JP2005303131A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2005303131A
JP2005303131A JP2004119086A JP2004119086A JP2005303131A JP 2005303131 A JP2005303131 A JP 2005303131A JP 2004119086 A JP2004119086 A JP 2004119086A JP 2004119086 A JP2004119086 A JP 2004119086A JP 2005303131 A JP2005303131 A JP 2005303131A
Authority
JP
Japan
Prior art keywords
trench
cleaning
wafer
pure water
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004119086A
Other languages
Japanese (ja)
Other versions
JP4524575B2 (en
Inventor
Setsuko Wakimoto
節子 脇本
Kimihisa Kaneko
公寿 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2004119086A priority Critical patent/JP4524575B2/en
Publication of JP2005303131A publication Critical patent/JP2005303131A/en
Application granted granted Critical
Publication of JP4524575B2 publication Critical patent/JP4524575B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clean a deep trench formed in a semiconductor substrate. <P>SOLUTION: An Si wafer 1 after trench etching is set in a chamber 11 so that a trench 1a forming face of the trench faces a gravity direction, HF solution is circulated in the chamber, and chemical cleaning is performed. Thus, HF solution after it intrudes into the trench 1a and an etching product is dissolved is discharged outside the trench 1a with flow of HF solution in the chamber 11 and an operation of gravity. Even if there is the etching product which cannot be dissolved in the trench 1a, it is discharged outside the trench 1a with HF solution. Consequently, the trench 1a can effectively be cleaned. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体装置の製造方法に関し、特にトレンチを有する半導体基板を用いた半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device using a semiconductor substrate having a trench.

従来、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等のデバイスにはトレンチを形成したシリコン(Si)ウエハ等が広く利用されている。近年では、デバイスの高耐圧化等の要求から、より高アスペクト比のトレンチの高精度な形成も必要になってきている。   Conventionally, silicon (Si) wafers and the like in which trenches are formed are widely used for devices such as MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). In recent years, due to the demand for higher breakdown voltage of devices, it has become necessary to form trenches with higher aspect ratios with higher accuracy.

トレンチは、通常、半導体基板を反応性イオンエッチング(Reactive Ion Etching,RIE)等のドライエッチングでエッチングして形成される。このようなドライエッチングで半導体基板にトレンチ形成を行う場合、形成されるトレンチの内壁には、エッチングによる生成物(エッチング生成物)やその他の不純物が付着して残る。そのため、従来は、トレンチエッチング後にその半導体基板をフッ化水素(HF)溶液等の薬液に浸漬するなどして、トレンチに浸入した薬液によってそのようなエッチング生成物を溶解して除去する方法が一般的に用いられている。このような薬液洗浄後の半導体基板は、その後、純水で洗浄され、スピンドライヤ等で乾燥される。   The trench is usually formed by etching a semiconductor substrate by dry etching such as reactive ion etching (RIE). When trench formation is performed on a semiconductor substrate by such dry etching, a product (etching product) by etching and other impurities remain on the inner wall of the formed trench. Therefore, conventionally, a method of dissolving and removing such an etching product with a chemical solution entering the trench, such as by immersing the semiconductor substrate in a chemical solution such as a hydrogen fluoride (HF) solution after the trench etching, is generally used. Has been used. The semiconductor substrate after such chemical cleaning is then cleaned with pure water and dried with a spin dryer or the like.

図7は半導体基板の従来の洗浄方法の説明図である。
この図7に示すように、薬液洗浄の際、トレンチエッチング後の半導体基板100は、その面を略垂直に立てた状態で洗浄槽101内のキャリア102に収納される。薬液は、洗浄槽101の下部に設けられた供給ノズル103から槽内に導入され、整流板104を通って半導体基板100側に供給され、余剰分が洗浄槽101の上部から槽外に排出される。このように、薬液を洗浄槽101の下部から上部へと継続的に流し、その間に半導体基板を洗浄する。
FIG. 7 is an explanatory view of a conventional cleaning method for a semiconductor substrate.
As shown in FIG. 7, during chemical cleaning, the semiconductor substrate 100 after trench etching is stored in a carrier 102 in a cleaning tank 101 with the surface thereof set up substantially vertically. The chemical solution is introduced into the tank from a supply nozzle 103 provided in the lower part of the cleaning tank 101, supplied to the semiconductor substrate 100 side through the rectifying plate 104, and surplus is discharged from the upper part of the cleaning tank 101 to the outside of the tank. The In this way, the chemical solution is continuously flowed from the lower portion to the upper portion of the cleaning tank 101, and the semiconductor substrate is cleaned during that time.

純水洗浄のときもこれと同様にして、薬液洗浄後の半導体基板を純水洗浄槽に移した後に、純水洗浄槽内にその下部から上部に向かって継続的に純水を流し、それによって半導体基板を洗浄する。   Similarly to pure water cleaning, the semiconductor substrate after chemical cleaning is transferred to the pure water cleaning tank, and then pure water is continuously flowed from the bottom to the top in the pure water cleaning tank. The semiconductor substrate is cleaned by

半導体基板を薬液や純水などの洗浄液によって洗浄する方法については、特に半導体基板に形成されているトレンチを効果的に洗浄することを目的として、これまでにいくつかの提案がなされている。   With respect to a method for cleaning a semiconductor substrate with a cleaning solution such as a chemical solution or pure water, several proposals have been made so far, particularly for the purpose of effectively cleaning a trench formed in the semiconductor substrate.

例えば、図7に示したのと同様にしてトレンチエッチング後の半導体基板をその面を略垂直にして配置し、洗浄槽下部から上部に向かって洗浄液を流す際、その洗浄液を減圧沸騰させ、これを用いて洗浄槽内の半導体基板を洗浄する方法が提案されている(特許文献1参照)。さらに、トレンチエッチング後の半導体基板を減圧した洗浄槽内に配置し、ここにあらかじめ脱気しておいた洗浄液を供給し、これを用いて洗浄槽内の半導体基板を洗浄する方法も提案されている(特許文献2参照)。   For example, in the same manner as shown in FIG. 7, the semiconductor substrate after trench etching is arranged with its surface substantially vertical, and when the cleaning liquid is flowed from the lower part of the cleaning tank to the upper part, the cleaning liquid is boiled under reduced pressure. There has been proposed a method of cleaning a semiconductor substrate in a cleaning tank using a method (see Patent Document 1). In addition, a method has been proposed in which a semiconductor substrate after trench etching is placed in a depressurized cleaning tank, a cleaning liquid that has been degassed in advance is supplied to the semiconductor substrate, and a semiconductor substrate in the cleaning tank is cleaned using the cleaning liquid. (See Patent Document 2).

