JP2005302910A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP2005302910A
JP2005302910A JP2004114934A JP2004114934A JP2005302910A JP 2005302910 A JP2005302910 A JP 2005302910A JP 2004114934 A JP2004114934 A JP 2004114934A JP 2004114934 A JP2004114934 A JP 2004114934A JP 2005302910 A JP2005302910 A JP 2005302910A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
refractive index
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004114934A
Other languages
Japanese (ja)
Inventor
Manabu Matsuda
松田  学
Takayuki Yamamoto
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004114934A priority Critical patent/JP2005302910A/en
Publication of JP2005302910A publication Critical patent/JP2005302910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make it possible to allow an n-type quaternary guide layer which is provided directly under the n side of the activity layer of a mesa portion, to be thinner, and to make it possible to improve breakdown voltage by making it possible to allow pn block thickness to be sufficiently thick, in other words, to make it possible to set independently the degree of the local existence of light in the n side and composition wavelength (= a refractive index), relating to a semiconductor light emitting device. <P>SOLUTION: A semiconductor light emitting device comprises an n-type InP substrate 1, a mesa structure comprising an n-type quaternary light guide layer 2 extending in an axis direction on the substrate 1, an activity layer 3 extending on the light guide layer 2, a p-type cladding layer 6 formed on the activity layer 3, a p-side electrode 9 connected with the p-side cladding layer 6 and an n-side electrode 10 connected with the substrate 1, and a p-type quaternary embedding layer 12 allowing both sides of the mesa structure to be embedded in the layer. The refractive index of the light guide layer 2 is large in comparison with that of the substrate 1. The refractive index of the p-type quaternary embedding layer 12 for allowing the mesa side surface of the light guide layer 2 to be embedded in the layer is large in comparison with that of the substrate 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高出力半導体レーザなどの半導体発光装置の改良に関する。   The present invention relates to improvements in semiconductor light emitting devices such as high power semiconductor lasers.

近年、例えばインターネット関連需要の爆発的な増加に伴って、光通信/光伝送に於いては、超高速化及び大容量化への取り組みが活発化していて、その中でも、波長多重光伝送技術の飛躍的な発展に依って大容量化が実現されつつある。   In recent years, for example, with the explosive increase in Internet-related demand, in optical communication / optical transmission, efforts to increase the speed and capacity have become active. Large capacity is being realized by rapid development.

この技術を支えているのは、多数の異なる波長の光を安定して供給する単一波長レーザや波長可変レーザ、及び、光ファイバを伝送する多数の光信号を一括して増幅且つ中継する光ファイバ増幅器であり、そして、この光ファイバ増幅器の励起光源として用いられている高出力半導体レーザである。   This technology is supported by a single-wavelength laser and a wavelength-tunable laser that stably supply a large number of light beams of different wavelengths, and a light that amplifies and relays a large number of optical signals transmitted through an optical fiber in a lump. It is a high-power semiconductor laser that is a fiber amplifier and is used as a pumping light source for this optical fiber amplifier.

ところで、半導体レーザを高出力化するには、内部量子効率の増大及び内部損失の低減が必要であり、また、埋め込み導波路構造に於ける活性層幅を拡大することで高注入時の光出力の飽和を抑制できることが知られている。   By the way, to increase the output of a semiconductor laser, it is necessary to increase the internal quantum efficiency and reduce the internal loss. Also, by increasing the active layer width in the buried waveguide structure, the light output at the time of high injection is increased. It is known that the saturation of can be suppressed.

半導体レーザに於ける内部損失の大部分は、p型にドーピングされた半導体に於けるIVBA(Inter−Valence−Band Absorption)に起因することが知られている。そして、この内部損失は、そのドーピング濃度に略比例する状態で増加することが知られている。   It is known that most of the internal loss in a semiconductor laser is caused by IVBA (Inter-Valence-Band Absorption) in a p-type doped semiconductor. It is known that this internal loss increases in a state substantially proportional to the doping concentration.

従って、導電型がp型である上側クラッド層に於けるドーピング濃度を低減することで半導体レーザの内部損失を低減することが可能であり、事実、p側クラッド層の一部に於けるドーピング濃度を低下させることで内部損失は減少した。   Therefore, it is possible to reduce the internal loss of the semiconductor laser by reducing the doping concentration in the upper cladding layer whose conductivity type is p-type, and in fact, the doping concentration in a part of the p-side cladding layer. By reducing the internal loss, the internal loss decreased.

然しながら、p型半導体はn型半導体に比較して高抵抗であることが知られていて、ドーピング濃度を低減させることで素子の直列抵抗が増加してしまう。その結果、ドーピング濃度を低減した場合、直列抵抗増加に伴う発熱量の増加に依って発光強度の低下を誘発し、内部損失を減少させることで実現されるであろう光出力の増加を打ち消してしまい、期待される高い光出力を得られなくなる。   However, it is known that p-type semiconductors have higher resistance than n-type semiconductors, and reducing the doping concentration increases the series resistance of the element. As a result, when the doping concentration is reduced, a decrease in light emission intensity is induced by an increase in the amount of heat generated with an increase in series resistance, and an increase in light output that would be realized by reducing internal loss is counteracted. Therefore, the expected high light output cannot be obtained.

本発明者等は、光分布をn側に偏在させることでp側半導体に於けるドーピングに依る損失を低減することも目的とし、図8の要部切断正面図として表してある半導体レーザを試作した。   The present inventors have made a prototype of a semiconductor laser represented as a cut-away front view of the main part of FIG. 8 in order to reduce the loss due to doping in the p-side semiconductor by unevenly distributing the light distribution to the n-side. did.

図8に於いて、1はn型InP基板、2はn型四元GaInAsP光ガイド層、3は活性層、4はp型InP埋め込み層、5はn型InP電流ブロック層、6はp型InPクラッド層、7はp型GaInAsPコンタクト層、8はSiO2 パッシベーション層、9はp側電極、10はn側電極、11はpnブロック層厚をそれぞれ示している。 In FIG. 8, 1 is an n-type InP substrate, 2 is an n-type quaternary GaInAsP light guide layer, 3 is an active layer, 4 is a p-type InP buried layer, 5 is an n-type InP current blocking layer, and 6 is a p-type. InP cladding layer, 7 is a p-type GaInAsP contact layer, 8 is a SiO 2 passivation layer, 9 is a p-side electrode, 10 is an n-side electrode, and 11 is a pn block layer thickness.

図から判るように、この半導体レーザでは、活性層3のn側にn型四元GaInAsP光ガイド層2、例えば、厚さ0.75μm、組成波長0.95μmのn型GaInAsP光ガイド層2を設けたことで内部損失を低減したところに特徴があり、レーザ発振のしきい値直後に於ける駆動電流対光出力の変換効率を増大するのに成功した。   As can be seen from this figure, in this semiconductor laser, an n-type quaternary GaInAsP light guide layer 2, for example, an n-type GaInAsP light guide layer 2 having a thickness of 0.75 μm and a composition wavelength of 0.95 μm is provided on the n side of the active layer 3. The internal loss was reduced by the provision of this, and it succeeded in increasing the conversion efficiency of the drive current versus the optical output immediately after the threshold of laser oscillation.

然しながら、活性層やガイド層などを含む導波路コアに於ける等価屈折率が高くなってしまった結果、横モードのカットオフ幅が3.2μmから2.4μmと狭くなり、結果として活性層幅を狭くせざるを得なくなり、光出力の飽和レベルが下がってしまった。   However, as the equivalent refractive index in the waveguide core including the active layer and the guide layer becomes high, the cut-off width of the transverse mode is narrowed from 3.2 μm to 2.4 μm, resulting in the active layer width. The light output saturation level has been lowered.

また、アンリツ(株)の山田らは、活性層の下側、即ち、n側に厚い四元混晶半導体層を堆積し、光分布をn側に局在化させることで、結果的にp側半導体に存在する光の分布を減少させて内部損失の低減に成功している(例えば非特許文献1及び非特許文献2を参照。)   Yamada et al. Of Anritsu Co., Ltd. deposited a thick quaternary mixed crystal semiconductor layer on the lower side of the active layer, that is, on the n side, and localized the light distribution on the n side. The internal loss has been reduced by reducing the distribution of light existing in the side semiconductor (see, for example, Non-Patent Document 1 and Non-Patent Document 2).

然しながら、非特許文献1及び2に見られる先行技術では、四元クラッド層であるとしている0.95μm組成の半導体混晶はGa組成が2.8%、As組成が5.8%と小さい為、示されているように7.5μmまで厚く堆積した場合、偏析、歪み、欠陥などが発生し易い。また、四元混晶半導体は二元半導体であるInP基板に比較して熱抵抗が大きいので、厚い四元半導体層の存在は、熱の放散を妨げ、高出力動作にとって弊害となる。更にまた、光のn側への偏在効果を増す為にn側のメサ高さを低くした場合には、電流ブロック層の厚さが非常に薄いものとなり、高電流動作、即ち、高電圧印加時に於ける電流ブロック層の耐圧に問題を生じる。   However, in the prior arts shown in Non-Patent Documents 1 and 2, the 0.95 μm semiconductor mixed crystal, which is a quaternary cladding layer, has a small Ga composition of 2.8% and an As composition of 5.8%. As shown, when the film is deposited to a thickness of 7.5 μm, segregation, distortion, and defects are likely to occur. In addition, since the quaternary mixed crystal semiconductor has a higher thermal resistance than the InP substrate which is a binary semiconductor, the presence of a thick quaternary semiconductor layer hinders heat dissipation and is detrimental to high output operation. Furthermore, when the n-side mesa height is lowered in order to increase the uneven distribution effect of light on the n-side, the thickness of the current blocking layer becomes very thin and high current operation, that is, high voltage application. At times, there is a problem with the withstand voltage of the current blocking layer.

図9はn側のメサ高さを低くした半導体レーザを表す要部切断正面図であり、図8に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 9 is a front view of a principal part showing a semiconductor laser having a lower n-side mesa height, and the same symbols as those used in FIG. 8 represent the same parts or have the same meaning.

図から看取できるように、n型四元光ガイド層2が厚く形成され、また、n側のメサ高さは低くなっていて、pnブロック層厚11は図8に示した半導体レーザに比較して遙に薄くなる。
Yasuaki Nagashima et al.、「Novel Asymmetric−Cladding 1.48−μm Pump Laser With Extremely High Slope Efficiency and CW Output Power of>1W」、IEEE/LEOS AnnualMeeting 2002,paper No.PDI.4 山田 敦史 他、「2003年 電子情報通信学会総合大会」、C−4−13
As can be seen from the figure, the n-type quaternary light guide layer 2 is formed thick, the mesa height on the n side is low, and the pn block layer thickness 11 is comparable to that of the semiconductor laser shown in FIG. Then it becomes thinner.
Yasuaki Nagashima et al. , “Novel Asymmetric-Cladding 1.48-μm Pump Laser With Extremely High Slope Efficiency and CW Output Power of> 1W”, IEEE / LEOS Annual Meet. PDI. 4 Atsushi Yamada et al., “2003 IEICE General Conference”, C-4-13

本発明では、メサ部分の活性層n側直下にn型四元ガイド層を設けるのであるが、そのn型四元ガイド層を薄くすることを可能にし、そして、pnブロック層厚を十分に厚くできるようにして耐圧を向上することを可能にする。換言すると、n側への光の局在度合いと組成波長(=屈折率)並びにpnブロック層厚とを独立に設定できるようにする。   In the present invention, the n-type quaternary guide layer is provided immediately below the mesa portion on the active layer n side. However, the n-type quaternary guide layer can be made thin, and the pn block layer thickness is sufficiently increased. This makes it possible to improve the breakdown voltage. In other words, the degree of localization of light on the n side, the composition wavelength (= refractive index), and the pn block layer thickness can be set independently.

また、p層及びn層の厚さと組成波長(=屈折率)を独立に設定できるようにして半導体レーザ構造の設計自由度を増大する。   Further, the thickness of the p layer and the n layer and the composition wavelength (= refractive index) can be set independently to increase the degree of freedom in designing the semiconductor laser structure.

更にまた、半絶縁性半導体埋め込み型電流阻止層に於ける層厚を十分に厚くすることを可能にして高耐圧を維持できるようにすると共に電流ブロック層及びn層に於ける厚さと組成波長を独立に設定できるようにして、レーザ構造の設計自由度を向上しようとする。   Furthermore, it is possible to sufficiently increase the layer thickness in the semi-insulating semiconductor buried type current blocking layer so that a high breakdown voltage can be maintained, and the thickness and composition wavelength in the current blocking layer and the n layer can be set. An attempt is made to improve the degree of freedom in designing the laser structure by enabling independent setting.

