JP2005304918A - Wound treatment device - Google Patents

Wound treatment device Download PDF

Info

Publication number
JP2005304918A
JP2005304918A JP2004128306A JP2004128306A JP2005304918A JP 2005304918 A JP2005304918 A JP 2005304918A JP 2004128306 A JP2004128306 A JP 2004128306A JP 2004128306 A JP2004128306 A JP 2004128306A JP 2005304918 A JP2005304918 A JP 2005304918A
Authority
JP
Japan
Prior art keywords
ultrasonic
treatment
wound
output
wound treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004128306A
Other languages
Japanese (ja)
Inventor
Ryuichi Saura
隆一 佐浦
Sadahiro Iwabuchi
禎弘 岩淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Teijin Pharma Ltd
Original Assignee
Kobe University NUC
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Teijin Pharma Ltd filed Critical Kobe University NUC
Priority to JP2004128306A priority Critical patent/JP2005304918A/en
Publication of JP2005304918A publication Critical patent/JP2005304918A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To promote recovery of a wounded area, which enables to shorten a period for a conservative treatment or to avoid a treatment or an operation for a case unresponsive to the conservative treatment. <P>SOLUTION: A wound treatment device comprises an ultrasonic treatment head module having an ultrasonic transducer therein and a controlling means to control its ultrasound radiation, from which an ultrasonic pulse is irradiated to the wounded area. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、創傷部位への物理的・機械的刺激負荷による細胞増殖誘導作用に関する。さらに詳しくは、創傷部位への超音波照射により、創傷部位での細胞増殖を促進することで、褥瘡、潰瘍など創傷部位の修復を促進することで、治療期間を短縮、あるいは侵襲的手術を回避する装置に関するものである。   The present invention relates to a cell proliferation inducing action by a physical / mechanical stimulus load on a wound site. More specifically, ultrasonic treatment of the wound site promotes cell growth at the wound site, promotes repair of the wound site such as pressure ulcers and ulcers, shortens the treatment period, or avoids invasive surgery It is related with the apparatus which performs.

褥瘡は長時間、持続的に加わる圧迫による皮膚・皮下組織の壊死であり、運動能力が低下している高齢者や運動麻痺患者に発症しやすい。また、外傷後の血行障害から皮膚潰瘍などに陥る場合もある。それぞれ創傷疾患であり、疫学的に発症要因は明らかであるが、各疾患は容易に発生し、治癒までに長時間を要するためリハビリテーションや介護が必要である。現在の褥瘡や皮膚潰瘍に対する治療法として、血管新生因子であるプロスタグランジン含有軟膏や塩基性線維芽細胞増殖因子(bFGF)の直接的な塗布、血管新生誘導を目的とした自己骨髄細胞移植や肝細胞増殖因子(HGF)遺伝子導入なども行われている。   Pressure sores are necrosis of the skin / subcutaneous tissue caused by pressure applied continuously for a long time, and are likely to occur in elderly people and patients with motor paralysis who have reduced exercise capacity. In addition, blood circulation disorders after trauma may lead to skin ulcers. Each is a wound disease, and the onset factors are clear epidemiologically, but each disease occurs easily and requires a long time to heal, so rehabilitation and care are necessary. Current treatments for pressure ulcers and skin ulcers include prostaglandin-containing ointments, angiogenic factors, direct application of basic fibroblast growth factor (bFGF), autologous bone marrow cell transplantation for the purpose of inducing angiogenesis, Hepatocyte growth factor (HGF) gene transfer is also performed.

超音波照射は古くからリハビリテーション領域で組織に対する温熱効果や血流促進を目的に用いられており、褥瘡や皮膚潰瘍などに対しても創傷治療促進効果を期待して適応されてきたが、その治療効果については明らかではなく、無効であるとする報告もある(非特許文献1〜3)。また、褥瘡に超音波照射が有効であった報告で用いられている超音波条件も様々であり、中には周波数3.0MHz、繰り返し周期1kHz、バースト幅200μs、出力200mW/cmの超音波による温熱効果を利用したものもある(非特許文献4)。治療的超音波が創傷治療に有効であるという報告では、超音波が軟組織に到達し創傷部位の組織修復を促進すると記載されている(非特許文献5)。また、創傷部位に関連した細胞培養系に低出力超音波刺激を加えることにより、細胞増殖やサイトカイン産生を促進することが報告されている(非特許文献6)。何れにせよ、複数の無作為比較臨床試験結果のメタ解析からは、治療的超音波の褥瘡治療への有効性を示す明らかな結果は得られていない(非特許文献7)。 Ultrasound irradiation has long been used in the rehabilitation field for the purpose of enhancing the effect of heat on tissues and promoting blood flow, and has been applied to the treatment of pressure ulcers and skin ulcers with the expectation of promoting wound treatment. There is a report that the effect is not clear and invalid (Non-Patent Documents 1 to 3). In addition, there are various ultrasonic conditions used in reports that ultrasonic irradiation was effective for pressure ulcers, including ultrasonic waves with a frequency of 3.0 MHz, a repetition period of 1 kHz, a burst width of 200 μs, and an output of 200 mW / cm 2. Some use the thermal effect (Non-Patent Document 4). A report that therapeutic ultrasound is effective for wound treatment describes that ultrasound reaches soft tissue and promotes tissue repair at the wound site (Non-Patent Document 5). In addition, it has been reported that cell growth and cytokine production are promoted by applying low-power ultrasonic stimulation to a cell culture system related to a wound site (Non-patent Document 6). In any case, the meta-analysis of the results of a plurality of randomized comparative clinical trials does not provide clear results showing the effectiveness of therapeutic ultrasound for pressure ulcer treatment (Non-patent Document 7).

ここで、低出力超音波パルス(Low Intensity Pulsed Ultrasound、以下LIPUS)により骨折の修復が促進されることが知られている。このような作用をもたらすLIPUSは、Duarteらにより骨折治療への研究が行われ(特許文献1:米国特許第4,530,360号)、その後米国Exogen社により超音波骨折治療機セーフスTM(SAFHSTM)が開発されている。超音波骨折治療機セーフスTM(SAFHSTM)は、臨床試験において、脛骨骨幹部骨折(非特許文献8)、橈骨遠位端骨折(非特許文献9)などの治癒促進効果ならびに動物モデルでの有効性(非特許文献10)が証明されている。このような効果をもたらすメカニズムとして、LIPUSにより骨芽細胞でシクロオキシゲナーゼ2(COX-2)転写活性が高まり、その結果としてプロスタグランジン(PGE2)生成が増大することが考えられている(非特許文献11)。 Here, it is known that fracture repair is promoted by a low-intensity pulsed ultrasound (hereinafter LIPUS). LIPUS, which has such effects, has been studied for fracture treatment by Duarte et al. (Patent Document 1: US Pat. No. 4,530,360), and subsequently developed by US Exogen Corp. Ultrasound Fracture Machine Safes TM (SAFHS TM ) Has been. Ultrasound Fracture Machine Safes TM (SAFHS TM ) is effective in clinical trials for promoting healing of tibial shaft fractures (Non-patent Document 8), distal radius fractures (Non-patent Document 9) and animal models. (Non-Patent Document 10) has been proved. As a mechanism that brings about such effects, it is considered that LIPUS increases cyclooxygenase 2 (COX-2) transcriptional activity in osteoblasts, resulting in increased prostaglandin (PGE2) production (non-patent literature). 11).

PGE2は血管新生に重要な役割を果たすと考えられており(非特許文献12)、血管内皮細胞増殖因子のような血管新生因子 (非特許文献13)や線維芽細胞増殖因子(bFGF)(非特許文献14) の生成促進、あるいは血管新生因子により誘導された新生血管系の構築に関わっている(非特許文献15)。   PGE2 is thought to play an important role in angiogenesis (Non-patent Document 12), and angiogenic factors such as vascular endothelial growth factor (Non-patent Document 13) and fibroblast growth factor (bFGF) (non-patent document 12). (Patent Document 14), or the construction of a neovascular system induced by angiogenic factors (Non-Patent Document 15).

米国特許第4,530,360号明細書U.S. Pat.No. 4,530,360 Phys Ther:76,1996Phys Ther: 76,1996 Clin Exp Dermatol:17,1992Clin Exp Dermatol: 17,1992 Ostomy Wound Manage:48,2002Ostomy Wound Manage: 48,2002 Phys Ther:74,1994Phys Ther: 74,1994 Reumatology 40: 1331-1336, 2001Reumatology 40: 1331-1336, 2001 J Oral Maxillofac Surg 57: 409-419, 1999J Oral Maxillofac Surg 57: 409-419, 1999 Cochorane Database Syst. Rev.: CD001275, 2000Cochorane Database Syst. Rev .: CD001275, 2000 J Bone and Jiont Surg, 76A: 25-34, 1994J Bone and Jiont Surg, 76A: 25-34, 1994 J Bone and Joint Surg, 79A: 961-973, 1997J Bone and Joint Surg, 79A: 961-973, 1997 J Bone Miner Res. 16: 671-680, 2001J Bone Miner Res. 16: 671-680, 2001 Biochem. Biophys. Res. Commun. 256:284-287, 1999Biochem. Biophys. Res. Commun. 256: 284-287, 1999 Proc.Soc.Exp.Biol.Med. 172: 214-218, 1983Proc.Soc.Exp.Biol.Med. 172: 214-218, 1983 Lung Cancer 31: 203-212, 2001Lung Cancer 31: 203-212, 2001 Kobe J Med Sci 47: 35-45, 2001Kobe J Med Sci 47: 35-45, 2001 Blood 102: 1966-1977, 2003Blood 102: 1966-1977, 2003

創傷の治療には、主として創面の保護などの保存療法が用いられるが、しばしば保存療法で効果が見られない場合あり、手術による治療も行われている。本発明は、創傷部位の修復を促進することで、保存療法の期間短縮、保存療法に反応しない症例の治療、手術の回避を可能とするものである。また、この治療法により、創傷患者に福音をもたらし、創傷治療による機能訓練の再開や介護力の向上から寝たきり患者を減少させることができると考えている。   For the treatment of wounds, conservative treatments such as wound surface protection are mainly used. However, the conservative treatments are often ineffective, and treatment by surgery is also performed. The present invention makes it possible to shorten the period of conservative therapy, treat cases that do not respond to conservative therapy, and avoid surgery by promoting repair of the wound site. In addition, this treatment method is thought to bring the gospel to wounded patients and to reduce bedridden patients by resuming functional training through wound treatment and improving care.

本発明者らはかかる課題に対して鋭意検討した結果、線維芽細胞へ機械的・力学的刺激を与えることにより創傷治癒に重要な役割をもつ線維芽細胞増殖、PGE2生成を促進し、さらに血管内皮細胞に同様の刺激を与えることで血管形成を促進することにより創傷治癒に大きな役割を果たすことを見出し、本発明に到達したものである。   As a result of intensive studies on such problems, the present inventors have promoted the proliferation of fibroblasts and PGE2 production, which have an important role in wound healing, by giving mechanical and mechanical stimulation to fibroblasts. It has been found that the present invention has been found to play a major role in wound healing by promoting angiogenesis by giving similar stimulation to endothelial cells.

すなわち本発明は、超音波トランスデューサーを内蔵した超音波治療ヘッドモジュール、超音波の照射を制御する制御手段を備え、創傷部位に対して超音波パルスを照射することを特徴とする創傷治療装置を提供するものである。また本発明は、かかる制御手段が、超音波周波数が20kHz〜10MHz、バースト幅が10μsec〜1msec、繰り返し周期が5Hz〜10kHz、超音波出力が5〜75mW/cmの範囲で超音波パルスを出力制御する手段であることを特徴とし、特に該超音波出力が5〜30mW/cmの範囲、その中でも、該制御手段が、超音波周波数が1.5MHz、バースト幅が200μsec、繰り返し周期が1.0kHz、超音波出力が7.5mW/cmの範囲で超音波を出力制御する手段であることを特徴とする創傷治療装置を提供するものである。 That is, the present invention provides a wound treatment apparatus comprising an ultrasonic treatment head module incorporating an ultrasonic transducer and a control means for controlling the irradiation of ultrasonic waves, and irradiating an ultrasonic pulse to a wound site. It is to provide. Further, according to the present invention, the control means outputs an ultrasonic pulse in a range of an ultrasonic frequency of 20 kHz to 10 MHz, a burst width of 10 μsec to 1 msec, a repetition period of 5 Hz to 10 kHz, and an ultrasonic output of 5 to 75 mW / cm 2. In particular, the ultrasonic output is in the range of 5 to 30 mW / cm 2 , and among these, the control means has an ultrasonic frequency of 1.5 MHz, a burst width of 200 μsec, and a repetition period of 1 It is a means for controlling the output of ultrasonic waves in the range of 0.0 kHz and ultrasonic output of 7.5 mW / cm 2 .

さらに本発明は、かかる装置が褥瘡または潰瘍部位に適用する装置であることを特徴とする創傷治療装置を提供するものである。   Furthermore, the present invention provides a wound treatment device characterized in that the device is a device applied to a pressure ulcer or an ulcer site.

本発明で、超音波刺激により、1)線維芽細胞の増殖、2)血管内皮細胞による管腔形成(血管新生)が促進される。さらに、これらの効果が細胞増殖因子であるPGE2およびbFGFの産生促進によるものであることも示唆された。したがって、本装置により、従来よりも創傷治療に要する期間を短縮でき、また、従来の方法では治療し得なかった創傷についても、これを治療できる。    In the present invention, ultrasonic stimulation promotes 1) proliferation of fibroblasts and 2) lumen formation (angiogenesis) by vascular endothelial cells. Furthermore, it was suggested that these effects were due to the production promotion of cell growth factors PGE2 and bFGF. Therefore, this apparatus can shorten the period required for wound treatment than before, and can treat a wound that could not be treated by the conventional method.

皮膚、結合組織、血管等の細胞や組織を体外で培養する場合に本装置を用いることで、例えば移植用組織の作成に要する期間を短縮できる。   By using this apparatus when culturing cells and tissues such as skin, connective tissue, blood vessels and the like outside the body, for example, the time required for preparation of the tissue for transplantation can be shortened.

本発明は、創傷部位へ超音波を照射することにより、患部に一定のパターンを有する機械的・力学的刺激(メカニカルストレス)を与え、創傷部位の修復を促進することを特徴とする創傷治療装置である。   The present invention is directed to a wound treatment apparatus characterized in that by applying ultrasonic waves to a wound site, mechanical and mechanical stimulation (mechanical stress) having a certain pattern is applied to the affected area to promote repair of the wound site. It is.

以下に、本発明の創傷治療措置の実施態様例を示す。本発明の創傷治療装置は、超音波トランスデューサーを内蔵し、創傷部位に対して超音波を照射する超音波治療ヘッドモジュール、該超音波の制御をする制御手段、創傷患者の該創傷部位に該超音波治療ヘッドモジュールを固定する機能を備える。   The following are examples of embodiments of the wound treatment procedure of the present invention. The wound treatment apparatus of the present invention includes an ultrasonic treatment head module that incorporates an ultrasonic transducer and irradiates ultrasonic waves to a wound site, control means for controlling the ultrasonic wave, and the wound site of a wound patient. A function for fixing the ultrasonic treatment head module is provided.

かかる超音波トランスデューサーは圧電セラミック製であり、電圧をかけると微小な歪みが生じる性質を利用して、超音波波形合成装置で作られた電気信号をトランスデューサーの圧電セラミックに与え、トランスデューサー表面に縦方向の振動(超音波)を作り出している。   Such an ultrasonic transducer is made of piezoelectric ceramic. Using the property that minute distortion occurs when voltage is applied, an electrical signal generated by an ultrasonic waveform synthesizer is applied to the piezoelectric ceramic of the transducer, and the transducer surface This produces longitudinal vibration (ultrasonic waves).

使用する超音波は低出力超音波パルスであり、超音波周波数が20kHz〜10MHz、バースト幅が10μsec〜1msec、繰り返し周期が5Hz〜10kHz、超音波出力が5〜75mW/cmの範囲のものが治療効果として期待できるものであり、その中でも特に、超音波周波数が1.5MHz、バースト幅が200μsec、繰り返し周期が1.0kHz、超音波出力が5〜30mW/cm、中でも7.5mW/cmのものが好ましい。 The ultrasonic wave used is a low-power ultrasonic pulse having an ultrasonic frequency of 20 kHz to 10 MHz, a burst width of 10 μsec to 1 msec, a repetition period of 5 Hz to 10 kHz, and an ultrasonic output of 5 to 75 mW / cm 2. It can be expected as a therapeutic effect, and in particular, the ultrasonic frequency is 1.5 MHz, the burst width is 200 μsec, the repetition period is 1.0 kHz, the ultrasonic output is 5 to 30 mW / cm 2 , especially 7.5 mW / cm. Two are preferred.

制御手段は、かかる超音波トランスデューサーから照射する超音波を合成する超音波波形合成機能、出力制御、記憶演算手段、電源のON/OFF制御機能を備える。各機能は超音波治療ヘッドモジュールに一体内蔵させても、超音波治療ヘッドモジュールと本体に分割しても良い。   The control means includes an ultrasonic waveform synthesis function for synthesizing ultrasonic waves emitted from the ultrasonic transducer, output control, storage calculation means, and power ON / OFF control function. Each function may be integrated in the ultrasonic treatment head module or may be divided into the ultrasonic treatment head module and the main body.

[実施例1]
以下に、本発明の治療装置を、本体部分と超音波治療ヘッドモジュールに分割した例を、図面を用いて説明する。本発明の創傷治療装置は、本体部分と超音波治療ヘッドモジュールを備える。
[Example 1]
Below, the example which divided | segmented the treatment apparatus of this invention into the main-body part and the ultrasonic treatment head module is demonstrated using drawing. The wound treatment apparatus of the present invention includes a main body portion and an ultrasonic treatment head module.

[本体]
本体は図1に示すように電源、記憶演算装置、入出力装置で構成される。
(1)電源:前面パネルの操作により電源が入り、治療が完了すると自動的に電源が切れる。治療ヘッドも同じ電源から電力を供給される。
(2)記憶演算装置:プリント基板にはCPU(中央制御装置)が搭載されており、治療時間の管理ばかりでなく、治療ヘッドの動作や装着状態の監視および自己診断を行なう。また、バックアップメモリに患者の治療記録が記憶され、必要に応じて取り出せるよう設計する。
(3)入出力装置:操作スイッチ、液晶表示盤、ブザーの他に、接続ケーブルを通して治療ヘッドモジュールの制御と電力供給が行われる。治療ヘッドモジュールの制御信号としては、超音波パルスバースト巾200Hz、繰返し周期1KHzの信号を送る。また、治療ヘッドからはトラブル信号が送り返される。
[Main unit]
As shown in FIG. 1, the main body includes a power source, a storage arithmetic device, and an input / output device.
(1) Power supply: The power is turned on by operating the front panel, and the power is automatically turned off when the treatment is completed. The treatment head is also powered from the same power source.
(2) Storage arithmetic unit: A CPU (central control unit) is mounted on the printed circuit board, which not only manages the treatment time but also monitors the operation and wearing state of the treatment head and performs self-diagnosis. Also, the patient's treatment record is stored in the backup memory, and it is designed so that it can be taken out as needed.
(3) Input / output device: In addition to the operation switch, liquid crystal display panel, and buzzer, the treatment head module is controlled and supplied with power through a connection cable. As a control signal for the treatment head module, a signal having an ultrasonic pulse burst width of 200 Hz and a repetition period of 1 KHz is sent. In addition, a trouble signal is sent back from the treatment head.

[超音波治療ヘッドモジュール]
超音波治療ヘッドモジュールは、図2に示すように、発振装置、超音波波形合成装置、超音波生成装置および以上検出装置で構成される。本体への接続ケーブルは一体型となっている。
(1)発振装置:1.5MHzの超音波信号を生成する。
(2)超音波波形合成装置:本体からの制御信号と1.5MHz超音波信号を合成して、治療用超音波、すなわち超音波周波数:1.5MHz、超音波出力:7.5mW/cm2、バースト幅:200μsec、繰返し周波数:1kHzの信号特性を有する波形の電気信号を生成する。
(3)超音波生成装置:圧電セラミックには電圧をかけると微小な歪みが生じる性質がある。これを利用して超音波波形合成装置で作られた電気信号をトランスデューサー内部の圧電セラミックに与え、トランスデューサー表面に縦方向の振動(超音波)を作り出して治療に応用する。圧電セラミックの背面には、超音波吸収体を貼り付け、超音波もれを防止する。
(4)異常検出装置:治療ヘッドは固定具への固定と超音波伝導用ゼリー不足を検出して本体に送信し、液晶表示とアラームで患者に警告する。治療ヘッドと治療ヘッドを創傷部位へ固定する為の固定具との間の固定不良の検出には、固定部分の物理的な接触を導電性の有無で判定する。超音波を創傷面へ照射する為に使用する超音波伝達用のゼリー不足の検出は、ゼリー不足による超音波振動子の共振状態の変化を、駆動電流が通常より増加することを検出して行なう。
[Ultrasonic therapy head module]
As shown in FIG. 2, the ultrasonic treatment head module includes an oscillation device, an ultrasonic waveform synthesis device, an ultrasonic generation device, and a detection device. The connection cable to the main unit is an integrated type.
(1) Oscillator: Generates a 1.5 MHz ultrasonic signal.
(2) Ultrasound waveform synthesizer: Synthesizes control signal from the main unit and 1.5MHz ultrasound signal, therapeutic ultrasound, ie ultrasound frequency: 1.5MHz, ultrasound output: 7.5mW / cm 2 , burst width : Generates an electric signal with a waveform having a signal characteristic of 200 μsec and a repetition frequency of 1 kHz.
(3) Ultrasonic generator: Piezoelectric ceramics have the property of producing minute distortions when a voltage is applied. Using this, an electrical signal generated by an ultrasonic waveform synthesizer is applied to the piezoelectric ceramic inside the transducer, and longitudinal vibration (ultrasound) is generated on the transducer surface to apply it to therapy. An ultrasonic absorber is attached to the back surface of the piezoelectric ceramic to prevent ultrasonic leakage.
(4) Abnormality detection device: The treatment head detects fixation to the fixture and lack of ultrasonic conduction jelly, transmits it to the main body, and warns the patient with a liquid crystal display and an alarm. In order to detect improper fixation between the treatment head and the fixture for fixing the treatment head to the wound site, the physical contact of the fixed portion is determined by the presence or absence of conductivity. Detection of lack of jelly for ultrasonic transmission used to irradiate the wound surface with ultrasonic waves is performed by detecting that the drive current increases more than usual by detecting changes in the resonance state of the ultrasonic transducer due to lack of jelly. .

[治療方法]
創傷部位に超音波治療ヘッドモジュールをあて、超音波を照射する。治療に際しては、通常、超音波治療ヘッドモジュールを固定具を用いて創傷部位に取り付け治療を行なう。
超音波治療ヘッドモジュールと創傷面との間に空気層が入ると、照射した超音波の殆どが反射されてしまうので、潰瘍面をゲル状の被覆材で覆い、その上から超音波伝達用のゲルを載せて超音波治療ヘッドモジュールをあてて、超音波を照射する。
[Method of treatment]
An ultrasonic treatment head module is applied to the wound site and irradiated with ultrasonic waves. In the treatment, usually, an ultrasonic treatment head module is attached to a wound site using a fixture to perform the treatment.
If an air layer enters between the ultrasonic treatment head module and the wound surface, most of the irradiated ultrasonic waves will be reflected, so the ulcer surface is covered with a gel-like dressing, and ultrasonic transmission is performed from there. The gel is placed, the ultrasonic treatment head module is applied, and ultrasonic waves are irradiated.

[実施例2]
[細胞培養]
ヒト褥瘡部真皮から得た線維芽細胞を、2%ウシ胎児血清(Fetal Calf Serum、FCS)を含んだDulbecco’s Modified Eagle’s Medium(DMEM)中で、5×10cells/φ34mm wellとなるよう播種し、一晩静置した。細胞の接着を確認後、試験をおこなう直前に4mL/wellの2%FCS-DMEMで培地交換した。
[Example 2]
[Cell culture]
Fibroblasts from human pressure ulcer dermis were seeded in Dulbecco's Modified Eagle's Medium (DMEM) containing 2% fetal calf serum (FCS) to 5 × 10 5 cells / φ34 mm well. , Left overnight. After confirming cell adhesion, the medium was replaced with 4 mL / well of 2% FCS-DMEM immediately before the test.

[超音波照射条件]
超音波ヘッドモジュールを37℃の水中に設置し、モジュールの表面から20mm離れた位置に培養皿を置いた。さらに培養皿中の培地に直接接するように超音波吸収装置を置き、超音波の散乱を防いだ(図3)。用いた超音波は、超音波周波数:1.5MHz、バースト幅:200μsec、繰返し周波数:1kHzの信号で照射した。
[Ultrasonic irradiation conditions]
The ultrasonic head module was placed in 37 ° C. water, and the culture dish was placed at a position 20 mm away from the surface of the module. Furthermore, an ultrasonic absorber was placed so as to be in direct contact with the medium in the culture dish to prevent ultrasonic scattering (FIG. 3). The ultrasonic wave used was irradiated with a signal having an ultrasonic frequency of 1.5 MHz, a burst width of 200 μsec, and a repetition frequency of 1 kHz.

[結果]
出力7.5mW/cm2の超音波パルスを20分間照射後、24時間後まで培養を行い、培地中のPGE2濃度を測定した。この結果、超音波照射1時間後の照射群のPGE2量は、非照射の場合の1.28倍と有意に増加し、24時間後までこの差は持続した(図4)。
[result]
After irradiating an ultrasonic pulse with an output of 7.5 mW / cm 2 for 20 minutes, the culture was continued until 24 hours, and the PGE2 concentration in the medium was measured. As a result, the amount of PGE2 in the irradiated group 1 hour after the ultrasonic irradiation increased significantly to 1.28 times that in the case of non-irradiation, and this difference was maintained until 24 hours later (FIG. 4).

次に超音波出力を0〜60mW/cmで20分間照射し、その1時間または3時間後にPGE2濃度を測定した。この結果、超音波照射によりPGE2量が有意に増加し、出力7.5mW/cm2の場合に最大(非照射と比べて1時間後で1.25倍、3時間後で1.26倍)となった(図5)。 Next, ultrasonic power was irradiated at 0 to 60 mW / cm 2 for 20 minutes, and PGE 2 concentration was measured 1 hour or 3 hours later. As a result, the amount of PGE2 was significantly increased by ultrasonic irradiation, and the maximum was obtained when the output was 7.5 mW / cm 2 (1.25 times after 1 hour and 1.26 times after 3 hours compared with non-irradiation). (Fig. 5).

超音波出力を0乃至120mW/cmで20分間照射し、24時間または48時間後にbFGF濃度を測定した結果、非超音波照射群と比較して、超音波照射出力7.5mW/cmの場合にbFGF産生量が増加していた(図示せず)。超音波照射(7.5mW/cm)による線維芽細胞内PGE2産生増加により、bFGF産生の増加が続いて引き起こされた事が考えられる。さらに線維芽細胞の増殖をOD490nmの吸光度で評価した結果では、7.5mW/cm、30mW/cmで有意に増殖促進が認められた(図6)。 The ultrasonic power is irradiated at 0 to 120 mW / cm 2 20 min and the measurement results of the bFGF concentration after 24 hours or 48 hours, compared to non-ultrasonic irradiation group, the ultrasonic wave irradiation output 7.5 mW / cm 2 In some cases, bFGF production was increased (not shown). It is thought that the increase in bFGF production was subsequently caused by the increase in production of PGE2 in fibroblasts by ultrasonic irradiation (7.5 mW / cm 2 ). The result of further proliferation of fibroblasts was evaluated by absorbance OD 490 nm, significantly growth promotion was observed in 7.5mW / cm 2, 30mW / cm 2 ( FIG. 6).

[実施例3]
[細胞培養]
ヒト臍帯由来血管内皮細胞を、2%ウシ胎児血清(Fetal Calf Serum、FCS)を含んだDulbecco’s Modified Eagle’s Medium(DMEM)中で、5×10cells/φ34mm wellとなるよう播種し、一晩静置した。細胞の接着を確認後、試験をおこなう直前に4mL/wellの2%FCS-DMEMで培地交換した。
[Example 3]
[Cell culture]
Human umbilical cord-derived vascular endothelial cells were seeded at 5 × 10 5 cells / φ34 mm well in Dulbecco's Modified Eagle's Medium (DMEM) containing 2% fetal calf serum (FCS) and allowed to stand overnight. I put it. After confirming cell adhesion, the medium was replaced with 4 mL / well of 2% FCS-DMEM immediately before the test.

[結果]
内皮細胞成長因子(GF)の存在下あるいは非存在下で、出力7.5mW/cm2の超音波を20分間照射後24時間後まで培養を行い、内皮細胞の管腔形成を、BDバイオコートTMアンジオジェネシスシステムを用いて測定した。この結果、超音波照射した場合にGF有無に関わらず、内皮細胞の管腔形成能が増加した(図7)。これらは、超音波照射により血管形成能が高まっている事を示唆している。
[result]
In the presence or absence of endothelial growth factor (GF), culturing is performed for up to 24 hours after irradiation with ultrasonic waves of 7.5 mW / cm 2 for 20 minutes. Measured using TM Angiogenesis system. As a result, the ability of endothelial cells to form a lumen increased regardless of the presence or absence of GF when irradiated with ultrasound (FIG. 7). These suggest that the ability to form blood vessels is enhanced by ultrasonic irradiation.

本発明の創傷装置の本体部分の構成を示すブロックダイヤグラム。The block diagram which shows the structure of the main-body part of the wound apparatus of this invention. 本発明の創傷治療装置の超音波治療ヘッドモジュールの構成を示すブロックダイヤグラム。The block diagram which shows the structure of the ultrasonic treatment head module of the wound treatment apparatus of this invention. 本実験系で用いた培養細胞に超音波を照射する装置の概観図。1 is a schematic view of an apparatus for irradiating cultured cells used in this experimental system with ultrasonic waves. 超音波照射後24時間後までの繊維芽細胞のPGE2産生量。Fibroblast PGE2 production up to 24 hours after ultrasonic irradiation. 超音波出力と繊維芽細胞のPGE2産生量。Ultrasonic output and PGE2 production by fibroblasts. 超音波出力と繊維芽細胞増殖。Ultrasonic power and fibroblast proliferation. 超音波照射と血管内皮細胞の管腔形成。Ultrasound irradiation and vascular endothelial cell lumen formation.

Claims (5)

超音波トランスデューサーを内蔵した超音波治療ヘッドモジュール、該超音波の照射を制御する制御手段を備え、創傷部位に対して超音波パルスを照射することを特徴とする創傷治療装置。   An ultrasonic treatment head module incorporating an ultrasonic transducer, a control means for controlling irradiation of the ultrasonic wave, and irradiating an ultrasonic pulse to a wound site. 該制御手段が、超音波周波数が20kHz〜10MHz、バースト幅が10μsec〜1msec、繰り返し周期が5Hz〜10kHz、超音波出力が5〜75mW/cmの範囲で超音波パルスを出力制御する手段であることを特徴とする請求項1記載の創傷治療装置。 The control means is means for controlling the output of ultrasonic pulses in the range of ultrasonic frequency of 20 kHz to 10 MHz, burst width of 10 μsec to 1 msec, repetition period of 5 Hz to 10 kHz, and ultrasonic output of 5 to 75 mW / cm 2. The wound treatment apparatus according to claim 1. 該超音波出力が5〜30mW/cmの範囲で超音波パルスを出力制御する手段であることを特徴とする請求項2記載の創傷治療装置。 The wound treatment apparatus according to claim 2 , wherein the ultrasonic output is a means for controlling the output of an ultrasonic pulse in a range of 5 to 30 mW / cm2. 該制御手段が、超音波周波数が1.5MHz、バースト幅が200μsec、繰り返し周期が1.0kHz、超音波出力が7.5mW/cmの範囲で超音波を出力制御する手段であることを特徴とする請求項3記載の創傷治療装置。 The control means is means for controlling the output of ultrasonic waves in a range where the ultrasonic frequency is 1.5 MHz, the burst width is 200 μsec, the repetition period is 1.0 kHz, and the ultrasonic output is 7.5 mW / cm 2. The wound treatment apparatus according to claim 3. 該装置が褥瘡または潰瘍部位に適用する装置であることを特徴とする請求項1〜4の何れかに記載の創傷治療装置。   The wound treatment device according to any one of claims 1 to 4, wherein the device is a device applied to a pressure ulcer or an ulcer site.
JP2004128306A 2004-04-23 2004-04-23 Wound treatment device Pending JP2005304918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128306A JP2005304918A (en) 2004-04-23 2004-04-23 Wound treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128306A JP2005304918A (en) 2004-04-23 2004-04-23 Wound treatment device

Publications (1)

Publication Number Publication Date
JP2005304918A true JP2005304918A (en) 2005-11-04

Family

ID=35434341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128306A Pending JP2005304918A (en) 2004-04-23 2004-04-23 Wound treatment device

Country Status (1)

Country Link
JP (1) JP2005304918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125054A (en) * 2008-11-27 2010-06-10 Olympus Corp Cell activation method
WO2011058600A1 (en) * 2009-11-11 2011-05-19 日本シグマックス株式会社 Device for modulating pgc-1 expression, and treating device and treating method for ischemic disease
WO2012077219A1 (en) 2010-12-09 2012-06-14 日立アロカメディカル株式会社 Ultrasound treatment device and control method thereof
JPWO2019065362A1 (en) * 2017-09-29 2020-10-22 学校法人日本医科大学 Ultrasonic therapy device
US11083914B2 (en) 2013-11-18 2021-08-10 Sound Wave Innovation Co., Ltd. Ultrasonic treatment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530360A (en) * 1981-11-19 1985-07-23 Duarte Luiz R Method for healing bone fractures with ultrasound
JPH0898863A (en) * 1994-04-30 1996-04-16 Orthosonics Ltd Ultrasonic wave medical treatment system
US5520612A (en) * 1994-12-30 1996-05-28 Exogen, Inc. Acoustic system for bone-fracture therapy
JP2000004875A (en) * 1998-06-23 2000-01-11 Teijin Ltd Method for inducing production of proliferation factor
JP2002513661A (en) * 1998-05-06 2002-05-14 エクソジェン インコーポレイテッド Ultrasonic bandage
WO2002060525A2 (en) * 2001-01-30 2002-08-08 Advanced Medical Applications, Inc. Ultrasound wound treatment method and device
JP2003526403A (en) * 1999-06-14 2003-09-09 エクソジェン インコーポレイテッド Method and kit for cavitation induced tissue treatment with low intensity ultrasound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530360A (en) * 1981-11-19 1985-07-23 Duarte Luiz R Method for healing bone fractures with ultrasound
JPH0898863A (en) * 1994-04-30 1996-04-16 Orthosonics Ltd Ultrasonic wave medical treatment system
US5520612A (en) * 1994-12-30 1996-05-28 Exogen, Inc. Acoustic system for bone-fracture therapy
JP2002513661A (en) * 1998-05-06 2002-05-14 エクソジェン インコーポレイテッド Ultrasonic bandage
JP2000004875A (en) * 1998-06-23 2000-01-11 Teijin Ltd Method for inducing production of proliferation factor
JP2003526403A (en) * 1999-06-14 2003-09-09 エクソジェン インコーポレイテッド Method and kit for cavitation induced tissue treatment with low intensity ultrasound
WO2002060525A2 (en) * 2001-01-30 2002-08-08 Advanced Medical Applications, Inc. Ultrasound wound treatment method and device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125054A (en) * 2008-11-27 2010-06-10 Olympus Corp Cell activation method
WO2011058600A1 (en) * 2009-11-11 2011-05-19 日本シグマックス株式会社 Device for modulating pgc-1 expression, and treating device and treating method for ischemic disease
US20120232437A1 (en) * 2009-11-11 2012-09-13 Hiroshima University Device for modulating pgc-1 expression, and treating device and treating method for ischemic disease
EP2500409A1 (en) * 2009-11-11 2012-09-19 Nippon Sigmax Co., Ltd. Device for modulating pgc-1 expression, and treating device and treating method for ischemic disease
EP2500409A4 (en) * 2009-11-11 2013-04-24 Nippon Sigmax Co Ltd Device for modulating pgc-1 expression, and treating device and treating method for ischemic disease
JP5732645B2 (en) * 2009-11-11 2015-06-10 日本シグマックス株式会社 PGC-1 expression control apparatus and ischemic disease treatment apparatus
WO2012077219A1 (en) 2010-12-09 2012-06-14 日立アロカメディカル株式会社 Ultrasound treatment device and control method thereof
US10413756B2 (en) 2010-12-09 2019-09-17 Hitachi, Ltd. Ultrasound treatment device and control method thereof
US11083914B2 (en) 2013-11-18 2021-08-10 Sound Wave Innovation Co., Ltd. Ultrasonic treatment device
JPWO2019065362A1 (en) * 2017-09-29 2020-10-22 学校法人日本医科大学 Ultrasonic therapy device
JP7076108B2 (en) 2017-09-29 2022-05-27 学校法人日本医科大学 Ultrasonic treatment device

Similar Documents

Publication Publication Date Title
CN107582235B (en) Cosmetic device for enhancing the recovery of mucosal tissue
US8043234B2 (en) System and method for providing therapeutic treatment using a combination of ultrasound, electro-stimulation and vibrational stimulation
Rawool et al. Power Doppler assessment of vascular changes during fracture treatment with low‐intensity ultrasound
AU768759B2 (en) Method and kit for cavitation-induced tissue healing with low intensity ultrasound
ES2398416B1 (en) System to non-invasively raise tissue temperature and to reduce vascular plaques
WO2006038780A1 (en) An ultrasonic equipment for treatment of osteoarthritis
TW201434509A (en) Method and system for destroying adipose tissue non-invasively and accelerating lipid metabolism
US4538596A (en) Prophylaxis of adhesions with low frequency sound
Uhlemann et al. Therapeutic ultrasound in lower extremity wound management
Joos et al. Low-energy extracorporeal shockwave therapy as a therapeutic option for patients with a secondary late-stage fibro-lymphedema after breast cancer therapy: a pilot study
JP2005304918A (en) Wound treatment device
JP4533758B2 (en) Kidney disease treatment device
KR200377073Y1 (en) A complex therapy apparatus with laser for restoration of soft tissue, ultrasound, and vibration.
KR20040074590A (en) Method of treating osteochondritis and apparatus for treating osteochondritis
Hart The use of ultrasound therapy in wound healing
Lawrence et al. Ultrasonic-assisted liposuction: internal and external
JPS6247359A (en) Ultrasonic bone stimulating apparatus
JP5027910B2 (en) Radiation and ultrasound combined therapy device
US10471281B2 (en) Method for direct bone stimulation during interventional procedure to assist in bone healing
Dedovich et al. A device for low-frequency ultrasound therapy
WO2015041254A1 (en) Device for treating vascular endothelial dysfunction, method for treating vascular endothelial dysfunction, and activation control method for plcγ1, erk5 or erk1/2
Jose et al. " THERAPEUTIC ULTRASOUND-A NEW INNOVATIVE THERAPY IN DENTISTRY
Ionescu Shock wave therapy applications in Sports Medicine
Arabovna Ultrasound and its Application
JP2003210501A (en) Pain treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511