザ3による改質部分4のエッチング速度は非改質部分に比べて速いため、表面の直径よりも中心の直径が小さい、テーパー形状の微小穴が形成される。   The quartz glass 1 is immersed in the etching tank 4 after the focused irradiation of the pulse laser 3. In the etching layer, a hydrofluoric acid aqueous solution having a concentration calculated by Equation 1 is used. The concentration of the hydrofluoric acid aqueous solution is applicable from 10 wt% to a dilute aqueous solution of 0.1 wt%. Etching proceeds from the modified portion on the surface of the quartz glass 1 to the inside. However, the etching time difference between the surface and the inside of the quartz glass occurs, and the etching rate of the modified portion 4 by the pulse laser 3 is not modified. Since it is faster than the quality part, a tapered microhole having a central diameter smaller than the surface diameter is formed.

本実施例は、本発明の実施形態における、テーパーを有する微小穴の形成方法に関する
ものである。サンプルとして全面研磨された合成石英ガラス10mm×10mm×4mmを用いた。またレーザによるサンプル内部の改質には、パルス幅150fs、平均出力1W、繰返し周期200kHzのフェムト秒レーザを用い、石英ガラスに改質部分を形成した。
The present example relates to a method for forming a microhole having a taper in the embodiment of the present invention. Synthetic quartz glass 10 mm × 10 mm × 4 mm polished on the entire surface was used as a sample. Further, for the modification inside the sample by a laser, a modified portion was formed in quartz glass using a femtosecond laser having a pulse width of 150 fs, an average output of 1 W, and a repetition period of 200 kHz.

ここでエッチャントとして10wt%,1wt%,0.1wt%のフッ酸水溶液を用いた場合、テーパー角度の制御は、±0.05°以内の高い再現性を有していた。ここで上記方法により形成した、直径111μm,テーパー角度10.4°の微小穴の断面を露出させ、その断面を走査型電子顕微鏡(SEM)により観察し、内面粗度を原子間力顕微鏡(AFM)により評価を行った。このときの電子顕微鏡像及び原子間力顕微鏡像はそれぞれ、図2及び図3に示すとおりになった。そして、断面の平均面粗さRaは5nmとなり、微小穴の表面は非常に平滑となった。   Here, when 10 wt%, 1 wt%, and 0.1 wt% hydrofluoric acid aqueous solution was used as the etchant, the control of the taper angle had high reproducibility within ± 0.05 °. Here, a cross-section of a microhole having a diameter of 111 μm and a taper angle of 10.4 ° formed by the above method is exposed, the cross-section is observed with a scanning electron microscope (SEM), and the inner surface roughness is measured by an atomic force microscope (AFM). ). The electron microscope image and the atomic force microscope image at this time were as shown in FIGS. 2 and 3, respectively. The average surface roughness Ra of the cross section was 5 nm, and the surface of the microhole was very smooth.

本実施例は、請求項1における数式からの、具体的な数値の導出に関するものである。実施例1と同様に、サンプルとして全面研磨された合成石英ガラス10mm×10mm×4mmを用いた。またレーザによるサンプルの改質には、パルス幅150fs、平均出力1W、繰返し周期200kHzのフェムト秒レーザを用い、石英ガラスに改質部分を形成した。   The present embodiment relates to the derivation of specific numerical values from the mathematical expression in claim 1. As in Example 1, a synthetic quartz glass 10 mm × 10 mm × 4 mm polished on the entire surface was used as a sample. The sample was modified by a laser using a femtosecond laser having a pulse width of 150 fs, an average output of 1 W, and a repetition period of 200 kHz, and a modified portion was formed in quartz glass.