このほか、半導体基板を配置した洗浄槽内に洗浄液を横方向に流す水平流通式の洗浄装置について、その洗浄槽内の全液深で均一な流速を得るために、半導体基板の上流側に通水抵抗の異なる2つの整流板を用いたものが提案されている(特許文献3参照)。そして、これを用いて洗浄を行う際には、洗浄槽内に半導体基板をその面を略水平にして配置するとともに、これを洗浄液の上流側に向かって移動させながら洗浄を行う。
特開2001−269634号公報(段落番号〔0014〕〜〔0018〕、図2) 特開平11−97401号公報(段落番号〔0016〕、図1) 特開平11−76956号公報(段落番号〔0029〕、図1)
In addition, for a horizontal flow type cleaning apparatus that flows the cleaning liquid laterally into the cleaning tank in which the semiconductor substrate is arranged, in order to obtain a uniform flow rate at the entire liquid depth in the cleaning tank, it is passed upstream of the semiconductor substrate. The thing using the two baffle plates from which water resistance differs is proposed (refer patent document 3). Then, when cleaning is performed using this, the semiconductor substrate is disposed in the cleaning tank with its surface substantially horizontal, and the cleaning is performed while moving the semiconductor substrate toward the upstream side of the cleaning liquid.
JP 2001-269634 A (paragraph numbers [0014] to [0018], FIG. 2) JP 11-97401 A (paragraph number [0016], FIG. 1) JP-A-11-76956 (paragraph number [0029], FIG. 1)

しかし、近年の要求に伴って半導体基板に形成されるトレンチが深くなり、そのアスペクト比が高くなると、従来のような方法では洗浄液をトレンチに浸入させにくく、また、その内壁から除去されたエッチング生成物等をトレンチの外へ排出できず十分な清浄化を図れない場合があった。   However, as the trench formed in the semiconductor substrate becomes deeper due to recent demands and the aspect ratio becomes higher, it is difficult for the conventional method to infiltrate the cleaning liquid into the trench, and the etching generated from the inner wall is removed. In some cases, objects could not be discharged out of the trench and sufficient cleaning could not be achieved.

図8はトレンチエッチング後の半導体基板の断面模式図である。
この図8は、Siウエハ等の半導体基板200に対し、例えば深さ5μmで幅1μmといった比較的高いアスペクト比のトレンチを形成した後に、HF溶液等を用いて薬液洗浄を行い、さらに別槽で純水洗浄して、スピンドライヤ等で乾燥させたときのトレンチ200aの長手方向の断面を模式的に示したものである。
FIG. 8 is a schematic cross-sectional view of the semiconductor substrate after the trench etching.
FIG. 8 shows that a semiconductor substrate 200 such as a Si wafer is formed with a relatively high aspect ratio trench having a depth of 5 μm and a width of 1 μm, for example, and then cleaned with a chemical solution using an HF solution or the like. The cross section of the longitudinal direction of the trench 200a when pure water washing | cleaning and making it dry with a spin dryer etc. is shown typically.

トレンチ200aが高アスペクト比で形成されるようになると、例えばこの図8に示したように、HF溶液等で完全に溶解されずトレンチ内壁から剥離して洗浄しきれなかった粒状の残渣200bが、トレンチ、特にその終端部分に残ってしまうといった状況が発生する場合がある。   When the trench 200a is formed with a high aspect ratio, for example, as shown in FIG. 8, the granular residue 200b that has not been completely dissolved by the HF solution or the like and has been peeled off from the inner wall of the trench and could not be cleaned, There may be situations where the trench remains, particularly at its end.

このような残渣が発生する原因のひとつとして、洗浄の際、Siウエハはその面が洗浄液流通方向と略平行になるよう、通常は洗浄槽内に略垂直あるいは略水平に配置されるが、Siウエハにトレンチが形成されている場合に、洗浄中のそのトレンチ形成面の向きまでは考慮されていなかったということが挙げられる。   One of the causes of such residues is that, during cleaning, the Si wafer is usually arranged substantially vertically or substantially horizontally in the cleaning tank so that its surface is substantially parallel to the cleaning liquid flow direction. In the case where a trench is formed in the wafer, the direction of the trench formation surface during cleaning is not considered.

すなわち、そのトレンチ形成面が重力方向に対して横向きあるいは逆向きになるようなSiウエハの配置になっていると、トレンチ内の洗浄液の入れ替わり(循環)が良くなく、完全に溶解されなかった遊離のエッチング生成物がトレンチ内に発生した場合には、それがトレンチ外へ排出されずにそのまま中に留まり、粒状の残渣として残ってしまうようになる。   In other words, if the Si wafer is arranged so that the trench forming surface is transverse or opposite to the direction of gravity, the cleaning liquid in the trench is not exchanged (circulated) and is not completely dissolved. When this etching product is generated in the trench, it remains inside without being discharged out of the trench and remains as a granular residue.

粒状の残渣は、洗浄後のSiウエハをスピンドライヤで乾燥すると、そのときに加わる遠心力によってトレンチ終端部分に集まってしまうことがある。トレンチ終端部分に残渣が集中すると、特にトレンチゲート構造を用いたパワーデバイス等では、その耐圧が極端に低下してしまい、不良率が高くなるといった問題を引き起こす。   When the cleaned Si wafer is dried by a spin dryer, the granular residue may be collected at the end of the trench due to the centrifugal force applied at that time. When the residue concentrates on the end portion of the trench, particularly in a power device or the like using a trench gate structure, the breakdown voltage is extremely lowered, which causes a problem that the defect rate is increased.

また、トレンチの清浄化を妨げる別の要因として、製造過程でトレンチ内に形成されてしまう酸化物の影響が挙げられる。
例えば、SiウエハをHF溶液の入った洗浄槽(HF槽)から取り出して純水の入った別の洗浄槽(水洗槽)に移す間や、水洗槽から取り出してスピンドライヤ等に移す間は、Siウエハが完全に乾燥されていない、いわゆる生乾きの状態になっている。このようにSiとこれに付着している水分、そして大気中の酸素の3者が揃った生乾きの状態では、Siウエハ表面が酸化されやすく、特にトレンチには水分が溜まりやすいため酸化物が生成されやすい。
Another factor that hinders the cleaning of the trench is the influence of oxides formed in the trench during the manufacturing process.
For example, while removing the Si wafer from the cleaning tank (HF tank) containing the HF solution and transferring it to another cleaning tank (water washing tank) containing pure water, or while taking it out of the water washing tank and transferring it to a spin dryer or the like, The Si wafer is in a so-called dry state where it is not completely dried. In such a dry state where Si, moisture adhering to it, and oxygen in the atmosphere are in a dry state, the surface of the Si wafer is easily oxidized. Easy to be.

このようにして生成された酸化物は、純粋なSiO2ではなく、大気中の不純物を含んだSiOxである場合が多い。そのため、一旦生成されてしまうとその除去が困難であり、それによってデバイスの耐圧低下等の問題が引き起こされることもある。 In many cases, the oxide thus produced is not pure SiO 2 but SiO x containing impurities in the atmosphere. For this reason, once it is generated, it is difficult to remove it, which may cause problems such as a decrease in the breakdown voltage of the device.

本発明はこのような点に鑑みてなされたものであり、トレンチを有する半導体基板を用いた半導体装置の製造プロセスにおいて、半導体基板に深いトレンチがあってもこれを十分に清浄化することのできる半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and in a manufacturing process of a semiconductor device using a semiconductor substrate having a trench, the semiconductor substrate can be sufficiently cleaned even if the semiconductor substrate has a deep trench. An object is to provide a method for manufacturing a semiconductor device.

本発明では上記問題を解決するために、トレンチを有する半導体基板を用いた半導体装置の製造方法において、前記半導体基板にトレンチを形成した後に、前記トレンチ形成面を重力方向に向けた状態で、薬液を用いて前記半導体基板の洗浄を行う薬液洗浄工程を有することを特徴とする半導体装置の製造方法が提供される。   In the present invention, in order to solve the above problem, in a method of manufacturing a semiconductor device using a semiconductor substrate having a trench, after forming the trench in the semiconductor substrate, the chemical solution is placed with the trench formation surface facing in the direction of gravity. There is provided a method for manufacturing a semiconductor device, characterized by having a chemical solution cleaning step for cleaning the semiconductor substrate by using.

このような半導体装置の製造方法によれば、薬液洗浄を行う半導体基板のトレンチ形成面が重力方向に向いているので、薬液の流れと重力の作用により、トレンチ内に浸入した薬液は、トレンチ形成面が重力方向に対して横向きや逆向きになっている場合に比べてトレンチの外に流れ出やすくなる。そのため、トレンチ内に浸入してエッチング生成物を溶解した後の薬液は、トレンチ内の薬液が入れ替わる際にトレンチ外に排出される。さらに、たとえトレンチ内に溶解しきれなかった遊離のエッチング生成物が存在していても、同じく薬液の流れと重力の作用により、そのエッチング生成物は、トレンチ内の薬液が入れ替わる際に薬液と共にトレンチ外に排出される。   According to such a method of manufacturing a semiconductor device, since the trench formation surface of the semiconductor substrate that performs chemical cleaning is directed in the direction of gravity, the chemical that has entered the trench due to the flow of the chemical and the action of gravity is It is easier to flow out of the trench than when the surface is lateral or opposite to the direction of gravity. Therefore, the chemical liquid that has entered the trench and dissolved the etching product is discharged out of the trench when the chemical liquid in the trench is replaced. Furthermore, even if there is a free etching product that could not be dissolved in the trench, the etching product is also added to the trench along with the chemical when the chemical in the trench is replaced due to the flow of the chemical and the action of gravity. Discharged outside.

また、薬液洗浄工程後に純水を用いて半導体基板を洗浄する純水洗浄工程や、純水洗浄工程後に行われる基板乾燥工程においても、このようにトレンチ形成面を重力方向に向けた状態で洗浄あるいは乾燥するようにすることで、トレンチ内に入った液体や気体あるいはトレンチ内に残る残渣がその外に排出されやすくなり、トレンチの清浄化が図られるようになる。   Also, in the pure water cleaning process that cleans the semiconductor substrate using pure water after the chemical cleaning process and the substrate drying process that is performed after the pure water cleaning process, the trench formation surface is cleaned in the direction of gravity in this way. Alternatively, by drying, the liquid or gas entering the trench or the residue remaining in the trench can be easily discharged to the outside, and the trench can be cleaned.

さらに、薬液洗浄工程と純水洗浄工程、純水洗浄工程と基板乾燥工程、あるいは薬液洗浄工程、純水洗浄工程および基板乾燥工程を、半導体基板を大気から遮断して連続して行うようにすれば、連続する工程間で半導体基板に酸化物を生成させることなくその清浄化が図られるようになる。   Furthermore, the chemical cleaning process and the pure water cleaning process, the pure water cleaning process and the substrate drying process, or the chemical cleaning process, the pure water cleaning process and the substrate drying process should be performed continuously with the semiconductor substrate cut off from the atmosphere. For example, the semiconductor substrate can be cleaned without generating oxide between successive steps.

本発明の半導体装置の製造方法は、トレンチ形成後の薬液洗浄工程あるいはその後の純水洗浄工程や基板乾燥工程の際に、トレンチ形成面を重力方向に向けた状態で半導体基板を配置して、それぞれの工程の処理を行うようにしたので、トレンチを十分に清浄化することができる。それにより、半導体装置の高品質化を図ることができ、特にトレンチゲート構造を有する半導体装置にあっては、その耐圧低下を抑え、高品質・高信頼性の半導体装置を高歩留まりで製造することができるようになる。   In the method for manufacturing a semiconductor device of the present invention, the chemical substrate cleaning process after the trench formation or the subsequent pure water cleaning process or the substrate drying process, the semiconductor substrate is arranged with the trench formation surface facing in the direction of gravity, Since the processes of the respective steps are performed, the trench can be sufficiently cleaned. As a result, the quality of the semiconductor device can be improved. In particular, in the case of a semiconductor device having a trench gate structure, a reduction in breakdown voltage is suppressed, and a high-quality and high-reliability semiconductor device is manufactured with a high yield. Will be able to.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
まず、第1の実施の形態について説明する。
図1および図2は第1の実施の形態の洗浄方法の説明図であって、図1は洗浄装置の要部側面図、図2は洗浄装置の要部平面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
First, the first embodiment will be described.
1 and 2 are explanatory views of the cleaning method according to the first embodiment. FIG. 1 is a side view of the main part of the cleaning apparatus, and FIG. 2 is a plan view of the main part of the cleaning apparatus.

この図1および図2に示す洗浄装置10は、密閉された中にSiウエハ1をセットできるチャンバ11を有しており、Siウエハ1は、ウエハガイド12に固定されてチャンバ11内に配置されるようになっている。チャンバ11には、回転軸13が設けられており、この回転軸13を回転させることによってチャンバ11が回転し、チャンバ11内にセットされたSiウエハ1の面の向きが重力方向に対して可動になっている。そして、この回転軸13には、その一方の側にはチャンバ11内にHF溶液や純水などの液体または窒素(N2)などの気体を供給する供給口14が、また他方の側にはチャンバ11内に供給された液体または気体をポンプ等を用いて排出する排出口15が、それぞれ設けられている。チャンバ11内には、供給口14とSiウエハ1の間に整流板16が設けられていて、供給口14から供給される液体または気体のチャンバ11内での流速分布の偏りが発生するのを抑制している。また、チャンバ11は、支持台17に取り付けられている。 The cleaning apparatus 10 shown in FIGS. 1 and 2 has a chamber 11 in which a Si wafer 1 can be set in a sealed state. The Si wafer 1 is fixed to a wafer guide 12 and disposed in the chamber 11. It has become so. The chamber 11 is provided with a rotation shaft 13. The rotation of the rotation shaft 13 rotates the chamber 11, and the orientation of the surface of the Si wafer 1 set in the chamber 11 is movable with respect to the direction of gravity. It has become. The rotary shaft 13 has a supply port 14 for supplying a liquid such as HF solution or pure water or a gas such as nitrogen (N 2 ) into the chamber 11 on one side, and on the other side. A discharge port 15 for discharging the liquid or gas supplied into the chamber 11 using a pump or the like is provided. In the chamber 11, a rectifying plate 16 is provided between the supply port 14 and the Si wafer 1, and an uneven flow velocity distribution in the chamber 11 of liquid or gas supplied from the supply port 14 occurs. Suppressed. The chamber 11 is attached to a support base 17.

ウエハ1の洗浄に当たり、チャンバ11は、図1に示したように、Siウエハ1表面に形成されているトレンチ1aが重力方向(図1中、下方向)に向いた状態となるよう、回転軸13を中心にしてあらかじめ回転され、洗浄時にはSiウエハ1のトレンチ1aの形成面が重力方向に向いた所で固定される。   In cleaning the wafer 1, the chamber 11 has a rotating shaft so that the trench 1 a formed on the surface of the Si wafer 1 faces in the direction of gravity (downward in FIG. 1) as shown in FIG. 1. 13 is rotated in advance around 13 and is fixed at the place where the trench 1a formation surface of the Si wafer 1 is directed in the direction of gravity during cleaning.

このような構成を有する洗浄装置10を用いてSiウエハ1の薬液洗浄を行う際には、まず、Siウエハ1にドライエッチングによってトレンチ1aを形成した後、そのSiウエハ1を洗浄装置10のチャンバ11内にセットする。そして、真空ポンプで排出口15からガス引きを行い、チャンバ11内を減圧する。その上で、供給口14から薬液として例えば0.5%HF溶液を供給しSiウエハ1をHF溶液に浸漬し、引き続きHF溶液を供給しながら余剰分を排出口15から排出して、HF溶液をチャンバ11内に一定量満たした状態で流通させる。薬液洗浄後は、HF溶液の供給を停止し、通常はチャンバ11内の処理後のHF溶液をほぼ全量排出する。   When performing chemical cleaning of the Si wafer 1 using the cleaning apparatus 10 having such a configuration, first, a trench 1a is formed in the Si wafer 1 by dry etching, and then the Si wafer 1 is removed from the chamber of the cleaning apparatus 10. 11 is set. Then, gas is drawn from the discharge port 15 by a vacuum pump, and the inside of the chamber 11 is decompressed. Then, for example, a 0.5% HF solution is supplied from the supply port 14 as a chemical solution, the Si wafer 1 is immersed in the HF solution, and the excess is discharged from the discharge port 15 while the HF solution is continuously supplied. In a state where a certain amount is filled in the chamber 11. After the chemical cleaning, the supply of the HF solution is stopped, and generally the entire amount of the HF solution after processing in the chamber 11 is discharged.

Siウエハ1は、HF溶液に浸漬されてHF溶液がトレンチ1a内に浸入することで、そのトレンチ1aからエッチング生成物が溶解あるいは剥離されて除去される。HF溶液中に溶解したエッチング生成物は、チャンバ11内のHF溶液の流れと重力の作用によって、トレンチ1a内のHF溶液が入れ替わる際にトレンチ1a外に排出されていく。また、トレンチ1a内にHF溶液で完全には溶解されなかった遊離のエッチング生成物があったとしても、そのエッチング生成物は、同じくチャンバ11内のHF溶液の流れと重力の作用によって、トレンチ1a内のHF溶液が入れ替わる際にHF溶液と共にトレンチ1a外に排出される。   When the Si wafer 1 is immersed in the HF solution and the HF solution enters the trench 1a, the etching product is dissolved or removed from the trench 1a and removed. The etching product dissolved in the HF solution is discharged out of the trench 1a when the HF solution in the trench 1a is replaced by the flow of the HF solution in the chamber 11 and the action of gravity. Further, even if there is a free etching product that has not been completely dissolved in the trench 1a by the HF solution, the etching product is also caused by the flow of the HF solution in the chamber 11 and the action of gravity. When the HF solution inside is replaced, it is discharged out of the trench 1a together with the HF solution.

このように、チャンバ11内にSiウエハ1をセットしてHF溶液を流通させ、その際トレンチ1a形成面が重力方向に向くようにしてSiウエハ1を配置することにより、HF溶液の流れと重力の作用によって、トレンチ1a内のエッチング生成物をトレンチ1a外に効果的に排出することができ、トレンチ1aを清浄化することができるようになる。   In this way, the Si wafer 1 is set in the chamber 11 and the HF solution is circulated. At this time, the Si wafer 1 is arranged so that the surface on which the trench 1a is formed is directed in the direction of gravity. As a result, the etching product in the trench 1a can be effectively discharged out of the trench 1a, and the trench 1a can be cleaned.

薬液洗浄後は、純水を用いたSiウエハ1の洗浄が行われる。
純水洗浄は、上記の薬液洗浄の際に用いたHF溶液を純水に代えて行うことを除き、薬液洗浄の場合と同様の手順で行われる。すなわち、Siウエハ1をそのトレンチ1a形成面を重力方向に向けてチャンバ11内に配置し、供給口14から純水を供給しながら排出口15から処理後の液を排出していく。純水洗浄後は、純水の供給を停止し、チャンバ11内の処理後の液をほぼ全量排出する。
After the chemical cleaning, the Si wafer 1 is cleaned using pure water.
The pure water cleaning is performed in the same procedure as in the case of chemical cleaning except that the HF solution used in the chemical cleaning is replaced with pure water. That is, the Si wafer 1 is placed in the chamber 11 with the trench 1a formation surface facing in the direction of gravity, and the treated liquid is discharged from the discharge port 15 while supplying pure water from the supply port. After the pure water cleaning, the supply of pure water is stopped, and almost all of the processed liquid in the chamber 11 is discharged.

この純水洗浄においても、Siウエハ1のトレンチ1a形成面が重力方向を向いていることで、チャンバ11内の純水の流れと重力の作用によって、薬液洗浄後のSiウエハ1表面に残るHF溶液、特にトレンチ1a内に残るHF溶液が純水で置換され、トレンチ1aが効果的に洗浄される。また、このときなおトレンチ1a内に残っている残渣が洗浄される場合もある。   Also in this pure water cleaning, since the trench 1a forming surface of the Si wafer 1 is directed in the direction of gravity, the HF remaining on the surface of the Si wafer 1 after the chemical cleaning is caused by the flow of pure water in the chamber 11 and the action of gravity. The solution, particularly the HF solution remaining in the trench 1a is replaced with pure water, and the trench 1a is effectively cleaned. At this time, the residue remaining in the trench 1a may be cleaned.

なお、上記の薬液洗浄からこの純水洗浄に移行する際には、薬液洗浄後、その処理後のHF溶液をチャンバ11に大気を流入させないようにして排出した後、そのままSiウエハ1を大気にさらすことなくチャンバ11に純水を供給するようにすることが望ましい。例えば、HF溶液の供給停止後に、チャンバ11にN2やアルゴン(Ar)などのSiウエハ1を酸化させないようなガスを供給しながら処理後のHF溶液を抜き出すようにする。あるいは、薬液洗浄後の液を排出せずにそのまま純水を供給し、チャンバ11内のHF濃度を徐々に薄めていくようにすることもできる。 When shifting from the above chemical cleaning to the pure water cleaning, after the chemical cleaning, the processed HF solution is discharged without flowing the air into the chamber 11, and the Si wafer 1 is then brought into the air as it is. It is desirable to supply pure water to the chamber 11 without exposure. For example, after the supply of the HF solution is stopped, the processed HF solution is extracted while supplying a gas that does not oxidize the Si wafer 1 such as N 2 or argon (Ar) to the chamber 11. Alternatively, pure water can be supplied as it is without discharging the liquid after chemical cleaning, and the HF concentration in the chamber 11 can be gradually reduced.

このように薬液洗浄から純水洗浄に移行する際にSiウエハ1を大気から遮断することにより、トレンチ1aに大気中の不純物を含んだSiOx等の酸化物が生成されるのを防止することができ、いっそうの清浄化が図れる。 In this way, the Si wafer 1 is shut off from the atmosphere when shifting from the chemical cleaning to the pure water cleaning, thereby preventing the oxide such as SiO x containing impurities in the atmosphere from being generated in the trench 1a. Can be achieved and further cleaning can be achieved.

純水洗浄後は、N2を用いたSiウエハ1の乾燥が行われる。
乾燥にはドライN2を用い、Siウエハ1をそのトレンチ1a形成面を重力方向に向けた状態で、チャンバ11内に供給口14からドライN2を供給し、排出口15から排出する。このようにチャンバ11内にドライN2を流通させることによって中のSiウエハ1を乾燥させる。
After the pure water cleaning, the Si wafer 1 using N 2 is dried.
Dry N 2 is used for drying, and dry N 2 is supplied from the supply port 14 into the chamber 11 and discharged from the discharge port 15 with the Si wafer 1 having its trench 1a formation surface directed in the direction of gravity. Thus, the Si wafer 1 inside is dried by circulating the dry N 2 in the chamber 11.

このような基板乾燥の際、ドライN2の温度は常温でも効果があるが、高温にすれば乾燥時間を短縮することができる。さらに、ドライN2をチャンバ11内に供給する際、イソプロピルアルコール(IPA)等の揮発性溶液の蒸気を同時に供給するようにすれば、いっそう乾燥時間を短縮することができるようになる。また、このようなドライN2やIPA等を用いた乾燥時に、チャンバ11を回転させてSiウエハ1に残っている液滴を振り切るようにしてもよい。 When such a substrate is dried, the temperature of the dry N 2 is effective even at room temperature, but if the temperature is increased, the drying time can be shortened. Further, when supplying dry N 2 into the chamber 11, if a vapor of a volatile solution such as isopropyl alcohol (IPA) is supplied at the same time, the drying time can be further shortened. Further, at the time of drying using such dry N 2 , IPA or the like, the chamber 11 may be rotated to shake off the remaining droplets on the Si wafer 1.

なお、上記の純水洗浄からこの基板乾燥に移行する際には、前述の薬液洗浄から純水洗浄に移行する場合におけるのと同様に、純水洗浄後、その処理後の液をチャンバ11に大気を流入させないようにして排出した後、そのままSiウエハ1を大気にさらすことなくチャンバ11内にドライN2等を供給するようにすることが望ましい。それにより、純水洗浄から基板乾燥に移行する際に、トレンチ1aにSiOx等が生成されるのを防止することができる。 When shifting from the above pure water cleaning to this substrate drying, as in the case of shifting from the above chemical cleaning to pure water cleaning, the liquid after the processing is put into the chamber 11 after the pure water cleaning. It is desirable to supply dry N 2 or the like into the chamber 11 without exposing the Si wafer 1 to the atmosphere as it is, after discharging it without causing the atmosphere to flow. Thereby, when shifting from pure water cleaning to substrate drying, it is possible to prevent generation of SiO x or the like in the trench 1a.

Siウエハ1のトレンチ1a形成面を重力方向に向けて行う上記の薬液洗浄、純水洗浄および基板乾燥をすべて、Siウエハ1を大気から遮断した状態で連続して行い、それによって得られたSiウエハ1を用いてパワーデバイスを形成したところ、耐圧不良率を約5%低下させることができた。   All of the above chemical cleaning, pure water cleaning and substrate drying performed with the trench 1a formation surface of the Si wafer 1 directed in the direction of gravity are continuously performed in a state where the Si wafer 1 is shielded from the atmosphere. When a power device was formed using the wafer 1, the breakdown voltage failure rate could be reduced by about 5%.

次に、第2の実施の形態について説明する。
図3および図4は第2の実施の形態の洗浄方法の説明図であって、図3はSiウエハのトレンチ形成面を重力方向に対して垂直向きに配置したときの図、図4はSiウエハのトレンチ形成面を重力方向に向けて配置したときの図である。ただし、図3および図4では、図1および図2に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。
Next, a second embodiment will be described.
3 and 4 are explanatory views of the cleaning method of the second embodiment. FIG. 3 is a view when the trench formation surface of the Si wafer is arranged perpendicular to the direction of gravity, and FIG. It is a figure when arrange | positioning the trench formation surface of a wafer toward the direction of gravity. However, in FIG. 3 and FIG. 4, the same elements as those shown in FIG. 1 and FIG.

この第2の実施の形態では、洗浄装置10のチャンバ11にSiウエハ1をセットした後、薬液洗浄前に、まず図3に示すようにSiウエハ1をそのトレンチ1a形成面が重力方向に対して垂直向きになるようにチャンバ11を回転させる。そして、この状態でチャンバ11内に純水を供給し、中を純水で満たす。その際、トレンチ1a形成面が重力方向に対して垂直向きになっているので、純水供給時にトレンチ1a内にも純水が行き渡り、トレンチ1a内に気泡等をほとんど発生させることなく、トレンチ1a内を液体で満たすことができる。   In the second embodiment, after the Si wafer 1 is set in the chamber 11 of the cleaning apparatus 10 and before the chemical solution cleaning, first, as shown in FIG. Then, the chamber 11 is rotated so as to be vertically oriented. In this state, pure water is supplied into the chamber 11 and the inside is filled with pure water. At that time, since the trench 1a formation surface is perpendicular to the direction of gravity, the pure water spreads in the trench 1a when pure water is supplied, and the trench 1a hardly generates bubbles or the like in the trench 1a. The inside can be filled with liquid.

このようにチャンバ11内を純水で満たした後は、第1の実施の形態と同様、図4に示すようにSiウエハ1をそのトレンチ1a形成面が重力方向を向くようにチャンバ11を回転させる。そして、チャンバ11内の純水を抜き出さずにそのまま供給口14から0.5%HF溶液を供給し、薬液洗浄を開始する。この薬液洗浄とこれに続く純水洗浄および基板乾燥の各処理は、上記第1の実施の形態と同様に行われる。   After the chamber 11 is filled with pure water in this way, the chamber 11 is rotated so that the surface on which the trench 1a is formed faces the direction of gravity as shown in FIG. 4, as in the first embodiment. Let Then, the 0.5% HF solution is supplied as it is from the supply port 14 without extracting the pure water in the chamber 11, and the chemical cleaning is started. The chemical liquid cleaning, the subsequent pure water cleaning, and the substrate drying are performed in the same manner as in the first embodiment.

この方法を用い、かつ、薬液洗浄、純水洗浄および基板乾燥をすべて、Siウエハ1を大気から遮断して連続して行い、それによって得られたSiウエハ1を用いてパワーデバイスを形成したところ、耐圧不良率を約5%低下させることができた。   When this method is used, and chemical cleaning, pure water cleaning, and substrate drying are all performed continuously while the Si wafer 1 is cut off from the atmosphere, a power device is formed using the Si wafer 1 obtained thereby. The breakdown voltage failure rate could be reduced by about 5%.

次に、第3の実施の形態について説明する。
以上の説明では、Siウエハ1を1枚ずつ処理する場合を例にして述べたが、勿論、複数枚のSiウエハ1を1バッチで同時に処理するようにしても構わない。
Next, a third embodiment will be described.
In the above description, the case where the Si wafers 1 are processed one by one has been described as an example. Of course, a plurality of Si wafers 1 may be simultaneously processed in one batch.

図5および図6は第3の実施の形態の洗浄方法の説明図であって、図5は複数枚処理が可能な洗浄装置の要部側面図、図6は複数枚処理が可能な洗浄装置の要部平面図である。ただし、図5および図6では、図1および図2に示した要素と同一の要素については同一の符号を付し、その説明の詳細は省略する。   5 and 6 are explanatory views of the cleaning method of the third embodiment. FIG. 5 is a side view of a main part of a cleaning apparatus capable of processing a plurality of sheets, and FIG. 6 is a cleaning apparatus capable of processing a plurality of sheets. FIG. 5 and 6, the same elements as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

この図5および図6に示す洗浄装置20は、密閉された中に複数枚のSiウエハ1をその面同士を向かい合わせて並列にセットできるチャンバ21を有しており、各Siウエハ1がウエハガイド22に固定されてチャンバ21内に配置されるようになっている点で第1の実施の形態の洗浄装置10と相違している。その他の構成は第1の実施の形態の洗浄装置10と同じである。ただし、この洗浄装置20において複数枚のSiウエハ1をチャンバ21内にセットする際には、各Siウエハ1のトレンチ1a形成面を一方向に揃えて配置する。   The cleaning apparatus 20 shown in FIGS. 5 and 6 has a chamber 21 in which a plurality of Si wafers 1 can be set in parallel while facing each other in a sealed state. Each Si wafer 1 is a wafer. The cleaning device 10 is different from the cleaning device 10 of the first embodiment in that it is fixed to the guide 22 and arranged in the chamber 21. Other configurations are the same as those of the cleaning apparatus 10 of the first embodiment. However, when a plurality of Si wafers 1 are set in the chamber 21 in the cleaning apparatus 20, the trench 1a formation surface of each Si wafer 1 is arranged in one direction.

このような構成を有する洗浄装置20を用いて複数枚のSiウエハ1の薬液洗浄を行う際には、例えば上記第1の実施の形態で述べたように、回転軸13によってSiウエハ1のトレンチ1a形成面を重力方向に向け、チャンバ21内にHF溶液を流通させて薬液洗浄を行う。そして、その後は、同じくトレンチ1a形成面を重力方向に向けた状態で、純水洗浄および基板乾燥を行う。薬液洗浄と純水洗浄の間、純水洗浄と基板乾燥の間は、Siウエハ1を大気から遮断して各処理を連続して行ってもよく、また、基板乾燥の際には、チャンバ21を回転させるようにしてもよい。   When performing chemical cleaning of a plurality of Si wafers 1 using the cleaning apparatus 20 having such a configuration, for example, as described in the first embodiment, the trench of the Si wafer 1 is formed by the rotating shaft 13. The 1a formation surface is directed in the direction of gravity, and the HF solution is circulated in the chamber 21 to perform chemical cleaning. Thereafter, pure water cleaning and substrate drying are performed with the trench 1a forming surface facing the direction of gravity. Between chemical solution cleaning and pure water cleaning, between pure water cleaning and substrate drying, the Si wafer 1 may be shut off from the atmosphere, and each process may be performed continuously. You may make it rotate.

また、洗浄装置20を用い、上記第2の実施の形態で述べたように、薬液洗浄に先立って、Siウエハ1のトレンチ1a形成面を重力方向に対して略垂直に向け、チャンバ21内を純水で満たした後に、薬液洗浄、純水洗浄および基板乾燥を行うようにすることもできる。この場合にも、薬液洗浄と純水洗浄の間、純水洗浄と基板乾燥の間は、Siウエハ1を大気から遮断して各処理を連続して行ってもよく、また、基板乾燥の際には、チャンバ21を回転させるようにしてもよい。   Further, using the cleaning device 20, as described in the second embodiment, prior to the chemical cleaning, the trench 1a formation surface of the Si wafer 1 is oriented substantially perpendicular to the direction of gravity, and the inside of the chamber 21 is directed. After filling with pure water, chemical cleaning, pure water cleaning, and substrate drying may be performed. Also in this case, during the chemical solution cleaning and the pure water cleaning, and between the pure water cleaning and the substrate drying, the Si wafer 1 may be shut off from the atmosphere and each processing may be continuously performed. Alternatively, the chamber 21 may be rotated.

このように複数枚のSiウエハ1を同時に処理可能な洗浄装置20を用いることにより、トレンチエッチング後の洗浄とそれに伴う各工程、さらにそのようなSiウエハ1を用いる半導体装置の製造工程におけるスループットを大幅に向上させることが可能になる。   By using the cleaning apparatus 20 capable of simultaneously processing a plurality of Si wafers 1 in this way, the throughput in the cleaning after trench etching and the respective processes accompanying it, and the manufacturing process of a semiconductor device using such a Si wafer 1 can be reduced. It becomes possible to greatly improve.

以上説明したように、トレンチ1aを有するSiウエハ1の薬液洗浄を行う際、あるいはその後の純水洗浄や基板乾燥を行う際に、トレンチ1a形成面を重力方向に向けた状態でチャンバ11,21内にSiウエハ1を配置する。これにより、チャンバ11,21内のHF溶液の流れと重力の作用を利用してエッチング生成物を効果的に除去し、トレンチを清浄化することができる。このようにして清浄化されたSiウエハ1を用いてデバイスを形成することにより、その高品質化を図ることができ、特にトレンチゲート構造を有するデバイスにあっては、その耐圧低下を抑え、高品質・高信頼性の半導体装置を高歩留まりで製造することが可能になる。   As described above, when performing chemical cleaning of the Si wafer 1 having the trench 1a, or when performing subsequent pure water cleaning or substrate drying, the chambers 11 and 21 with the trench 1a formation surface facing in the direction of gravity. A Si wafer 1 is placed inside. Thereby, the etching product can be effectively removed by utilizing the flow of HF solution in the chambers 11 and 21 and the action of gravity, and the trench can be cleaned. By forming a device using the Si wafer 1 thus cleaned, the quality can be improved. In particular, in a device having a trench gate structure, the decrease in breakdown voltage is suppressed, It becomes possible to manufacture quality and highly reliable semiconductor devices with a high yield.

なお、以上の説明においては、トレンチ1a内のエッチング生成物を除去するために用いる薬液としてHF溶液を用いたが、HFを含んでいれば薬液の種類はこれに限定されない。例えば、バッファドフッ化水素(BHF)や界面活性剤を含有したHF溶液であっても同様の効果を得ることができる。   In the above description, the HF solution is used as the chemical solution used to remove the etching product in the trench 1a. However, the type of the chemical solution is not limited to this as long as it contains HF. For example, the same effect can be obtained even with an HF solution containing buffered hydrogen fluoride (BHF) or a surfactant.

洗浄装置の要部側面図である。It is a principal part side view of a washing | cleaning apparatus. 洗浄装置の要部平面図である。It is a principal part top view of a washing | cleaning apparatus. Siウエハのトレンチ形成面を重力方向に対して垂直向きに配置したときの図である。It is a figure when the trench formation surface of Si wafer is arrange | positioned in the orthogonal | vertical direction with respect to the gravity direction. Siウエハのトレンチ形成面を重力方向に向けて配置したときの図である。It is a figure when arrange | positioning the trench formation surface of Si wafer toward the direction of gravity. 複数枚処理が可能な洗浄装置の要部側面図である。It is a principal part side view of the washing | cleaning apparatus which can process several sheets. 複数枚処理が可能な洗浄装置の要部平面図である。It is a principal part top view of the washing | cleaning apparatus which can process several sheets. 半導体基板の従来の洗浄方法の説明図である。It is explanatory drawing of the conventional cleaning method of a semiconductor substrate. トレンチエッチング後の半導体基板の断面模式図である。It is a cross-sectional schematic diagram of the semiconductor substrate after trench etching.

符号の説明Explanation of symbols

1 Siウエハ
1a トレンチ
10,20 洗浄装置
11,21 チャンバ
12,22 ウエハガイド
13 回転軸
14 供給口
15 排出口
16 整流板
17 支持台
DESCRIPTION OF SYMBOLS 1 Si wafer 1a Trench 10,20 Cleaning apparatus 11,21 Chamber 12,22 Wafer guide 13 Rotating shaft 14 Supply port 15 Discharge port 16 Current plate 17 Support stand

Claims (5)

トレンチを有する半導体基板を用いた半導体装置の製造方法において、
前記半導体基板にトレンチを形成した後に、前記トレンチの形成面を重力方向に向けた状態で、薬液を用いて前記半導体基板の洗浄を行う薬液洗浄工程を有することを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device using a semiconductor substrate having a trench,
A method of manufacturing a semiconductor device, comprising: a chemical solution cleaning step of cleaning the semiconductor substrate with a chemical solution in a state where the trench formation surface is directed in the direction of gravity after forming the trench in the semiconductor substrate. .
前記薬液洗浄工程の後に、前記トレンチの形成面を重力方向に向けた状態で、純水を用いて前記半導体基板の洗浄を行う純水洗浄工程を有することを特徴とする請求項1記載の半導体装置の製造方法。   2. The semiconductor according to claim 1, further comprising a pure water cleaning step of cleaning the semiconductor substrate using pure water in a state in which the formation surface of the trench is directed in the direction of gravity after the chemical solution cleaning step. Device manufacturing method. 前記薬液洗浄工程と前記純水洗浄工程とを、前記半導体基板を大気から遮断した状態で、連続して行うことを特徴とする請求項2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 2, wherein the chemical solution cleaning step and the pure water cleaning step are continuously performed in a state where the semiconductor substrate is shielded from the atmosphere. 前記純水洗浄工程の後に、前記トレンチの形成面を重力方向に向けた状態で、前記半導体基板の乾燥を行う基板乾燥工程を有することを特徴とする請求項2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 2, further comprising a substrate drying step of drying the semiconductor substrate after the pure water cleaning step, with the formation surface of the trench directed in the direction of gravity. 前記薬液洗浄工程と前記純水洗浄工程と前記基板乾燥工程とを、前記半導体基板を大気から遮断した状態で、連続して行うことを特徴とする請求項4記載の半導体装置の製造方法。   5. The method for manufacturing a semiconductor device according to claim 4, wherein the chemical solution cleaning step, the pure water cleaning step, and the substrate drying step are continuously performed in a state where the semiconductor substrate is shielded from the atmosphere.
JP2004119086A 2004-04-14 2004-04-14 Manufacturing method of semiconductor device Expired - Fee Related JP4524575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004119086A JP4524575B2 (en) 2004-04-14 2004-04-14 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004119086A JP4524575B2 (en) 2004-04-14 2004-04-14 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005303131A true JP2005303131A (en) 2005-10-27
JP4524575B2 JP4524575B2 (en) 2010-08-18

Family

ID=35334246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004119086A Expired - Fee Related JP4524575B2 (en) 2004-04-14 2004-04-14 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4524575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178458A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Method of manufacturing semiconductor device and method of cleaning semiconductor substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114229A (en) * 1985-11-13 1987-05-26 Mitsubishi Electric Corp Drying method for semiconductor substrate
JPH0319337A (en) * 1989-06-16 1991-01-28 Mitsubishi Electric Corp Removing device for wafer contamination
JPH07273080A (en) * 1994-03-30 1995-10-20 Toshiba Corp Semiconductor substrate washing treatment apparatus
JPH11238718A (en) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp Drying method and apparatus for semiconductor member
JP2000114233A (en) * 1998-09-29 2000-04-21 Samsung Electronics Co Ltd Semiconductor wet-etching apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114229A (en) * 1985-11-13 1987-05-26 Mitsubishi Electric Corp Drying method for semiconductor substrate
JPH0319337A (en) * 1989-06-16 1991-01-28 Mitsubishi Electric Corp Removing device for wafer contamination
JPH07273080A (en) * 1994-03-30 1995-10-20 Toshiba Corp Semiconductor substrate washing treatment apparatus
JPH11238718A (en) * 1998-02-20 1999-08-31 Mitsubishi Electric Corp Drying method and apparatus for semiconductor member
JP2000114233A (en) * 1998-09-29 2000-04-21 Samsung Electronics Co Ltd Semiconductor wet-etching apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178458A (en) * 2011-02-25 2012-09-13 Fujitsu Ltd Method of manufacturing semiconductor device and method of cleaning semiconductor substrate

Also Published As

Publication number Publication date
JP4524575B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
KR100935977B1 (en) Substrate processing apparatus and substrate processing method
JP5390808B2 (en) Substrate processing apparatus and substrate processing method
JP2008034779A (en) Method and equipment for processing substrate
JP5424848B2 (en) Semiconductor substrate surface treatment apparatus and method
CN1438680A (en) Method and apparatus for manufacturing substrate
JP2008091364A (en) Method and equipment for processing substrate
JP2009060112A (en) Single type substrate treating apparatus and cleaning method thereof
US20180330971A1 (en) Substrate cleaning apparatus and substrate cleaning method
JP5016525B2 (en) Substrate processing method and substrate processing apparatus
JP4763756B2 (en) Method for cleaning, drying and hydrophilizing a semiconductor wafer
JP6275090B2 (en) Process separation type substrate processing apparatus and processing method
JP4791905B2 (en) Substrate cleaning method
JP4524575B2 (en) Manufacturing method of semiconductor device
KR100625318B1 (en) Apparatus and method for treating substrate
TWI757514B (en) Substrate processing method and substrate processing apparatus
JPH10247635A (en) Device and method for performing washing treatment for wafer
KR20160116476A (en) Apparatus for cleaning wafer
JP3974465B2 (en) Polymer removal method
JP4357456B2 (en) Semiconductor substrate cleaning method
KR20090131208A (en) Batch type cleaning apparatus for circumvolve wafer and method for cleaning
JP4487626B2 (en) Substrate processing apparatus and substrate processing method using the same
JP2004063513A (en) Cleaning and drying method of semiconductor substrate
JP2007012860A (en) Equipment and method for processing substrate
JP2002305173A (en) Substrate treating apparatus
JP2002289575A (en) Substrate treating method and its equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees