JP2005305480A - Method and apparatus for repair-processing casting defect in aluminum alloy casting - Google Patents

Method and apparatus for repair-processing casting defect in aluminum alloy casting Download PDF

Info

Publication number
JP2005305480A
JP2005305480A JP2004123667A JP2004123667A JP2005305480A JP 2005305480 A JP2005305480 A JP 2005305480A JP 2004123667 A JP2004123667 A JP 2004123667A JP 2004123667 A JP2004123667 A JP 2004123667A JP 2005305480 A JP2005305480 A JP 2005305480A
Authority
JP
Japan
Prior art keywords
casting
aluminum alloy
defect
casting defect
alloy casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004123667A
Other languages
Japanese (ja)
Inventor
Koichi Kanai
晃一 金井
Hideo Takahashi
秀夫 高橋
Takashi Ogino
崇 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004123667A priority Critical patent/JP2005305480A/en
Publication of JP2005305480A publication Critical patent/JP2005305480A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a repair-processing technique for casting defect in an aluminum alloy casting with which the processing time is shortened and this productivity is remarkably improved. <P>SOLUTION: A robot hand provided with a bar-like tool 9 and a CCD camera rotation-driven around the axis, is inserted into the inner part of a cylinder bore 2 and the inner peripheral surface 20 of the bore is picked up while shifting downward and whether the casting defect 3, such as blow hole, exists or not, and this position, is specified. To the casting defect 3, specified at this position, the rotated bar-like tool 9 is pushed to this position at this time, to plastically fluid this defect while semi-melting with the friction heat. Thus, this casting defect 3 is eliminated by burying the plastically fluidized material M into the casting defect 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム合金鋳物における鋳物欠陥の補修処理方法と補修処理装置に関し、特にアルミニウム合金鋳物であるシリンダブロックのボア内周面に荒加工を施した後に鋳巣(巣穴)やピンホール等の鋳物欠陥が発見された場合に、それを補修処理する方法と装置に関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting defect repair processing method and repair processing apparatus in an aluminum alloy casting, and in particular, after performing roughing on the bore inner peripheral surface of a cylinder block that is an aluminum alloy casting, a casting hole (hole), a pinhole, etc. The present invention relates to a method and apparatus for repairing a foundry casting defect when it is found.

アルミニウム合金製のシリンダブロックのシリンダボア部にシリンダライナーを使用しないいわゆるライナーレスタイプのものや、ボア内周面の表層部を溶射皮膜にて皮膜処理するタイプのものでは、ボア内周面あるいは溶射下地表面上に生じた鋳巣やピンホール等の鋳物欠陥はエンジンオイル消費量の増加やブローバイガス量増加の原因となることから、これらを除去あるいは低減することが品質向上の上で重要となる。   The so-called linerless type that does not use a cylinder liner for the cylinder bore of the cylinder block made of aluminum alloy, or the type that coats the surface of the inner peripheral surface of the bore with a thermal spray coating, the inner peripheral surface of the bore or the thermal spray base Cast defects such as cast holes and pinholes generated on the surface cause an increase in engine oil consumption and an increase in blow-by gas. Therefore, removal or reduction of these is important for quality improvement.

その対策として、ボア内周面の鋳巣等を解消するべく、例えば特許文献1および2に記載のものが提案されている。   As countermeasures, for example, those described in Patent Documents 1 and 2 have been proposed in order to eliminate a cast hole on the inner peripheral surface of the bore.

特許文献1に記載の技術では、アルミニウム合金製のシリンダブロックのボア内周面に向けて真空アークを放電してその表層部を溶融させ、この溶融金属を鋳巣内部に流し込むことで鋳巣を封鎖するとともに、ボア内周面の表層部にケイ素を主成分とする硬化層を形成し、さらにその上から溶射処理による溶射層を形成するようにしている。   In the technique described in Patent Document 1, a vacuum arc is discharged toward the bore inner peripheral surface of an aluminum alloy cylinder block to melt its surface layer portion, and the molten metal is poured into the casting cavity to form the casting cavity. In addition to sealing, a hardened layer containing silicon as a main component is formed on the surface layer portion of the inner peripheral surface of the bore, and a sprayed layer is formed thereon by thermal spraying.

また、特許文献2に記載の技術では、シリンダボアの内部に入り得る大きさの回転軸に特殊工具を取り付けて、回転軸をその軸線周りに回転させながら軸心方向の送りを与えることにより、工具のすくい面および前切れ面にて鋳巣の周辺の材料を塑性変形させて鋳巣を補修するようにしている。
特開2000−328222号公報(図1) 特開2003−205357号公報(図1)
Further, in the technique described in Patent Document 2, a special tool is attached to a rotary shaft having a size that can enter the inside of the cylinder bore, and a feed in the axial direction is given while rotating the rotary shaft around its axis. The material around the casting hole is plastically deformed at the rake face and the front cut surface to repair the casting hole.
JP 2000-328222 A (FIG. 1) Japanese Patent Laying-Open No. 2003-205357 (FIG. 1)

特許文献1に記載の技術では、ボア内周面の全域を加熱,溶融処理することになるため、処理範囲が広大でその処理に長時間を要するほか、加熱に伴う組織変化により強度が低下することが危惧されるために慎重に作業を行わなければならず、生産性が極端に低下することとなって好ましくない。   In the technique described in Patent Document 1, since the entire area of the inner peripheral surface of the bore is heated and melted, the processing range is wide and the processing takes a long time, and the strength is reduced due to a change in structure accompanying heating. Therefore, it is necessary to perform the work carefully, which is not preferable because the productivity is extremely lowered.

また、特許文献2に記載の技術では、ボア内周面の全域を処理することになるため、上記特許文献1に記載のものと同様に処理範囲が広大でその処理に長時間を要し、生産性の低下が危惧される。   Further, in the technique described in Patent Document 2, since the entire area of the bore inner peripheral surface is processed, the processing range is as large as that described in Patent Document 1, and the processing takes a long time, A decline in productivity is a concern.

本発明はこのような課題に着目してなされたものであり、特に処理時間を短縮してその生産性を大幅に改善したアルミニウム合金鋳物における鋳物欠陥の補修処理技術を提供するものである。   The present invention has been made paying attention to such problems, and in particular, provides a repairing technique for a casting defect in an aluminum alloy casting in which the processing time is shortened and the productivity is greatly improved.

請求項1に記載の発明は、アルミニウム合金鋳物の表面に荒加工を施した後であって且つ仕上げ加工を施す前に、そのアルミニウム合金鋳物の表面における鋳巣等の鋳物欠陥の有無とその位置を検出し、鋳物欠陥が存在する部分のみに選択的に塑性加工を施して鋳物欠陥を除去することを特徴とする。   According to the first aspect of the present invention, the presence or absence of a casting defect such as a casting hole on the surface of the aluminum alloy casting and the position thereof after the roughing is performed on the surface of the aluminum alloy casting and before the finishing is performed. Is detected, and plastic processing is selectively performed only on the portion where the casting defect exists, thereby removing the casting defect.

上記塑性加工としては、例えば請求項2に記載のように、鋳物欠陥が存在する部分を半溶融状態にて塑性流動させることにより鋳物欠陥を消去するものとし、より具体的には、請求項3に記載のように、鋳物欠陥が存在する部分を回転式工具による摩擦熱で半溶融状態としながら塑性流動させるものとする。   As the plastic working, for example, as described in claim 2, the casting defect is erased by plastically flowing a portion where the casting defect exists in a semi-molten state, and more specifically, claim 3. As described in the above, it is assumed that the portion where the casting defect exists is made to plastically flow while being in a semi-molten state by frictional heat generated by a rotary tool.

また、上記鋳物欠陥の有無とその位置の検出は、請求項4に記載のように、例えばCCDカメラ、すなわち二次元のイメージセンサ等のような撮像素子をセンサとする画像処理にて行うか、もしくは渦流探傷法や超音波探傷法にて行うものとする。   In addition, the presence or absence of the casting defect and the detection of the position thereof are performed by image processing using, for example, an image sensor such as a CCD camera, that is, a two-dimensional image sensor, as described in claim 4. Or it shall be performed by the eddy current flaw detection method or the ultrasonic flaw detection method.

また、請求項6に記載の発明は、請求項3に記載の鋳物欠陥の補修処理に用いる装置として、産業要ロボット等の多自由度型のベースマシンの先端に、アルミニウム合金鋳物の表面における鋳物欠陥の有無とその位置を検出する検出手段と、回転駆動される回転式工具とを設けたことを特徴とする。   Further, the invention described in claim 6 is an apparatus used for repairing a casting defect according to claim 3, in which a casting on the surface of an aluminum alloy casting is provided at the tip of a multi-degree-of-freedom base machine such as an industrial robot. The present invention is characterized in that detection means for detecting the presence or absence of a defect and its position, and a rotary tool that is driven to rotate are provided.

したがって、請求項1に記載の発明では、鋳巣等の鋳物欠陥を検出しながらその都度該当する部分のみに塑性加工を施すことで、鋳物欠陥が封鎖もしくは消去される。したがって、アルミニウム合金鋳物の表面全体に処理を施す必要はなくなる。   Therefore, in the first aspect of the invention, the casting defect is blocked or eliminated by performing plastic working only on the corresponding part each time while detecting the casting defect such as a cast hole. Therefore, it is not necessary to treat the entire surface of the aluminum alloy casting.

また、請求項6に記載の発明では、検出手段が検出した鋳巣等の鋳物欠陥の発生位置に回転式工具を移動させて、その回転式工具による摩擦熱で半溶融状態としながら塑性流動させることで鋳物欠陥が封鎖もしくは消去されることになる。   In the invention described in claim 6, the rotary tool is moved to a position where a casting defect such as a casting hole detected by the detecting means is detected, and is plastically flowed in a semi-molten state by frictional heat generated by the rotary tool. As a result, casting defects are blocked or eliminated.

請求項1に記載の発明によれば、鋳物欠陥が検出された部分のみに選択的に塑性加工を施すことにより、処理範囲の縮小化と処理時間の大幅な短縮化が可能となり、生産性が飛躍的に向上する。また、アルミニウム合金鋳物の表面全体を加熱処理する場合と異なり、組織変化のおそれもない。   According to the first aspect of the present invention, by selectively performing plastic working only on a portion where a casting defect is detected, the processing range can be reduced and the processing time can be greatly shortened. Improve dramatically. Further, unlike the case where the entire surface of the aluminum alloy casting is heat-treated, there is no risk of structural change.

請求項6に記載の発明によれば、検出手段が検出した鋳物欠陥の位置に回転式工具を移動させて処理を施す構造であることから、短時間のうちに効率良く処理を行える。   According to the sixth aspect of the present invention, since the rotary tool is moved to the position of the casting defect detected by the detecting means and the processing is performed, the processing can be performed efficiently in a short time.

図1〜4は本発明のより具体的な実施の形態を示す図であり、アルミニウム合金鋳物製のシリンダブロックのボア内周面について、ボア荒加工後であって且つ仕上げ加工前に行われる鋳巣除去処理に適用した場合の例を示している。なお、上記のボア荒加工および仕上げ加工は共にボーリング加工等の機械加工処理であることは言うまでもない。   FIGS. 1 to 4 are diagrams showing a more specific embodiment of the present invention, in which the inner peripheral surface of a cylinder block made of an aluminum alloy casting is cast after roughing the bore and before finishing. The example at the time of applying to a nest removal process is shown. Needless to say, the bore roughing and finishing are both machining processes such as boring.

図1はシステム全体の概略構成を示す図であり、1はアルミニウム合金鋳物製のシリンダブロックを、4は多自由度型もベースマシン(母機)として機能することになる多関節型の産業用ロボット(以下、単にロボットという)をそれぞれ示している。   FIG. 1 is a diagram showing a schematic configuration of the entire system, where 1 is a cylinder block made of cast aluminum alloy, 4 is an articulated industrial robot that functions as a base machine (base machine) and a multi-degree-of-freedom type. (Hereinafter simply referred to as a robot).

ロボット4はロボット制御装置5により例えばティーチング−プレイバック方式にて制御されるようになっている一方、そのアーム6先端にはθ方向の首振り旋回自由度を有するハンド7が装着されていて、このハンド7は図2,4に示すようにシリンダボア2のボア内周面2aの内側に入り得る大きさの略角筒状のハンドフレーム8を主要素として構成されている。   The robot 4 is controlled by the robot controller 5 by, for example, a teaching-playback system, while a hand 7 having a degree of freedom of swinging in the θ direction is attached to the tip of the arm 6. As shown in FIGS. 2 and 4, the hand 7 is configured with a substantially square tube-shaped hand frame 8 having a size capable of entering the bore inner peripheral surface 2 a of the cylinder bore 2 as a main element.

ハンドフレーム8の下端部には、図1のほか図2,3に示すように、回転式工具として鋼棒製の棒状ツール9がスラストベアリング10およびラジアルベアリング11を介して軸受ボックス12に回転可能に支持されている。この棒状ツール9にはドリブン側となるベベルギヤ13が装着されている一方、ハンドフレーム8上端のモータボックス14にはモータ制御装置15にて制御される駆動モータ16が内蔵されていて、この駆動モータ16にて駆動される鉛直姿勢のドライブシャフト17の下端にはベベルギヤ13に噛み合うドライブ側のベベルギヤ18が装着されている。これにより、棒状ツール9は駆動モータ16の起動によりドライブシャフト17と双方のベベルギヤ18,13を介して回転駆動されるようになっていて、棒状ツール9は後述するようにその回転状態のままでボア内周面2aに押し付けられることになる。   As shown in FIGS. 2 and 3 in addition to FIG. 1, a rod-shaped tool 9 made of a steel rod can be rotated to a bearing box 12 via a thrust bearing 10 and a radial bearing 11 at the lower end of the hand frame 8. It is supported by. The rod-shaped tool 9 is equipped with a driven bevel gear 13, while a motor box 14 at the upper end of the hand frame 8 has a built-in drive motor 16 controlled by a motor control device 15. A drive-side bevel gear 18 that meshes with the bevel gear 13 is attached to the lower end of the drive shaft 17 in a vertical posture driven by 16. As a result, the rod-shaped tool 9 is driven to rotate via the drive shaft 17 and both bevel gears 18 and 13 by the activation of the drive motor 16, and the rod-shaped tool 9 remains in its rotated state as will be described later. It will be pressed against the bore inner peripheral surface 2a.

棒状ツール9を支持している軸受ボックス12には圧力センサ19が内蔵されていて、先に述べたようにボア内周面2aに対する棒状ツール9の押付力の反力をこの圧力センサ19をもって検出することができ、この検出出力はロボット制御装置5に取り込まれるようになっている。   The bearing box 12 supporting the rod-shaped tool 9 has a built-in pressure sensor 19, and the pressure sensor 19 detects the reaction force of the pressing force of the rod-shaped tool 9 against the bore inner peripheral surface 2a as described above. This detection output is captured by the robot controller 5.

また、ハンドフレーム8の下端部には、図4に示すように、左右一対の照明用の光源20ととともにセンサもしくは撮像素子である二次元のイメージセンサを主要素とするCCDカメラ21が配置されていて、このCCDカメラ21によりボア内周面2aを撮像することができるようになっているとともに、その撮像画像が画像処理装置22に取り込まれることになる。   As shown in FIG. 4, a CCD camera 21 having a two-dimensional image sensor as a sensor or an image sensor as a main element is disposed at the lower end of the hand frame 8 as well as a pair of left and right illumination light sources 20. The bore inner peripheral surface 2 a can be picked up by the CCD camera 21, and the picked-up image is taken into the image processing device 22.

ここで、棒状ツール9はボア内周面2aに塑性加工を施すものであるから、その棒状ツール9の先端面はボア内周面2aの曲率に応じた球面状のものとして形成されている。例えば荒加工(粗加工)である荒ボーリング加工後のボア内周面の直径がφ90mmとした場合には、棒状ツール9の先端面は半径が45mmの球面をもって形成されている。   Here, since the rod-shaped tool 9 performs plastic working on the bore inner peripheral surface 2a, the tip surface of the rod-shaped tool 9 is formed in a spherical shape corresponding to the curvature of the bore inner peripheral surface 2a. For example, when the diameter of the bore inner peripheral surface after rough boring, which is rough machining (rough machining), is φ90 mm, the tip surface of the rod-shaped tool 9 is formed with a spherical surface having a radius of 45 mm.

このように構成されたシステムによれば、図5に示すようにシリンダブロック1における各シリンダボア2の荒加工後であって且つ仕上げ加工前に、鋳巣等の鋳物欠陥の検出とその除去もしくは消去を目的として所定の作業が実行される。   According to the system configured as described above, as shown in FIG. 5, after the rough machining of each cylinder bore 2 in the cylinder block 1 and before the finish machining, the detection of the casting defect such as the cast hole and the removal or elimination thereof. A predetermined operation is executed for the purpose.

例えば図4に示すようにボア内周面2aを円周方向でn等分して複数の領域N1,N2…Nnに分けた上で、ハンド7のθ方向の首振り旋回自由度を使って各領域N1,N2…Nnごとにボア内周面2aの上方から下方、もしくは下方から上方に向かって順次ハンド7を移動させて、鋳巣等の鋳物欠陥3の有無とその位置の特定を行いながら塑性加工によるその鋳巣の消去を行う。 For example, as shown in FIG. 4, the bore inner circumferential surface 2a is divided into n equal parts in the circumferential direction and divided into a plurality of regions N 1 , N 2 . Using each region N 1 , N 2 ... Nn, the hand 7 is moved sequentially from the upper side to the lower side of the bore inner peripheral surface 2a or from the lower side to the upper side, and the presence / absence and position of the casting defect 3 such as a cast hole While the above is specified, the cast hole is erased by plastic working.

より詳しくは、図4に示すように、棒状ツール9を回転駆動させた状態でハンド7を処理対象となるシリンダボア2の内部に入れて、CCDカメラ21にてボア内周面2aを撮像しながらそのハンド7を上方から下方に所定速度で連続的に移動させる。そして、CCDカメラ21が捉えた画像はリアルタイムで画像処理装置22に取り込まれて、例えばパターンマッチング等の手法より画像中に含まれる鋳巣等の鋳物欠陥3の有無とその位置が特定される。   More specifically, as shown in FIG. 4, the hand 7 is put into the cylinder bore 2 to be processed while the rod-shaped tool 9 is rotated, and the CCD inner surface 2 a is imaged by the CCD camera 21. The hand 7 is continuously moved from above to below at a predetermined speed. Then, the image captured by the CCD camera 21 is captured in real time by the image processing device 22, and the presence and position of a casting defect 3 such as a cast hole included in the image is specified by a method such as pattern matching.

鋳物欠陥3の存在とその位置が特定された場合には、ロボット4はハンド7を動かして該当する鋳物欠陥3の位置に棒状ツール9を押し付けて、その鋳物欠陥3の消去もしくは除去を行う。   When the presence of the casting defect 3 and its position are specified, the robot 4 moves the hand 7 and presses the bar-shaped tool 9 to the position of the casting defect 3 to erase or remove the casting defect 3.

図6は、位置が特定された鋳巣等の鋳物欠陥3を消去もしくは除去する際の詳細を示しており、ボア内周面2aの鋳物欠陥3に対し、回転している棒状ツール9を押し付け、同時にロボット4自体の自由度を使って棒状ツール9を微小量だけ上下方向に往復駆動させる(同図(A)および(B)参照)この場合、棒状ツール9の押し付け反力がその棒状ツール9に付帯している図3の圧力センサ19によって検出され、いわゆる力フィードバック制御によりボア内周面2aに対する棒状ツール9の押し付け力が常に一定となるように制御される。なお、棒状ツール9の回転数は500〜2000rpm、ロボット4による棒状ツール9の移動速度は60〜300mm/min程度とする。   FIG. 6 shows details when erasing or removing a casting defect 3 such as a cast hole whose position is specified, and a rotating bar-shaped tool 9 is pressed against the casting defect 3 on the bore inner peripheral surface 2a. At the same time, the bar-shaped tool 9 is reciprocated up and down by a minute amount by using the degree of freedom of the robot 4 itself (see FIGS. 1A and 1B). 3 is attached to 9 and is controlled so that the pressing force of the bar-shaped tool 9 against the bore inner peripheral surface 2a is always constant by so-called force feedback control. The rotational speed of the bar-shaped tool 9 is 500 to 2000 rpm, and the moving speed of the bar-shaped tool 9 by the robot 4 is about 60 to 300 mm / min.

上記のように、回転駆動されている棒状ツール9をボア内周面2aに押し付けると、棒状ツール9との摩擦熱により鋳物欠陥3の近傍の材料が半溶融状態となって塑性流動が起こり、同図(C)に示すようにその塑性流動した材料Mをもって鋳物欠陥3を埋めることで鋳物欠陥3が消失もしくは除去される。   As described above, when the rotary tool 9 is pressed against the bore inner peripheral surface 2a, the material near the casting defect 3 becomes a semi-molten state due to frictional heat with the stick tool 9, and plastic flow occurs. As shown in FIG. 3C, the casting defect 3 is eliminated or eliminated by filling the casting defect 3 with the plastically flowed material M.

そして、所定時間だけ棒状ツール9をボア内周面2aに押し付けたならば、同図(D)に示すように、その棒状ツール9を直ちに且つ急速にボア内周面2aから離間させた上で、再びハンド7を所定速度で下方に向けて移動させ、以降は鋳物欠陥3が検出された時点でその都度上記のような動作を繰り返す。なお、ボア内周面2aから棒状ツール9を離間させる際にその動作をより高速化することで、被処理面での凹凸の発生を抑制することができ、ひいては後工程である仕上げ加工時の取り代を削減することが可能となる。   Then, if the rod-shaped tool 9 is pressed against the bore inner peripheral surface 2a for a predetermined time, the rod-shaped tool 9 is immediately and rapidly separated from the bore inner peripheral surface 2a as shown in FIG. Then, the hand 7 is again moved downward at a predetermined speed, and thereafter, the above-described operation is repeated each time the casting defect 3 is detected. In addition, when the rod-shaped tool 9 is moved away from the bore inner peripheral surface 2a, the speed of the operation can be increased, so that the occurrence of unevenness on the surface to be processed can be suppressed. It is possible to reduce the machining allowance.

ここで、図7に示すように、上記のような鋳物欠陥3の消去に先立つボア荒加工の取り代(削り代)Qを例えば2〜5mm、鋳物欠陥3の消去後のボア仕上げ加工の取り代Rを0.3〜0.5mm程度とすると、ボア内周面2aに対する棒状ツール9の押し込み量Sを0.2〜0.3mm程度に設定すれば、直径および深さ共に0.3mm程度までの大きさの鋳物欠陥3は確実に消去される。また、仕上げ加工後にはその仕上げ加工時の取り代Rの同程度の膜厚をもって後工程にて溶射皮膜23が形成される。なお、ボア荒加工の取り代(削り代)Qが下方に向かって漸次増大しているのは、鋳造時の抜き勾配を有しているためである。   Here, as shown in FIG. 7, for example, the machining allowance Q of the bore roughing (cutting allowance) prior to erasing the casting defect 3 as described above is 2 to 5 mm, and the bore finishing machining after erasing the casting defect 3 is removed. If the allowance R is about 0.3 to 0.5 mm, if the pushing amount S of the rod-shaped tool 9 against the bore inner peripheral surface 2a is set to about 0.2 to 0.3 mm, both the diameter and the depth are about 0.3 mm. The casting defect 3 of the size up to is reliably erased. In addition, after the finishing process, the thermal spray coating 23 is formed in a subsequent process with a film thickness comparable to the machining allowance R during the finishing process. The reason that the machining allowance (cutting allowance) Q of the bore rough machining gradually increases downward is because it has a draft angle during casting.

この後、図4にも示すように、ハンド7を特定のシリンダボア2の領域N1,N2…Nnうちいずれかの領域についてその下端まで移動し終えたならば、一旦ハンド7を引き上げて、以降は隣接する次なる領域について同様な動作を繰り返す。 Thereafter, as shown in FIG. 4, when the hand 7 has been moved to the lower end of any one of the areas N 1 , N 2 ... Nn of the specific cylinder bore 2, the hand 7 is once pulled up, Thereafter, the same operation is repeated for the next adjacent region.

このように本実施の形態によれば、ボア内周面2aをCCDカメラ21にて撮像しながら鋳巣等の鋳物欠陥3の有無とその位置を特定して、鋳物欠陥3が存在する部分のみに塑性加工を施してその鋳物欠陥3を消去するようにしているので、ボア内周面2aの全面に処理を施す場合と比べてその処理時間を大幅に短縮して生産性の向上に寄与できる。   As described above, according to the present embodiment, the presence / absence and position of the casting defect 3 such as a cast hole is specified while imaging the bore inner peripheral surface 2a with the CCD camera 21, and only the portion where the casting defect 3 exists is identified. Since the casting defect 3 is erased by plastic processing, the processing time can be greatly shortened compared to the case where the entire inner peripheral surface 2a of the bore is processed, thereby contributing to the improvement of productivity. .

なお、本実施の形態ではシリンダブロック1のボア内周面2aでの処理を例にとって説明したが、シリンダブロック1以外のアルミニウム合金鋳物製品の機械加工面に同様に適用できることは言うまでもない。また、鋳物欠陥3の有無とその位置を特定する方法として、CCDカメラによる撮像方式に代えて超音波探傷法もしくは渦流探傷法等を用いることももちろん可能である。   In the present embodiment, the processing on the bore inner peripheral surface 2a of the cylinder block 1 has been described as an example, but it goes without saying that it can be similarly applied to a machined surface of an aluminum alloy cast product other than the cylinder block 1. Further, as a method for specifying the presence or absence of the casting defect 3 and its position, it is of course possible to use an ultrasonic flaw detection method or an eddy current flaw detection method instead of the imaging method using the CCD camera.

本発明のより具体的な実施の形態としてシステム全体の概略構成を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows schematic structure of the whole system as more concrete embodiment of this invention. 図1におけるハンドの拡大説明図。Explanatory drawing of the hand in FIG. 図2における要部の拡大説明図。FIG. 3 is an enlarged explanatory view of a main part in FIG. 2. 図1における要部の拡大平面図。The enlarged plan view of the principal part in FIG. シリンダブロックのボア内周面の加工手順を示す説明図。Explanatory drawing which shows the process sequence of the bore | bore internal peripheral surface of a cylinder block. 図1に示すシステムでの鋳物欠陥の消去方法の詳細を示す工程説明図。Process explanatory drawing which shows the detail of the deletion method of the casting defect in the system shown in FIG. シリンダボアの要部拡大断面説明図。The principal part expanded sectional explanatory drawing of a cylinder bore.

符号の説明Explanation of symbols

1…シリンダブロック(アルミニウム合金鋳物)
2…シリンダボア
2a…ボア内周面
3…鋳物欠陥
4…産業用ロボット(ベースマシン)
5…ロボット制御装置
7…ハンド
8…ハンドフレーム
9…棒状ツール(回転式工具)
19…圧力センサ(圧力検出手段)
21…CCDカメラ(検出手段またはセンサとしての撮像素子)
22…画像処理装置
M…塑性流動した材料
1 ... Cylinder block (aluminum alloy casting)
2 ... Cylinder bore 2a ... Bore inner surface 3 ... Casting defect 4 ... Industrial robot (base machine)
5 ... Robot controller 7 ... Hand 8 ... Hand frame 9 ... Bar tool (rotary tool)
19 ... Pressure sensor (pressure detection means)
21 ... CCD camera (imaging device as detection means or sensor)
22 ... Image processing device M ... Plastic flow material

Claims (9)

アルミニウム合金鋳物の表面に荒加工を施した後であって且つ仕上げ加工を施す前に、そのアルミニウム合金鋳物の表面における鋳物欠陥の有無とその位置を検出し、
鋳物欠陥が存在する部分のみに選択的に塑性加工を施して鋳物欠陥を除去することを特徴とするアルミニウム合金鋳物における鋳物欠陥の補修処理方法。
After the roughing of the surface of the aluminum alloy casting and before the finishing, the presence or absence and the position of casting defects on the surface of the aluminum alloy casting are detected,
A method for repairing a casting defect in an aluminum alloy casting, wherein the casting defect is removed by selectively subjecting only a portion where the casting defect is present.
上記塑性加工は、鋳物欠陥が存在する部分を半溶融状態にて塑性流動させることにより鋳物欠陥を消去するものであることを特徴とするとするとする請求項1に記載のアルミニウム合金鋳物における鋳物欠陥の補修処理方法。   2. The casting defect in the aluminum alloy casting according to claim 1, wherein the plastic working is to erase the casting defect by plastically flowing a portion where the casting defect exists in a semi-molten state. 3. Repair processing method. 上記塑性加工は、鋳物欠陥が存在する部分を回転式工具による摩擦熱で半溶融状態としながら塑性流動させるものであることを特徴とする請求項2に記載のアルミニウム合金鋳物における鋳物欠陥の補修処理方法。   3. The repair process for a casting defect in an aluminum alloy casting according to claim 2, wherein the plastic working is to plastically flow a portion where the casting defect exists in a semi-molten state by frictional heat generated by a rotary tool. Method. 上記鋳物欠陥の有無とその位置の検出を、撮像素子をセンサとする画像処理にて行うことを特徴とする請求項1〜3のいずれかに記載のアルミニウム合金鋳物における鋳物欠陥の補修処理方法。   The method for repairing a casting defect in an aluminum alloy casting according to any one of claims 1 to 3, wherein the presence or absence of the casting defect and its position are detected by image processing using an image sensor as a sensor. アルミニウム合金鋳物の表面がシリンダブロックのボア内周面であることを特徴とする請求項1〜5のいずれかに記載のアルミニウム合金鋳物における鋳物欠陥の補修処理方法。   6. The method for repairing a casting defect in an aluminum alloy casting according to claim 1, wherein the surface of the aluminum alloy casting is a bore inner peripheral surface of the cylinder block. 請求項3に記載の鋳物欠陥の補修処理に用いる装置であって、
多自由度型のベースマシンの先端に、アルミニウム合金鋳物の表面における鋳物欠陥の有無とその位置を検出する検出手段と、回転駆動される回転式工具とを設けたことを特徴とするアルミニウム合金鋳物における鋳物欠陥の補修処理装置。
An apparatus used for repairing a casting defect according to claim 3,
An aluminum alloy casting characterized in that a detecting means for detecting the presence and position of a casting defect on the surface of the aluminum alloy casting and a rotary tool driven to rotate are provided at the tip of the multi-degree-of-freedom base machine. Repair equipment for casting defects in Japan.
上記検出手段が撮像素子であることを特徴とする請求項6に記載のアルミニウム合金鋳物における鋳物欠陥の補修処理装置。   The apparatus for repairing a casting defect in an aluminum alloy casting according to claim 6, wherein the detecting means is an image sensor. アルミニウム合金鋳物の表面に対する回転式工具の接触圧を検出する圧力検出手段を備えていて、
回転式工具の接触圧が常時均等なものとなるように圧力検出手段の検出出力に基づき上記接触圧がフィードバック制御されるものであることを特徴とする請求項7に記載のアルミニウム合金鋳物における鋳物欠陥の補修処理装置。
Pressure detecting means for detecting the contact pressure of the rotary tool against the surface of the aluminum alloy casting,
8. The casting in an aluminum alloy casting according to claim 7, wherein the contact pressure is feedback-controlled based on the detection output of the pressure detection means so that the contact pressure of the rotary tool is always uniform. Defect repair processing equipment.
アルミニウム合金鋳物の表面がシリンダブロックのボア内周面であることを特徴とする請求項6〜8のいずれかに記載のアルミニウム合金鋳物における鋳物欠陥の補修処理装置。   The apparatus for repairing a casting defect in an aluminum alloy casting according to any one of claims 6 to 8, wherein the surface of the aluminum alloy casting is a bore inner peripheral surface of the cylinder block.
JP2004123667A 2004-04-20 2004-04-20 Method and apparatus for repair-processing casting defect in aluminum alloy casting Withdrawn JP2005305480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004123667A JP2005305480A (en) 2004-04-20 2004-04-20 Method and apparatus for repair-processing casting defect in aluminum alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004123667A JP2005305480A (en) 2004-04-20 2004-04-20 Method and apparatus for repair-processing casting defect in aluminum alloy casting

Publications (1)

Publication Number Publication Date
JP2005305480A true JP2005305480A (en) 2005-11-04

Family

ID=35434837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004123667A Withdrawn JP2005305480A (en) 2004-04-20 2004-04-20 Method and apparatus for repair-processing casting defect in aluminum alloy casting

Country Status (1)

Country Link
JP (1) JP2005305480A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816235A1 (en) * 2006-01-26 2007-08-08 Linde Aktiengesellschaft Method of repairing defects in castings
JP2008274352A (en) * 2007-04-27 2008-11-13 Ihi Corp Sealing complement method, metal member repair method, and metal defect repair device
JP2010202939A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Method for repairing inner face of cylinder bore and apparatus for repairing inner face of cylinder bore
KR101223267B1 (en) * 2012-07-24 2013-01-17 (주) 대진에프엠씨 A vacuum chamber for byte tip heat-treatment and the manufacturing method
CN104487864A (en) * 2012-08-27 2015-04-01 伊莱克斯公司 Robot positioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816235A1 (en) * 2006-01-26 2007-08-08 Linde Aktiengesellschaft Method of repairing defects in castings
JP2008274352A (en) * 2007-04-27 2008-11-13 Ihi Corp Sealing complement method, metal member repair method, and metal defect repair device
JP2010202939A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Method for repairing inner face of cylinder bore and apparatus for repairing inner face of cylinder bore
KR101223267B1 (en) * 2012-07-24 2013-01-17 (주) 대진에프엠씨 A vacuum chamber for byte tip heat-treatment and the manufacturing method
CN104487864A (en) * 2012-08-27 2015-04-01 伊莱克斯公司 Robot positioning system

Similar Documents

Publication Publication Date Title
JP6062915B2 (en) Cutting fluid supply system to machine tools
US7415958B2 (en) Process for processing cylinder crankcases having sprayed cylinder barrels
US8006890B2 (en) Friction stir processing apparatus with a vibrator
CN103180084B (en) Vertical laser cladding system
US7584735B2 (en) Process for the chip-forming machining of thermally sprayed cylinder barrels
JP6354928B1 (en) Method of overlaying ball screw, and screw shaft, screw device, machine, and vehicle manufacturing method using the same
KR970073845A (en) Friction Stir Welding with Simultaneous Cooling
US20060048386A1 (en) Process for producing a cylinder crankcase having a thermally sprayed cylinder bearing surface
WO2011061887A1 (en) Surface inspection device and surface inspection method
US20060026831A1 (en) Process for preparing a cast cylinder bore for thermal coating
US9475148B2 (en) Friction stir processing method for a workpiece having surface coating
JP2000301361A (en) Friction agitating joining method
US20060026829A1 (en) Process for producing a thermally coated cylinder bearing surface having an insertion bevel
CN110625628B (en) Method and device for removing nondestructive testing defects of large steel castings
US20060026828A1 (en) Process for preparing cylinder bearing surfaces which are to be thermally sprayed
JP2005305480A (en) Method and apparatus for repair-processing casting defect in aluminum alloy casting
US20060027206A1 (en) Process for the thermal spraying of cylinder bearing surfaces in multi-line engines
JP4836478B2 (en) Closing processing method and closing processing machine
JP2008149326A (en) Laser cladding apparatus for valve seat portion
US20060026830A1 (en) Process for the fluid blasting of cylinder bearing surfaces which are subsequently to be thermally coated
Tamadon et al. Analogue modelling of bobbin tool friction stir welding
GB2363861A (en) Processing an object, eg a workpiece, by a tool
JP2001138070A (en) Repair method by friction overlaying
JP2007319907A (en) Surface treatment device for workpiece
JP2018024087A (en) Tooth type roll manufacturing method, and steel plate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070402

A761 Written withdrawal of application

Effective date: 20090831

Free format text: JAPANESE INTERMEDIATE CODE: A761