石英ガラスのエッチングには、1.5wt%のフッ酸を用いた。この時、直径D=8μmの改質部分へのエッチングによる微小穴の直径・深さの経時変化は、例えば図5・図6のように示された。これらの関係から、該改質部分の直径方向のエッチングレートE(1.5)=6.4、該改質部分の長さ方向のエッチングレートE(1.5)=32、非改質部分のエッチングレートE(1.5)=0.67と求められた。この値を請求項1の公式にあてはめることにより、θとtの関係を表す近似式は、t=1.25[h]を境にして、以下のように求められた。 For etching quartz glass, 1.5 wt% hydrofluoric acid was used. At this time, the time-dependent changes in the diameter and depth of the microhole due to the etching into the modified portion having the diameter D = 8 μm are shown in FIGS. 5 and 6, for example. From these relationships, the etching rate E D (1.5) = 6.4 in the diameter direction of the modified portion, the etching rate E L (1.5) = 32 in the length direction of the modified portion, The etching rate E (1.5) of the quality part was determined to be 0.67. By applying this value to the formula of claim 1, an approximate expression representing the relationship between θ and t was obtained as follows with t = 1.25 [h] as a boundary.

本発明のテーパーを有する微小穴は、非常に平滑な内面をもつ微小径の穴であるため、その内部に流体を流すことも可能で、マイクロノズルやバイオチップ・ケミストリーチップなどへの適用が可能である。   The tapered micro-hole of the present invention is a micro-diameter hole with a very smooth inner surface, so it is possible to allow fluid to flow through it and can be applied to micro nozzles, biochips, chemistry chips, etc. It is.

本実施形態に係る、石英ガラスへの微小穴の形成方法を説明する図である。It is a figure explaining the formation method of the micro hole in quartz glass based on this embodiment. 本実施形態に係る、微小穴の断面の電子顕微鏡像である。It is an electron microscope image of the cross section of a microhole based on this embodiment. 本実施形態に係る、微小穴の断面の原子間力顕微鏡像である。It is an atomic force microscope image of the cross section of a microhole based on this embodiment. 第2の実施例に係る、エッチング時間t[h]と微小穴の直径D[μm]との関係を示す図である。It is a figure which shows the relationship between the etching time t [h] and the diameter D [micrometer] of a microhole based on a 2nd Example. 第2の実施例に係る、エッチング時間t[h]と微小穴の深さL[μm]との関係を示す図である。It is a figure which shows the relationship between the etching time t [h] and the depth L [micrometer] of a micro hole based on 2nd Example.

符号の説明Explanation of symbols

1 石英ガラス
2 載置台
3 パルスレーザ
3a パルスレーザ発光源
3b レンズ
3c 焦点
4 改質部分
DESCRIPTION OF SYMBOLS 1 Quartz glass 2 Mounting stand 3 Pulse laser 3a Pulse laser emission source 3b Lens 3c Focus 4 Modified part

Claims (3)

石英ガラスにパルスレーザの集光照射を行って、
パルスレーザの焦点近傍の石英ガラスを改質させ、
該改質部分をエッチングにより除去して該被加工物に微小穴を形成する方法において、
エッチャントであるフッ酸の濃度をC[wt%]、
該改質部分の直径をD[μm]、
該改質部分の直径方向のエッチングレートをE[μm/h]、
該改質部分の長さ方向のエッチングレートをE[μm/h]、
非改質部分のエッチングレートをE[μm/h]、
そして形成される微小穴の側面に生じるテーパー角度をθ[deg]とすると、
Cとθ及びエッチング時間t[h]との関係が、
で表されることを特徴とする、石英ガラスへの微小穴の形成方法。
Condensed irradiation of pulsed laser on quartz glass,
The quartz glass near the focal point of the pulse laser is modified,
In the method of removing the modified portion by etching to form a microhole in the workpiece,
The concentration of hydrofluoric acid as an etchant is C [wt%],
The diameter of the modified portion is D 0 [μm],
The etching rate in the diameter direction of the modified portion is E D [μm / h],
The etching rate in the length direction of the modified portion is E L [μm / h],
The etching rate of the unmodified portion is E 0 [μm / h],
Then, if the taper angle generated on the side surface of the formed microhole is θ [deg],
The relationship between C, θ, and etching time t [h] is
A method for forming microholes in quartz glass, characterized by:
前記パルスレーザのパルス幅が、1ps以下であることを特徴とする、請求項1記載の石英ガラスへの微小穴の形成方法。 The method for forming a microhole in quartz glass according to claim 1, wherein the pulse width of the pulse laser is 1 ps or less. 前記パルスレーザの波長が、該被加工物を透過する波長を有することを特徴とする、請求項1〜2のいずれかに記載の石英ガラスへの微小穴の形成方法。
The method for forming a microhole in quartz glass according to any one of claims 1 to 2, wherein the wavelength of the pulse laser has a wavelength that transmits the workpiece.
JP2004129894A 2004-04-26 2004-04-26 Method of forming micro-hole having tapered shape Pending JP2005306702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004129894A JP2005306702A (en) 2004-04-26 2004-04-26 Method of forming micro-hole having tapered shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004129894A JP2005306702A (en) 2004-04-26 2004-04-26 Method of forming micro-hole having tapered shape

Publications (1)

Publication Number Publication Date
JP2005306702A true JP2005306702A (en) 2005-11-04

Family

ID=35435874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004129894A Pending JP2005306702A (en) 2004-04-26 2004-04-26 Method of forming micro-hole having tapered shape

Country Status (1)

Country Link
JP (1) JP2005306702A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043726A1 (en) * 2010-09-30 2012-04-05 株式会社フジクラ Base body and method for manufacturing base body
JPWO2012014710A1 (en) * 2010-07-26 2013-09-12 浜松ホトニクス株式会社 Laser processing method
US8541319B2 (en) 2010-07-26 2013-09-24 Hamamatsu Photonics K.K. Laser processing method
US8673167B2 (en) 2010-07-26 2014-03-18 Hamamatsu Photonics K.K. Laser processing method
US8685269B2 (en) 2010-07-26 2014-04-01 Hamamatsu Photonics K.K. Laser processing method
US8741777B2 (en) 2010-07-26 2014-06-03 Hamamatsu Photonics K.K. Substrate processing method
US8802544B2 (en) 2010-07-26 2014-08-12 Hamamatsu Photonics K.K. Method for manufacturing chip including a functional device formed on a substrate
US8828873B2 (en) 2010-07-26 2014-09-09 Hamamatsu Photonics K.K. Method for manufacturing semiconductor device
US8828260B2 (en) 2010-07-26 2014-09-09 Hamamatsu Photonics K.K. Substrate processing method
US8841213B2 (en) 2010-07-26 2014-09-23 Hamamatsu Photonics K.K. Method for manufacturing interposer
US8945416B2 (en) 2010-07-26 2015-02-03 Hamamatsu Photonics K.K. Laser processing method
US8961806B2 (en) 2010-07-26 2015-02-24 Hamamatsu Photonics K.K. Laser processing method
US9108269B2 (en) 2010-07-26 2015-08-18 Hamamatsu Photonics K. K. Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same
CN107398644A (en) * 2016-05-18 2017-11-28 南京魔迪多维数码科技有限公司 A kind of method of cutting brittle material
KR20190050808A (en) * 2016-09-08 2019-05-13 코닝 인코포레이티드 Products with Holes in Morphology Properties and Manufacturing Methods Thereof
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
WO2024070320A1 (en) * 2022-09-30 2024-04-04 Toppanホールディングス株式会社 Glass substrate, multilayer wiring substrate, and glass substrate manufacturing method
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108269B2 (en) 2010-07-26 2015-08-18 Hamamatsu Photonics K. K. Method for manufacturing light-absorbing substrate and method for manufacturing mold for making same
US8828873B2 (en) 2010-07-26 2014-09-09 Hamamatsu Photonics K.K. Method for manufacturing semiconductor device
US8541319B2 (en) 2010-07-26 2013-09-24 Hamamatsu Photonics K.K. Laser processing method
US8591753B2 (en) 2010-07-26 2013-11-26 Hamamatsu Photonics K.K. Laser processing method
US8673167B2 (en) 2010-07-26 2014-03-18 Hamamatsu Photonics K.K. Laser processing method
US8685269B2 (en) 2010-07-26 2014-04-01 Hamamatsu Photonics K.K. Laser processing method
US8741777B2 (en) 2010-07-26 2014-06-03 Hamamatsu Photonics K.K. Substrate processing method
JP5554838B2 (en) * 2010-07-26 2014-07-23 浜松ホトニクス株式会社 Laser processing method
US8802544B2 (en) 2010-07-26 2014-08-12 Hamamatsu Photonics K.K. Method for manufacturing chip including a functional device formed on a substrate
US8961806B2 (en) 2010-07-26 2015-02-24 Hamamatsu Photonics K.K. Laser processing method
US8828260B2 (en) 2010-07-26 2014-09-09 Hamamatsu Photonics K.K. Substrate processing method
US8841213B2 (en) 2010-07-26 2014-09-23 Hamamatsu Photonics K.K. Method for manufacturing interposer
US8945416B2 (en) 2010-07-26 2015-02-03 Hamamatsu Photonics K.K. Laser processing method
JPWO2012014710A1 (en) * 2010-07-26 2013-09-12 浜松ホトニクス株式会社 Laser processing method
WO2012043726A1 (en) * 2010-09-30 2012-04-05 株式会社フジクラ Base body and method for manufacturing base body
JP5768055B2 (en) * 2010-09-30 2015-08-26 株式会社フジクラ Substrate
CN107398644A (en) * 2016-05-18 2017-11-28 南京魔迪多维数码科技有限公司 A kind of method of cutting brittle material
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
KR20190050808A (en) * 2016-09-08 2019-05-13 코닝 인코포레이티드 Products with Holes in Morphology Properties and Manufacturing Methods Thereof
KR102569940B1 (en) * 2016-09-08 2023-08-23 코닝 인코포레이티드 Products with holes of morphological properties and manufacturing method thereof
JP2019530629A (en) * 2016-09-08 2019-10-24 コーニング インコーポレイテッド Articles having holes with morphological attributes and methods for making the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) * 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11478874B2 (en) 2019-04-05 2022-10-25 Tdk Corporation Method of processing inorganic material substrate, device, and method of manufacturing device
US11972993B2 (en) 2021-05-14 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
WO2024070320A1 (en) * 2022-09-30 2024-04-04 Toppanホールディングス株式会社 Glass substrate, multilayer wiring substrate, and glass substrate manufacturing method

Similar Documents

Publication Publication Date Title
JP2005306702A (en) Method of forming micro-hole having tapered shape
JP4630971B2 (en) Microstructure formation method using pulsed laser
KR101917401B1 (en) Methods of forming high-density arrays of holes in glass
JP2006290630A (en) Processing method of glass using laser
JP2004351494A (en) Drilling method for material transparent to laser
Huang et al. Micro-hole drilling and cutting using femtosecond fiber laser
JP4631044B2 (en) Laser processing method and apparatus
WO2012014709A1 (en) Laser processing method
CN113614045B (en) Method for laser processing transparent workpiece by adopting pulse laser beam focusing line and gas phase etching
CN104959736A (en) Apparatus and method for processing micropore through filamentous laser
Liu et al. Photoetching of spherical microlenses on glasses using a femtosecond laser
Dogan et al. Optimization of ultrafast laser parameters for 3D micromachining of fused silica
Behera et al. Experimental investigation of underwater laser beam micromachining (UW-LBμM) on 304 stainless steel
TW201625494A (en) Micro-hole array and method for manufacturing same
JP2022544395A (en) How to machine a workpiece
JP2007136642A (en) Material having microstructure and manufacturing method for the microstructure
KR20240046475A (en) Method for preparing and/or performing the separation of a substrate element and substrate sub-element
JP6162975B2 (en) Method for manufacturing a substrate with fine holes
JP2005021964A (en) Laser beam ablation processing method and device therefor
JP2008119735A (en) Method of working high-hardness material
Tseng Recent developments in micromachining of fused silica and quartz using excimer lasers
Haehnel et al. Production of microstructures in wide-band-gap and organic materials using pulsed laser ablation at 157 nm wavelength
Wu et al. Micro-hole fabricated inside FOTURAN glass using femtosecond laser writing and chemical etching
JP2013133259A (en) Substrate having microhole and method for production thereof
JP2001062574A (en) Fine processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208