本発明に依る半導体発光装置に於いては、n型化合物半導体基板(例えば、n型InP基板1)と、該基板上で軸方向に延在して導電型がn型であるn側光ガイド層(例えば、n型四元GaInAsP光ガイド層2)を含むメサ構造と、該メサ構造に於けるn側光ガイド層上に延在する活性層(例えば、活性層3)と、該活性層上に形成され導電型がp型であるp側クラッド層(例えば、p型クラッド層6)と、該p側クラッド層と電気的に接続されたp側電極(例えば、p側電極9)及び該基板に電気的に接続されたn側電極(例えば、n側電極10)と、該メサ構造の両側を埋め込んだ少なくとも1層以上の半導体層からなる電流ブロック層(例えば、p型四元GaInAsP埋め込み層12)とからなり、該n側光ガイド層の屈折率が該基板の屈折率に比較して大きく、且つ、該n側光ガイド層に於けるメサ側面を埋め込む電流ブロック層の少なくとも一部の屈折率が該基板の屈折率に比較して大であることが基本になっている。   In a semiconductor light emitting device according to the present invention, an n-type compound semiconductor substrate (for example, n-type InP substrate 1) and an n-side light guide that extends in the axial direction on the substrate and has an n-type conductivity type A mesa structure including a layer (eg, n-type quaternary GaInAsP light guide layer 2), an active layer (eg, active layer 3) extending on the n-side light guide layer in the mesa structure, and the active layer A p-side cladding layer (for example, p-type cladding layer 6) formed on the p-type, and a p-side electrode (for example, p-side electrode 9) electrically connected to the p-side cladding layer; An n-side electrode (for example, n-side electrode 10) electrically connected to the substrate and a current blocking layer (for example, p-type quaternary GaInAsP) including at least one semiconductor layer embedded on both sides of the mesa structure And the refractive index of the n-side light guide layer is The refractive index of the current blocking layer embedded in the mesa side surface of the n-side light guide layer is larger than the refractive index of the substrate and larger than the refractive index of the substrate. It is basic.

前記手段を採ることに依り、メサ部分のn側ガイド層を薄く、例えば0.7μm程度にしても十分であり、従って、結晶欠陥の発生は抑制される。また、pnブロック層の厚さを十分に厚く取れる為、耐圧も十分な値を確保することができ、換言すると、n側への光の局在度合いとpnブロック層厚を独立に設定できる旨の利点がある。更にまた、p層及びn層の厚さと組成波長(屈折率)を独立に設定できるので、レーザ構造の設計自由度は向上した。そして、メサ部分の埋め込みにpnブロック層を用いた半導体レーザのみでなく、半絶縁性半導体埋め込み型電流ブロック層を用いる半導体レーザの場合であっても、電流ブロック層厚を十分に厚くすることができるので、耐圧を高く維持することができ、しかも、電流ブロック層及びn層に於ける厚さと組成波長を独立に設定できるので、レーザ構造の設計自由度を向上することができた。これに依り、より広い活性層幅と、小さな内部損失を同時に実現することが可能となり、その結果、より高い光出力で動作させることができるようになった。   By adopting the above means, it is sufficient to make the n-side guide layer in the mesa portion thin, for example, about 0.7 μm, and therefore, the generation of crystal defects is suppressed. Further, since the pn block layer can be made sufficiently thick, a sufficient breakdown voltage can be secured, in other words, the degree of localization of light on the n side and the pn block layer thickness can be set independently. There are advantages. Furthermore, since the thickness and composition wavelength (refractive index) of the p layer and n layer can be set independently, the degree of freedom in designing the laser structure has been improved. The current block layer thickness can be sufficiently increased not only in a semiconductor laser using a pn block layer for embedding a mesa portion but also in a semiconductor laser using a semi-insulating semiconductor embedded type current block layer. Therefore, the withstand voltage can be maintained high, and the thickness and composition wavelength in the current blocking layer and the n layer can be set independently, so that the degree of freedom in designing the laser structure can be improved. As a result, a wider active layer width and a smaller internal loss can be realized at the same time. As a result, it is possible to operate with a higher light output.

図1は本発明を実施する為の一形態である半導体レーザを表す要部切断正面図であり、図8及び図9に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。   FIG. 1 is a front view of a principal part showing a semiconductor laser which is an embodiment for carrying out the present invention. The same symbols as those used in FIGS. 8 and 9 represent the same parts or have the same meanings. Shall have.

図に於いて、1はn型InP基板、2はn型四元GaInAsP光ガイド層、3は活性層、4はp型InP埋め込み層、5はn型InP電流ブロック層、6はp型InPクラッド層、7はp型GaInAsPコンタクト層、8はSiO2 パッシベーション層、9はp側電極、10はn側電極、11はpnブロック層厚、12はp型四元GaInAsP埋め込み層をそれぞれ示している。 In the figure, 1 is an n-type InP substrate, 2 is an n-type quaternary GaInAsP light guide layer, 3 is an active layer, 4 is a p-type InP buried layer, 5 is an n-type InP current blocking layer, and 6 is a p-type InP. The cladding layer, 7 is a p-type GaInAsP contact layer, 8 is a SiO 2 passivation layer, 9 is a p-side electrode, 10 is an n-side electrode, 11 is a pn block layer thickness, and 12 is a p-type quaternary GaInAsP buried layer. Yes.

図示の半導体レーザでは、メサ部分に於ける活性層3のn側に基板1よりもエネルギバンドギャップが若干狭い、従って、屈折率が若干高いn型四元光ガイド層2を配設することで光の分布がn側に偏在するようにしてある。そして、メサ部分とメサ脇との間の屈折率差を小さくして横高次モードのカットオフ幅を拡大する為、メサ部分の側面に於いて活性層3の位置よりも低く、且つ、活性層3に出来るだけ近接した位置にp型InP埋め込み層4に比較してエネルギバンドギャップが若干狭い、従って、屈折率が高い半導体層、即ち、p型四元埋め込み層12を配設してある。このp型四元埋め込み層12をp型にドーピングした理由は、pnブロック厚11を従来の埋め込み構造と少なくとも同じ厚さ分だけ確保する為である。   In the illustrated semiconductor laser, an n-type quaternary light guide layer 2 having an energy band gap slightly narrower than that of the substrate 1 and thus having a slightly higher refractive index is disposed on the n side of the active layer 3 in the mesa portion. The light distribution is unevenly distributed on the n side. In order to reduce the refractive index difference between the mesa portion and the side of the mesa and increase the cut-off width of the lateral higher-order mode, the side surface of the mesa portion is lower than the position of the active layer 3 and active. A semiconductor layer having a slightly narrower energy band gap than the p-type InP buried layer 4 and thus having a high refractive index, that is, a p-type quaternary buried layer 12 is disposed as close as possible to the layer 3. . The reason why the p-type quaternary buried layer 12 is doped p-type is to secure the pn block thickness 11 by at least the same thickness as that of the conventional buried structure.

また、前記説明したpnブロック構造ではなく、p型InP埋め込み層4の代わりに半絶縁性半導体埋め込み型電流阻止層を用いる半導体レーザの場合であっても、前記同様、メサ部分の側面に於いて活性層3の位置よりも低く、且つ、活性層3に出来るだけ近接した位置に前記半絶縁性半導体埋め込み型電流阻止層に比較してエネルギバンドギャップが若干狭い、従って、屈折率が若干高い半絶縁性半導体層を両側に配設する。   Even in the case of a semiconductor laser using a semi-insulating semiconductor buried type current blocking layer instead of the p-type InP buried layer 4 instead of the pn block structure described above, the side surface of the mesa portion is the same as described above. The energy band gap is slightly narrower than the position of the active layer 3 and as close as possible to the active layer 3 as compared with the semi-insulating semiconductor buried type current blocking layer. Therefore, the refractive index is slightly higher. Insulating semiconductor layers are disposed on both sides.

図2は本発明に依る実施例1を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、21はn型InP基板、22は組成波長950nmで厚さ750nmのn型GaInAsP光ガイド層、23はPL(photoluminescence)波長1450nmのGaInAsPからなるMQW(multiple quantum wells)活性層、24はp型InP電流ブロック層、25は組成波長950nmで厚さ750nmのp型GaInAsP電流ブロック層、26はp型InP電流ブロック層、27はn型InP電流ブロック層、28はp型InPクラッド層、29は厚さ500nmのp型GaInAsPコンタクト層、30は厚さ300nmのSiO2 からなるパッシベーション層、31はp側電極、32はn側電極をそれぞれ示している。尚、Wは活性層23の幅を示していて、ここでは4.0μmであり、また、この半導体レーザでは、p型InP電流ブロック層24は省略しても良い。更にまた、MQW活性層23とp型InPクラッド層28との間にn型GaInAsP光ガイド層22よりも薄いp型或いはノンドープ四元GaInAsP光ガイド層を挿入しても良い。更にまた、n型GaInAsP光ガイド層22に於けるMQW活性層23に接している側の一部或いは全部がノンドープであっても良い。 FIG. 2 is a perspective view showing a principal part of a semiconductor laser for explaining the first embodiment according to the present invention. In FIG. 2, 21 is an n-type InP substrate, 22 is an n-type having a composition wavelength of 950 nm and a thickness of 750 nm. GaInAsP light guide layer, 23 is an MQW (multiple quantum wells) active layer made of GaInAsP having a PL (photoluminescence) wavelength of 1450 nm, 24 is a p-type InP current blocking layer, 25 is a p-type GaInAsP current block having a composition wavelength of 950 nm and a thickness of 750 nm 26 is a p-type InP current blocking layer, 27 is an n-type InP current blocking layer, 28 is a p-type InP cladding layer, 29 is a p-type GaInAsP contact layer having a thickness of 500 nm, and 30 is made of SiO 2 having a thickness of 300 nm. Passivation layer, 31 is p-side electrode, 32 is n-side Each electrode is shown. Incidentally, W indicates the width of the active layer 23, which is 4.0 μm here, and in this semiconductor laser, the p-type InP current blocking layer 24 may be omitted. Furthermore, a p-type or non-doped quaternary GaInAsP light guide layer thinner than the n-type GaInAsP light guide layer 22 may be inserted between the MQW active layer 23 and the p-type InP cladding layer 28. Furthermore, part or all of the n-type GaInAsP light guide layer 22 on the side in contact with the MQW active layer 23 may be non-doped.

図2に見られる実施例1の半導体レーザは、図1について概略を説明した半導体レーザを具体的に説明したものであり、その作用や効果は変わりない。   The semiconductor laser of Example 1 seen in FIG. 2 is a specific description of the semiconductor laser outlined in FIG. 1, and its operation and effects remain unchanged.

図3は本発明に依る実施例2を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、33はn型InP基板、34は高さ750nmのリブ導波路型に加工した組成波長950nmで厚さ1500nmのn型GaInAsP光ガイド層、35はPL波長1450nmのGaInAsPからなるMQW活性層、36は組成波長950nmで厚さ750nmのp型GaInAsP電流ブロック層、37はp型InP電流ブロック層、38はn型InP電流ブロック層、39はp型InPクラッド層、40は厚さ500nmのp型GaInAsPコンタクト層、41は厚さ300nmのSiO2 からなるパッシベーション層、42はp側電極、43はn側電極をそれぞれ示している。尚、実施例2では、n型InP基板とp型GaInAsP電流ブロック層36との間にp型InP層は存在しないが、実施例1と同様、p型InP電流ブロック層24を介挿しても良い。更にまた、MQW活性層35とp型InPクラッド層39との間にn型GaInAsP光ガイド層34よりも薄いp型或いはノンドープ四元GaInAsP光ガイド層を挿入しても良い。 FIG. 3 is a perspective view of a principal part showing a semiconductor laser for explaining the second embodiment according to the present invention. In FIG. 3, 33 is an n-type InP substrate, and 34 is a rib waveguide type having a height of 750 nm. An n-type GaInAsP light guide layer having a composition wavelength of 950 nm and a thickness of 1500 nm, 35 an MQW active layer made of GaInAsP having a PL wavelength of 1450 nm, 36 a p-type GaInAsP current blocking layer having a composition wavelength of 950 nm and a thickness of 750 nm, and 37 a p-type InP current blocking layer, 38 is an n-type InP current blocking layer, 39 is a p-type InP cladding layer, 40 is a p-type GaInAsP contact layer having a thickness of 500 nm, 41 is a passivation layer made of SiO 2 having a thickness of 300 nm, and 42 is ap Side electrodes 43 are n-side electrodes, respectively. In the second embodiment, there is no p-type InP layer between the n-type InP substrate and the p-type GaInAsP current blocking layer 36. However, as in the first embodiment, the p-type InP current blocking layer 24 may be inserted. good. Furthermore, a p-type or non-doped quaternary GaInAsP light guide layer thinner than the n-type GaInAsP light guide layer 34 may be inserted between the MQW active layer 35 and the p-type InP cladding layer 39.

図4は本発明に依る実施例3を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、44はn型InP基板、45は組成波長950nmで厚さ750nmのn型GaInAsP光ガイド層、46はPL波長1450nmのGaInAsPからなるMQW活性層、47はp型InPクラッド層、48はp型GaInAsPコンタクト層、49はFeドープ半絶縁性InP電流ブロック層、50は組成波長950nmで厚さ750nmのFeドープ半絶縁性GaInAsP電流ブロック層、51はFeドープ半絶縁性InP電流ブロック層、52は厚さ300nmのSiO2 からなるパッシベーション層、53はp側電極、54はn側電極をそれぞれ示している。尚、活性層46の幅は4.0μmであり、又、この実施例3では、Feドープ半絶縁性InP層49は省略しても良い。更に、n型GaInAsP光ガイド層45に於けるMQW活性層46に接している側の一部或いは全部がノンドープで構成されていても良い。 FIG. 4 is a perspective view of a principal part showing a semiconductor laser for explaining a third embodiment according to the present invention. In FIG. 4, 44 is an n-type InP substrate, 45 is an n-type having a composition wavelength of 950 nm and a thickness of 750 nm. GaInAsP light guide layer, 46 is an MQW active layer made of GaInAsP with a PL wavelength of 1450 nm, 47 is a p-type InP cladding layer, 48 is a p-type GaInAsP contact layer, 49 is a Fe-doped semi-insulating InP current blocking layer, and 50 is a composition wavelength Fe-doped semi-insulating GaInAsP current blocking layer having a thickness of 750 nm and a thickness of 750 nm, 51 is a Fe-doped semi-insulating InP current blocking layer, 52 is a passivation layer made of SiO 2 having a thickness of 300 nm, 53 is a p-side electrode, and 54 is n Each side electrode is shown. The width of the active layer 46 is 4.0 μm, and the Fe-doped semi-insulating InP layer 49 may be omitted in the third embodiment. Further, part or all of the n-type GaInAsP light guide layer 45 on the side in contact with the MQW active layer 46 may be non-doped.

図5は本発明に依る実施例4を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、55はn型InP基板、56は組成波長950nmで厚さ750nmのn型GaInAsP光ガイド層、57はPL波長1450nmのGaInAsPからなるMQW活性層、58は組成波長950nmで厚さ750nmのFeドープ半絶縁性GaInAsP電流ブロック層、59はFeドープ半絶縁性InP電流ブロック層、60はn型InP電流ブロック層、61はp型InPクラッド層、62は厚さ500nmのp型GaInAsPコンタクト層、63は厚さ300nmのSiO2 からなるパッシベーション層、64はp側電極、65はn側電極をそれぞれ示している。尚、活性層57の幅は4.0μmであり、また、この実施例4では、n型InP基板55と半絶縁性GaInAsP電流ブロック層58との間にFeドープ半絶縁性InP層は存在しないが、実施例3と同様、Feドープ半絶縁性InP電流ブロック層を介挿しても良い。 FIG. 5 is a perspective view showing a principal part of a semiconductor laser for explaining a fourth embodiment according to the present invention. In the figure, 55 is an n-type InP substrate, 56 is an n-type having a composition wavelength of 950 nm and a thickness of 750 nm. GaInAsP light guide layer, 57 is an MQW active layer made of GaInAsP with a PL wavelength of 1450 nm, 58 is a Fe-doped semi-insulating GaInAsP current blocking layer having a composition wavelength of 950 nm and a thickness of 750 nm, 59 is a Fe-doped semi-insulating InP current blocking layer, Reference numeral 60 denotes an n-type InP current blocking layer, 61 denotes a p-type InP cladding layer, 62 denotes a p-type GaInAsP contact layer having a thickness of 500 nm, 63 denotes a passivation layer made of SiO 2 having a thickness of 300 nm, 64 denotes a p-side electrode, 65 denotes N-side electrodes are shown respectively. The width of the active layer 57 is 4.0 μm, and in this Example 4, there is no Fe-doped semi-insulating InP layer between the n-type InP substrate 55 and the semi-insulating GaInAsP current blocking layer 58. However, as in Example 3, an Fe-doped semi-insulating InP current blocking layer may be interposed.

図6は本発明に依る実施例5を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、66はp型InP基板、67はPL波長1450nmのGaInAsPからなるMQW活性層、68は組成波長950nmで厚さ750nmのn型GaInAsP光ガイド層、69はp型InP電流ブロック層、70はn型InP電流ブロック層、71は組成波長950nmで厚さ750nmのp型GaInAsP電流ブロック層、72はp型InP電流ブロック層、73はn型InPクラッド層、74は厚さ500nmのn型GaInAsPコンタクト層、75は厚さ300nmのSiO2 からなるパッシベーション層、76はn側電極、77はp側電極をそれぞれ示している。尚、活性層層67の幅は4.0μmである。また、実施例5を作製する際には、メサの頂面近傍で、n型InP電流ブロック層70とn型InPクラッド層73とが短絡しないように注意する必要がある。 FIG. 6 is a perspective view showing a principal part of a semiconductor laser for explaining a fifth embodiment of the present invention. In the figure, 66 is a p-type InP substrate, and 67 is an MQW active layer made of GaInAsP having a PL wavelength of 1450 nm. 68 is an n-type GaInAsP light guide layer having a composition wavelength of 950 nm and a thickness of 750 nm, 69 is a p-type InP current blocking layer, 70 is an n-type InP current blocking layer, and 71 is a p-type GaInAsP current having a composition wavelength of 950 nm and a thickness of 750 nm. Block layer, 72 is p-type InP current blocking layer, 73 is n-type InP cladding layer, 74 is n-type GaInAsP contact layer having a thickness of 500 nm, 75 is a passivation layer made of SiO 2 having a thickness of 300 nm, 76 is an n-side electrode , 77 indicate p-side electrodes, respectively. The active layer 67 has a width of 4.0 μm. Further, when fabricating the fifth embodiment, care must be taken so that the n-type InP current blocking layer 70 and the n-type InP cladding layer 73 are not short-circuited in the vicinity of the top surface of the mesa.

図7は本発明に依る実施例6を説明する為の半導体レーザを表す要部斜面図であり、図に於いて、78はp型InP基板、79はPL波長1450nmのGaInAsPからなるMQW活性層、80は組成波長950nmで厚さ750nmのn型GaInAsP光ガイド層、81はp型InP電流ブロック層、82はn型InP電流ブロック層、83は組成波長950nmのp型GaInAsP電流ブロック層、84はn型InPクラッド層、85は厚さ500nmのn型GaInAsPコンタクト層、86は厚さ300nmのSiO2 からなるパッシベーション層、87はn側電極、88はp側電極をそれぞれ示している。尚、活性層層79の幅は4.0μmである。また、実施例6を作製する際には、メサの頂面近傍で、n型InP電流ブロック層82とn型InPクラッド層84とが短絡しないように注意する必要がある。 FIG. 7 is a perspective view showing a principal part of a semiconductor laser for explaining a sixth embodiment according to the present invention. In FIG. 7, 78 is a p-type InP substrate, 79 is an MQW active layer made of GaInAsP having a PL wavelength of 1450 nm. , 80 is an n-type GaInAsP light guide layer having a composition wavelength of 950 nm and a thickness of 750 nm, 81 is a p-type InP current blocking layer, 82 is an n-type InP current blocking layer, 83 is a p-type GaInAsP current blocking layer having a composition wavelength of 950 nm, 84 Denotes an n-type InP cladding layer, 85 denotes an n-type GaInAsP contact layer having a thickness of 500 nm, 86 denotes a passivation layer made of SiO 2 having a thickness of 300 nm, 87 denotes an n-side electrode, and 88 denotes a p-side electrode. The active layer 79 has a width of 4.0 μm. Further, when fabricating the sixth embodiment, care must be taken so that the n-type InP current blocking layer 82 and the n-type InP cladding layer 84 are not short-circuited in the vicinity of the top surface of the mesa.

前記説明した各実施例では、半導体レーザを構成する材料として、InP基板上に作製したGaInAsP系化合物半導体を用いたが、これをGaAlInAs系化合物半導体に代替することができ、その他、半導体レーザを構成することができる材料を組み合わせても同効である。   In each of the embodiments described above, a GaInAsP-based compound semiconductor fabricated on an InP substrate is used as a material constituting the semiconductor laser, but this can be replaced with a GaAlInAs-based compound semiconductor. The same effect can be obtained by combining materials that can be used.

本発明に於いては、前記説明した実施例を含め、多くの形態で実施することができ、以下、それを付記として例示する。   In the present invention, the present invention can be implemented in many forms including the above-described embodiment, which will be exemplified below as supplementary notes.

(付記1)
n型化合物半導体基板と、
該基板上で軸方向に延在して導電型がn型であるn側光ガイド層を含むメサ構造と、
該メサ構造に於けるn側光ガイド層上に延在する活性層と、
該活性層上に形成され導電型がp型であるp側クラッド層と、
該p側クラッド層と電気的に接続されたp側電極及び該基板に電気的に接続されたn側電極と、
該メサ構造の両側を埋め込んだ少なくとも1層以上の半導体層からなる電流ブロック層とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大きく、且つ、該n側光ガイド層に於けるメサ側面を埋め込む電流ブロック層の少なくとも一部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
(Appendix 1)
an n-type compound semiconductor substrate;
A mesa structure including an n-side light guide layer extending in an axial direction on the substrate and having an n-type conductivity;
An active layer extending on the n-side light guide layer in the mesa structure;
A p-side cladding layer formed on the active layer and having a p-type conductivity;
A p-side electrode electrically connected to the p-side cladding layer and an n-side electrode electrically connected to the substrate;
A current blocking layer composed of at least one semiconductor layer embedded on both sides of the mesa structure;
The refractive index of the n-side light guide layer is larger than the refractive index of the substrate, and the refractive index of at least a part of the current blocking layer embedding the mesa side surface in the n-side light guide layer is A semiconductor light emitting device characterized by being larger than a refractive index.

(付記2)
電流ブロック層がp型半導体層とn型半導体層とを組み合わせて構成したpnpnサイリスタ構造を成し、屈折率が基板の屈折率に比較して大きい該電流ブロック層に於ける一部の導電型がp型であること
を特徴とする付記1記載の半導体発光装置。
(Appendix 2)
The current blocking layer has a pnpn thyristor structure configured by combining a p-type semiconductor layer and an n-type semiconductor layer, and a part of the conductivity type in the current blocking layer having a refractive index larger than the refractive index of the substrate. The semiconductor light-emitting device according to appendix 1, wherein p is a p-type.

(付記3) 電流ブロック層が高抵抗半絶縁性半導体層で構成され、該電流ブロック層の少なくとも一部の屈折率が基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
(Appendix 3) A semiconductor light-emitting device, wherein the current blocking layer is formed of a high-resistance semi-insulating semiconductor layer, and the refractive index of at least a part of the current blocking layer is larger than the refractive index of the substrate. .

(付記4)
導電型がn型であるn側光ガイド層の厚さが0.5μm以上2μm以下であること
を特徴とする付記1乃至3の何れか1記載の半導体発光装置。
(Appendix 4)
4. The semiconductor light-emitting device according to any one of appendices 1 to 3, wherein the n-side light guide layer whose conductivity type is n-type has a thickness of 0.5 μm or more and 2 μm or less.

(付記5)
屈折率が基板の屈折率に比較して大である電流ブロック層の活性層に近い側に於ける界面がn側光ガイド層の活性層側界面と同一か、或いは、活性層側界面から遠い位置に在ること
を特徴とする付記1乃至4の何れか1記載の半導体発光装置。
(Appendix 5)
The interface on the side close to the active layer of the current blocking layer whose refractive index is larger than the refractive index of the substrate is the same as or far from the active layer side interface of the n-side light guide layer The semiconductor light-emitting device according to any one of appendices 1 to 4, wherein the semiconductor light-emitting device is located.

(付記6)
n型化合物半導体基板と、
該基板上で軸方向に延在して導電型がn型であるn側光ガイド層を含むリブ導波路型構造と、
該リブ導波路型構造に於けるn側光ガイド層上に延在する活性層と、
該活性層上並びに該リブ導波路上に形成され導電型がp型であるp側クラッド層と、
該p側クラッド層に電気的に接続されたp側電極及び該基板に電気的に接続されたn側電極とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大きく、且つ、該n側光ガイド層を含むリブ導波路型構造に於けるリブの両側を埋め込む電流ブロック層の少なくとも一部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
(Appendix 6)
an n-type compound semiconductor substrate;
A rib waveguide structure including an n-side light guide layer extending in an axial direction on the substrate and having an n-type conductivity;
An active layer extending on the n-side light guide layer in the rib waveguide structure;
A p-side cladding layer formed on the active layer as well as on the rib waveguide and having a p-type conductivity;
A p-side electrode electrically connected to the p-side cladding layer and an n-side electrode electrically connected to the substrate;
The refractive index of the n-side light guide layer is larger than the refractive index of the substrate, and at least one of the current blocking layers embedded on both sides of the rib in the rib waveguide structure including the n-side light guide layer. A semiconductor light emitting device characterized in that the refractive index of the portion is larger than the refractive index of the substrate.

(付記7)
電流ブロック層がp型半導体層とn型半導体層とを組み合わせて構成したpnpnサイリスタ構造を成し、屈折率が基板の屈折率に比較して大きい該電流ブロック層に於ける一部の導電型がp型であること
を特徴とする付記6記載の半導体発光装置。
(Appendix 7)
The current blocking layer has a pnpn thyristor structure configured by combining a p-type semiconductor layer and an n-type semiconductor layer, and a part of the conductivity type in the current blocking layer having a refractive index larger than that of the substrate. The semiconductor light-emitting device according to appendix 6, wherein p is a p-type.

(付記8)
導電型がn型であるn側光ガイド層の厚さが2μm以下であること
を特徴とする付記6或いは7記載の半導体発光装置。
(Appendix 8)
8. The semiconductor light-emitting device according to appendix 6 or 7, wherein the n-side light guide layer whose conductivity type is n-type has a thickness of 2 μm or less.

(付記9)
屈折率が基板の屈折率に比較して大である電流ブロック層の活性層に近い側に於ける界面がn側光ガイド層の活性層側界面と同一か、或いは、活性層側界面から遠い位置に在ること
を特徴とする付記6乃至8の何れか1記載の半導体発光装置。
(Appendix 9)
The interface on the side close to the active layer of the current blocking layer whose refractive index is larger than the refractive index of the substrate is the same as or far from the active layer side interface of the n-side light guide layer 9. The semiconductor light emitting device according to any one of appendices 6 to 8, wherein the semiconductor light emitting device is located.

(付記10) p型化合物半導体基板と、
該基板上で軸方向に延在して形成されたリブ導波路型構造及び該リブ導波路型構造上で同じく軸方向に延在する活性層及び該活性層上で同じく軸方向に延在する導電型がn型であるn側光ガイド層からなるメサ構造と、
該メサ構造上に形成され導電型がn型であるn側クラッド層と、
該n側クラッド層に電気的に接続されたn側電極及び該基板に電気的に接続されたp側電極とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大であり、且つ、該n側光ガイド層を含むメサ構造の両側を埋め込む電流ブロック層のうち、導電型がp型である電流ブロック層の少なくとも一部若しくは全部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
(Appendix 10) a p-type compound semiconductor substrate;
A rib waveguide structure formed extending in the axial direction on the substrate, an active layer extending in the axial direction on the rib waveguide structure, and extending in the axial direction on the active layer A mesa structure composed of an n-side light guide layer whose conductivity type is n-type,
An n-side cladding layer formed on the mesa structure and having an n-type conductivity;
An n-side electrode electrically connected to the n-side cladding layer and a p-side electrode electrically connected to the substrate;
Among the current blocking layers embedded in both sides of the mesa structure including the n-side light guide layer and having a refractive index larger than that of the substrate, the conductivity type is p-type. A semiconductor light emitting device characterized in that a refractive index of at least a part or all of the current blocking layer is larger than a refractive index of the substrate.

(付記11)
導電型がn型であるn側光ガイド層の厚さが0.5μm以上2μm以下であること
を特徴とする付記10記載の半導体発光装置。
(Appendix 11)
11. The semiconductor light-emitting device according to appendix 10, wherein the n-type light guide layer having a conductivity type of n-type has a thickness of not less than 0.5 μm and not more than 2 μm.

本発明を実施する為の一形態である半導体レーザを表す要部切断正面図である。It is a principal part cutting front view showing the semiconductor laser which is one form for implementing this invention. 本発明に依る実施例1を説明する為の半導体レーザを表す要部斜面図である。It is a principal part perspective view showing the semiconductor laser for demonstrating Example 1 by this invention. 本発明に依る実施例2を説明する為の半導体レーザを表す要部斜面図である。It is a principal part perspective view showing the semiconductor laser for demonstrating Example 2 by this invention. 本発明に依る実施例3を説明する為の半導体レーザを表す要部斜面図である。It is a principal part perspective view showing the semiconductor laser for demonstrating Example 3 by this invention. 本発明に依る実施例4を説明する為の半導体レーザを表す要部斜面図である。It is a principal part perspective view showing the semiconductor laser for demonstrating Example 4 by this invention. 本発明に依る実施例5を説明する為の半導体レーザを表す要部斜面図である。It is a principal part perspective view showing the semiconductor laser for demonstrating Example 5 by this invention. 本発明に依る実施例6を説明する為の半導体レーザを表す要部斜面図である。It is a principal part slope view showing the semiconductor laser for demonstrating Example 6 by this invention. 試作した半導体レーザを表す要部切断正面図である。It is a principal part cutting front view showing the semiconductor laser made as a trial. n側のメサ高さを低くした半導体レーザを表す要部切断正面図である。It is a principal part cutting front view showing the semiconductor laser which made mesa height lower on the n side.

符号の説明Explanation of symbols

1 n型InP基板
2 n型四元光ガイド層
3 活性層
4 p型InP埋め込み層
5 n型InP電流ブロック層
6 p型InPクラッド層
7 p型GaInAsPコンタクト層
8 SiO2 パッシベーション層
9 p側電極
10 n側電極
11 pnブロック厚
12 p型四元埋め込み層
1 n-type InP substrate 2 n-type quaternary light guide layer 3 active layer 4 p-type InP buried layer 5 n-type InP current blocking layer 6 p-type InP cladding layer 7 p-type GaInAsP contact layer 8 SiO 2 passivation layer 9 p-side electrode 10 n-side electrode 11 pn block thickness 12 p-type quaternary buried layer

Claims (5)

n型化合物半導体基板と、
該基板上で軸方向に延在して導電型がn型であるn側光ガイド層を含むメサ構造と、
該メサ構造に於けるn側光ガイド層上に延在する活性層と、
該活性層上に形成され導電型がp型であるp側クラッド層と、
該p側クラッド層と電気的に接続されたp側電極及び該基板に電気的に接続されたn側電極と、
該メサ構造の両側を埋め込んだ少なくとも1層以上の半導体層からなる電流ブロック層とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大きく、且つ、該n側光ガイド層に於けるメサ側面を埋め込む電流ブロック層の少なくとも一部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
an n-type compound semiconductor substrate;
A mesa structure including an n-side light guide layer extending in an axial direction on the substrate and having an n-type conductivity type;
An active layer extending on the n-side light guide layer in the mesa structure;
A p-side cladding layer formed on the active layer and having a p-type conductivity;
A p-side electrode electrically connected to the p-side cladding layer and an n-side electrode electrically connected to the substrate;
A current blocking layer composed of at least one semiconductor layer embedded on both sides of the mesa structure;
The refractive index of the n-side light guide layer is larger than the refractive index of the substrate, and the refractive index of at least a part of the current blocking layer embedding the mesa side surface in the n-side light guide layer is A semiconductor light emitting device having a large refractive index.
電流ブロック層がp型半導体層とn型半導体層とを組み合わせて構成したpnpnサイリスタ構造を成し、屈折率が基板の屈折率に比較して大きい該電流ブロック層に於ける一部の導電型がp型であること
を特徴とする請求項1記載の半導体発光装置。
The current blocking layer has a pnpn thyristor structure configured by combining a p-type semiconductor layer and an n-type semiconductor layer, and a part of the conductivity type in the current blocking layer having a refractive index larger than that of the substrate. 2. The semiconductor light-emitting device according to claim 1, wherein p is a p-type.
屈折率が基板の屈折率に比較して大である電流ブロック層の活性層に近い側に於ける界面がn側光ガイド層の活性層側界面と同一か、或いは、活性層側界面から遠い位置に在ること
を特徴とする請求項1或いは2記載の半導体発光装置。
The interface on the side close to the active layer of the current blocking layer whose refractive index is larger than the refractive index of the substrate is the same as or far from the active layer side interface of the n-side light guide layer 3. The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is located.
n型化合物半導体基板と、
該基板上で軸方向に延在して導電型がn型であるn側光ガイド層を含むリブ導波路型構造と、
該リブ導波路型構造に於けるn側光ガイド層上に延在する活性層と、
該活性層上並びに該リブ導波路上に形成され導電型がp型であるp側クラッド層と、
該p側クラッド層に電気的に接続されたp側電極及び該基板に電気的に接続されたn側電極とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大きく、且つ、該n側光ガイド層を含むリブ導波路型構造に於けるリブの両側を埋め込む電流ブロック層の少なくとも一部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
an n-type compound semiconductor substrate;
A rib waveguide structure including an n-side light guide layer extending in an axial direction on the substrate and having an n-type conductivity;
An active layer extending on the n-side light guide layer in the rib waveguide structure;
A p-side cladding layer formed on the active layer as well as on the rib waveguide and having a p-type conductivity;
A p-side electrode electrically connected to the p-side cladding layer and an n-side electrode electrically connected to the substrate;
The refractive index of the n-side light guide layer is larger than the refractive index of the substrate, and at least one of the current blocking layers embedded on both sides of the rib in the rib waveguide structure including the n-side light guide layer. A semiconductor light emitting device characterized in that the refractive index of the portion is larger than the refractive index of the substrate.
p型化合物半導体基板と、
該基板上で軸方向に延在して形成されたリブ導波路型構造及び該リブ導波路型構造上で同じく軸方向に延在する活性層及び該活性層上で同じく軸方向に延在する導電型がn型であるn側光ガイド層からなるメサ構造と、
該メサ構造上に形成され導電型がn型であるn側クラッド層と、
該n側クラッド層に電気的に接続されたn側電極及び該基板に電気的に接続されたp側電極とからなり、
該n側光ガイド層の屈折率が該基板の屈折率に比較して大であり、且つ、該n側光ガイド層を含むメサ構造の両側を埋め込む電流ブロック層のうち、導電型がp型である電流ブロック層の少なくとも一部若しくは全部の屈折率が該基板の屈折率に比較して大であること
を特徴とする半導体発光装置。
a p-type compound semiconductor substrate;
A rib waveguide structure formed extending in the axial direction on the substrate, an active layer extending in the axial direction on the rib waveguide structure, and extending in the axial direction on the active layer A mesa structure composed of an n-side light guide layer whose conductivity type is n-type,
An n-side cladding layer formed on the mesa structure and having an n-type conductivity;
An n-side electrode electrically connected to the n-side cladding layer and a p-side electrode electrically connected to the substrate;
Among the current blocking layers embedded in both sides of the mesa structure including the n-side light guide layer and having a refractive index larger than that of the substrate, the conductivity type is p-type. A semiconductor light emitting device characterized in that a refractive index of at least a part or all of the current blocking layer is larger than a refractive index of the substrate.
JP2004114934A 2004-04-09 2004-04-09 Semiconductor light emitting device Pending JP2005302910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114934A JP2005302910A (en) 2004-04-09 2004-04-09 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114934A JP2005302910A (en) 2004-04-09 2004-04-09 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2005302910A true JP2005302910A (en) 2005-10-27

Family

ID=35334066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114934A Pending JP2005302910A (en) 2004-04-09 2004-04-09 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2005302910A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159784A (en) * 1988-12-14 1990-06-19 Oki Electric Ind Co Ltd Semiconductor laser
JPH0513866A (en) * 1991-06-28 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPH065975A (en) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd Semiconductor laser
JP2001168466A (en) * 1999-12-08 2001-06-22 Yokogawa Electric Corp Semiconductor laser
JP2002057409A (en) * 2000-06-23 2002-02-22 Agere Systems Optoelectronics Guardian Corp Semiconductor laser and its fabricating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159784A (en) * 1988-12-14 1990-06-19 Oki Electric Ind Co Ltd Semiconductor laser
JPH0513866A (en) * 1991-06-28 1993-01-22 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element
JPH065975A (en) * 1992-06-22 1994-01-14 Matsushita Electric Ind Co Ltd Semiconductor laser
JP2001168466A (en) * 1999-12-08 2001-06-22 Yokogawa Electric Corp Semiconductor laser
JP2002057409A (en) * 2000-06-23 2002-02-22 Agere Systems Optoelectronics Guardian Corp Semiconductor laser and its fabricating method

Similar Documents

Publication Publication Date Title
JP5916414B2 (en) Optical semiconductor device
JP2008135786A (en) High power semiconductor laser diode
US20090116523A1 (en) Hybrid laser diode
WO2012101686A1 (en) Semiconductor light emitting element and light emitting device
JP4805887B2 (en) Semiconductor laser device
JP5093063B2 (en) Integrated semiconductor optical device and semiconductor optical device
JP2004273993A (en) Wavelength variable distribution reflecting type semiconductor laser device
JP2009130030A (en) Semiconductor laser
JP5489702B2 (en) Semiconductor optical device and integrated semiconductor optical device
US8111726B2 (en) Semiconductor laser device
JP2012009650A (en) Nitride semiconductor laser element and method of manufacturing the same
US20090147812A1 (en) Heterostructure, injector laser, semiconductor amplifying element and a semiconductor optical amplifier a final stage
WO2019207624A1 (en) Semiconductor optical integrated device
Huang et al. High-brightness slab-coupled optical waveguide laser arrays
KR100569040B1 (en) Semiconductor laser device
JP2005116644A (en) Semiconductor opto-electronic waveguide
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
JP2007103581A (en) Embedded semiconductor laser
JP2005302910A (en) Semiconductor light emitting device
CN110431720B (en) Optical semiconductor element
JP2018006590A (en) Optical semiconductor element
JPH0945986A (en) Semiconductor laser element
JP2011014694A (en) Semiconductor laser device
WO2020245866A1 (en) Optical device
KR100408531B1 (en) Laser diode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A131 Notification of reasons for refusal

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20091208

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20100406

Free format text: JAPANESE INTERMEDIATE CODE: A02