JP2005305422A - Spiral type separation membrane element - Google Patents
Spiral type separation membrane element Download PDFInfo
- Publication number
- JP2005305422A JP2005305422A JP2005076770A JP2005076770A JP2005305422A JP 2005305422 A JP2005305422 A JP 2005305422A JP 2005076770 A JP2005076770 A JP 2005076770A JP 2005076770 A JP2005076770 A JP 2005076770A JP 2005305422 A JP2005305422 A JP 2005305422A
- Authority
- JP
- Japan
- Prior art keywords
- supply
- yarn
- flow path
- separation membrane
- warp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
スパイラル型分離膜エレメント
本発明は、液体中に溶存している成分を分離するスパイラル型分離膜エレメントに関し、詳しくは、供給側の圧力損失を従来より小さくでき、かつ、膜面上での濃度分極を抑制するために必要となる攪拌効果を有した構造を持つ給側流路材を内蔵したスパイラル型分離膜エレメントに関する。
BACKGROUND OF THE
従来より、スパイラル型分離膜エレメントの構造としては、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられたものが知られている。また、逆浸透膜の場合の供給側流路材には、ひし形ネット状流路材が用いられ、これにより圧力損失を低減することができるとの報告がある(例えば、特許文献1〜3参照)。具体的には、図11に示すような構成例を挙げることができる。
Conventionally, as a structure of a spiral type separation membrane element, one or more of a separation membrane, a supply side channel material and a permeate side channel material is wound around a perforated hollow central tube. It has been. In addition, there is a report that a rhombus net-like channel material is used for the supply-side channel material in the case of a reverse osmosis membrane, thereby reducing pressure loss (see, for example,
一方、供給側流路の圧力損失を小さくする目的で、供給液の流れ方向と平行な縦糸とその縦糸を繋ぐ横糸からなるラダー形ネット状流路材が採用されている(例えば、特許文献4参照)。この発明は、縦糸と横糸の太さの関係や縦糸間隔と横糸間隔の関係に着目したものではなく、縦糸と横糸の太さについては何も言及されていない。 On the other hand, for the purpose of reducing the pressure loss of the supply-side flow path, a ladder-shaped net-shaped flow path material composed of warp yarns parallel to the flow direction of the supply liquid and wefts connecting the warp yarns is employed (for example, Patent Document 4). reference). The present invention does not focus on the relationship between the thickness of the warp and the weft and the relationship between the warp and the weft, and nothing is mentioned about the thickness of the warp and the weft.
しかしながら、供給側流路において、供給水が流れることによる抵抗として、供給側流路材によるものが大きく支配し、更に供給水の水質によっては供給水の性状、供給水に含まれる成分により抵抗増大に繋がる。 However, the resistance due to the flow of the supply water in the supply-side flow channel is largely governed by the supply-side flow path material, and the resistance increases due to the nature of the supply water and the components contained in the supply water, depending on the quality of the supply water. It leads to.
従来のネットは、ラダー形の場合は横糸と縦糸が通常同径であり、横糸が供給液の流れを阻害し、また、浮遊成分が流路を閉塞させる原因となっている。また、ひし形の場合も縦横の区別はないが、交差する2方向の糸は流路を横断しているため同様である。つまり、供給側流路材には、供給側の圧力損失をできるだけ小さくする機能に加えて、膜面の表面更新を促進して濃度分極を押さえる機能が要求されるが、供給側流路材の横糸に供給液に浮遊している成分が引っかかり、流れの抵抗が増大、もしくは閉塞させる問題がある。さらに、膜表面に供給液に浮遊している成分が供給流路材横糸に引っかかり、それらが膜面堆積して有効膜面積を減じさせる問題もある。これ以外に、分離膜エレメントの運転コスト減のために、供給流路材での圧力損失を低減する課題がある。 In the conventional net, in the case of the ladder type, the weft and the warp are usually the same diameter, the weft impedes the flow of the supply liquid, and the floating component causes the flow path to be blocked. Also, in the case of a rhombus, there is no distinction between vertical and horizontal directions, but the same is true because two intersecting yarns cross the flow path. In other words, in addition to the function of reducing the pressure loss on the supply side as much as possible, the supply-side flow path material is required to have a function of suppressing the concentration polarization by promoting surface renewal of the membrane surface. There is a problem in that the components floating in the supply liquid are caught by the weft and the flow resistance is increased or blocked. Further, there is a problem that components floating in the supply liquid on the membrane surface are caught by the supply flow path material weft, and they are deposited on the film surface to reduce the effective membrane area. In addition to this, there is a problem of reducing pressure loss in the supply channel material in order to reduce the operating cost of the separation membrane element.
一方、従来のネットは、横糸と縦糸との融着を確実に行えるように、剪断法により成形されることが多かった。この剪断法は、押出機のダイスの内外2つの円周上に配置した多数のノズル孔を逆方向に回転させながら、横糸と縦糸とを押出して交差部で互いに融着させる際、横糸と縦糸との交差部で両者のノズル孔が重なって1つのノズルとなるようにノズル孔を配置したダイスを用いる方法である。剪断法によると、横糸と縦糸との交点部で樹脂の押出量が多くなり、この部分で水掻き状の変形が生じていた。本発明者らが検討したところ、この水掻き状の変形が、供給側流路の圧力損失の増加の原因になっていることが判明した。
そこで、本発明の目的は、供給側流路の圧力損失を低減でき、しかも供給側流路の流れの阻害や閉塞の問題がより生じにくいスパイラル型分離膜エレメントを提供することにある。 Accordingly, an object of the present invention is to provide a spiral separation membrane element that can reduce the pressure loss of the supply-side flow path and that is less likely to cause problems of obstruction and blockage of the flow of the supply-side flow path.
本発明者らは、鋭意研究を重ねた結果、以下に示すスパイラル型分離膜エレメントにより上記目的を達成できることを見出し、本発明を完成するに到った。 As a result of intensive studies, the present inventors have found that the object can be achieved by the spiral separation membrane element described below, and have completed the present invention.
本発明は、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられているスパイラル型分離膜エレメントにおいて、前記供給側流路材は、融着法成形にて得られたネットであることを特徴とする。ここで、融着法成形にて得られたネットは、ネットの構成糸が交点部で互いに融着しつつ、平面形状(投影図形)において構成糸から融着部がはみ出していない構造を有するものである。 The present invention relates to a spiral separation membrane element in which one or more of a separation membrane, a supply-side channel material, and a permeation-side channel material are wound around a perforated hollow central tube. The road material is a net obtained by fusion molding. Here, the net obtained by fusion method molding has a structure in which the constituent yarns of the net are fused to each other at the intersection, and the fused portion does not protrude from the constituent yarns in a planar shape (projected figure). It is.
本発明者は、ネットの成形において、融着法による成形品が剪断法成形品に比べ交点部における水掻き状の変形が格段に少なく、供給側流路の圧力損失を低減でき、しかも、供給側流路の流れの阻害や閉塞を防止するのに有効であることを見出したもので、優れたスパイラル型分離膜エレメントを提供することができる。 The present inventor is able to reduce the pressure loss of the supply-side flow path by reducing the water-like deformation at the intersection in the molding of the net compared to the shearing-molded product in the molding of the net. The present invention has been found to be effective for preventing obstruction and blockage of the flow path, and can provide an excellent spiral separation membrane element.
また、融着法成形品は、剪断法成形品に比べて表面が滑らかであり、エレメント組み立て作業時における膜面との接触や巻き付けによる膜面への押しつけによる膜へのダメージが緩和されるなどの利点があり、スパイラル型分離膜エレメントの形成に非常に有効である。 In addition, the fusion-molded product has a smoother surface than the shear-method molded product, and damage to the membrane due to contact with the membrane surface during element assembly work and pressing against the membrane surface by winding is alleviated. And is very effective for forming a spiral separation membrane element.
上記において、前記供給側流路材は、供給液流れ方向に交差している横糸を、供給液流れ方向に沿って配される縦糸より細くしてあることが好適である。ネットの成形品において、供給液流れ方向に交差している横糸を細くすることで、供給液の流路断面積を大きくすることができることから、供給側流路の流れの阻害や閉塞に有効であり、流路の圧力損失を低減できる。 In the above, it is preferable that the supply side flow path member has a weft that intersects the supply liquid flow direction thinner than a warp arranged along the supply liquid flow direction. In the net molded product, the cross-sectional area of the supply liquid flow path can be increased by thinning the weft that intersects the supply liquid flow direction, which is effective for blocking or blocking the flow of the supply-side flow path. Yes, the pressure loss of the flow path can be reduced.
また、前記供給側流路材は、ネット状流路材であり、供給液流れ方向に沿って配される縦糸を蛇行する構造に形成してあることが好適である。流路における流れの阻害や閉塞を防止するには、流路内での液の流れを乱流状態にすることが有効であることが知られている(乱流効果)。本発明においては、流路材の縦糸を蛇行する構造にすることによって、従来のラダー型あるいはひし形など流路材よりも大きな乱流効果を得ることができることを案出したもので、供給側流路の圧力損失の少ない、優れたスパイラル型分離膜エレメントを提供することができる。 The supply-side channel material is a net-shaped channel material, and is preferably formed in a structure in which the warps arranged along the supply liquid flow direction meander. In order to prevent obstruction or blockage of the flow in the flow path, it is known that it is effective to make the liquid flow in the flow path turbulent (turbulent flow effect). In the present invention, it has been devised that a turbulent flow effect larger than that of a flow path material such as a conventional ladder type or rhombus can be obtained by making the warp yarn of the flow path material meander. It is possible to provide an excellent spiral-type separation membrane element with little pressure loss in the passage.
また、前記供給側流路材は、第1糸で構成される第1層と第2糸で構成される第2層とからなる2層構造を有し、前記第1糸及び前記第2糸の各々が、供給液流れ方向に略平行に配される平行部と供給液流れ方向に対し斜め方向に配される傾斜部とを繰り返して有すると共に、前記第1糸の平行部と前記第2糸の平行部とが融着して六角形の単位平面形状を形成していることが好ましい。 The supply-side flow path material has a two-layer structure including a first layer composed of a first thread and a second layer composed of a second thread, and the first thread and the second thread Each of which repeatedly includes a parallel portion disposed substantially parallel to the supply liquid flow direction and an inclined portion disposed obliquely with respect to the supply liquid flow direction, and the parallel portion of the first yarn and the second It is preferable that the parallel part of the yarn is fused to form a hexagonal unit plane shape.
このような供給側流路材によると、平行部で第1糸と第2糸とが重なって融着しているため、この部分が供給液の抵抗になりにくく、しかも、六角形の単位平面形状であるため、単位流動長さ当たりの交点数(この場合、平行部の数)を少なくすることができ、供給側流路の圧力損失をより低減することができる。 According to such a supply-side flow path material, the first yarn and the second yarn are overlapped and fused at the parallel portion, so that this portion is unlikely to become the resistance of the supply liquid, and the hexagonal unit plane Because of the shape, the number of intersections per unit flow length (in this case, the number of parallel portions) can be reduced, and the pressure loss in the supply-side flow path can be further reduced.
あるいは、前記供給側流路材は、供給液流れ方向に略平行に配される縦糸と、供給液流れ方向に対し斜め方向に配される傾斜糸と、供給液流れ方向に対し前記傾斜糸とは逆の斜め方向に配される逆傾斜糸とから構成される3層構造を有することが好ましい。 Alternatively, the supply-side channel material includes warp yarns arranged substantially parallel to the supply liquid flow direction, inclined yarns arranged obliquely with respect to the supply liquid flow direction, and the inclined yarns arranged with respect to the supply liquid flow direction. Preferably has a three-layer structure composed of reversely inclined yarns arranged in opposite diagonal directions.
このような供給側流路材によると、縦糸で構成される層が供給液の抵抗になりにくく、また、2層構造の場合と比べてより細い傾斜糸と逆傾斜糸とが供給液流れ方向に交差するため、この部分が供給液の抵抗になりにくく、供給側流路の圧力損失をより低減することができる。 According to such a supply-side channel material, the layer composed of warp yarns is less likely to become resistance of the supply liquid, and the slanted and reverse inclined threads are thinner than the two-layer structure in the supply liquid flow direction. Therefore, this portion is unlikely to become the resistance of the supply liquid, and the pressure loss of the supply side flow path can be further reduced.
以上のように、本発明は、スパイラル型分離膜エレメントに使用するネットの成形において、融着法を用いることによって、供給側流路の圧力損失を低減でき、しかも、供給側流路の流れの阻害や閉塞を防止することができるという利点がある。同時に、エレメントの組み立てなどの作業性が高いという利点がある。 As described above, the present invention can reduce the pressure loss of the supply side flow path by using the fusion method in the formation of the net used for the spiral separation membrane element, and can further reduce the flow of the supply side flow path. There is an advantage that inhibition and blockage can be prevented. At the same time, there is an advantage that workability such as element assembly is high.
また、供給液流れ方向に交差している横糸を細くすること、あるいは、ひし形ネット状流路材においてはどちらか一方向の糸を細くすること、また、ラダー形ネット状流路材においては縦糸を蛇行する構造に形成することによって、さらに供給側流路の圧力損失低減および流れの阻害や閉塞防止を効果的に行うことができる。 Also, make the weft that intersects the flow direction of the feed liquid thinner, or make the thread in one direction thinner in the rhombus net-like channel material, and warp in the ladder-like net channel material By forming a meandering structure, it is possible to effectively reduce the pressure loss of the supply side flow path, inhibit flow and prevent clogging.
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明のスパイラル型分離膜エレメントの供給側流路材の一例を示す図であり、(A)は正面図、(B)は側面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing an example of a supply-side channel material of a spiral separation membrane element of the present invention, where FIG. 1A is a front view and FIG. 1B is a side view.
本発明のスパイラル型分離膜エレメントは、分離膜、供給側流路材及び透過側流路材の単数又は複数が、有孔の中空状中心管の周りに巻きつけられている構造を有する。かかる膜エレメントの詳細は、前記の特許文献1〜4にも詳細に記載されており、供給側流路材の以外に関しては、従来公知の分離膜、透過側流路材、中空状中心管などが何れも採用できる。例えば、供給側流路材と透過側流路材が複数用いられる場合には、複数の膜リーフが中空状中心管の周りに巻きつけられた構造となる。
The spiral separation membrane element of the present invention has a structure in which one or more of a separation membrane, a supply-side channel material and a permeation-side channel material are wound around a perforated hollow central tube. The details of the membrane element are also described in detail in the above-mentioned
本発明に用いられる供給側流路材は、例えば図1に示すように、供給水の流れ方向に対し縦糸1と横糸2を有するラダー形ネット状流路材を形成している。本発明は、この供給側流路材が融着法成形にて得られたネットであることを特徴とする。
For example, as shown in FIG. 1, the supply-side channel material used in the present invention forms a ladder-shaped net-like channel material having
ネットを融着法で成型する場合、一般的に、押出機のダイスの内外2つの円周上に配置した多数のノズル孔を逆方向に回転させながら、横糸と縦糸とを押出してから交差部で互いに融着させ、冷却槽に浸漬後、引取を行う。上記押出を行う際、横糸と縦糸との交差部で両者のノズル孔が重ならないようにノズル孔を配置しておき(この点が剪断法と相違する)、押出された横糸と縦糸とを適度な融着が起るタイミングで融着させる。 When the net is formed by the fusion method, generally, the weft and warp yarns are extruded while rotating a number of nozzle holes arranged on the inner and outer circumferences of the extruder die in the opposite direction, and then the intersection. Then, they are fused with each other, immersed in a cooling bath, and then taken out. When performing the above extrusion, arrange the nozzle holes so that the nozzle holes do not overlap at the intersection of the weft and the warp (this is different from the shearing method), and the extruded weft and warp are moderately It is fused at the timing when proper fusion occurs.
このため、剪断法と比較して、交点部において横糸と縦糸との形状が保持され易くなり、また、交点部で樹脂の押出量が多くなることもなく、交点部における水掻き状の変形が格段に少なく、供給側流路の圧力損失を低減できる。 Therefore, compared to the shearing method, the shape of the weft and the warp is easily maintained at the intersection, and the amount of resin extruded at the intersection is not increased. The pressure loss of the supply side flow path can be reduced.
特に、図1(A)に示すようなネットを融着法で成型する場合、横糸と縦糸とのノズル径を変えると共に、縦糸のノズル孔を回転させずに、横糸のノズル孔をだけ回転させる方法が有効である。 In particular, when a net as shown in FIG. 1 (A) is formed by the fusion method, the nozzle diameters of the weft and the warp are changed, and the weft nozzle hole is rotated only without rotating the warp nozzle hole. The method is effective.
流路材の構成要素としては、耐蝕性、耐熱性、機械的強度などを考慮して選択された材質(後述する)以外に、構造的には流路断面積が大きな要素となり、例えば図1(A)に示す構成例における縦糸1の径、横糸2の径およびそれによって決まる厚み3、縦糸間隔4、横糸間隔5および交点角度6を挙げることができる。つまり、例えば機械的強度の面からは、縦糸1の径、横糸2の径が大きいほど好ましいが、流路断面積は小さくなり圧力損失の増大に結びつくことから好ましいとはいえない。また、交点角度を小さくすれば縦糸1と横糸2との結合部分が大きくなり強度面では好ましいが、縦糸間隔4が小さくなり流路断面積が小さくなることから圧力損失の増大に結びつき好ましいとはいえない。
As a component of the channel material, in addition to a material selected in consideration of corrosion resistance, heat resistance, mechanical strength, etc. (described later), the channel cross-sectional area is structurally large, for example, FIG. The diameter of the
本発明はこれらの要素の選択によって、流路上記の圧力損失低減や流れの阻害や閉塞防止などに最適の流路を形成するとともに、さらに縦糸1と横糸2の交差部の細部の構造・状態による影響を研究し、水掻き状の変形などがなく円滑な流れを形成することが可能な接合方法として融着法が最適であることを見出したものである。 According to the present invention, by selecting these elements, an optimum flow path is formed for reducing the pressure loss, preventing flow obstruction, and preventing the blockage of the flow path. We have studied the influence of the above, and found that the fusion method is optimal as a joining method capable of forming a smooth flow without any water-like deformation.
つまり、従来法、例えば剪断法により成形されたネットは、交点部において水掻き状の変形が生じるが、本発明である融着法成形品では、剪断法成形品に比べこうした変形が格段に少ない。また、融着法成形品は、剪断法成形品など他の成形品に比べて表面が滑らかであり、エレメント組み立て作業時における膜面との接触や巻き付けによる膜面への押しつけによる膜へのダメージが緩和されるなどの利点がある。こうした利点は、流路材を形成する上において、非常に有用であり、本発明である融着法成形品によって、同一構造であっても従来にない、優れたスパイラル型分離膜エレメントを提供することができる。 In other words, a net formed by a conventional method, for example, a shearing method, causes a web-like deformation at the intersection, but the fusion-molded product according to the present invention has much less deformation than the shear-method molded product. In addition, the fusion-molded product has a smoother surface than other molded products such as a shear-molded product, and damage to the membrane due to contact with the membrane surface during element assembly work or pressing against the membrane surface due to winding There are advantages such as mitigation. These advantages are very useful in forming a flow path material, and provide an excellent spiral-type separation membrane element that is unprecedented even if it has the same structure by the fusion-molded article of the present invention. be able to.
特に、ラダー形流路材については流れに接する横糸2の長さを大きくする場合が多く、融着法成形品のこうした利点を最大限に利用することができることから、ラダー形流路材自体の優位性に加え、融着法成形品のこうした利点との相乗的効果を活かすことが可能となる。
In particular, in the case of a ladder-type channel material, the length of the
ここで、使用する供給側流路の原水側流路材としては、任意の材質を用いることが可能であるが、上記のように耐蝕性、耐熱性、機械的強度などを考慮して選択される。例えば、ポリプロピレン、ポリエチレンなどを挙げることができる。 Here, any material can be used as the raw water side channel material of the supply side channel to be used, but it is selected in consideration of the corrosion resistance, heat resistance, mechanical strength and the like as described above. The Examples thereof include polypropylene and polyethylene.
また、供給水の流れによる圧力損失低減の課題に対しては、図1(B)に示すように、供給液流れ方向に交差している横糸を細くすることで、供給液の流路断面積を大きくすることができ、供給側流路の流れの阻害や閉塞に有効であり、流路の圧力損失を低減できる。 In addition, as shown in FIG. 1 (B), to reduce the pressure loss due to the flow of the feed water, the cross-sectional area of the flow path of the feed liquid can be reduced by thinning the weft that intersects the feed liquid flow direction. It is effective for obstructing or blocking the flow of the supply side flow path, and the pressure loss of the flow path can be reduced.
つまり、従来のラダー型流路材は、横糸と縦糸がほぼ同じ径で形成されており、供給側流路の原水側の断面積のうち、実際の流路断面積としては1/2に満たない。また、ひし形流路材についても同じである。本発明の流路材では、ラダー形においては縦糸に対する横糸の径、ひし形においてはどちらか一方向の糸の径の比率を小さくすることで、流路断面積が増加し、圧力損失は従来のものに比べ小さくすること可能となる。具体的には、縦糸:横糸の径比率が、4:1〜2:1であることが適正であるとの本発明者の知見を得ている。さらに、こうした構成を本発明の融着法成形品について適用することで、従来の剪断法成形品などに比べ交点部の水掻き状の変形が極めて少なく、縦糸に対する横糸の径比率を小さくする効果をより確実に確保することができ、一層抵抗を低減させる要因となっている。 That is, in the conventional ladder-type channel material, the weft and the warp are formed with substantially the same diameter, and the actual channel cross-sectional area of the supply-side channel cross-sectional area is less than ½. Absent. The same applies to the rhombus channel material. In the flow channel material of the present invention, the cross-sectional area of the flow channel is increased by reducing the ratio of the weft yarn diameter to the warp yarn in the ladder shape, and the yarn diameter ratio in either direction in the rhombus shape, and the pressure loss is the conventional one. It becomes possible to make it smaller than that. Specifically, the inventors have obtained knowledge that the warp: weft diameter ratio is suitably 4: 1 to 2: 1. Furthermore, by applying such a configuration to the fusion-bonded molded article of the present invention, there is very little scratch-like deformation at the intersections compared to conventional shear molded articles, and the effect of reducing the diameter ratio of the weft to the warp is reduced. This can be ensured more reliably and is a factor that further reduces resistance.
さらに、本発明においては、こうした流路断面積の拡大に加え、横糸2全面が流れに接することから、上記の融着法成形品の表面滑性や、エレメント組み立て作業時における膜面との接触や巻き付けによる膜面への押しつけによる膜へのダメージが緩和される機能が、横糸2の径の縮小によって一層増長されるという相乗的な効果を生み出すこととなり、より供給側流路の圧力損失の少ない、優れたスパイラル型分離膜エレメントを提供することができる。
Furthermore, in the present invention, in addition to the expansion of the cross-sectional area of the flow path, the entire surface of the
本発明のスパイラル型分離膜エレメントの別の実施形態として、ラダー形ネット状流路材を変形した構成を図2に示す(第2構成例)。第1構成例における縦糸1を、交点角度6が大きくなるように供給水の流れ方向に移動させることによって、縦糸1と横糸2との接合部をそのままにしながら縦糸間隔4を大きくしたものである。こうした構成によって、縦糸1と横糸2との接合部を長くとりネット状流路材の強度面を十分に確保することができると同時に、流路断面積を大きくすることができるという優れたネットを形成することができる。
As another embodiment of the spiral-type separation membrane element of the present invention, a configuration in which a ladder-type net-like channel material is modified is shown in FIG. 2 (second configuration example). By moving the
また、流路内における交点角度6を調整することで、圧力損失を調整することが可能となる点、従来にない優れた機能を有しているといえる。つまり、上記のように交点角度6を大きくすると縦糸間隔4が大きくなり流路断面積が大きくなり、交点角度6を小さくすると縦糸間隔4が小さくなり流路断面積が小さくなる。但し、横糸間隔5は、交点角度6を大きくすると小さくなり、その結果、圧力損失を増大する効果があることから、流路断面積増大による圧力損失低減効果を制限する働きを生じる。従って、縦糸間隔4、横糸間隔5、および交点角度6を適切に選択することで、所望の圧力損失を有する流路材を作成することができる。
Moreover, it can be said that the pressure loss can be adjusted by adjusting the
図3に、本発明の第3の構成例を示す。ラダー形ネット状流路材であって、縦糸を蛇行する構造に形成することを特徴としている。流路における流れの阻害や閉塞を防止し、さらには圧力損失を低減するには、流路内での液の流れを乱流状態にすることが有効であり、流路材の縦糸を蛇行する構造にすることによって、従来のラダー型あるいはひし形など流路材よりも大きな乱流効果を得ることができる。従って、供給側流路の圧力損失の少ない、優れたスパイラル型分離膜エレメントを提供することができる。特に、縦糸と横糸との径が異なる場合には、流れの乱れが増長され、より一層の乱流効果を得ることができ、供給側流路の圧力損失の軽減を図ることができる。 FIG. 3 shows a third configuration example of the present invention. It is a ladder-type net-like channel material, and is characterized by being formed in a structure in which warp yarns meander. In order to prevent obstruction and blockage of the flow in the flow path, and to reduce pressure loss, it is effective to make the flow of liquid in the flow path turbulent and meander the warp yarns of the flow path material. By adopting a structure, it is possible to obtain a turbulent flow effect larger than that of a conventional ladder type or rhombus type channel material. Therefore, it is possible to provide an excellent spiral separation membrane element with little pressure loss in the supply side flow path. In particular, when the diameters of the warp and the weft are different, the turbulence of the flow is increased, a further turbulent flow effect can be obtained, and the pressure loss of the supply side flow path can be reduced.
つまり、従来のラダー型では横糸により乱流効果を得、ひし形形状では縦横の区別はないが交差する2方向の糸により乱流効果を得ている。本発明の流路材では、縦糸を蛇行する構造にすることで、縦糸が水流と並行で直線状よりも容易に高い乱流効果が得られた。これを流路材の構成からみると、本発明は、図3に示すように上述の第1構成例における縦糸1の径などの構成要素に、縦糸蛇行角度7という新たな要素を加味することで、流路の圧力損失低減や流れの阻害や閉塞防止などに最適の流路条件を設定するものである。また、第2構成例と同様、縦糸間隔4、横糸間隔5、交点角度6、および縦糸蛇行角度7を適切に選択することで、所望の圧力損失を有する流路材を作成することができる。
That is, in the conventional ladder type, the turbulent effect is obtained by the weft, and in the rhombus shape, the turbulent effect is obtained by the intersecting two-direction yarns although there is no distinction between the vertical and horizontal directions. In the flow channel material of the present invention, a high turbulence effect was obtained more easily than a straight line in parallel with the water flow by making the warp thread meander. In view of the configuration of the flow path material, the present invention adds a new element such as the meandering angle of
具体的には、供給側流路において使用する原水側流路材の仕様として、仮に厚みが、26mil、28mil、34milのものについて検討すると、従来品における圧力損失が1/2にまで低減する効果をえるためには、供給側流路の構成要素を表1に示した範囲に設定することが好ましい。 Specifically, if the thickness of the raw water side flow path material used in the supply side flow path is considered to be 26 mil, 28 mil, 34 mil, the pressure loss in the conventional product is reduced to 1/2. In order to obtain this, it is preferable to set the components of the supply-side flow path within the range shown in Table 1.
図4〜図5に、本発明の第4の構成例を示すが、(A)は正面図、(B)は側面図、(C)は底面図である。この例では、図4〜図5に示すように、供給側流路材は、第1糸11で構成される第1層L1と第2糸12で構成される第2層L2とからなる2層構造を有している。このとき、第1糸11及び第2糸12の各々が、供給液流れ方向に略平行に配される平行部11a,12aと供給液流れ方向に対し斜め方向に配される傾斜部11b,12bとを繰り返して有する。更に、第1糸11の平行部11aと第2糸12の平行部12aとが融着して六角形の単位平面形状を形成している。
4 to 5 show a fourth configuration example of the present invention, in which (A) is a front view, (B) is a side view, and (C) is a bottom view. In this example, as shown in FIGS. 4 to 5, the supply-side flow path material is composed of a first layer L <b> 1 composed of the
この第4の構成例において、図4に示すものは、第1糸11及び第2糸12の各々の傾斜部11b,12bが、同一方向に傾斜している例であり、図5に示すものは、第1糸11及び第2糸12の各々の傾斜部11b,12bが、交互に逆方向に傾斜している例である。図5に示すものでは、第1糸11及び第2糸12の各々が、蛇行しながら供給液流れ方向に沿って配されるため、供給側流路の圧力損失をより低減することができる。
In the fourth configuration example, what is shown in FIG. 4 is an example in which the
図4に示すネットを融着法で成型する場合、第1糸11のノズル孔と第2糸12のノズル孔とを相互に逆回転させる際に、平行部11a,12aを押出すときだけ両ノズル孔の回転を停止するような制御を行って、断続的に両ノズル孔を回転させればよい。押出された平行部11a,12aは、相互に融着される。
When the net shown in FIG. 4 is formed by the fusing method, both the nozzles of the
また、図5に示すネットを融着法で成型する場合、傾斜部11b,12bを押出すときには両ノズル孔を相互に逆回転させ、平行部11a,12aを押出すときには両ノズル孔の回転を停止し、次の傾斜部11b,12bを押出すときには各々のノズル孔を先の傾斜部11b,12bを押出すときと逆回転させ、次いで両ノズル孔の回転を停止し、これらを繰り返するような制御を行えばよい。
Further, when the net shown in FIG. 5 is molded by the fusion method, both nozzle holes are rotated in the opposite directions when the
この構成例において、第1糸11と第2糸12の交点部の厚さは0.5〜1.0mmが好ましい。また、第1糸11及び第2糸12の糸径は、0.15〜0.5mmが好ましい。更に、六角形の単位平面形状における頂点角度αは、60〜120°が好ましく、斜辺長さA,B(即ち、傾斜部11b,12bの長さ)は2〜5mmが好ましく、平行部11a,12aの長さは1〜5mmが好ましい。
In this configuration example, the thickness of the intersection of the
図6に、本発明の第5の構成例を示すが、(A)は正面図、(B)は側面図、(C)は底面図である。この例では、図6に示すように、供給側流路材は、第1層L1、第2層L2、及び第3層L3からなる3層構造を有する。各層は、供給液流れ方向に略平行に配される縦糸16と、供給液流れ方向に対し斜め方向に配される傾斜糸15と、供給液流れ方向に対し前記傾斜糸15とは逆の斜め方向に配される逆傾斜糸17とから構成される。
FIG. 6 shows a fifth configuration example of the present invention, in which (A) is a front view, (B) is a side view, and (C) is a bottom view. In this example, as shown in FIG. 6, the supply-side flow path material has a three-layer structure including a first layer L1, a second layer L2, and a third layer L3. Each layer is composed of
図6に示すネットを融着法で成型する場合、縦糸16のノズル孔を回転させずに、傾斜糸15のノズル孔と逆傾斜糸17のノズル孔とを相互に逆回転させ、交点部で相互に融着させればよい。
When the net shown in FIG. 6 is molded by the fusion method, the nozzle hole of the
縦糸16と傾斜糸15と逆傾斜糸17との積層順序は、何れでもよいが、特に、第2層L2を縦糸16で構成することによって、中間層における流動の抵抗を小さくして、供給側流路の圧力損失をより低減することができ、しかも傾斜糸15と逆傾斜糸17とが、膜面に接するため、乱流効果により膜面近傍の濃度分極を効果的に抑制することができる。
The order of lamination of the
また、第1層L1と第2層L2との交点部と、第2層L2と第3層L3との交点部とが、一致していなくてもよいが、供給側流路材の形状安定性を向上させるため、両者の交点部が一致していることが好ましい。 In addition, the intersection of the first layer L1 and the second layer L2 and the intersection of the second layer L2 and the third layer L3 may not coincide with each other, but the shape of the supply-side channel material is stable. In order to improve the property, it is preferable that the intersections of the two coincide.
第5の構成例において、縦糸16と傾斜糸15と逆傾斜糸17との交点部の厚さは0.5〜1.0mmが好ましい。また、縦糸16と傾斜糸15と逆傾斜糸17との糸径は、0.1〜0.5mmが好ましい。更に、単位平面形状における斜辺長さDは2〜5mmが好ましい。傾斜糸15と逆傾斜糸17とがなす角度αは、60〜120°が好ましい。
In the fifth configuration example, the thickness of the intersection of the
縦糸16と傾斜糸15と逆傾斜糸17との糸径は、各々同一でも相違していてもよいが、第2層L2を構成する縦糸16を太くすることで、供給側流路の圧力損失をより低減することができ、逆に、第2層L2を構成する縦糸16を相対的に細くすることで、乱流効果により膜面近傍の濃度分極を効果的に抑制することができる。
The yarn diameters of the
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、本発明がかかる実施例に限定されるものでないことはいうまでもない。 Examples and the like specifically showing the configuration and effects of the present invention will be described below. Needless to say, the present invention is not limited to such examples.
<実施例1/比較例1>
表2に示した供給側流路材を平行平板セル(C10−T;流路幅35mm、流路長135mm)にセットし、純水を流したときの流量と圧力損失を図7に示した。成型方法の違いと横糸径の違いの他は同仕様のネットであるが、実施例1における圧力損失は比較例1に対し約1/3の値になった。
<Example 1 / Comparative Example 1>
FIG. 7 shows the flow rate and pressure loss when the supply-side flow path material shown in Table 2 was set in a parallel plate cell (C10-T; flow
表3に示した供給側流路材を用いて23.2m2 のスパイラルエレメントを製作し、圧力容器に装壊した状態で純水を流したときの流量と圧力損失を図8に示した。実施例2における圧力損失は比較例2に対し約2/3以下の値になった。
FIG. 8 shows the flow rate and pressure loss when a 23.2 m 2 spiral element was manufactured using the supply-side channel material shown in Table 3 and pure water was allowed to flow in a state where the pressure element was destroyed. The pressure loss in Example 2 was about 2/3 or less that of Comparative Example 2.
表5に示した供給側流路材を平行平板セル(C10−T;流路幅35mm、流路長135mm)にセットし、純水を平均流速0.2m/秒で流したときの圧力損失を図9に示した。成型方法の違いと単位平面形状の違いの他は同仕様のネットであるが、実施例3における圧力損失は比較例3に対し約60%の値になった。
Pressure loss when the supply side channel material shown in Table 5 is set in a parallel plate cell (C10-T;
表6に示した供給側流路材を平行平板セル(C10−T;流路幅35mm、流路長135mm)にセットし、純水を平均流速0.2m/秒で流したときの圧力損失を図10に示した。成型方法の違いと単位平面形状の違いの他は同仕様のネットであるが、実施例4における圧力損失は比較例4に対し約60%の値になった。
Pressure loss when the supply side channel material shown in Table 6 was set in a parallel plate cell (C10-T;
この供給側流路材は、用途を何ら限定するものではないが、主に濁質のある排水など(原水)の処理目的とする分離膜エレメント、または低圧で使用するエレメントに使われる際にその効果が発揮される。 This supply-side channel material is not intended to limit its use at all, but when used in separation membrane elements mainly for the treatment of turbid wastewater (raw water) or elements used at low pressure The effect is demonstrated.
1 縦糸
2 横糸
3 厚み
4 縦糸間隔
5 横糸間隔
6 交点角度
7 縦糸蛇行角度
11 第1糸
11a 第1糸の平行部
11b 第1糸の傾斜部
12 第2糸
12a 第2糸の平行部
12b 第2糸の傾斜部
15 傾斜糸
16 縦糸
17 逆傾斜糸
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005076770A JP4688140B2 (en) | 2004-03-26 | 2005-03-17 | Spiral type separation membrane element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004092415 | 2004-03-26 | ||
JP2004092415 | 2004-03-26 | ||
JP2005076770A JP4688140B2 (en) | 2004-03-26 | 2005-03-17 | Spiral type separation membrane element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005305422A true JP2005305422A (en) | 2005-11-04 |
JP4688140B2 JP4688140B2 (en) | 2011-05-25 |
Family
ID=35434790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005076770A Expired - Fee Related JP4688140B2 (en) | 2004-03-26 | 2005-03-17 | Spiral type separation membrane element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4688140B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011072910A (en) * | 2009-09-30 | 2011-04-14 | Daikyonishikawa Corp | Filter |
KR101244260B1 (en) * | 2009-12-14 | 2013-03-18 | 서윤석 | Membrane Unit of cylinder type for Oxygen enrichment |
WO2013080391A1 (en) | 2011-12-02 | 2013-06-06 | 東レ株式会社 | Separation membrane element and production method for same |
KR20150036192A (en) * | 2012-06-26 | 2015-04-07 | 콘웨드 플라스틱스 엘엘씨 | Membrane filtration using low energy feed spacer |
WO2018092343A1 (en) | 2016-11-18 | 2018-05-24 | 日東電工株式会社 | Raw water flow path spacer and spiral membrane element provided with same |
KR20180090896A (en) | 2016-11-18 | 2018-08-13 | 닛토덴코 가부시키가이샤 | A raw water channel spacer, and a spiral membrane element having the same |
JP2018523566A (en) * | 2015-09-30 | 2018-08-23 | エルジー・ケム・リミテッド | Reverse osmosis filter module |
WO2019220885A1 (en) | 2018-05-18 | 2019-11-21 | 日東電工株式会社 | Channel spacer and spiral membrane element |
WO2019220886A1 (en) | 2018-05-18 | 2019-11-21 | 日東電工株式会社 | Channel spacer and spiral membrane element |
CN110603088A (en) * | 2017-10-20 | 2019-12-20 | 株式会社Lg化学 | Feed spacer having three-layer structure and reverse osmosis membrane filtration module including the same |
JP2022528312A (en) * | 2019-03-28 | 2022-06-10 | エルジー・ケム・リミテッド | Reverse osmosis element differential pressure reduction feed spacer and forming nozzle |
EP4295942A4 (en) * | 2021-02-16 | 2024-07-24 | Lg Chemical Ltd | Feed spacer having three-layered structure and reverse osmosis membrane filter module comprising same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102436315B1 (en) * | 2019-10-02 | 2022-08-25 | 주식회사 엘지화학 | Feed spacer and separation membrane element |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6227701U (en) * | 1985-08-01 | 1987-02-19 | ||
JPH02273520A (en) * | 1989-02-08 | 1990-11-08 | Koch Membrane Syst Inc | Spiral membrane module and system thereof |
JPH05168869A (en) * | 1991-12-18 | 1993-07-02 | Nitto Denko Corp | Spiral separation membrane module |
JPH10156152A (en) * | 1996-12-03 | 1998-06-16 | Kurita Water Ind Ltd | Spiral membrane element |
JPH10230140A (en) * | 1997-02-19 | 1998-09-02 | Nitto Denko Corp | Spiral membrane element |
JPH10230145A (en) * | 1997-02-21 | 1998-09-02 | Nitto Denko Corp | Spiral membrane element |
JPH10309445A (en) * | 1997-05-12 | 1998-11-24 | Nitto Denko Corp | Spiral type film module |
JP2004050005A (en) * | 2002-07-18 | 2004-02-19 | Japan Organo Co Ltd | Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus |
JP2004089763A (en) * | 2002-08-29 | 2004-03-25 | Japan Organo Co Ltd | Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same |
JP2004283708A (en) * | 2003-03-20 | 2004-10-14 | Nitto Denko Corp | Spiral separation membrane element |
-
2005
- 2005-03-17 JP JP2005076770A patent/JP4688140B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6227701U (en) * | 1985-08-01 | 1987-02-19 | ||
JPH02273520A (en) * | 1989-02-08 | 1990-11-08 | Koch Membrane Syst Inc | Spiral membrane module and system thereof |
JPH05168869A (en) * | 1991-12-18 | 1993-07-02 | Nitto Denko Corp | Spiral separation membrane module |
JPH10156152A (en) * | 1996-12-03 | 1998-06-16 | Kurita Water Ind Ltd | Spiral membrane element |
JPH10230140A (en) * | 1997-02-19 | 1998-09-02 | Nitto Denko Corp | Spiral membrane element |
JPH10230145A (en) * | 1997-02-21 | 1998-09-02 | Nitto Denko Corp | Spiral membrane element |
JPH10309445A (en) * | 1997-05-12 | 1998-11-24 | Nitto Denko Corp | Spiral type film module |
JP2004050005A (en) * | 2002-07-18 | 2004-02-19 | Japan Organo Co Ltd | Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus |
JP2004089763A (en) * | 2002-08-29 | 2004-03-25 | Japan Organo Co Ltd | Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same |
JP2004283708A (en) * | 2003-03-20 | 2004-10-14 | Nitto Denko Corp | Spiral separation membrane element |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011072910A (en) * | 2009-09-30 | 2011-04-14 | Daikyonishikawa Corp | Filter |
KR101244260B1 (en) * | 2009-12-14 | 2013-03-18 | 서윤석 | Membrane Unit of cylinder type for Oxygen enrichment |
WO2013080391A1 (en) | 2011-12-02 | 2013-06-06 | 東レ株式会社 | Separation membrane element and production method for same |
KR20140107214A (en) | 2011-12-02 | 2014-09-04 | 도레이 카부시키가이샤 | Separation membrane element and production method for same |
US9597640B2 (en) | 2011-12-02 | 2017-03-21 | Toray Industries, Inc. | Separation membrane element and production method for same |
KR20150036192A (en) * | 2012-06-26 | 2015-04-07 | 콘웨드 플라스틱스 엘엘씨 | Membrane filtration using low energy feed spacer |
JP2015526282A (en) * | 2012-06-26 | 2015-09-10 | コンウェッド プラスチックス エルエルシー | Membrane filtration using low energy feed spacers |
US10035106B2 (en) | 2012-06-26 | 2018-07-31 | Conwed Plastics Llc | Membrane filtration using low energy feed spacer |
US11084198B2 (en) | 2012-06-26 | 2021-08-10 | Conwed Plastics Llc | Membrane filtration using low energy feed spacer |
KR102085394B1 (en) | 2012-06-26 | 2020-03-05 | 콘웨드 플라스틱스 엘엘씨 | Membrane filtration using low energy feed spacer |
US10576422B2 (en) | 2015-09-30 | 2020-03-03 | Lg Chem, Ltd. | Reverse osmosis filter module |
JP2018523566A (en) * | 2015-09-30 | 2018-08-23 | エルジー・ケム・リミテッド | Reverse osmosis filter module |
WO2018092343A1 (en) | 2016-11-18 | 2018-05-24 | 日東電工株式会社 | Raw water flow path spacer and spiral membrane element provided with same |
KR20180090896A (en) | 2016-11-18 | 2018-08-13 | 닛토덴코 가부시키가이샤 | A raw water channel spacer, and a spiral membrane element having the same |
US11484840B2 (en) | 2016-11-18 | 2022-11-01 | Nitto Denko Corporation | Raw water channel spacer and spiral wound membrane element including the same |
JP7298101B2 (en) | 2017-10-20 | 2023-06-27 | エルジー・ケム・リミテッド | Three-layer feed spacer and reverse osmosis filter module including same |
JP2020519439A (en) * | 2017-10-20 | 2020-07-02 | エルジー・ケム・リミテッド | Feed spacer of three-layer structure and reverse osmosis filter module including the same |
EP3698867A4 (en) * | 2017-10-20 | 2020-12-23 | LG Chem, Ltd. | Feed spacer having three-layered structure, and reverse osmosis membrane filter module including same |
CN110603088A (en) * | 2017-10-20 | 2019-12-20 | 株式会社Lg化学 | Feed spacer having three-layer structure and reverse osmosis membrane filtration module including the same |
US11484841B2 (en) | 2017-10-20 | 2022-11-01 | Lg Chem, Ltd. | Feed spacer having three-layered structure, and reverse osmosis membrane filter module including same |
WO2019220886A1 (en) | 2018-05-18 | 2019-11-21 | 日東電工株式会社 | Channel spacer and spiral membrane element |
WO2019220885A1 (en) | 2018-05-18 | 2019-11-21 | 日東電工株式会社 | Channel spacer and spiral membrane element |
KR20210011401A (en) | 2018-05-18 | 2021-02-01 | 닛토덴코 가부시키가이샤 | Flow path spacer and spiral membrane element |
KR20210011400A (en) | 2018-05-18 | 2021-02-01 | 닛토덴코 가부시키가이샤 | Flow path spacer and spiral membrane element |
US11517856B2 (en) | 2018-05-18 | 2022-12-06 | Nitto Denko Corporation | Flow path spacer and spiral membrane element |
JP2022528312A (en) * | 2019-03-28 | 2022-06-10 | エルジー・ケム・リミテッド | Reverse osmosis element differential pressure reduction feed spacer and forming nozzle |
JP7226689B2 (en) | 2019-03-28 | 2023-02-21 | エルジー・ケム・リミテッド | Reverse Osmosis Element Differential Pressure Reduction Feed Spacer and Forming Nozzle |
EP4295942A4 (en) * | 2021-02-16 | 2024-07-24 | Lg Chemical Ltd | Feed spacer having three-layered structure and reverse osmosis membrane filter module comprising same |
JP7567126B2 (en) | 2021-02-16 | 2024-10-16 | エルジー・ケム・リミテッド | Three-layer feed spacer and reverse osmosis membrane filter module including same |
Also Published As
Publication number | Publication date |
---|---|
JP4688140B2 (en) | 2011-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4688140B2 (en) | Spiral type separation membrane element | |
KR101107530B1 (en) | Spiral type separation membrane element | |
JP4587937B2 (en) | Spiral type separation membrane element | |
JP5179230B2 (en) | Spiral membrane element and spiral membrane module | |
KR102157928B1 (en) | Three-layered feed spacer and reverse osmosis filter module for water treatment comprising the same | |
CN1311894C (en) | Spiral wound separation mebrane element | |
JP2010125418A (en) | Sheet-like separation membrane and separation membrane element | |
JP2004283708A (en) | Spiral separation membrane element | |
BR112016016600B1 (en) | TUBULAR MEMBRANE, AND, METHOD AND APPARATUS TO PRODUCE A TUBULAR MEMBRANE | |
WO2019220886A1 (en) | Channel spacer and spiral membrane element | |
JP2009028714A (en) | Spiral separating membrane element | |
JP2009050759A (en) | Spiral separation membrane element | |
WO2019220885A1 (en) | Channel spacer and spiral membrane element | |
JP4684783B2 (en) | Supply-side flow path material used for spiral separation membrane element and method for manufacturing the same | |
JP2009195870A (en) | Spiral membrane element | |
KR102437204B1 (en) | Permeation side flow path material for spiral membrane element and method for manufacturing same | |
US11478750B2 (en) | Feed spacer and reverse osmosis filter module including same | |
JP2004283701A (en) | Spiral separation membrane element | |
JP5540124B2 (en) | Spiral membrane element and spiral membrane module | |
JP2019198848A (en) | Flow channel spacer and spiral type membrane element | |
JP7567126B2 (en) | Three-layer feed spacer and reverse osmosis membrane filter module including same | |
JP2010264420A (en) | Separation membrane element | |
JP2005087862A (en) | Spiral type separation membrane element | |
JP2006305556A (en) | Spiral type separation membrane element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071113 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4688140 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |