JP2005303952A - Geometry measuring method, radio receiving device and mobile station device - Google Patents

Geometry measuring method, radio receiving device and mobile station device Download PDF

Info

Publication number
JP2005303952A
JP2005303952A JP2004121299A JP2004121299A JP2005303952A JP 2005303952 A JP2005303952 A JP 2005303952A JP 2004121299 A JP2004121299 A JP 2004121299A JP 2004121299 A JP2004121299 A JP 2004121299A JP 2005303952 A JP2005303952 A JP 2005303952A
Authority
JP
Japan
Prior art keywords
interference signal
power
reception
geometry
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004121299A
Other languages
Japanese (ja)
Other versions
JP4418289B2 (en
Inventor
Kenshin Arima
健晋 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004121299A priority Critical patent/JP4418289B2/en
Publication of JP2005303952A publication Critical patent/JP2005303952A/en
Application granted granted Critical
Publication of JP4418289B2 publication Critical patent/JP4418289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing, under a propagation environment where multipaths are formed, simply and easily a geometry for facilitating determining which is better to perform RAKE reception for reception signals or to perform adaptive reception by using an adaptive equalizer, an interference canceller or the like. <P>SOLUTION: Interference signal electric power contained in the receiving signal is measured for each path and the interference signal electric power measured for each path is totalized for N paths thereof. Further, interference signal electric power other than that of the paths contained in the receiving signals is measured and its own cell interference signal electric power is calculated by subtracting a total value determined by totalizing the interference signal electric powers of each path for the N paths from a value determined by multiplying the interference signal electric power other than that of the paths by N. Furthermore, a total electric power value of the other cell interference signals and noises is calculated by subtracting aforementioned its own cell interference signal electric power from the interference signal electric power other than that of the paths, thus calculating the geometry by dividing the its own cell interference signal electric power by the total electric power value of the other cell interference signals and noises. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、HSDPA(High Speed Downlink Packet Access)等によるセルラー方式の無線通信システムにおける無線受信装置及び移動局装置、並びにこれらの装置において使用されるジオメトリ測定方法に関する。   The present invention relates to a radio reception apparatus and a mobile station apparatus in a cellular radio communication system using HSDPA (High Speed Downlink Packet Access) and the like, and a geometry measurement method used in these apparatuses.

移動体通信システムにおけるアクセス方式として、W−CDMA(Wideband-Code Division Multiple Access)方式が標準化されている。W−CDMA方式では、下り回線の高速化を目的にHSDPAの導入が検討されている。また、HSDPAでは、移動局装置における受信品質に応じて、基地局装置が送信信号の変調方式及び符号化率を適応的に調節する適応変調が用いられる。   As an access method in a mobile communication system, a W-CDMA (Wideband-Code Division Multiple Access) method has been standardized. In the W-CDMA system, introduction of HSDPA is being studied for the purpose of speeding up the downlink. In HSDPA, adaptive modulation is used in which the base station apparatus adaptively adjusts the modulation scheme and coding rate of the transmission signal according to the reception quality in the mobile station apparatus.

この適応変調では、移動局装置における受信品質が良好な場合には、例えば変調方式を16QAM(Quadrature Amplitude Modulation)、かつ、符号化率を1/2としてスループットを改善し、一方でその受信品質が劣悪な場合には、例えば変調方式をQPSK(Quadrature Phase Shift Keying)、かつ、符号化率を1/3としてスループットの低下と引き換えに受信誤り率を改善する。このように、適応変調においてスループットを改善する場合には、信号間の距離の短い変調方式、かつ、冗長性の低い符号化率を使用することになるため、スループットに干渉信号やノイズによる影響が現れ易くなる。そこで、適応変調において、適応等化器や干渉キャンセラの導入が検討されている。適応等化器は、伝搬路特性を推定し、推定した伝搬路特性と逆の特性を適応フィルタによって受信信号に形成して受信信号を等化することにより、受信信号における干渉信号の影響を軽減する。また、干渉キャンセラは、干渉源となる信号成分を推定し、その成分(干渉信号)を減算することにより、受信信号における干渉信号の影響を軽減する。   In this adaptive modulation, when the reception quality in the mobile station apparatus is good, for example, the modulation method is 16QAM (Quadrature Amplitude Modulation) and the coding rate is ½, and the throughput is improved. In a poor case, for example, the modulation scheme is QPSK (Quadrature Phase Shift Keying) and the coding rate is 1/3, and the reception error rate is improved in exchange for a reduction in throughput. Thus, in order to improve throughput in adaptive modulation, a modulation scheme with a short distance between signals and a coding rate with low redundancy are used, so that the throughput is affected by interference signals and noise. It becomes easy to appear. Therefore, introduction of an adaptive equalizer and an interference canceller has been studied in adaptive modulation. The adaptive equalizer reduces the influence of the interference signal in the received signal by estimating the propagation path characteristics and equalizing the received signal by forming the inverse characteristics of the estimated propagation path characteristics in the received signal by the adaptive filter. To do. The interference canceller estimates the signal component that becomes an interference source and subtracts the component (interference signal) to reduce the influence of the interference signal in the received signal.

適応変調では、受信品質を図る尺度として、受信信号における希望信号電力対干渉電力比即ちSIR(Signal to Interference Ratio)が一般に用いられる。SIRの測定方式としては、RAKE合成後のSIR測定方式とRAKE合成前のSIR測定方式とがある。これらの方式では、受信信号に含まれる既知シンボルを用いてSIRを測定する。具体的には、RAKE合成後のSIR測定方式では、RAKE合成後の受信信号に含まれる既知シンボルの電力を測定し、測定された既知シンボルの電力を平均化して希望信号電力(RSCP:Received Signal Code Power)を算出し、その希望信号電力と各既知シンボルの電力とから分散を算出してこれを干渉信号電力(ISCP:Interference Signal Code Power)として、RSCPとISCPとの比をSIRとする。一方、RAKE合成前のSIR測定方式では、RAKE合成前の既知シンボルを逆拡散してその逆拡散値を求め、パス毎に逆拡散値の平均及び逆拡散値の分散を算出し、算出されたパス毎の逆拡散平均値の和を希望信号電力(RSCP)とし、算出されたパス毎の分散の平均値を干渉信号電力(ISCP)として、RSCPとISCPとの比をSIRとする。   In adaptive modulation, a desired signal power to interference power ratio, that is, a SIR (Signal to Interference Ratio) in a received signal is generally used as a measure for improving reception quality. As SIR measurement methods, there are an SIR measurement method after RAKE synthesis and an SIR measurement method before RAKE synthesis. In these methods, SIR is measured using a known symbol included in a received signal. Specifically, in the SIR measurement method after RAKE combining, the power of a known symbol included in the received signal after RAKE combining is measured, and the measured power of the known symbol is averaged to obtain a desired signal power (RSCP: Received Signal). Code Power) is calculated, variance is calculated from the desired signal power and the power of each known symbol, and this is used as interference signal power (ISCP), and the ratio of RSCP to ISCP is SIR. On the other hand, in the SIR measurement method before RAKE combining, a known symbol before RAKE combining is despread to obtain the despread value, and the average of the despread values and the variance of the despread values are calculated for each path. The sum of the despread average values for each path is set as desired signal power (RSCP), the calculated average value of dispersion for each path is set as interference signal power (ISCP), and the ratio of RSCP to ISCP is set as SIR.

以下、RAKE合成後のSIR測定方式について、数式を用いて説明する。先ず、受信信号に含まれる既知シンボルを逆拡散して、同期検波及びRAKE合成を行う。このとき、パス毎の同期検波係数h[p].i ,h[p].qは、下記式(1)、式(2)のように、シンボル毎の逆拡散値を象限補正することによって求められる。

Figure 2005303952
Figure 2005303952
Hereinafter, the SIR measurement method after RAKE synthesis will be described using mathematical expressions. First, the known symbols included in the received signal are despread to perform synchronous detection and RAKE combining. At this time, the synchronous detection coefficients h [p] .i and h [p] .q for each path are obtained by performing quadrant correction on the despread value for each symbol as shown in the following equations (1) and (2). Desired.
Figure 2005303952
Figure 2005303952

RAKE合成後の既知シンボルの電力の各成分Rx[n].i ,Rx[n].qは、下記式(3),式(4)によって求められる。

Figure 2005303952
Figure 2005303952
The components Rx [n] .i and Rx [n] .q of the power of the known symbol after RAKE combining are obtained by the following equations (3) and (4).
Figure 2005303952
Figure 2005303952

次に、RSCPを算出する。スロット毎のRSCPの測定結果rscpは、RAKE合成後の既知シンボルの電力の平均として、下記式(5)、式(6)によって求められる。

Figure 2005303952
Figure 2005303952
Next, RSCP is calculated. The RSCP measurement result rscp for each slot is obtained by the following formulas (5) and (6) as the average power of known symbols after RAKE combining.
Figure 2005303952
Figure 2005303952

これにより、RSCPの測定結果は、下記式(7)によって求められる。

Figure 2005303952
Thereby, the measurement result of RSCP is calculated | required by following formula (7).
Figure 2005303952

次に、ISCPを測定する。ISCPの各成分iscp[n].i ,iscp[n].qは、RAKE合成後の既知シンボルの電力とそのスロット毎の平均との差分から、式(8)、式(9)によって求められる。

Figure 2005303952
Figure 2005303952
Next, ISCP is measured. The components Icp of iscp [n] .i and iscp [n] .q are obtained from Equation (8) and Equation (9) from the difference between the power of the known symbol after RAKE combining and the average for each slot. .
Figure 2005303952
Figure 2005303952

これにより、スロット毎のISCPは、下記式(10)によって求められる。

Figure 2005303952
Thereby, ISCP for every slot is calculated | required by following formula (10).
Figure 2005303952

最後に、SIRを算出する。SIRは、式(7)、式(10)によるRSCP及びISCPを用いて、下記式(11)、式(12)によって求められる。

Figure 2005303952
Figure 2005303952
Finally, SIR is calculated. SIR is calculated | required by following formula (11) and Formula (12) using RSCP and ISCP by Formula (7) and Formula (10).
Figure 2005303952
Figure 2005303952

次に、RAKE合成前のSIR測定方式について、数式を用いて説明する。受信信号に含まれる既知シンボルに対して逆拡散処理を行い、逆拡散処理後の既知シンボルの電力について象限補正を行う。各パスの象限補正後における既知シンボルの電力の各成分Sx[n][p].i ,Sx[n][p].q (n=1〜N)は、下記式(13)、式(14)によって求められる。

Figure 2005303952
Figure 2005303952
Next, the SIR measurement method before RAKE synthesis will be described using mathematical expressions. Despread processing is performed on the known symbols included in the received signal, and quadrant correction is performed on the power of the known symbols after the despread processing. The components Sx [n] [p] .i and Sx [n] [p] .q (n = 1 to N) of the power of the known symbol after the quadrant correction of each path are expressed by the following equations (13) and ( 14).
Figure 2005303952
Figure 2005303952

次に、象限補正された既知シンボルについて、そのRSCPを測定する。象限補正後の既知シンボルについて、その電力の各成分の平均であるrscp[p].i ,rscp[p].qは、下記式(15)、式(16)によって求められる。

Figure 2005303952
Figure 2005303952
Next, the RSCP is measured for the known symbol after quadrant correction. For the known symbol after quadrant correction, rscp [p] .i and rscp [p] .q, which are the average of each component of the power, are obtained by the following equations (15) and (16).
Figure 2005303952
Figure 2005303952

これにより、パス毎のRSCPは、下記式(17)によって求められる。

Figure 2005303952
Thereby, RSCP for every path | pass is calculated | required by following formula (17).
Figure 2005303952

そして、下記式(18)のように、パス毎のRSCP測定電力を加えることによって全体のRSCPが求められる。

Figure 2005303952
And the whole RSCP is calculated | required by adding RSCP measurement electric power for every path | pass like following formula (18).
Figure 2005303952

一方、象限補正後の既知シンボルの電力と、そのスロット毎の平均(パス毎のRSCP)との差分より、ISCPの各成分が求められる。即ち、ISCPの各成分であるiscp[n][p].i ,iscp[n][p].qは、下記式(19)、式(20)によって求められる。

Figure 2005303952
Figure 2005303952
On the other hand, each component of the ISCP is obtained from the difference between the power of the known symbol after quadrant correction and the average for each slot (RSCP for each path). That is, iscp [n] [p] .i and iscp [n] [p] .q which are each component of the ISCP are obtained by the following equations (19) and (20).
Figure 2005303952
Figure 2005303952

そして、下記式(21)のように、複数スロットに渡って平均化することによってパス毎のISCPが求められる。

Figure 2005303952
Then, the ISCP for each path is obtained by averaging over a plurality of slots as in the following equation (21).
Figure 2005303952

また、下記式(22)のように、パス毎のISCPを加えた総ISCPをパス数で除すことによって全体のISCPが求められる。

Figure 2005303952
Further, as shown in the following formula (22), the total ISCP is obtained by dividing the total ISCP including the ISCP for each path by the number of paths.
Figure 2005303952

最後にSIRを算出する。SIRは、全体のRSCP及び全体のISCPを用いて、上記式(11)、式(12)によって求められる。   Finally, SIR is calculated. The SIR is obtained by the above formula (11) and formula (12) using the entire RSCP and the entire ISCP.

ところで、セルラー方式の無線通信システムでは、移動局装置等の無線受信装置の位置により、受信信号に含まれる希望信号電力と干渉信号電力との比が異なる。このような無線受信装置の位置に対応して変化するパラメータは、W−CDMA方式ではジオメトリ(geometry)と呼ばれることがある(非特許文献1参照)。なお、無線受信装置の位置に因らず、その受信信号に含まれるノイズの電力は凡そ安定している。
立川 敬二 監修,「W−CDMA移動通信方式」,丸善社,平成13年6月25日発行,p.192−193
By the way, in the cellular radio communication system, the ratio of the desired signal power and the interference signal power included in the received signal differs depending on the position of the radio receiving apparatus such as a mobile station apparatus. Such a parameter that changes in accordance with the position of the wireless reception apparatus is sometimes called a geometry in the W-CDMA system (see Non-Patent Document 1). Note that the power of noise contained in the received signal is almost stable regardless of the position of the radio receiving apparatus.
Supervised by Keiji Tachikawa, “W-CDMA mobile communication system”, published by Maruzensha, June 25, 2001, p. 192-193

しかしながら、適応等化器や干渉キャンセラを導入すると、一般に自セル干渉が大きい場合には干渉低減効果が大きいものの、一方で他セルからの干渉やノイズが大きい場合には伝搬路推定誤差や干渉信号推定誤差を大きくしてしまい、却って受信性能が劣化する場合がある。そのため、自セル干渉が大きい場合には、適応等化器や干渉キャンセラを用いて受信し、他セルからの干渉やノイズが大きい場合には、従来のRAKE受信を行った方が好ましい。ところが、従来のSIR測定方式では、例えばISCPが大きく受信品質が低い場合に、そのISCPが自セルからの干渉(マルチパス干渉)によるものなのか、他セルからの干渉やノイズ(熱雑音)等によるものなのか、その区別が付かない。つまり、従来のSIR測定方式では、RAKE受信を行った方がよいのか、適応等化器や干渉キャンセラを用いた方がよいのか、その判断がつかない問題がある。   However, when an adaptive equalizer or interference canceller is introduced, the interference reduction effect is generally large when the own cell interference is large. On the other hand, when interference or noise from other cells is large, a channel estimation error or interference signal In some cases, the estimation error is increased and the reception performance deteriorates. Therefore, it is preferable to perform reception using an adaptive equalizer or interference canceller when the own cell interference is large, and to perform conventional RAKE reception when interference or noise from other cells is large. However, in the conventional SIR measurement method, for example, when the ISCP is large and the reception quality is low, whether the ISCP is due to interference from the own cell (multipath interference), interference from other cells, noise (thermal noise), etc. It is not possible to distinguish between the two. That is, in the conventional SIR measurement method, there is a problem that it is not possible to determine whether it is better to perform RAKE reception or to use an adaptive equalizer or an interference canceller.

また、W−CDMA方式におけるHSDPAでは、適応変調を行うために、移動局装置が基地局装置に受信品質(SIR相当値、例えばCQI:Channel Quality Indicator)を前もって報告する必要がある。しかし、従来のRAKE受信を行った場合と、適応等化器や干渉キャンセラを用いた場合と、では、受信性能に差があるため、その受信品質(SIR相当値)にも差が生じることになる。従って、上述のように伝搬環境により受信方式を変えるような場合即ちRAKE受信と適応等化器や干渉キャンセラとを切り替えて使用する場合では、RAKE受信による受信品質と適応等化器や干渉キャンセラによる受信品質とのどちらの受信品質を送信した方が好ましいか、SIR測定結果からでは判断がつかない。そのため、従来のW−CDMA方式におけるHSDPAでは、適応変調が有効に機能しなくなるおそれがある。   In addition, in HSDPA in the W-CDMA system, in order to perform adaptive modulation, the mobile station apparatus needs to report reception quality (SIR equivalent value, for example, CQI: Channel Quality Indicator) to the base station apparatus in advance. However, there is a difference in reception performance between the case where the conventional RAKE reception is performed and the case where the adaptive equalizer and the interference canceller are used, so that the reception quality (SIR equivalent value) is also different. Become. Therefore, when the reception method is changed according to the propagation environment as described above, that is, when the RAKE reception and the adaptive equalizer or interference canceller are switched, the reception quality by the RAKE reception and the adaptive equalizer or interference canceller are used. It is not possible to determine from the SIR measurement result which transmission quality is preferred to be transmitted. Therefore, adaptive modulation may not function effectively in the HSDPA in the conventional W-CDMA system.

そこで、移動局装置が常にRAKE受信を想定した受信品質即ち適応等化器等を使用する場合でもRAKE合成後に適応受信を行った受信品質を基地局装置に送信することも考えられる。しかし、それでは基地局装置に送信する受信品質が過剰品質となる。このような過剰品質の受信品質が移動局装置から基地局装置に送信されると、システムのリソース例えば基地局装置の送信電力等が過剰に消費されることとなり、システム容量に悪影響が出るため、移動局装置は基地局装置に必要十分な受信品質を報告する義務がある。また、仮に、移動局装置が基地局装置にどちらの受信品質を送信した方が好ましいか判断できたとしても、移動局装置において、基地局装置への受信品質報告用に適応等化器等を別途動作させる必要があり、移動局装置の消費電力が増大する問題がある。   Therefore, even when the mobile station apparatus always uses reception quality that assumes RAKE reception, that is, an adaptive equalizer or the like, it is conceivable to transmit reception quality that has undergone adaptive reception after RAKE combining to the base station apparatus. However, in that case, the reception quality transmitted to the base station apparatus becomes excessive quality. When such excessive quality reception quality is transmitted from the mobile station device to the base station device, system resources such as the transmission power of the base station device are excessively consumed, and the system capacity is adversely affected. The mobile station apparatus is obligated to report necessary and sufficient reception quality to the base station apparatus. In addition, even if it can be determined which reception quality the mobile station apparatus should transmit to the base station apparatus, the mobile station apparatus can use an adaptive equalizer or the like for reception quality report to the base station apparatus. There is a problem that power consumption of the mobile station apparatus increases because it is necessary to operate separately.

本発明はかかる点に鑑みてなされたものであり、無線受信装置において、受信信号に対してRAKE受信を行った方がよいのか、適応等化器や干渉キャンセラ等を用いて適応受信を行った方がよいのか、その判断を容易ならしめるパラメータ即ちジオメトリをマルチパスの形成されている伝搬環境下で簡便に生成できるジオメトリ測定方法、並びに適応変調を有効に機能させることのできる消費電力の少ない無線受信装置及び移動局装置を提供することを目的とする。   The present invention has been made in view of the above points, and in a radio reception apparatus, it is better to perform RAKE reception on a received signal, or adaptive reception is performed using an adaptive equalizer, an interference canceller, or the like. A parameter for facilitating the determination, that is, a geometry measurement method that can easily generate a geometry in a propagation environment where multipaths are formed, and a radio with low power consumption that can effectively function adaptive modulation It is an object to provide a receiving apparatus and a mobile station apparatus.

本発明に係るジオメトリ測定方法は、セルラー方式の無線通信システムにおける無線受信装置によって使用されるジオメトリ測定方法であって、受信信号に含まれる干渉信号の電力をパス毎に測定する干渉信号電力測定ステップと、測定されたパス毎の干渉信号電力をNパス分合算する合算ステップと、前記受信信号に含まれるパス以外の干渉信号の電力を測定するパス以外干渉信号電力レベル測定ステップと、測定された前記パス以外の干渉信号電力をN倍した値から前記合算ステップでの合算結果を差し引くことによって自セル干渉信号電力を算出する自セル干渉信号電力算出ステップと、測定された前記パス以外の干渉信号電力から算出された前記自セル干渉信号電力を差し引くことによって他セル干渉信号とノイズとの電力の合算値を算出する他セル干渉信号・ノイズ電力算出ステップと、算出された前記自セル干渉信号電力を算出された前記他セル干渉信号とノイズとの電力の合算値で除することによってジオメトリを算出するジオメトリ算出ステップと、を具備するようにした。   A geometry measurement method according to the present invention is a geometry measurement method used by a radio reception apparatus in a cellular radio communication system, and measures an interference signal power measurement step for measuring the power of an interference signal included in a reception signal for each path. A step of adding the measured interference signal power for each path for N paths, a step of measuring the interference signal power level other than the path for measuring the power of the interference signal other than the path included in the received signal, An own cell interference signal power calculating step of calculating own cell interference signal power by subtracting a summation result in the summing step from a value obtained by multiplying interference signal power other than the path by N, and a measured interference signal other than the path By subtracting the own cell interference signal power calculated from the power, the sum of the power of other cell interference signals and noise Geometry calculation for calculating a geometry by dividing the calculated other cell interference signal / noise power and calculating the own cell interference signal power by the calculated power of the other cell interference signal and noise. Steps.

この方法によれば、受信信号の電力測定値のみに基づいてジオメトリが算出されるため、マルチパスの形成された伝搬環境下でもジオメトリを簡便に生成することができる。   According to this method, since the geometry is calculated based only on the power measurement value of the received signal, the geometry can be easily generated even in a propagation environment where a multipath is formed.

本発明に係る無線受信装置は、セルラー方式の無線通信システムにおける無線受信装置であって、受信信号に含まれる干渉信号の電力をパス毎に測定し、測定されたパス毎の干渉信号電力をNパス分合算し、前記受信信号に含まれるパス以外の干渉信号の電力を測定し、前記パス以外の干渉信号電力をN倍した値から前記パス毎の干渉信号電力をNパス分合算した合算値を差し引くことによって自セル干渉信号電力を算出し、前記パス以外の干渉信号電力から前記自セル干渉信号電力を差し引くことによって他セル干渉信号とノイズとの電力の合算値を算出し、前記自セル干渉信号電力を前記他セル干渉信号とノイズとの電力の合算値で除することによってジオメトリを算出するジオメトリ算出手段、を具備する構成を採る。   A radio receiving apparatus according to the present invention is a radio receiving apparatus in a cellular radio communication system, measures the power of an interference signal included in a received signal for each path, and measures the measured interference signal power for each path to N. The sum of the paths is obtained by measuring the power of the interference signal other than the path included in the received signal, and adding the interference signal power for each path by the N path from the value obtained by multiplying the interference signal power other than the path by N. Subtracting the self-cell interference signal power, subtracting the self-cell interference signal power from the interference signal power other than the path to calculate the sum of the power of the other-cell interference signal and noise, A configuration is adopted that includes geometry calculation means for calculating the geometry by dividing the interference signal power by the sum of the power of the interference signal of the other cells and the noise.

この構成によれば、受信信号の電力測定値のみに基づいてジオメトリを生成するジオメトリ算出手段が具備されるため、簡素な構成で自セルからの電力と他セルからの電力及びノイズとを分離することができる。   According to this configuration, since the geometry calculation means for generating the geometry based only on the power measurement value of the received signal is provided, the power from the own cell is separated from the power and noise from other cells with a simple configuration. be able to.

本発明に係る無線受信装置は、前記発明において、前記ジオメトリ算出手段によって算出されたジオメトリに基づいて前記受信信号に対する受信方式を判定する受信方式判定手段と、前記受信方式判定手段によって判定された受信方式で前記受信信号を処理する受信信号処理手段と、をさらに具備する構成を採る。   The radio reception apparatus according to the present invention is the radio reception apparatus according to the present invention, wherein in the invention, a reception method determination unit that determines a reception method for the received signal based on the geometry calculated by the geometry calculation unit, and a reception determined by the reception method determination unit And a received signal processing means for processing the received signal in a system.

この構成によれば、前記発明による効果に加えて、算出されたジオメトリに基づいて受信信号の受信方式が判定されるため、伝搬環境に因らず、最適な受信方式を選択することができ、受信品質を向上させることができる。   According to this configuration, in addition to the effect of the invention, since the reception method of the received signal is determined based on the calculated geometry, it is possible to select the optimal reception method regardless of the propagation environment, Reception quality can be improved.

本発明に係る無線受信装置は、前記発明において、基地局総送信電力に占める希望信号電力の割合を推定する推定手段をさらに具備し、前記受信方式判定手段は、前記推定手段による推定結果と前記ジオメトリ算出手段によって算出されたジオメトリとに基づいて前記受信信号に対する受信方式を判定する、構成を採る。   The radio reception apparatus according to the present invention further comprises estimation means for estimating a ratio of desired signal power occupying the total transmission power of the base station in the invention, wherein the reception method determination means includes the estimation result by the estimation means and the estimation result A configuration is adopted in which a receiving method for the received signal is determined based on the geometry calculated by the geometry calculating means.

この構成によれば、前記発明による効果に加えて、基地局総送信電力に占める希望信号電力の割合を推定する推定手段を具備するため、希望信号の送信電力の絶対量に因らず、最適な受信方式を選択することができ、受信品質を向上させることができる。   According to this configuration, in addition to the effect of the present invention, since the estimation unit that estimates the ratio of the desired signal power to the total transmission power of the base station is provided, the optimum signal is obtained regardless of the absolute amount of the transmission power of the desired signal. A proper reception method can be selected, and the reception quality can be improved.

本発明に係る無線受信装置は、前記発明において、前記受信信号の受信品質を測定する受信品質測定手段と、前記受信信号におけるマルチパス干渉量を算出する干渉量算出手段と、前記ジオメトリ算出手段によって算出されたジオメトリと算出されたマルチパス干渉量とに応じて、測定された前記受信品質を適応受信後の受信品質に変換する変換手段と、を具備する構成を採る。   The radio reception apparatus according to the present invention includes, in the above invention, a reception quality measurement unit that measures reception quality of the reception signal, an interference amount calculation unit that calculates a multipath interference amount in the reception signal, and the geometry calculation unit. According to the calculated geometry and the calculated multipath interference amount, a configuration is provided that includes conversion means for converting the measured reception quality into reception quality after adaptive reception.

この構成によれば、前記発明による効果に加えて、変換手段によってRAKE合成後の受信信号の受信品質が伝搬環境に応じて適応受信後の受信品質に変換されるため、適応変調に係る受信品質報告用に適応等化器等を別途動作させる必要がなくなり、消費電力を抑えつつ、高精度な受信品質報告が可能になる。   According to this configuration, in addition to the effects of the present invention, the reception quality of the received signal after RAKE combining is converted into the reception quality after adaptive reception according to the propagation environment by the conversion means. It is not necessary to separately operate an adaptive equalizer or the like for reporting, and highly accurate reception quality reporting can be performed while suppressing power consumption.

本発明に係る移動局装置は、前記発明に係る無線受信装置を具備する構成を採る。   The mobile station apparatus according to the present invention employs a configuration including the radio receiving apparatus according to the present invention.

この構成によれば、前記発明による効果に加えて、伝搬環境に因らず、最適な受信方式を簡素な構成によって選択できるため、その消費電力を抑えつつ、受信品質を向上させることができる。   According to this configuration, in addition to the effects of the present invention, an optimal reception scheme can be selected with a simple configuration regardless of the propagation environment, so that reception quality can be improved while suppressing power consumption.

本発明によれば、受信信号の電力測定値のみに基づいてジオメトリを算出するため、簡素な構成で自セルからの電力と他セルからの電力及びノイズとを分離することができ、その結果、伝搬環境に因らず、無線受信装置での消費電力を抑えつつ、その受信品質を向上させることができる。   According to the present invention, since the geometry is calculated based only on the power measurement value of the received signal, the power from the own cell and the power and noise from other cells can be separated with a simple configuration, and as a result, Regardless of the propagation environment, it is possible to improve the reception quality while suppressing the power consumption in the wireless receiver.

本発明の骨子は、マルチパスの形成された伝搬環境下における受信信号の電力測定値のみに基づいてジオメトリを算出することにより、適応等化器や干渉キャンセラ等による適応受信の効果を推測することである。   The essence of the present invention is to estimate the effect of adaptive reception by an adaptive equalizer, interference canceller, etc. by calculating a geometry based only on the power measurement value of a received signal in a propagation environment where a multipath is formed. It is.

以下、本発明の実施の形態について、図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
図1に、セルラー方式の無線通信システムにおいて、受信信号の遅延プロファイルの一例を示す。この受信信号には、N個のパスが形成されているものとする。図1では、受信信号に形成されているパスが遅延プロファイルのピークとして表現されている。また、図1には、遅延プロファイルの特徴的な3つのピーク1〜3を構成する希望信号電力RSCP1〜3と干渉信号電力ISCP1〜3とが示されている。なお、図1は遅延プロファイルで表現されているため、遅延プロファイルのピーク1〜3の構成成分にはノイズは含まれていない。また、図1におけるISCPN+1のタイミングは、受信信号のパス以外の位相に対応する。
(Embodiment 1)
FIG. 1 shows an example of a received signal delay profile in a cellular radio communication system. It is assumed that N paths are formed in this received signal. In FIG. 1, the path formed in the received signal is represented as a peak of the delay profile. FIG. 1 also shows desired signal powers RSCP 1 to 3 and interference signal powers ISCP 1 to 3 that constitute three characteristic peaks 1 to 3 of the delay profile. Since FIG. 1 is represented by a delay profile, noise is not included in the components of the peaks 1 to 3 of the delay profile. Further, the timing of ISCP N + 1 in FIG. 1 corresponds to a phase other than the path of the received signal.

以下、本発明に係るジオメトリ測定方法について、受信信号の遅延プロファイルが図1である場合を例に、数式を用いて説明する。なお、本実施の形態では、W−CDMA方式による無線通信が行われるものとする。   Hereinafter, the geometry measurement method according to the present invention will be described using mathematical expressions, taking as an example the case where the delay profile of the received signal is FIG. In this embodiment, it is assumed that wireless communication by the W-CDMA method is performed.

受信信号におけるi番目のパスの総受信電力をPiとすると、ISCPに含まれる成分は、以下のように表される。なお、iscp[i]は、前記式(21)で求めたパス毎のISCPである。また、SFは、拡散率を示している。
iscp[1] = (1/SF)×{他セル干渉の総和+ノイズ+(自セル干渉の総和-P1)}
iscp[2] = (1/SF)×{他セル干渉の総和+ノイズ+(自セル干渉の総和-P2)}
・・・
iscp[N] = (1/SF)×{他セル干渉の総和+ノイズ+(自セル干渉の総和-PN)}
When the total received power of the i-th path in the received signal is Pi, components included in ISCP are expressed as follows. Note that iscp [i] is the ISCP for each path obtained by the equation (21). SF indicates the diffusion rate.
iscp [1] = (1 / SF) x {sum of other cell interference + noise + (sum of own cell interference-P1)}
iscp [2] = (1 / SF) x {sum of other cell interference + noise + (sum of own cell interference-P2)}
...
iscp [N] = (1 / SF) x {sum of other cell interference + noise + (sum of own cell interference-PN)}

これらをNパス分合計したものをISCPallとすると、ISCPallは次のように表される。
ISCPall = (N/SF)×(他セル干渉の総和+ノイス゛)+(N/SF)×自セル干渉の総和-(Pl+P2…+PN)
= (N/SF)×(他セル干渉の総和+ノイス゛)+{(N-1)/SF}×自セル干渉の総和
Assuming that the total of these N paths is ISCP all , ISCP all is expressed as follows.
ISCP all = (N / SF) x (sum of other cell interference + noise) + (N / SF) x sum of own cell interference-(Pl + P2… + PN)
= (N / SF) x (sum of other cell interference + noise) + {(N-1) / SF} x sum of own cell interference

一方、パス以外の位相で測定したISCPは、以下のように表される。
ISCPN+1 = (1/SF)×(他セル干渉の総和+ノイズ+自セル干渉の総和)
On the other hand, the ISCP measured at a phase other than the path is expressed as follows.
ISCP N + 1 = (1 / SF) x (sum of other cell interference + noise + sum of own cell interference)

これらの計算結果を以下のように利用することにより、自セル干渉電力の総和を求めることができる。
N・ISCPN+1-ISCPall = (1/SF)×自セル干渉の総和
自セル干渉の総和 = SF(N・ISCPN+1-ISCPall)
By using these calculation results as follows, the total sum of the own cell interference power can be obtained.
N ・ ISCP N + 1 -ISCP all = (1 / SF) x Sum of own cell interference Sum of own cell interference = SF (N ・ ISCP N + 1 -ISCP all )

したがって、(他セル干渉+ノイズ)も、以下のようにして求めることができる。
ISCPN+1-1/SF・自セル干渉の総和 = 1/SF・(他セル干渉の総和+ノイズ)
(他セル干渉の総和+ノイズ) = SF・ISCPN+1-自セル干渉の総和
= SF・{ISCPall+(N-1)ISCPN+1}
Therefore, (other cell interference + noise) can also be obtained as follows.
ISCP N + 1 -1 / SF · total sum of own cell interference = 1 / SF · (sum of other cell interference + noise)
(Sum of other cell interference + Noise) = SF / ISCP N + 1- Sum of own cell interference
= SF ・ {ISCP all + (N-1) ISCP N + 1 }

この結果、ジオメトリ(Geometry)は、下式で表される。
Geometry = 自セル干渉の総和/(他セル干渉の総和+ノイズ)
= (N・ISCPN+1-ISCPall)/{ISCPall+(N-1)ISCPN+1}
As a result, the geometry is expressed by the following equation.
Geometry = total cell interference / (total other cell interference + noise)
= (N ・ ISCP N + 1 -ISCP all ) / {ISCP all + (N-1) ISCP N + 1 }

また、各ISCP、RSCPの測定タイミングは、揃っていなければならない。その測定タイミングが異なると、自セル及び他セルの送信電力が変わり、ISCP及びRSCPを正しく求めることができないからである。   Moreover, the measurement timing of each ISCP and RSCP must be aligned. This is because if the measurement timing is different, the transmission power of the own cell and other cells changes, and ISCP and RSCP cannot be obtained correctly.

なお、ISCPN+1の代わりに、無線受信装置の入力端で測定した総受信電力を用いてもよい。この場合、自セル干渉の総和を求めるために、ISCPN+1をパス数(N)倍する必要はない。 Instead of ISCP N + 1 , the total received power measured at the input terminal of the wireless reception device may be used. In this case, it is not necessary to multiply ISCP N + 1 by the number of paths (N) in order to obtain the sum of the own cell interference.

図2は、本実施の形態に係る無線受信装置200の構成を示すブロック図である。無線受信装置200は、セルラー方式の無線通信システムにおける携帯電話等の移動局装置に搭載されて使用される。   FIG. 2 is a block diagram showing a configuration of radio receiving apparatus 200 according to the present embodiment. The wireless reception device 200 is mounted and used in a mobile station device such as a mobile phone in a cellular wireless communication system.

無線受信装置200は、アンテナ201、無線受信部202、パスサーチ部203、複数の逆拡散部204、ジオメトリ算出部205、受信方式判定部206、復調部207及び復号部208を具備する。   The wireless reception device 200 includes an antenna 201, a wireless reception unit 202, a path search unit 203, a plurality of despreading units 204, a geometry calculation unit 205, a reception method determination unit 206, a demodulation unit 207, and a decoding unit 208.

無線受信部202は、アンテナ201による受信信号に対してダウンコンバート等の通常の無線受信処理を行い、無線受信処理後の受信信号をパスサーチ部203及び複数の逆拡散部204にそれぞれ入力する。   Radio reception section 202 performs normal radio reception processing such as down-conversion on the signal received by antenna 201, and inputs the received signal after radio reception processing to path search section 203 and a plurality of despreading sections 204, respectively.

パスサーチ部203は、無線受信部202から入力されてくる受信信号から遅延プロファイルを作成し、この遅延プロファイルのピークを検出することによって逆拡散するタイミングを選択する。そして、パスサーチ部203は、選択した複数のタイミングを複数の逆拡散部204にそれぞれ通知する。   The path search unit 203 creates a delay profile from the received signal input from the wireless reception unit 202, and selects the timing for despreading by detecting the peak of the delay profile. Then, the path search unit 203 notifies the plurality of despreading units 204 of the selected timings.

逆拡散部204は、受信信号のパス数N以上設けられており、パスサーチ部203からの通知を受けたときに動作する。逆拡散部204は、無線受信部202から入力されてくる受信信号に対して、パスサーチ部203から通知されたタイミングで逆拡散を行い、逆拡散後の受信信号をジオメトリ算出部205及び復調部207にそれぞれ入力する。   The despreading unit 204 is provided for the number N of received signal paths, and operates when receiving a notification from the path search unit 203. The despreading unit 204 despreads the reception signal input from the wireless reception unit 202 at the timing notified from the path search unit 203, and the received signal after despreading is subjected to a geometry calculation unit 205 and a demodulation unit. Input to 207 respectively.

ジオメトリ算出部205は、逆拡散部204から入力されてくる受信信号に対して、上述の式(1)〜式(22)で示された演算を行うことにより、ジオメトリを算出する。そして、ジオメトリ算出部205は、算出したジオメトリを受信方式判定部206に入力する。   The geometry calculation unit 205 calculates the geometry by performing the calculations shown in the above formulas (1) to (22) on the received signal input from the despreading unit 204. Then, the geometry calculation unit 205 inputs the calculated geometry to the reception method determination unit 206.

受信方式判定部206は、ジオメトリ算出部205から入力されてくるジオメトリと既定の閾値とを比較することにより、復調部207に実行させる受信方式を判定し、その判定結果を復調部207に通知する。具体的には、受信方式判定部206は、ジオメトリが既定の閾値以上であれば、受信信号にノイズがあまり含まれていないと判定して、受信信号に対して適応等化器等による適応変調を行うように指示する。一方で、受信方式判定部206は、ジオメトリが既定の閾値未満であれば、受信信号にノイズが多く含まれていると判定して、受信信号に対して適応等化器等による適応変調を行なわないように指示する。   The reception method determination unit 206 determines a reception method to be executed by the demodulation unit 207 by comparing the geometry input from the geometry calculation unit 205 with a predetermined threshold, and notifies the demodulation unit 207 of the determination result. . Specifically, if the geometry is equal to or greater than a predetermined threshold, the reception method determination unit 206 determines that the received signal does not contain much noise, and performs adaptive modulation by an adaptive equalizer or the like on the received signal. Instruct to do. On the other hand, if the geometry is less than the predetermined threshold, the reception method determination unit 206 determines that the received signal contains a lot of noise, and performs adaptive modulation by an adaptive equalizer or the like on the received signal. Instruct not to.

復調部207は、複数の受信回路例えばRAKE受信器と適応等化器とを具備し、受信方式判定部206からの指示に従い、逆拡散部204から入力されてくる受信信号を前記いずれかの受信回路に入力する。そして、復調部207は、その受信回路によって処理された受信信号を復調した後に、復調した受信信号を復号部208に入力する。従って、復調部207は、本発明に係る受信信号処理手段として機能する。   The demodulating unit 207 includes a plurality of receiving circuits such as a RAKE receiver and an adaptive equalizer, and receives a received signal input from the despreading unit 204 according to an instruction from the receiving method determining unit 206. Input to the circuit. Demodulation section 207 demodulates the reception signal processed by the reception circuit, and then inputs the demodulated reception signal to decoding section 208. Therefore, the demodulator 207 functions as a received signal processing unit according to the present invention.

復号部208は、復調部207から入力されてくる受信信号を復号して受信データを生成し、生成した受信データを図示しないベースバンド部等に入力する。   The decoding unit 208 generates reception data by decoding the reception signal input from the demodulation unit 207, and inputs the generated reception data to a baseband unit (not shown).

このように、本実施の形態によれば、受信信号の電力測定値のみに基づいてジオメトリが算出されるため、マルチパスの形成された伝搬環境下でもジオメトリを簡便に生成することができる。   As described above, according to the present embodiment, since the geometry is calculated based only on the power measurement value of the received signal, the geometry can be easily generated even in a propagation environment where a multipath is formed.

また、本実施の形態に係る無線受信装置200によれば、ジオメトリ算出部205が受信信号の電力測定値のみに基づいてジオメトリを生成するため、簡素な構成で自セルからの電力と他セルからの電力及びノイズとを分離することができる。   Further, according to radio receiving apparatus 200 according to the present embodiment, geometry calculation unit 205 generates a geometry based only on the power measurement value of the received signal, so that power from the own cell and other cells can be obtained with a simple configuration. Power and noise can be separated.

また、本実施の形態に係る無線受信装置200によれば、ジオメトリ算出部205によって算出されたジオメトリに基づいて、受信方式判定部206において受信信号に対する受信方式が判定されるため、伝搬環境に因らず、最適な受信方式を選択することができ、受信品質を向上させることができる。   In addition, according to radio receiving apparatus 200 according to the present embodiment, reception method for the received signal is determined by reception method determination unit 206 based on the geometry calculated by geometry calculation unit 205, and therefore, depending on the propagation environment. Instead, the optimum reception method can be selected, and the reception quality can be improved.

また、本実施の形態に係る移動局装置によれば、伝搬環境に因らず、最適な受信方式を簡素な構成からなる無線受信装置200によって選択できるため、その消費電力を抑えつつ、受信品質を向上させることができる。   Also, according to the mobile station apparatus according to the present embodiment, the optimal reception scheme can be selected by radio reception apparatus 200 having a simple configuration regardless of the propagation environment, so that reception quality can be reduced while suppressing power consumption. Can be improved.

なお、本実施の形態について、以下のように変形したり、応用したりしてもよい。本実施の形態において、自セルの総受信電力(自セル干渉の総和)と従来のSIR測定方式で求められるRSCPとを用いることにより、基地局総送信電力に占める希望信号電力の割合(Ec/Ior)を求めることができる。そして、このEc/Iorに基づいて、受信方式判定部206が復調部207における受信方式を判定するようにしてもよい。例えば、Ec/Iorが所定の閾値以下であれば、干渉キャンセラをOFFにし、RAKE受信するようにする。   The present embodiment may be modified or applied as follows. In the present embodiment, by using the total received power of the own cell (total sum of own cell interference) and RSCP obtained by the conventional SIR measurement method, the ratio (Ec / Ior). Then, the reception method determination unit 206 may determine the reception method in the demodulation unit 207 based on this Ec / Ior. For example, if Ec / Ior is less than or equal to a predetermined threshold, the interference canceller is turned off and RAKE reception is performed.

また、本実施の形態において、受信方式判定部206がEc/Ior及びジオメトリの合算値と所定の閾値とを比較して、復調部207における受信方式を判定するようにしてもよい。このようにすれば、希望信号の送信電力の絶対量に因らず、最適な受信方式を選択することができ、受信品質を向上させることができる。   Further, in the present embodiment, the reception method determination unit 206 may determine the reception method in the demodulation unit 207 by comparing the sum of Ec / Ior and geometry with a predetermined threshold value. In this way, an optimal reception method can be selected regardless of the absolute amount of transmission power of the desired signal, and reception quality can be improved.

また、本実施の形態に係る無線受信装置200では、逆拡散部204と復調部207とを個別に設けたが、これらを複合的にひとつの受信回路で構成してもよい。   Further, in radio receiving apparatus 200 according to the present embodiment, despreading section 204 and demodulating section 207 are provided separately, but these may be combined and configured with one receiving circuit.

(実施の形態2)
図3は、本発明の実施の形態2に係る無線受信装置300の構成を示すブロック図である。無線受信装置300は、無線受信装置200と同様に移動局装置に搭載されるものであり、適応変調のために受信品質情報を生成して基地局装置に送信するものである。無線受信装置300は、無線受信装置200における構成部に加えて、品質測定部311、マルチパス(MP)干渉量算出部312及び変換部313をさらに具備する。従って、無線受信装置300は無線受信装置200の各構成部と同様の機能を発揮する構成部を多く具備するため、このような同様の機能を発揮する構成部については、無線受信装置200の各構成部と同じ参照符号を付して、その説明を省略する。
(Embodiment 2)
FIG. 3 is a block diagram showing a configuration of radio receiving apparatus 300 according to Embodiment 2 of the present invention. The radio reception apparatus 300 is mounted on the mobile station apparatus similarly to the radio reception apparatus 200, and generates reception quality information for adaptive modulation and transmits it to the base station apparatus. The wireless reception device 300 further includes a quality measurement unit 311, a multipath (MP) interference amount calculation unit 312, and a conversion unit 313 in addition to the components in the wireless reception device 200. Accordingly, since the wireless reception device 300 includes many components that perform the same functions as the components of the wireless reception device 200, the components that perform the same function are the same as those of the wireless reception device 200. The same reference numerals as those of the constituent parts are attached and the description thereof is omitted.

品質測定部311は、従来のSIR測定方式により、逆拡散部204から入力されてくる受信信号をRAKE合成してSIRを算出し、算出したSIRを変換部313に入力する。   The quality measurement unit 311 calculates the SIR by RAKE combining the received signal input from the despreading unit 204 by the conventional SIR measurement method, and inputs the calculated SIR to the conversion unit 313.

MP干渉量算出部312は、逆拡散部204から入力されてくる受信信号におけるマルチパス干渉量を測定する。具体的には、MP干渉量算出部312は、例えば「信号電力対マルチパス干渉電力比」をマルチパス干渉量の指標として、以下の式(23)による演算を行うことによってマルチパス干渉量を算出する。そして、MP干渉量算出部312は、算出したマルチパス干渉量を変換部313に入力する。

Figure 2005303952
The MP interference amount calculation unit 312 measures the multipath interference amount in the reception signal input from the despreading unit 204. Specifically, the MP interference amount calculation unit 312 calculates the multipath interference amount by performing the calculation according to the following equation (23) using, for example, “signal power to multipath interference power ratio” as an index of the multipath interference amount. calculate. Then, the MP interference amount calculation unit 312 inputs the calculated multipath interference amount to the conversion unit 313.
Figure 2005303952

変換部313は、受信信号に対してRAKE合成を行った場合と適応受信を行った場合とにおける受信品質の相違について、伝搬環境及びジオメトリと関連付けて評価したテーブル又は換算式を保持している。そして、変換部313は、ジオメトリ算出部205から入力されてくるジオメトリと、MP干渉量算出部312から入力されてくるマルチパス干渉量と、に基づいて保持しているテーブルを参照することにより、或いは保持している換算式にこれらを当てはめることにより、品質測定部311から入力されてくるSIRから適応受信した場合の受信品質情報(SIR)を生成する。そして、変換部313は、生成した受信品質情報を図示しないベースバンド部等に入力する。その後、この受信品質情報は、基地局装置に送信されて適応変調に利用される。   The conversion unit 313 holds a table or a conversion formula that evaluates the difference in reception quality between the case where RAKE combining is performed on the received signal and the case where adaptive reception is performed in association with the propagation environment and the geometry. Then, the conversion unit 313 refers to a table held based on the geometry input from the geometry calculation unit 205 and the multipath interference amount input from the MP interference amount calculation unit 312. Alternatively, by applying these to the stored conversion formula, reception quality information (SIR) in the case of adaptive reception from the SIR input from the quality measurement unit 311 is generated. Then, the conversion unit 313 inputs the generated reception quality information to a baseband unit (not shown) or the like. Thereafter, this reception quality information is transmitted to the base station apparatus and used for adaptive modulation.

図4に、変換部313に保持されているテーブルの一例を示す。また、変換部313に保持されている換算式の一例を次に示す。なお、この換算式におけるα、βは、既定の定数である。
SIR=RAKE受信SIR+β(マルチパス干渉量×α・Geometry)
FIG. 4 shows an example of a table held in the conversion unit 313. An example of a conversion formula held in the conversion unit 313 is shown below. In this conversion formula, α and β are predetermined constants.
SIR = RAKE reception SIR + β (multipath interference amount × α · Geometry)

従って、本実施の形態によれば、変換部313によってRAKE合成後の受信品質が伝搬環境に応じて適応等化器等による適応受信後の受信品質に変換されるため、適応変調に係る受信品質報告用に適応等化器等を別途動作させる必要がなくなり、移動局装置における消費電力を抑えることができると伴に、高精度な受信品質情報を基地局装置に報告することができる。   Therefore, according to the present embodiment, reception quality after RAKE combining is converted into reception quality after adaptive reception by an adaptive equalizer or the like according to the propagation environment by conversion section 313. It is not necessary to separately operate an adaptive equalizer or the like for reporting, power consumption in the mobile station apparatus can be suppressed, and high-accuracy reception quality information can be reported to the base station apparatus.

なお、本実施の形態について、以下のように変形したり、応用したりしてもよい。即ち、式(23)を使用すると、伝搬環境が改善して1パスとなった場合に、SIRが無限大となってしまう。そこで、変換部313が式(23)の逆数を受信品質情報として生成するようにしてもよい。   The present embodiment may be modified or applied as follows. In other words, when Expression (23) is used, the SIR becomes infinite when the propagation environment is improved to be one path. Therefore, the conversion unit 313 may generate the reciprocal number of Expression (23) as reception quality information.

また、本実施の形態に係る無線受信装置300では、無線受信装置200における受信方式判定部206が明示されていないが、受信方式判定部206が具備されてもよい。   Further, in radio reception apparatus 300 according to the present embodiment, reception method determination unit 206 in radio reception apparatus 200 is not clearly shown, but reception method determination unit 206 may be provided.

また、品質測定部311は、信号処理の負荷を軽減するために、受信信号の遅延プロファイルから各パスの電力を求めてもよい。   Further, the quality measuring unit 311 may obtain the power of each path from the delay profile of the received signal in order to reduce the signal processing load.

また、品質測定部311に保持されるテーブルは、RAKE受信によるSIRからの改善量を示すものでも、また換算後のSIRの絶対値を示すものでもよい。   Further, the table held in the quality measuring unit 311 may indicate an improvement amount from the SIR by the RAKE reception, or may indicate an absolute value of the converted SIR.

本発明に係るジオメトリ測定方法、無線受信装置及び移動局装置は、簡素な構成で自セルからの電力と他セルからの電力及びノイズとを分離することができ、伝搬環境に因らず、移動局装置の消費電力を抑えつつ、その受信品質を向上させることができるという効果を有し、セルラー方式の無線通信システムで使用される携帯電話等として有用である。   The geometry measuring method, the radio receiving apparatus and the mobile station apparatus according to the present invention can separate the power from the own cell and the power and noise from other cells with a simple configuration, and can move regardless of the propagation environment. It has the effect of improving the reception quality while suppressing the power consumption of the station apparatus, and is useful as a mobile phone or the like used in a cellular radio communication system.

本発明の実施の形態1に係る受信信号の遅延プロファイルの一例を示す図The figure which shows an example of the delay profile of the received signal which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る無線受信装置の構成を示すブロック図FIG. 2 is a block diagram showing a configuration of a radio reception apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る無線受信装置の構成を示すブロック図The block diagram which shows the structure of the radio | wireless receiver which concerns on Embodiment 2 of this invention. 本発明の実施の形態2における変換部に保持されているテーブルの一例を示す図The figure which shows an example of the table hold | maintained at the conversion part in Embodiment 2 of this invention.

符号の説明Explanation of symbols

200、300 無線受信装置
201 アンテナ
202 無線受信部
203 パスサーチ部
204 逆拡散部
205 ジオメトリ算出部
206 受信方式判定部
207 復調部
208 復号部
311 品質測定部
312 マルチパス(MP)干渉量算出部
313 変換部
200, 300 Radio reception apparatus 201 Antenna 202 Radio reception unit 203 Path search unit 204 Despreading unit 205 Geometry calculation unit 206 Reception method determination unit 207 Demodulation unit 208 Decoding unit 311 Quality measurement unit 312 Multipath (MP) interference amount calculation unit 313 Conversion unit

Claims (6)

セルラー方式の無線通信システムにおける無線受信装置によって使用されるジオメトリ測定方法であって、
受信信号に含まれる干渉信号の電力をパス毎に測定する干渉信号電力測定ステップと、
測定されたパス毎の干渉信号電力をNパス分合算する合算ステップと、
前記受信信号に含まれるパス以外の干渉信号の電力を測定するパス以外干渉信号電力レベル測定ステップと、
測定された前記パス以外の干渉信号電力をN倍した値から前記合算ステップでの合算結果を差し引くことによって自セル干渉信号電力を算出する自セル干渉信号電力算出ステップと、
測定された前記パス以外の干渉信号電力から算出された前記自セル干渉信号電力を差し引くことによって他セル干渉信号とノイズとの電力の合算値を算出する他セル干渉信号・ノイズ電力算出ステップと、
算出された前記自セル干渉信号電力を算出された前記他セル干渉信号とノイズとの電力の合算値で除することによってジオメトリを算出するジオメトリ算出ステップと、
を具備することを特徴とするジオメトリ測定方法。
A geometry measurement method used by a radio receiver in a cellular radio communication system, comprising:
An interference signal power measurement step for measuring the power of the interference signal included in the received signal for each path;
A summing step of summing the measured interference signal power for each path for N paths;
A non-path interference signal power level measuring step for measuring power of an interference signal other than a path included in the received signal; and
A self-cell interference signal power calculating step of calculating the self-cell interference signal power by subtracting the summed result in the summing step from a value obtained by multiplying the measured interference signal power other than the path by N;
Other cell interference signal / noise power calculation step of calculating a sum of power of other cell interference signal and noise by subtracting the own cell interference signal power calculated from the measured interference signal power other than the path,
A geometry calculating step of calculating a geometry by dividing the calculated own cell interference signal power by the calculated power of the other cell interference signal and noise;
The geometry measuring method characterized by comprising.
セルラー方式の無線通信システムにおける無線受信装置であって、
受信信号に含まれる干渉信号の電力をパス毎に測定し、測定されたパス毎の干渉信号電力をNパス分合算し、前記受信信号に含まれるパス以外の干渉信号の電力を測定し、前記パス以外の干渉信号電力をN倍した値から前記パス毎の干渉信号電力をNパス分合算した合算値を差し引くことによって自セル干渉信号電力を算出し、前記パス以外の干渉信号電力から前記自セル干渉信号電力を差し引くことによって他セル干渉信号とノイズとの電力の合算値を算出し、前記自セル干渉信号電力を前記他セル干渉信号とノイズとの電力の合算値で除することによってジオメトリを算出するジオメトリ算出手段、
を具備することを特徴とする無線受信装置。
A wireless receiver in a cellular wireless communication system,
Measure the power of the interference signal included in the received signal for each path, add the measured interference signal power for each path for N paths, measure the power of the interference signal other than the path included in the received signal, The self-cell interference signal power is calculated by subtracting the sum of the interference signal power for each path from the value obtained by multiplying the interference signal power for each path by N times from the value obtained by multiplying the interference signal power for other paths by N, and the self-cell interference signal power is calculated from the interference signal power for other paths. A sum of powers of other cell interference signals and noise is calculated by subtracting the cell interference signal power, and the self-cell interference signal power is divided by a sum of powers of the other cell interference signals and noise. Geometry calculation means for calculating
A wireless receiver characterized by comprising:
前記ジオメトリ算出手段によって算出されたジオメトリに基づいて前記受信信号に対する受信方式を判定する受信方式判定手段と、
前記受信方式判定手段によって判定された受信方式で前記受信信号を処理する受信信号処理手段と、
をさらに具備することを特徴とする請求項2記載の無線受信装置。
A receiving method determining unit that determines a receiving method for the received signal based on the geometry calculated by the geometry calculating unit;
Received signal processing means for processing the received signal in the receiving method determined by the receiving method determining means;
The wireless receiver according to claim 2, further comprising:
基地局総送信電力に占める希望信号電力の割合を推定する推定手段をさらに具備し、
前記受信方式判定手段は、前記推定手段による推定結果と前記ジオメトリ算出手段によって算出されたジオメトリとに基づいて前記受信信号に対する受信方式を判定する、
ことを特徴とする請求項3記載の無線受信装置。
Further comprising estimation means for estimating the ratio of desired signal power to the total transmission power of the base station,
The reception method determination unit determines a reception method for the reception signal based on an estimation result by the estimation unit and a geometry calculated by the geometry calculation unit.
The wireless receiver according to claim 3.
前記受信信号の受信品質を測定する受信品質測定手段と、
前記受信信号におけるマルチパス干渉量を算出する干渉量算出手段と、
前記ジオメトリ算出手段によって算出されたジオメトリと算出されたマルチパス干渉量とに応じて、測定された前記受信品質を適応受信後の受信品質に変換する変換手段と、
を具備することを特徴とする請求項2又は請求項3記載の無線受信装置。
Reception quality measuring means for measuring the reception quality of the received signal;
Interference amount calculating means for calculating the amount of multipath interference in the received signal;
Conversion means for converting the measured reception quality into reception quality after adaptive reception according to the geometry calculated by the geometry calculation means and the calculated multipath interference amount;
The wireless receiver according to claim 2, further comprising:
請求項3〜5のいずれか1項に記載の無線受信装置を具備することを特徴とする移動局装置。   A mobile station apparatus comprising the radio reception apparatus according to claim 3.
JP2004121299A 2004-04-16 2004-04-16 Geometry measuring method, radio receiving apparatus and mobile station apparatus Expired - Fee Related JP4418289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121299A JP4418289B2 (en) 2004-04-16 2004-04-16 Geometry measuring method, radio receiving apparatus and mobile station apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121299A JP4418289B2 (en) 2004-04-16 2004-04-16 Geometry measuring method, radio receiving apparatus and mobile station apparatus

Publications (2)

Publication Number Publication Date
JP2005303952A true JP2005303952A (en) 2005-10-27
JP4418289B2 JP4418289B2 (en) 2010-02-17

Family

ID=35334913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121299A Expired - Fee Related JP4418289B2 (en) 2004-04-16 2004-04-16 Geometry measuring method, radio receiving apparatus and mobile station apparatus

Country Status (1)

Country Link
JP (1) JP4418289B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105488A1 (en) 2006-03-14 2007-09-20 Nec Corporation Radio communication apparatus, receiving system selection method, and receiving system selection program
JP2014003657A (en) * 2009-06-22 2014-01-09 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9210586B2 (en) * 2009-05-08 2015-12-08 Qualcomm Incorporated Method and apparatus for generating and exchanging information for coverage optimization in wireless networks

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105488A1 (en) 2006-03-14 2007-09-20 Nec Corporation Radio communication apparatus, receiving system selection method, and receiving system selection program
JP4831166B2 (en) * 2006-03-14 2011-12-07 日本電気株式会社 Wireless communication apparatus, reception method selection method, and reception method selection program
US8238856B2 (en) 2006-03-14 2012-08-07 Nec Corporation Wireless communicating apparatus, receiving method selecting method, and receiving method selecting program
JP2014003657A (en) * 2009-06-22 2014-01-09 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells
US9392391B2 (en) 2009-06-22 2016-07-12 Qualcomm Incorporated Methods and apparatus for coordination of sending reference signals from multiple cells

Also Published As

Publication number Publication date
JP4418289B2 (en) 2010-02-17

Similar Documents

Publication Publication Date Title
KR101047715B1 (en) Positive Interference Suppression for Estimating Received Signal Quality
US7356071B2 (en) Method and apparatus for estimating signal-to-noise ratio based on dedicated physical channel pilot symbols
US9184807B2 (en) MIMO receiver having improved SIR estimation and corresponding method
US7532664B2 (en) Method and apparatus to estimate signal to interference plus noise ratio (SINR) in a multiple antenna receiver
US20070071145A1 (en) Method and apparatus to correct channel quality indicator estimation
JP2014135722A (en) System and method for providing accurate estimation of received signal interference for use in wireless communications systems
KR20070004709A (en) A method and apparatus for received signal quality estimation
JP4870687B2 (en) Interference estimation in the presence of frequency error
US8582703B2 (en) Estimation of signal and interference power
EP2012439B1 (en) Receiver and reception processing method
EP1298814A2 (en) CDMA receiver and channel estimation method
US8554152B2 (en) Apparatus and method for estimating channel in mobile communication system
JP4418289B2 (en) Geometry measuring method, radio receiving apparatus and mobile station apparatus
KR101513562B1 (en) Apparatus and method for receiving signal using rake receiver and equalizer in wireless communication system
JPWO2011013343A1 (en) Wireless communication apparatus and signal detection method
JP3898115B2 (en) Receiving device, demodulator and communication method
US8976840B2 (en) Radio receiver for detecting an additive white Gaussian noise channel
US8463311B2 (en) Mobile terminal and power control method
KR100867973B1 (en) Method, apparatus and computer readable medium to estimate signal to interference plus noise ratio SINR in a multiple antenna receiver
JP2005328355A (en) Communication equipment
JP2004088179A (en) Fading frequency estimator
JP2006013679A (en) Receiver for cdma
CN101112025A (en) Interference estimation in the presence of frequency errors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees