JP2005302714A - Electrode manufacturing device and method for fuel cell - Google Patents

Electrode manufacturing device and method for fuel cell Download PDF

Info

Publication number
JP2005302714A
JP2005302714A JP2005079913A JP2005079913A JP2005302714A JP 2005302714 A JP2005302714 A JP 2005302714A JP 2005079913 A JP2005079913 A JP 2005079913A JP 2005079913 A JP2005079913 A JP 2005079913A JP 2005302714 A JP2005302714 A JP 2005302714A
Authority
JP
Japan
Prior art keywords
electrode
transfer
material powder
electrolyte membrane
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005079913A
Other languages
Japanese (ja)
Other versions
JP5175423B2 (en
Inventor
Satoshi Sumiya
聡 角谷
Tatsuya Kawahara
竜也 川原
Keiichi Watanabe
恵一 渡辺
Tatsuya Hatanaka
達也 畑中
Tomo Morimoto
友 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2005079913A priority Critical patent/JP5175423B2/en
Publication of JP2005302714A publication Critical patent/JP2005302714A/en
Application granted granted Critical
Publication of JP5175423B2 publication Critical patent/JP5175423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Combination Of More Than One Step In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To surely manufacture a fine fuel cell electrode in accordance with a designed value by preventing reverse flight caused by reversed polarity of electrode material powder on the electrolyte membrane when the fuel cell electrode is manufactured by transfer printing of the electrode material powder on the electrolyte membrane by utilizing electrostatic force. <P>SOLUTION: A photoconductor drum 20 developing charged electrode material powder 5 in an electrode shape is put on the position apart from the electrolyte membrane 10 and a transfer printing roller 14, the transfer printing roller 14 is coated with resin 14a having high resistance value, or the photoconductor drum 20 is connected to a transfer printing high voltage power source 17 through resistance 18 having high resistance value to convert it to a high resistance member. A transfer printing electric field is formed by applying high voltage only for time when an electrode image on the photoconductor drum 20 is present in the upper part of the electrolyte membrane 10, and soon after transfer printing, by eliminating the transfer printing electric field of the transfer printing part by setting the transfer printing high voltage power source to 0V, reverse flight can be prevented. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は固体高分子型燃料電池に用いられる電極の製造装置と方法、特に静電力を利用して電極材料粉末を電解質膜に飛翔させるようにした、いわゆる乾式法による電極の製造装置と方法に関する。   TECHNICAL FIELD The present invention relates to an electrode manufacturing apparatus and method for use in a polymer electrolyte fuel cell, and more particularly to an electrode manufacturing apparatus and method by a so-called dry method in which an electrode material powder is allowed to fly to an electrolyte membrane using electrostatic force. .

燃料電池の1つとして固体高分子型燃料電池が知られており、図5に示す形態の膜電極接合体(MEA)50を主要な構成要素としている。膜電極接合体50、イオン交換膜である電解質膜51の一方側に燃料極側の電極52aと拡散層53aを積層し、他方の側に空気極側の電極52bと拡散層53bを積層した構造であり、拡散層53a、53b側をガス流路を備えたセパレータで挟持して、単セルと呼ばれる1つの燃料電池が形成される。   A polymer electrolyte fuel cell is known as one of the fuel cells, and a membrane electrode assembly (MEA) 50 having a configuration shown in FIG. 5 is a main component. A structure in which a fuel electrode side electrode 52a and a diffusion layer 53a are stacked on one side of a membrane electrode assembly 50 and an electrolyte membrane 51 which is an ion exchange membrane, and an air electrode side electrode 52b and a diffusion layer 53b are stacked on the other side. Thus, one fuel cell called a single cell is formed by sandwiching the diffusion layers 53a, 53b side with a separator having a gas flow path.

通常、電解質膜51にはナフィオン(登録商標)膜と呼ばれているものが用いられる。また、電極52a、52bの形成には、白金などの触媒成分を担持するカーボン担体と電気伝導性物質である電解質溶液との混合溶液(触媒インキ)を調整し、それを電解質膜51にスクリーン印刷法などにより塗布し乾燥して形成する方法(湿式法)と、電極材料を全く乾式で調合し、あるいは、前記した触媒インクから溶媒などを乾燥除去して粉末状の電極材料を帯電させた後、それを静電力を利用して搬送ローラなどに付着させ、付着した電極材料粉末を電解質膜51に転写し、定着ローラで定着する方法(乾式法)とが行われる。   Usually, what is called a Nafion (registered trademark) film is used as the electrolyte film 51. The electrodes 52a and 52b are formed by preparing a mixed solution (catalyst ink) of a carbon carrier carrying a catalyst component such as platinum and an electrolyte solution which is an electrically conductive material, and screen-printing it on the electrolyte membrane 51. After forming the electrode material by applying the method and drying (wet method), and preparing the electrode material completely dry, or drying and removing the solvent from the catalyst ink, and charging the powdered electrode material Then, a method (dry method) is performed in which it is attached to a conveying roller or the like using electrostatic force, the attached electrode material powder is transferred to the electrolyte film 51, and is fixed by a fixing roller.

乾式法として、特許文献1(特開2002−367616号公報)には、図6に示すように、帯電した電極材料粉末54を搬送ローラ57上に静電付着させ、このローラ57と転写用背面電極58間に電圧を印加して、ローラ57と背面電極58間に配置された電解質膜59に電極材料粉末54を静電付着させる方法と装置が記載されている。1つの実施の形態として、図示のように、背面電極58および電解質膜59を搬送ローラ57から隔てて配置しておき、搬送ローラ57上に付着した電極材料粉末54を、搬送ローラ57と背面電極58間に生成される電界により電解質膜59に向けて飛翔させて静電付着させると共に、搬送ローラ57に沿って電極材料粉末の転写パターンをコントロールする制御プレート60を設けるようにしたものも示される。なお、61は定着ロールである。   As a dry method, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-367616), as shown in FIG. 6, a charged electrode material powder 54 is electrostatically adhered onto a conveying roller 57, and this roller 57 and the back surface for transfer are used. A method and apparatus are described in which a voltage is applied between the electrodes 58 to electrostatically adhere the electrode material powder 54 to the electrolyte membrane 59 disposed between the roller 57 and the back electrode 58. As one embodiment, as shown in the figure, the back electrode 58 and the electrolyte membrane 59 are arranged separately from the transport roller 57, and the electrode material powder 54 adhered on the transport roller 57 is transferred to the transport roller 57 and the back electrode. Also shown is a control plate 60 that is made to fly toward the electrolyte membrane 59 by the electric field generated between the electrodes 58 and electrostatically adhere to it, and to control the transfer pattern of the electrode material powder along the conveying roller 57. . Reference numeral 61 denotes a fixing roll.

特許文献2(特開2003−163010号公報)あるいは特許文献3(特開2003−163011号公報)には、静電複写機でのように、帯電させた感光体ドラムに光を照射して除電し、所望の電極像のパターンに電極材料粉末を静電力で付着させ、それを感光体ドラムと圧接ローラにて電解質膜に圧接転写して所望の電極とする方法と装置が記載されている。   In Patent Document 2 (Japanese Patent Laid-Open No. 2003-163010) or Patent Document 3 (Japanese Patent Laid-Open No. 2003-163011), as in an electrostatic copying machine, the charged photosensitive drum is irradiated with light to eliminate static electricity. A method and an apparatus are described in which electrode material powder is attached to a desired electrode image pattern by electrostatic force, and is transferred to an electrolyte film by pressure contact with a photosensitive drum and a pressure roller to form a desired electrode.

特開2002−367616号公報JP 2002-367616 A 特開2003−163010号公報Japanese Patent Laid-Open No. 2003-163010 特開2003−163011号公報JP 2003-163011 A

上記した静電力を利用して搬送ローラ上の電極材料粉末を電解質膜に飛翔させる、あるいは感光体ドラムに所要パターンで静電付着した電極材料粉末を電解質膜に圧接転写する、燃料電池の電極製造方法は、触媒インクを塗布する湿式法と比較して、溶剤による電解質膜へのダメージ、電解質膜の膨潤・収縮および触媒インク乾燥時の電極のクラック発生などの問題を解決できる利点がある。本発明者らは乾式法による電極の製造に多く関与しているが、その過程で、精緻な電極像パターンを得ようとすると、搬送ローラ上に正確な電極材料粉末の電極像パターンが形成されなかったり、電解質膜に転写した電極像に乱れが生じることを経験した。その原因を知るべく、静電複写機の乾式転写と燃料電池電極を作製する場合での上記乾式法との異同について考えた。   Production of fuel cell electrodes by using the electrostatic force described above to cause the electrode material powder on the transport roller to fly to the electrolyte film, or to transfer the electrode material powder electrostatically attached to the photosensitive drum in the required pattern to the electrolyte film. Compared with the wet method in which the catalyst ink is applied, the method is advantageous in that it can solve problems such as damage to the electrolyte membrane by the solvent, swelling / shrinkage of the electrolyte membrane, and generation of cracks in the electrode when the catalyst ink is dried. The present inventors have been involved in the production of electrodes by a dry method, but in the process, an accurate electrode image pattern of electrode material powder is formed on the transport roller when trying to obtain a precise electrode image pattern. I experienced that there was no disturbance in the electrode image transferred to the electrolyte membrane. In order to know the cause, the difference between the dry transfer of the electrostatic copying machine and the dry method in the case of producing the fuel cell electrode was considered.

静電複写機やレーザプリンタなどにおいても静電力を利用した乾式複写(転写)が行われる。そこでは、先ず、複写像あるいは印刷像を感光体ドラム上に帯電分布として作り、現像ローラ上に薄層付着させた帯電トナーを、現像ローラと感光体ドラム間に高電圧を印加してクーロン力により感光体ドラム上の帯電分布にあわせて静電付着させる。次に、該感光体ドラムと転写ローラとの間に高電圧を印可し、その間に用紙を搬送させることによって、該用紙上に感光体ドラム上のトナーを静電転写する。その後、定着ローラでトナーを用紙に熱圧着して定着する、という転写方法が採られており、感光体ドラム上の帯電分布にあわせた正確な複写像が用紙上に得られている。   Electrostatic copying machines and laser printers also perform dry copying (transfer) using electrostatic force. First, a copier force is created by applying a high voltage between the developing roller and the photoconductive drum to the charged toner having a copy image or a printed image formed as a charge distribution on the photoconductive drum and having a thin layer deposited on the developing roller. To electrostatically adhere to the charge distribution on the photosensitive drum. Next, a high voltage is applied between the photosensitive drum and the transfer roller, and the paper is conveyed between them to electrostatically transfer the toner on the photosensitive drum onto the paper. Thereafter, a transfer method is adopted in which the toner is fixed on the paper by thermocompression with a fixing roller, and an accurate copy image in accordance with the charge distribution on the photosensitive drum is obtained on the paper.

上記の静電複写機での像形成方法と、前記した静電力を利用した燃料電池での電極製造方法は、原理的には同じであるのにかかわらず、電極製造においては、上記のように正確な転写像が得られない場合がある。その理由を実験をとおして次のように理解した。   Regardless of the principle that the image forming method in the electrostatic copying machine and the electrode manufacturing method in the fuel cell using the electrostatic force are the same in principle, in the electrode manufacturing, as described above. An accurate transfer image may not be obtained. The reason was understood through experiments as follows.

1.静電複写機のトナーは1014Ω程度の絶縁体であるのに対し、電極材料粉末は電極材料であり数Ω以下の導体である。また、静電複写機に使われる用紙は、表面抵抗率が109〜13Ω(吸湿性により環境によって変化する)の高抵抗であるが、電解質膜はそれと比較して低い抵抗値を示す(注1)し、電解質膜に電圧を加える、すなわち、高電界下で膜の表裏に電位差が生じると、導体としての挙動を示す。 1. The toner of the electrostatic copying machine is an insulator of about 10 14 Ω, whereas the electrode material powder is an electrode material and is a conductor of several Ω or less. In addition, a sheet used for an electrostatic copying machine has a high surface resistivity of 109 to 13 Ω (which varies depending on the environment due to hygroscopicity), but the electrolyte membrane exhibits a lower resistance value than that ( Note 1) When a voltage is applied to the electrolyte membrane, that is, when a potential difference occurs between the front and back surfaces of the membrane under a high electric field, it behaves as a conductor.

注1:厚さ5ミルの電解質膜(ナフィオン膜)の表面抵抗率をTREK社製の表面抵抗計Model 152にModel 152P−CRテストプローブを接続して測定すると、10V印加時にて2×10Ωと、低い抵抗値を示した。プローブをModel 152P−2Pに変え、2点法で抵抗を測っても、2×10Ωであった。同じ電解質膜をアルミ板の上に載せ、Model 152P−2Pの一方の端子を膜上に、もう一方の端子をアルミ板上に置いて測定しても、2×10Ωを示し、厚み方向にも低い抵抗材料であることが示された。 Note 1: When the surface resistivity of a 5 mil thick electrolyte membrane (Nafion membrane) is measured by connecting a Model 152P-CR test probe to a surface resistance meter Model 152 manufactured by TREK, 2 × 10 5 when 10 V is applied. A low resistance value was shown. Even when the probe was changed to Model 152P-2P and the resistance was measured by the two-point method, it was 2 × 10 5 Ω. Even when the same electrolyte membrane is placed on an aluminum plate and one terminal of Model 152P-2P is placed on the membrane and the other terminal is placed on the aluminum plate, the measurement shows 2 × 10 5 Ω, and the thickness direction It was also shown to be a low resistance material.

2.このような使用する材料物性の違いにより、静電力を利用して電極を製造する場合には、転写部で次のように問題が生じ、それが、精緻な転写像の形成を妨害している。   2. Due to the difference in the physical properties of the materials used, when manufacturing an electrode using electrostatic force, the following problems occur at the transfer portion, which hinders the formation of a precise transfer image. .

a.静電複写機では、感光体ドラムと用紙、転写ローラは、一般に、細部再現性をよくするために転写ローラが用紙を感光体ドラムに押し付けながら転写していく。これは、用紙の表面抵抗が109〜13Ω程度と高く、用紙紙面のみを帯電させてクーロン力によりトナーを感光体ドラムから用紙に転写できる。これに対し、燃料電池の電極製造では、用紙に相当する電解質膜の抵抗は2×10Ωと低く、導体としての挙動を示すことから、特許文献2あるいは3に記載のように、圧接転写する形態を用いると、転写ローラから電解質膜、電極材料粉末を通り感光体ドラム表面まで電流が流れる。このため、感光体ドラム上の電極材料粉末に電流が流れ込んで帯電荷量が変化し、感光体ドラムの帯電分布とは異なるものとなる。これにより、電極材料粉末が移動し、現像された電極像の形が変化してしまい、正確な電極像の転写を妨げる場合がある。 a. In an electrostatic copying machine, a photosensitive drum, a sheet, and a transfer roller are generally transferred while the transfer roller presses the sheet against the photosensitive drum in order to improve detail reproducibility. This is because the surface resistance of the paper is as high as about 10 9 to 13 Ω, and the toner can be transferred from the photosensitive drum to the paper by Coulomb force by charging only the paper surface of the paper. On the other hand, in the production of fuel cell electrodes, the resistance of the electrolyte membrane corresponding to the paper is as low as 2 × 10 5 Ω and exhibits a behavior as a conductor. Therefore, as described in Patent Document 2 or 3, pressure transfer With this configuration, current flows from the transfer roller through the electrolyte membrane and electrode material powder to the surface of the photosensitive drum. For this reason, an electric current flows into the electrode material powder on the photosensitive drum to change the charge amount, which is different from the charge distribution of the photosensitive drum. As a result, the electrode material powder moves and the shape of the developed electrode image changes, which may hinder accurate transfer of the electrode image.

b.特許文献1に記載される装置では、転写用高圧電源により背面電極(上記転写ローラに相当する)58と搬送ローラ27間、すなわち、転写部間に高電界を作り、電極材料粉末を電解質膜に静電付着させると、電極材料粉末は、高圧電源、背面電極、電解質膜と流れる電流により電荷を喪失して逆極性に帯電し、転写時と逆方向に静電力を受け、感光体ドラムに逆飛翔する転写異常を起こすことがある(高電界電極間に置かれた導体球の電極内反射現象)。また、所要量の付着量を得るのが容易でない場合が起こる。特許文献1の装置では、転写パターンをコントロールする制御プレート60を設けることにより、逆飛翔付着による電解質膜上の電極パターンの形状対策を行っているということもできるが、装置が複雑であり、高価な触媒を含んだ電極材料粉末が制御プレートに付着して利用効率が低下し、コスト高となる。さらに、装置を構成する他の部材から電解質膜59に電流がながれて、帯電した電極材料粉末の電荷が失われることに対する対策もなされていない。   b. In the apparatus described in Patent Document 1, a high electric field is created between the back electrode 58 (corresponding to the transfer roller) 58 and the conveying roller 27, that is, between the transfer portions, by a transfer high-voltage power source, and the electrode material powder is applied to the electrolyte membrane. When electrostatically adhering, the electrode material powder loses its charge due to the current flowing through the high-voltage power supply, back electrode, and electrolyte membrane, and is charged to the opposite polarity, receives electrostatic force in the direction opposite to that during transfer, and reverses to the photosensitive drum. It may cause a transfer abnormality that flies (reflection phenomenon inside the electrode of a conductor sphere placed between high electric field electrodes). In some cases, it is not easy to obtain the required amount of adhesion. In the apparatus of Patent Document 1, it can be said that the control pattern 60 for controlling the transfer pattern is provided to take measures against the shape of the electrode pattern on the electrolyte membrane by reverse flight adhesion, but the apparatus is complicated and expensive. The electrode material powder containing an appropriate catalyst adheres to the control plate and the utilization efficiency is lowered, resulting in an increase in cost. Further, no measures are taken against the loss of the charge of the charged electrode material powder due to the current flowing from the other members constituting the apparatus to the electrolyte membrane 59.

本発明は、上記のような事情に鑑みてなされたものであり、静電力を利用して電解質膜に電極材料粉末を転写して燃料電池の電極を製造する装置と方法において、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができ、さらに、電極材料粉末が一端受け取った電荷を逃がさないようにして、形成された電極像を転写異常を起こすことなく、そのままの状態で電解質膜上に静電力により転写することができるようにした燃料電池の電極製造装置と製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. In an apparatus and method for manufacturing an electrode of a fuel cell by transferring an electrode material powder to an electrolyte membrane using an electrostatic force, the electrode pattern is refined. Even in such a case, the electrode image can be accurately formed on the developing portion, and further, the electrode material powder does not release the charge received once, and the formed electrode image does not cause a transfer abnormality. An object of the present invention is to provide a fuel cell electrode manufacturing apparatus and manufacturing method which can be transferred onto an electrolyte membrane as it is by an electrostatic force.

本発明による燃料電池の電極製造装置は、帯電した電極材料粉末を電極形状に現像する機能を持つ現像部および電極材料粉末を現像部から電解質膜に静電力により転写する転写用高圧電源を持つ転写部とを少なくとも有する転写ユニットと、電解質膜上の電極材料粉末を定着する定着部とを少なくとも備えており、転写ユニットにおいて、転写部および電解質膜は現像部とは隔てて配置され、かつ、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されていることを特徴とする。   A fuel cell electrode manufacturing apparatus according to the present invention includes a developing unit having a function of developing charged electrode material powder into an electrode shape, and a transfer having a high-voltage power source for transferring the electrode material powder from the developing unit to the electrolyte membrane by electrostatic force. At least a transfer unit, and a fixing unit that fixes the electrode material powder on the electrolyte membrane. In the transfer unit, the transfer unit and the electrolyte film are disposed separately from the developing unit, and the transfer unit The part is provided with means for preventing the electrode material powder electrostatically attached to the electrolyte membrane from being charged with a reverse polarity.

また、本発明による燃料電池の電極製造方法は、帯電した電極材料粉末を現像部において電極形状に現像する工程、現像された電極材料粉末を転写用高圧電源を有する転写部において現像部から電解質膜に静電力により転写する工程、電解質膜上の電極材料粉末を定着部において定着する工程とを少なくとも備えた燃料電池の電極製造方法であって、転写部において電極材料粉末が現像部から電解質膜に静電力により転写した後、(a)電極材料粉末に転写部からの電流が流れにくくすることによって、あるいは(b)転写部の転写電界を弱くするあるいは無くすことによって、あるいは(c)その双方によって、静電付着した電極材料粉末が逆極性に帯電するのを防止し、それにより、転写部において、静電付着した電極材料粉末が現像部に逆飛翔する転写異常を生じさせないようにしたことを特徴とする。   The method for producing an electrode of a fuel cell according to the present invention includes a step of developing charged electrode material powder into an electrode shape in a developing unit, and the developed electrode material powder from the developing unit to the electrolyte membrane in the transfer unit having a high-voltage power supply for transfer. A method for producing an electrode of a fuel cell comprising at least a step of transferring by electrostatic force and a step of fixing an electrode material powder on an electrolyte membrane in a fixing portion, wherein the electrode material powder is transferred from the developing portion to the electrolyte membrane in the transfer portion. After transfer by electrostatic force, (a) by making the current from the transfer part difficult to flow into the electrode material powder, (b) by weakening or eliminating the transfer electric field of the transfer part, or (c) by both , Prevents the electrostatically attached electrode material powder from being charged to a reverse polarity, so that the electrostatically attached electrode material powder is transferred to the developing portion at the transfer portion. We were not allowed to cause transcription abnormalities reverse flying characterized.

本発明では、転写部および電解質膜は現像部とは隔てて配置されることにより、転写部あるいは電解質膜から現像部へ電流が流れることは実質的になく、現像部の電極像が変化するのを防止できる。また、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されているので、転写区間において、静電付着した電極材料粉末が現像部へ逆飛翔して転写異常を起こすのを確実に阻止することができる。それにより、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができ、かつ、電解質膜上にそのまま静電付着させることが可能となる。電解質膜上の電極材料粉末は精緻な電極パターンを保ったままで定着部に送られて定着されるので、精度の高い燃料電池電極を得ることができる。   In the present invention, since the transfer portion and the electrolyte film are arranged apart from the developing portion, current does not substantially flow from the transfer portion or the electrolyte film to the developing portion, and the electrode image of the developing portion changes. Can be prevented. In addition, since the transfer part is provided with means for preventing the electrode material powder electrostatically attached to the electrolyte membrane from being charged in the reverse polarity, the electrode material powder electrostatically attached to the transfer part is developed in the transfer section. It is possible to reliably prevent a reverse flight to cause a transfer abnormality. As a result, even if the electrode pattern is fine, an electrode image can be accurately formed on the developing portion, and can be electrostatically attached to the electrolyte membrane as it is. Since the electrode material powder on the electrolyte membrane is sent and fixed to the fixing portion while maintaining a fine electrode pattern, a highly accurate fuel cell electrode can be obtained.

転写部に形成する、電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段は、導体である電極材料粉末に転写部から電流を流れにくくする手段、例えば、転写部の電解質膜に面することとなる領域を高抵抗値を持つ材料で作製する手段、あるいは、転写部の電極と転写用高圧電源とを高抵抗値を持つ抵抗を介して接続する手段などであってよく、この場合、高抵抗値が10MΩ〜100GΩの範囲であれば、所期の目的を効果的に達成することができる。   Means for preventing the electrode material powder electrostatically attached to the electrolyte membrane from forming a reverse polarity on the transfer portion is a means for preventing current from flowing from the transfer portion to the electrode material powder as a conductor, for example, Means for producing a region that faces the electrolyte membrane of the transfer portion with a material having a high resistance value, or means for connecting the electrode of the transfer portion and a high-voltage power supply for transfer via a resistor having a high resistance value, etc. In this case, if the high resistance value is in the range of 10 MΩ to 100 GΩ, the intended purpose can be effectively achieved.

電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための他の手段として、電極材料粉末が電解質膜に転写された後、直ちに転写用高圧電源を低電圧あるいは0Vとして転写部の転写電界を弱くするあるいは無くす手段であってもよい。電極材料粉末に働くクーロン力は、電荷×電界の強さであり、電極材料粉末が逆極性に帯電していても、現像部に逆転写するだけの強さの電界が無ければ、静電付着した電極材料粉末が現像部に逆飛翔する、すなわち逆転写することはない。従って、電極材料粉末が電解質膜に転写された後、直ちに転写用高圧電源を低電圧あるいは0Vとして転写部の転写電界を弱くするあるいは無くすことによっても、転写異常を生じさせないようにするという所期の目的を達成することができる。   As another means for preventing the electrode material powder electrostatically attached to the electrolyte membrane from being charged with a reverse polarity, immediately after the electrode material powder is transferred to the electrolyte membrane, the transfer high-voltage power supply is set to a low voltage or 0 V. A means for weakening or eliminating the transfer electric field of the transfer portion may be used. The Coulomb force acting on the electrode material powder is the electric charge × the electric field strength. Even if the electrode material powder is charged with a reverse polarity, if there is no electric field strong enough to reverse transfer to the developing part, the electrostatic adhesion The electrode material powder thus applied does not fly back to the developing portion, that is, does not reverse transfer. Therefore, after the electrode material powder is transferred to the electrolyte membrane, the transfer high voltage power supply is immediately set to a low voltage or 0 V so that the transfer electric field in the transfer portion is weakened or eliminated, so that no transfer abnormality is caused. Can achieve the purpose.

上記の場合に、電極材料粉末に転写部から電流を流れにくくしておかないと、転写中に一度電解質膜に転写された電極材料粉末が転写中に逆帯電して逆飛翔する転写異常が生じる可能性がある。したがって、電極材料粉末が電解質膜に転写された後、直ちに転写用高圧電源を低電圧あるいは0Vとして転写部の転写電界を弱くするあるいは無くす手段と、電極材料粉末に転写部から電流を流れにくくする手段の双方を備えることにより、転写部において、電極材料粉末が現像部に逆飛翔する転写異常をより確実に防止することができる。   In the above case, unless it is difficult for the electrode material powder to flow current from the transfer part, the electrode material powder once transferred to the electrolyte membrane during transfer is reversely charged during transfer and reverse transfer occurs. there is a possibility. Therefore, immediately after the electrode material powder is transferred to the electrolyte membrane, the transfer high-voltage power supply is set to a low voltage or 0 V to weaken or eliminate the transfer electric field of the transfer portion, and to prevent current from flowing from the transfer portion to the electrode material powder. By providing both means, it is possible to more reliably prevent a transfer abnormality in which the electrode material powder flies back to the developing portion in the transfer portion.

上記の電極製造装置において、抵抗値は、電解質膜の搬送速度および現像部を構成する感光体ドラムの回転速度にも依存する。電解質膜の搬送速度および現像部を構成する感光体ドラムの回転速度を10倍にすれば、電極材料粉末を電解質膜に転写する転写区間を通過する時間が1/10になるため、抵抗値を1/10に下げることができる。そのことから、高抵抗値は送り速度との関連で10MΩ〜100GΩの範囲から実験的に最適値を選択すればよい。なお、抵抗値は、電解質膜が転写区間を通過する時間で決まるため、転写電極間隔を狭くするなど構造を変えることにより、また、将来、電解質膜強度が上がって現在よりも高速で搬送することができるようになれば、10MΩ以下の抵抗値でも本発明の所期の目的を達成することが可能となると考えられる。一方、抵抗値が高いほど電解質膜への電極材料粉末の付着量が多くなるが、次の電極作製までに各部を除電する必要があるため、100GΩ程度を上限とするのが実際的である。電極の製造時間をいとわない場合には、当然に、もっと高抵抗値であってもよい。   In the above electrode manufacturing apparatus, the resistance value also depends on the transport speed of the electrolyte film and the rotation speed of the photosensitive drum constituting the developing unit. If the conveyance speed of the electrolyte film and the rotation speed of the photosensitive drum constituting the developing unit are increased 10 times, the time for passing through the transfer section for transferring the electrode material powder to the electrolyte film will be 1/10. It can be reduced to 1/10. Therefore, an optimum value for the high resistance value may be selected experimentally from the range of 10 MΩ to 100 GΩ in relation to the feed rate. The resistance value is determined by the time for the electrolyte membrane to pass through the transfer section. Therefore, by changing the structure such as narrowing the transfer electrode interval, the electrolyte membrane strength will increase in the future, and it will be transported at a higher speed than the present. It is considered that the intended purpose of the present invention can be achieved even with a resistance value of 10 MΩ or less. On the other hand, the higher the resistance value, the more the electrode material powder adheres to the electrolyte membrane. However, it is practical to set the upper limit to about 100 GΩ because each part needs to be neutralized before the next electrode is produced. Of course, a higher resistance value may be used when the manufacturing time of the electrode is not a problem.

好ましくは、転写部を構成する部材以外の部材であって、電極の製造過程で電解質膜に接することとなる部材は、少なくとも電解質膜に接することとなる領域を高抵抗値を持つ材料で作製し、またはアースに接続して、これら部材から電解質膜に静電付着した電極材料粉末が帯電するのをなくすあるいは極力少なくし、それにより電極材料粉末が逆極性に帯電するのを防止できるように構成する。このようにすることによって、現像部に逆飛翔する転写異常を一層確実に阻止することが可能となる。なお、電極の製造過程で電解質膜に接することとなる部材としては、定着部、電解質膜のロール巻き出し、巻き取り部、搬送部、収納部などが挙げられる。   Preferably, the member other than the member constituting the transfer portion, which is in contact with the electrolyte membrane during the electrode manufacturing process, is made of a material having a high resistance value at least in a region that is in contact with the electrolyte membrane. Or connected to the earth, and the electrode material powder that is electrostatically attached to the electrolyte membrane from these members can be prevented from being charged or reduced as much as possible, thereby preventing the electrode material powder from being charged to the opposite polarity. To do. By doing so, it is possible to more reliably prevent a transfer abnormality that reversely flies to the developing portion. Examples of the member that comes into contact with the electrolyte membrane during the manufacturing process of the electrode include a fixing unit, a roll unwinding of the electrolyte membrane, a winding unit, a conveyance unit, and a storage unit.

本発明は、予め所定の大きさの切断された電解質膜に対して電極材料粉末を定着するいわゆるバッチ式の電極製造に適用することもでき、また、ロール状の電解質膜を搬送しながらその上に連続的に電極材料粉末を定着していく連続式電極製造にも適用することができる。後者の場合に、前記した転写ユニットは装置全体で1個であってもよいが、2個以上の転写ユニットを電解質膜の搬送方向にタンデムに並べるようにしてもよい。それにより、任意の3次元構造を持つ電極を作製することができる。さらに、2個以上の転写ユニットを電解質膜の一面側にその搬送方向にタンデムに並べ、さらに、2個以上の転写ユニットを電解質膜の他面側にその搬送方向にタンデムに並べるようにしてもよい。このように転写ユニットを配置することにより、膜電極接合体での空気極と燃料極とを最適な構造で一度に作ることができる。   The present invention can also be applied to so-called batch-type electrode manufacturing in which electrode material powder is fixed to an electrolyte membrane that has been cut in a predetermined size in advance, and while the roll-shaped electrolyte membrane is being conveyed, It can also be applied to continuous electrode production in which the electrode material powder is continuously fixed. In the latter case, the number of transfer units described above may be one for the entire apparatus, but two or more transfer units may be arranged in tandem in the transport direction of the electrolyte membrane. Thereby, an electrode having an arbitrary three-dimensional structure can be produced. Further, two or more transfer units are arranged in tandem in the transport direction on one side of the electrolyte membrane, and two or more transfer units are arranged in tandem in the transport direction on the other side of the electrolyte membrane. Good. By arranging the transfer unit in this way, the air electrode and the fuel electrode in the membrane electrode assembly can be formed at the same time with an optimum structure.

本発明によれば、静電力を利用して電解質膜に電極材料粉末を転写して燃料電池の電極を製造する際に、電極パターンが精緻なものであっても、現像部に正確に電極像を形成することができる。また、電極材料粉末が一端受け取った電荷を逃がさないようにして、あるいは転写直後に転写部の電界を実質的に無くすことによって、形成された電極像を転写異常を起こすことなく、そのままの状態で電解質膜上に静電力により転写することができる。それにより、設計値どおりの燃料電池電極を確実に製造することが可能となる。   According to the present invention, when producing an electrode of a fuel cell by transferring an electrode material powder to an electrolyte membrane using an electrostatic force, even if the electrode pattern is fine, the electrode image is accurately applied to the developing portion. Can be formed. In addition, the electrode material powder can be used as it is without causing any abnormal transfer by preventing the electric charge received by the electrode material from escaping or by substantially eliminating the electric field at the transfer portion immediately after transfer. It can be transferred onto the electrolyte membrane by electrostatic force. This makes it possible to reliably manufacture the fuel cell electrode as designed.

発明を実施するための最良の形態および実施例BEST MODE FOR CARRYING OUT THE INVENTION

以下、図面を参照しながら実施の形態および実施例に基づき本発明を説明する。   Hereinafter, the present invention will be described based on embodiments and examples with reference to the drawings.

図1は本発明による燃料電池の電極製造装置の一例を示す模式図である。図1において、Aは転写ユニットであり、帯電した電極材料粉末を電極形状に現像する機能を有する現像部の一部を構成するアルミ平板電極1と、電極材料粉末を現像部から電解質膜に静電力により転写する転写用高圧電源を有する転写部の一部を構成するアルミ平板電極2とを備え、アルミ平板電極2には高抵抗樹脂シート3が積層され、高抵抗樹脂シート3には電解質膜4が貼り付けてある。高抵抗樹脂シート3は、本発明でいう電極材料粉末が逆極性に帯電するのを防止するための手段としての高抵抗値を持つ材料の一例である。アルミ平板電極1には現像パターンで電極材料粉末5が載せてあり、高圧電源6のout端子がアルミ平板電極1側に、return端子がアルミ平板電極2側に接続している。この高圧電源6は、本発明でいう「電極材料粉末を現像部から電解質膜に静電力により転写する転写用高圧電源」に相当する。なお、図1には電解質膜上の電極材料粉末を定着する定着部は示されないが、電極材料5を静電転写した電解質膜4は、アルミ平板電極2から取り外され、定着部で加熱定着されて、燃料電池電極となる。   FIG. 1 is a schematic view showing an example of a fuel cell electrode manufacturing apparatus according to the present invention. In FIG. 1, A is a transfer unit, and comprises an aluminum flat plate electrode 1 constituting a part of a developing portion having a function of developing charged electrode material powder into an electrode shape, and the electrode material powder from the developing portion to the electrolyte membrane. And an aluminum flat plate electrode 2 constituting a part of a transfer portion having a transfer high-voltage power source for transfer by electric power. A high resistance resin sheet 3 is laminated on the aluminum flat plate electrode 2, and an electrolyte membrane is provided on the high resistance resin sheet 3. 4 is pasted. The high resistance resin sheet 3 is an example of a material having a high resistance value as a means for preventing the electrode material powder referred to in the present invention from being charged with a reverse polarity. An electrode material powder 5 is placed on the aluminum plate electrode 1 in a development pattern, and the out terminal of the high voltage power source 6 is connected to the aluminum plate electrode 1 side and the return terminal is connected to the aluminum plate electrode 2 side. The high-voltage power source 6 corresponds to the “high-voltage power source for transfer that transfers the electrode material powder from the developing portion to the electrolyte membrane by electrostatic force” in the present invention. 1 does not show a fixing portion for fixing the electrode material powder on the electrolyte membrane, but the electrolyte membrane 4 to which the electrode material 5 is electrostatically transferred is removed from the aluminum plate electrode 2 and is heated and fixed by the fixing portion. Thus, it becomes a fuel cell electrode.

転写ユニットAを実際に用いて電極を作製した例を[実施例1]として比較例と共に説明する。   An example in which the transfer unit A is actually used to produce an electrode will be described as [Example 1] together with a comparative example.

[実施例1]
最初に、高圧電源6のout端子に100mm×100mm,厚さ2mmのアルミ平板電極1を接続し、電極材料粉末5(粒径1〜10μmのPt担持カーボン粉末と電解質樹脂とからなる)を50mm×50mmの正方形形状で5.8mgPt/cm堆積した。高圧電源6のreturn端子には、アルミ平板電極1と同じサイズのアルミ平板電極2を接続し、住友スリーエム(株)製両面導電性テープX−7001を用いて、高抵抗樹脂シート3を接着した。高抵抗樹脂シート3はアキレス(株)製マジキリIIで、表面抵抗1.5×1012Ω、体積抵抗率1.5×1011Ωcm、厚さ1mmである。この上に、電解質膜4を貼り付けた。高圧電源6は、TREK社高圧電源610Dである。電極間隔は3mmとした。
[Example 1]
First, an aluminum flat plate electrode 1 of 100 mm × 100 mm and thickness 2 mm is connected to the out terminal of the high voltage power source 6, and electrode material powder 5 (consisting of Pt-supported carbon powder having a particle diameter of 1 to 10 μm and an electrolyte resin) is 50 mm. 5.8 mg Pt / cm 2 was deposited in a square shape of × 50 mm. An aluminum flat plate electrode 2 of the same size as the aluminum flat plate electrode 1 is connected to the return terminal of the high-voltage power supply 6, and a high-resistance resin sheet 3 is bonded using a double-sided conductive tape X-7001 manufactured by Sumitomo 3M Limited. . The high resistance resin sheet 3 is made of Achilles Co., Ltd. Majikiri II and has a surface resistance of 1.5 × 10 12 Ω, a volume resistivity of 1.5 × 10 11 Ωcm, and a thickness of 1 mm. On this, the electrolyte membrane 4 was affixed. The high voltage power supply 6 is a TREK high voltage power supply 610D. The electrode interval was 3 mm.

図1の構成として、−4000Vの高電圧を印加した。電解質膜4に静電付着した電極材料粉末5は、0.14mgPt/cmであった。アルミ平板電極2には、電極材料粉末が逆飛翔して付着した形跡はなかった。 In the configuration of FIG. 1, a high voltage of −4000 V was applied. The electrode material powder 5 electrostatically attached to the electrolyte membrane 4 was 0.14 mg Pt / cm 2 . The aluminum plate electrode 2 had no evidence of electrode material powder flying backward and adhering.

[比較例1]
他の条件は同じとし、高抵抗樹脂シート3をアキレス(株)製ビニラスに変えて実験を行った。ビニラスは、表面抵抗1×1011Ω、体積抵抗率1×10Ωcm、厚さ0.2mmである。電解質膜4に静電付着した電極材料粉末5は、0.09mgPt/cmと少なくなった。また、アルミ平板電極2には最初に堆積した電極像の周辺に電極材料粉末5が付着しているのが観察された。
[Comparative Example 1]
The other conditions were the same, and the high resistance resin sheet 3 was changed to a vinylus manufactured by Achilles Co., Ltd., and an experiment was conducted. The vinylus has a surface resistance of 1 × 10 11 Ω, a volume resistivity of 1 × 10 9 Ωcm, and a thickness of 0.2 mm. The electrode material powder 5 electrostatically attached to the electrolyte membrane 4 was reduced to 0.09 mg Pt / cm 2 . Further, it was observed that the electrode material powder 5 adhered to the periphery of the electrode image deposited first on the aluminum plate electrode 2.

[考察]
比較例で用いてビニラスの厚み方向抵抗は、1×10Ωcm×0.02cm=20MΩであり、実施例1で用いてマジキリIIの厚み方向抵抗は、1.5×1011Ωcm×0.1cm=15GΩと約3桁高い。そのために、比較例においては電極材料粉末の一部が逆極性に帯電して逆飛翔が生じ、電解質膜4への電極材料粉末付着量の減少分が、最初に堆積した電極像の周辺に付着したものと考えられる。
[Discussion]
The thickness direction resistance of the vinylus used in the comparative example is 1 × 10 9 Ωcm × 0.02 cm = 20 MΩ, and the thickness direction resistance of Serpent II used in Example 1 is 1.5 × 10 11 Ωcm × 0. 1 cm = 15 GΩ, which is about three orders of magnitude higher. Therefore, in the comparative example, a part of the electrode material powder is charged with a reverse polarity and reverse flight occurs, and the reduced amount of the electrode material powder adhering to the electrolyte membrane 4 adheres to the periphery of the electrode image deposited first. It is thought that.

図2は本発明による燃料電池の電極製造装置の他の例を示す模式図である。この装置Bでは、ロール状の電解質膜10が用いられ、電解質膜巻き出しローラ11から送り出された電解質膜10は電解質膜巻き取りローラ12に巻き取られて収納される。巻き出しローラ11と巻き取りローラ12の間には、搬送ローラ13、転写ローラ14、搬送ローラ15、定着ローラ16、16が、この順で電解質膜10の搬送方向に配置される。転写ローラ14の電極にはマイナスに設定した転写用高圧電源17が高抵抗18を介して接続している。この例では、搬送される電解質膜10はこれらの各ローラに裏面を接するようにして送られる。   FIG. 2 is a schematic view showing another example of a fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus B, a roll-shaped electrolyte membrane 10 is used, and the electrolyte membrane 10 fed from the electrolyte membrane unwinding roller 11 is wound around and stored in the electrolyte membrane winding roller 12. Between the unwinding roller 11 and the take-up roller 12, a transport roller 13, a transfer roller 14, a transport roller 15, and fixing rollers 16 and 16 are arranged in this order in the transport direction of the electrolyte membrane 10. A high voltage power supply 17 for transfer, which is set to minus, is connected to the electrode of the transfer roller 14 via a high resistance 18. In this example, the electrolyte membrane 10 to be transported is sent so that the back surface is in contact with each of these rollers.

また、転写ローラ14は、すべりを良くするため、アルミパイプに体積抵抗率1×10Ωcm、厚さ0.2mmの樹脂14aをコーティングしている。さらに、電解質膜巻き出しローラ11、電解質膜巻き取りローラ12、搬送ローラ13、15、定着ローラ16、16は、すべて体積抵抗率1×1011Ωcm、厚さ2mm以上の樹脂11a,12a,13a,15a,16aでそれぞれコーティングされ、アースされている。 Further, in order to improve the sliding of the transfer roller 14, an aluminum pipe is coated with a resin 14a having a volume resistivity of 1 × 10 9 Ωcm and a thickness of 0.2 mm. Further, the electrolyte membrane unwinding roller 11, the electrolyte membrane winding roller 12, the transport rollers 13 and 15, and the fixing rollers 16 and 16 are all resins 11a, 12a, and 13a having a volume resistivity of 1 × 10 11 Ωcm and a thickness of 2 mm or more. , 15a and 16a, respectively, and are grounded.

転写ローラ14に対向するようにして、感光体ドラム20が配置される。感光体ドラム20は転写ローラ14上を走る電解質膜10から離れた位置にあり、接することはない。電界強度や電極材料粉末の種類などによって異なるが、両者は0.2〜5mm程度離して設置される。感光体ドラム20には帯電ローラ21が接しており、感光体ドラム20の表面を一様に帯電する。帯電ローラ21の感光体ドラム20の回転方向下流側にはレーザ光学系22が位置しており、レーザが感光体ドラム20の表面に照射される。照射パターンは、形成しようとする燃料電池電極形状以外の部分であり、その結果、感光体ドラム20上に燃料電池電極形状と同じマイナスの電荷を持つ電荷像が形成される。   The photosensitive drum 20 is disposed so as to face the transfer roller 14. The photosensitive drum 20 is located away from the electrolyte film 10 running on the transfer roller 14 and is not in contact therewith. Although they differ depending on the electric field strength, the type of electrode material powder, and the like, both are set apart by about 0.2 to 5 mm. A charging roller 21 is in contact with the photosensitive drum 20 and uniformly charges the surface of the photosensitive drum 20. A laser optical system 22 is located downstream of the charging roller 21 in the rotation direction of the photoconductive drum 20, and the surface of the photoconductive drum 20 is irradiated with laser. The irradiation pattern is a portion other than the shape of the fuel cell electrode to be formed. As a result, a charge image having the same negative charge as that of the fuel cell electrode shape is formed on the photosensitive drum 20.

レーザ光学系22の感光体ドラム20の回転方向下流側には、電極材料粉末槽30が位置している。電極材料粉末槽30は現像ローラ31を有し、マイナスに設定された現像用高圧電源32が接続している。33は薄膜形成ブレードであり、電極材料粉末5を現像ローラ31上に均一に付着させる。薄膜形成ブレード33はプラスに設定された電極材料粉末帯電用高圧電源34に接続しており、電極材料粉末5はプラスに帯電される。   An electrode material powder tank 30 is located downstream of the laser optical system 22 in the rotation direction of the photosensitive drum 20. The electrode material powder tank 30 has a developing roller 31 and is connected to a developing high-voltage power source 32 set to be negative. Reference numeral 33 denotes a thin film forming blade that uniformly adheres the electrode material powder 5 onto the developing roller 31. The thin film forming blade 33 is connected to a high-voltage power supply 34 for charging the electrode material powder set to positive, and the electrode material powder 5 is charged positively.

現像ローラ31上に付着した電極材料粉末5は現像ローラ31と感光体ドラム20間に生成される電界により、クーロン力を受けて飛翔し、感光体ドラム20のマイナスに帯電した電荷像に静電付着する。従って、感光体ドラム20上に、プラスに帯電した電極材料粉末5の燃料電池電極像が形成される。そのプラスに帯電した電極像(電極材料粉末5)は直ちに感光体ドラム20と転写ローラ14の間に生成される電界によりクーロン力を受け、電解質膜10に飛翔付着する。   The electrode material powder 5 adhering to the developing roller 31 flies under the Coulomb force by the electric field generated between the developing roller 31 and the photosensitive drum 20, and electrostatically forms a negatively charged charge image on the photosensitive drum 20. Adhere to. Accordingly, a fuel cell electrode image of the positively charged electrode material powder 5 is formed on the photosensitive drum 20. The positively charged electrode image (electrode material powder 5) is immediately subjected to the Coulomb force by the electric field generated between the photosensitive drum 20 and the transfer roller 14, and flies and adheres to the electrolyte membrane 10.

電解質膜10に付着した電極材料粉末5は定着ローラ16、16により熱圧着され、電解質膜10に定着される。作製された燃料電池電極は巻き取りローラ12に巻き取られる。また、感光体ドラム20上に残った電極材料粉末5は、感光体ドラムクリーナ用ブレード23により、感光体ドラム20の表面から剥ぎ取られ、電極材料粉末収納ボックス24に収納される。この電極材料粉末は再利用される。また、ドラムクリーナ用ブレード23はアースされており、感光体ドラム20のクリーニングと除電を同時に行う。   The electrode material powder 5 adhering to the electrolyte membrane 10 is thermocompression bonded by the fixing rollers 16 and 16 and fixed to the electrolyte membrane 10. The produced fuel cell electrode is taken up by the take-up roller 12. The electrode material powder 5 remaining on the photosensitive drum 20 is peeled off from the surface of the photosensitive drum 20 by the photosensitive drum cleaner blade 23 and stored in the electrode material powder storage box 24. This electrode material powder is reused. The drum cleaner blade 23 is grounded, and simultaneously cleans and removes the charge from the photosensitive drum 20.

上記の装置において、電解質膜巻き出しローラ11、電解質膜巻き取りローラ12、搬送ローラ13、15、定着ローラ16、16は、高抵抗値である樹脂でコーティングされかつアースされている。そのために、これらのローラから電解質膜10上に転写された電極材料粉末に流れ込む電流はほとんどなく、また、転写ローラ14も高抵抗であり電流がほとんど流れないので、感光体ドラム20と転写ローラ14の間の強電界間を通過する間に電解質膜に付着した電極材料粉末が逆帯電して、感光体ドラム20に逆飛翔することはない。   In the above apparatus, the electrolyte membrane unwinding roller 11, the electrolyte membrane winding roller 12, the transport rollers 13, 15 and the fixing rollers 16, 16 are coated with a resin having a high resistance value and are grounded. For this reason, almost no current flows into the electrode material powder transferred onto the electrolyte film 10 from these rollers, and the transfer roller 14 has a high resistance and hardly flows current. Therefore, the photosensitive drum 20 and the transfer roller 14 The electrode material powder adhering to the electrolyte membrane does not reversely charge while passing through the strong electric field between them, and does not fly back to the photosensitive drum 20.

[実施例2]
図2に示した装置で燃料電池電極を作製した。電極材料粉末5として実施例1で使用したものと同じものを用いた。それを電極材料粉末槽30に充填した。電解質膜10はロール状であることを除き、実施例1で使用したものと同じ電解質膜を用いた。帯電ローラ21により、感光体ドラム20の表面を約−700Vに均一に帯電させた後、レーザ光学系22より所要のレーザを照射した。
[Example 2]
A fuel cell electrode was produced with the apparatus shown in FIG. The same electrode material powder 5 as that used in Example 1 was used. It was filled in the electrode material powder tank 30. The same electrolyte membrane as that used in Example 1 was used except that the electrolyte membrane 10 was in the form of a roll. The surface of the photosensitive drum 20 was uniformly charged to about −700 V by the charging roller 21, and then a required laser was irradiated from the laser optical system 22.

薄膜形成ブレード33には電極材料粉末帯電用高圧電源34により+200Vの電圧を加え、電極材料粉末5をプラスに帯電した。現像用高圧電源32を−500Vに設定して、現像ローラ31上に電極材料粉末5を付着させた。付着した電極材料粉末5をクーロン力により感光体ドラム20に向けて飛翔させ、感光体ドラム20のマイナスに帯電した電荷像に静電付着させた。感光体ドラム20上には予め設定したとおりの像が得られた。   A voltage of +200 V was applied to the thin film forming blade 33 by a high voltage power supply 34 for charging the electrode material powder, and the electrode material powder 5 was charged positively. The development high-voltage power supply 32 was set to −500 V, and the electrode material powder 5 was adhered onto the development roller 31. The adhered electrode material powder 5 was caused to fly toward the photosensitive drum 20 by Coulomb force, and electrostatically adhered to the negatively charged charge image of the photosensitive drum 20. An image as set in advance was obtained on the photosensitive drum 20.

感光体ドラム20と転写ローラ14は2mmだけ離して設置した。また、電解質膜10は搬送ローラ13、15により20mm/secの速度で搬送した。転写ローラ14の電極には10GΩの高抵抗18を介して転写用高圧電源17を接続し、転写用高圧電源17は−4000Vの高電圧を転写ローラ14に印加するようにした。それにより、プラスに帯電した感光体ドラム20上の電極材料粉末5は直ちに、感光体ドラム20と転写ローラ14の間に生成する高電界によりクーロン力を受けて飛翔し電解質膜10に付着転写した。その後、定着ローラ16、16により定着した電極とした。   The photosensitive drum 20 and the transfer roller 14 were set apart by 2 mm. The electrolyte membrane 10 was transported at a speed of 20 mm / sec by transport rollers 13 and 15. A high voltage power supply 17 for transfer was connected to the electrode of the transfer roller 14 via a high resistance 18 of 10 GΩ, and the high voltage power supply 17 for transfer applied a high voltage of −4000 V to the transfer roller 14. As a result, the positively charged electrode material powder 5 on the photosensitive drum 20 immediately flies by receiving a Coulomb force by a high electric field generated between the photosensitive drum 20 and the transfer roller 14 and is transferred to the electrolyte membrane 10. . Thereafter, the electrodes fixed by the fixing rollers 16 were used.

電解質膜10への電極材料粉末5の付着量は0.17mgPt/cmであった。また、付着転写した電極像は、感光体ドラム20に静電付着した電極像と同じものであり、電極材料粉末5が逆飛翔して付着した形跡は観察されなかった。 The amount of the electrode material powder 5 attached to the electrolyte membrane 10 was 0.17 mg Pt / cm 2 . Further, the electrode image adhered and transferred was the same as the electrode image electrostatically adhered to the photosensitive drum 20, and no evidence of the electrode material powder 5 flying backward and adhering was observed.

[実施例3]
図2に示す装置において、転写ローラ14にコーティング樹脂を、体積抵抗率1×1011Ωcm、厚さ1mmのものに置き換えた。他の条件は実施例2と同じにして電極を作製した。電解質膜10への電極材料粉末5の付着量は0.20mgPt/cmに増加した。また、付着転写した電極像は、感光体ドラム20に静電付着した電極像と同じものであり、電極材料粉末5が逆飛翔して付着した形跡は観察されなかった。
[Example 3]
In the apparatus shown in FIG. 2, the coating resin for the transfer roller 14 was replaced with one having a volume resistivity of 1 × 10 11 Ωcm and a thickness of 1 mm. The other conditions were the same as in Example 2 to produce an electrode. The amount of the electrode material powder 5 attached to the electrolyte membrane 10 increased to 0.20 mg Pt / cm 2 . Further, the electrode image adhered and transferred was the same as the electrode image electrostatically adhered to the photosensitive drum 20, and no evidence of the electrode material powder 5 flying backward and adhering was observed.

[実施例4]
図2に示す装置から高抵抗18を取り除いた以外は、実施例2と同じ条件で電極を作製した。電解質膜10への電極材料粉末5の付着量は0.14mgPt/cmであった。付着転写した電極像は感光体ドラム20に静電付着した電極像と同じものであったが、わずかに電極材料粉末5が逆飛翔して付着した形跡は観察された。しかし、電極としての機能を低下させることはなかった。高抵抗18を取り除いたことにより、極微量の電極材料粉末5が逆飛翔したものと解される。
[Example 4]
An electrode was produced under the same conditions as in Example 2 except that the high resistance 18 was removed from the apparatus shown in FIG. The amount of the electrode material powder 5 attached to the electrolyte membrane 10 was 0.14 mg Pt / cm 2 . The electrode image adhered and transferred was the same as the electrode image electrostatically adhered to the photosensitive drum 20, but a trace of the electrode material powder 5 flying slightly backward and adhering was observed. However, the function as an electrode was not deteriorated. By removing the high resistance 18, it is understood that a very small amount of the electrode material powder 5 flies backward.

[実施例5]
図2に示す装置から高抵抗18を取り除いた以外は、実施例2と同じ条件で電極を作製した。ただし、転写用高圧電源17は、感光体ドラム20が回転し、感光体ドラム20に付着した電極材料粉末5の電極像の先端が電解質膜10の上部に達した時に高電圧を出力し、電極像の後端が電解質膜10の上部まで回転した時に0Vとなるように制御した。すなわち、感光体ドラム20上の電極像が電解質膜10の上部にある時間のみ高電圧を印加して転写電界を形成した。電解質膜10への電極材料粉末5の付着量は実施例4と同じであり、付着転写した電極像は感光体ドラム20に静電付着した電極像と同じものであった。そして、電極材料粉末5が逆飛翔して付着した形跡は全く観察されなかった。
[Example 5]
An electrode was produced under the same conditions as in Example 2 except that the high resistance 18 was removed from the apparatus shown in FIG. However, the transfer high-voltage power supply 17 outputs a high voltage when the photosensitive drum 20 rotates and the tip of the electrode image of the electrode material powder 5 adhering to the photosensitive drum 20 reaches the upper part of the electrolyte membrane 10. When the rear end of the image was rotated to the top of the electrolyte membrane 10, control was performed so that the voltage was 0V. That is, a transfer electric field was formed by applying a high voltage only for a time during which the electrode image on the photosensitive drum 20 was on the electrolyte membrane 10. The amount of the electrode material powder 5 attached to the electrolyte membrane 10 was the same as that in Example 4, and the electrode image adhered and transferred was the same as the electrode image electrostatically attached to the photosensitive drum 20. And the trace which the electrode material powder 5 flew backward and adhered was not observed at all.

[比較例2]
図2に示す装置を感光体ドラム20と転写ローラ14とが接するように改変した。その装置を用いて、実施例2と同じ条件で電極を作製した。結果は、電極形状が変化したり、中抜け、飛散粉末がある電極が作成されることがあった。これは、転写用高圧電源17から高抵抗18、転写ロール14、電解質膜10へ流れる電流は非常に小さいが、感光体ドラム20上の電極材料粉末5の帯電荷量を変化させ、電極材料粉末5と感光体ドラム20間の付着力を変化させるに十分な場合があったものと考えられる。
[Comparative Example 2]
The apparatus shown in FIG. 2 is modified so that the photosensitive drum 20 and the transfer roller 14 are in contact with each other. Using the apparatus, an electrode was produced under the same conditions as in Example 2. As a result, the electrode shape may be changed, or an electrode having a hollow or scattered powder may be produced. This is because the current flowing from the high-voltage power supply 17 for transfer to the high resistance 18, the transfer roll 14, and the electrolyte film 10 is very small, but the charge amount of the electrode material powder 5 on the photosensitive drum 20 is changed to change the electrode material powder. 5 and the photosensitive drum 20 are considered to be sufficient in some cases.

[比較例3]
図2に示す装置に、転写ローラ14から抵抗18を取り外す改変と、体積抵抗率1×10Ωcm、厚さ0.2mmの樹脂コーティングを除去する改変の双方を行った装置を用意し、その装置を用いて、実施例2と同じ条件で電極を作製した。結果は、電極形状の変化、中抜け、飛散粉末の発生が生じた。比較例2と異なり、大電流が流れ込むため、感光体20上の電極材料粉末5の帯電荷量が大きく変化し、感光ドラム20との付着力が変化したためと考えられる。
[Comparative Example 3]
In the apparatus shown in FIG. 2, an apparatus is prepared in which both the modification for removing the resistor 18 from the transfer roller 14 and the modification for removing the resin coating having a volume resistivity of 1 × 10 9 Ωcm and a thickness of 0.2 mm are prepared. An electrode was produced under the same conditions as in Example 2 using the apparatus. As a result, changes in the electrode shape, voids, and generation of scattered powder occurred. Unlike the comparative example 2, since a large current flows, the charge amount of the electrode material powder 5 on the photoconductor 20 is greatly changed, and the adhesive force with the photoconductive drum 20 is changed.

図3は本発明による燃料電池の電極製造装置のさらに他の例を示す模式図である。この装置B1では、図2に示す装置Bでの、転写ローラ14、転写用高圧電源17、高抵抗18からなる転写部と、感光体ドラム20、帯電ローラ21、レーザ光学系22、電極材料粉末槽30などからなる現像部とを1つの転写ユニット40としたものが、電解質膜10の搬送方向に、複数個(図示のものでは3個)、タンデムに並べられている。そして、各転写ユニット40において、電解質膜10は転写ローラ14に対して間隔をおいて搬送されるようにセットしてある。他の構成は図2に示したものと同じである。もちろん、すべての転写ユニット40において、電解質膜10は転写ローラ14に接していてもよく、一部の転写ユニット40においてのみ、電解質膜10と転写ローラ14が接していても差し支えない。   FIG. 3 is a schematic view showing still another example of the fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus B1, a transfer unit including the transfer roller 14, the transfer high-voltage power supply 17, and the high resistance 18, and the photosensitive drum 20, the charging roller 21, the laser optical system 22, and the electrode material powder in the apparatus B shown in FIG. A plurality of units (three in the drawing) arranged in tandem are arranged in the transfer direction of the electrolyte membrane 10 with the developing unit including the tank 30 and the like as one transfer unit 40. In each transfer unit 40, the electrolyte membrane 10 is set so as to be conveyed with a distance from the transfer roller 14. Other configurations are the same as those shown in FIG. Of course, in all the transfer units 40, the electrolyte film 10 may be in contact with the transfer roller 14, and in only some of the transfer units 40, the electrolyte film 10 and the transfer roller 14 may be in contact.

このようにタンデムに複数個の転写ユニット40を配置することにより、上記した本発明による固有の効果を維持しながら、3次元的に変化のある電極像を電解質膜10の上に形成することができる。   By arranging a plurality of transfer units 40 in tandem in this way, an electrode image having a three-dimensional change can be formed on the electrolyte membrane 10 while maintaining the above-described inherent effects of the present invention. it can.

図4は本発明による燃料電池の電極製造装置のさらに他の例を示す模式図である。この装置B2では、前記した転写ユニット40が、電解質膜の一面側(例えば燃料極側)に電解質膜10の搬送方向に複数個(図示のものでは3個)タンデムに並べられており、さらに、電解質膜の他面側(例えば空気極側)にも、向きを逆転した状態で、電解質膜10の搬送方向に複数個(図示のものでは3個)タンデムに並べられている。   FIG. 4 is a schematic view showing still another example of the fuel cell electrode manufacturing apparatus according to the present invention. In this apparatus B2, a plurality of transfer units 40 are arranged in tandem (three in the figure) in the transport direction of the electrolyte membrane 10 on one surface side (for example, the fuel electrode side) of the electrolyte membrane, On the other surface side of the electrolyte membrane (for example, the air electrode side), a plurality (three in the illustrated example) are arranged in tandem in the transport direction of the electrolyte membrane 10 in the reverse direction.

この装置では、上記した本発明による固有の効果を維持しながら、電解質膜10の両面に一連の工程で、3次元的に変化のある電極像を形成することができる。なお、図示の例では、燃料極側の転写後に定着ローラ16aを配置し、空気極側の転写後にも定着ローラ16bを配置しているが、電極材料粉末や電解質膜10への熱圧着によるダメージを低減するために、先行する側の定着ローラ、すなわち燃料極側の転写後に定着ローラ16aを省略することもできる。   In this apparatus, an electrode image having a three-dimensional change can be formed on both surfaces of the electrolyte membrane 10 through a series of steps while maintaining the above-described intrinsic effects of the present invention. In the illustrated example, the fixing roller 16a is disposed after the transfer on the fuel electrode side, and the fixing roller 16b is disposed after the transfer on the air electrode side. However, damage due to thermocompression bonding to the electrode material powder and the electrolyte membrane 10 is illustrated. In order to reduce this, the fixing roller 16a on the preceding side, that is, the fixing roller 16a can be omitted after the transfer on the fuel electrode side.

特に図示しないが、図2〜図4に示す本発明の装置において、感光体ドラム20に換えて、ベルト式のものを用いることもできる。また、転写ローラ14に換えて、図1に示した装置Aでのように、平板状の電極を用いることもできる。その場合に、電解質膜10は、感光ベルト側の電極および転写用の平板電極の双方に平行な姿勢で搬送されることが好ましい。   Although not particularly shown, in the apparatus of the present invention shown in FIGS. 2 to 4, a belt type can be used instead of the photosensitive drum 20. Further, instead of the transfer roller 14, a flat electrode can be used as in the apparatus A shown in FIG. In that case, the electrolyte membrane 10 is preferably transported in a posture parallel to both the electrode on the photosensitive belt side and the flat plate electrode for transfer.

本発明による燃料電池の電極製造装置の一例を示す模式図。The schematic diagram which shows an example of the electrode manufacturing apparatus of the fuel cell by this invention. 本発明による燃料電池の電極製造装置の他の例を示す模式図。The schematic diagram which shows the other example of the electrode manufacturing apparatus of the fuel cell by this invention. 本発明による燃料電池の電極製造装置のさらに他の例を示す模式図。The schematic diagram which shows the further another example of the electrode manufacturing apparatus of the fuel cell by this invention. 本発明による燃料電池の電極製造装置のさらに他の例を示す模式図。The schematic diagram which shows the further another example of the electrode manufacturing apparatus of the fuel cell by this invention. 固体高分子型燃料電池で用いられる膜電極接合体を説明するための模式図。The schematic diagram for demonstrating the membrane electrode assembly used with a polymer electrolyte fuel cell. 従来の燃料電池の電極製造装置の一例を示す模式図。The schematic diagram which shows an example of the electrode manufacturing apparatus of the conventional fuel cell.

符号の説明Explanation of symbols

10…ロール状の電解質膜、11…電解質膜巻き出しローラ、12…電解質膜巻き取りローラ、13、15…搬送ローラ、14…転写ローラ、16…定着ローラ、17…転写用高圧電、18…高抵抗、14a、11a,12a,13a,15a,16a…樹脂コーティング、20…感光体ドラム、21…帯電ローラ、22…レーザ光学系、23…感光体ドラムクリーナ用ブレード、24…電極材料粉末収納ボックス、30…電極材料粉末槽、31…現像ローラ、32…現像用高圧電源、33…薄膜形成ブレード、34…電極材料粉末帯電用高圧電源   DESCRIPTION OF SYMBOLS 10 ... Roll-shaped electrolyte membrane, 11 ... Electrolyte membrane unwinding roller, 12 ... Electrolyte membrane winding roller, 13, 15 ... Conveyance roller, 14 ... Transfer roller, 16 ... Fixing roller, 17 ... High piezoelectricity for transfer, 18 ... High resistance, 14a, 11a, 12a, 13a, 15a, 16a ... resin coating, 20 ... photosensitive drum, 21 ... charging roller, 22 ... laser optical system, 23 ... photosensitive drum cleaner blade, 24 ... electrode material powder storage Box, 30 ... electrode material powder tank, 31 ... developing roller, 32 ... high voltage power source for development, 33 ... thin film forming blade, 34 ... high voltage power source for charging electrode material powder

Claims (10)

帯電した電極材料粉末を電極形状に現像する機能を持つ現像部および電極材料粉末を現像部から電解質膜に静電力により転写する転写用高圧電源を持つ転写部とを少なくとも有する転写ユニットと、電解質膜上の電極材料粉末を定着する定着部とを少なくとも備えており、転写ユニットにおいて、転写部および電解質膜は現像部とは隔てて配置され、かつ、転写部には電解質膜に静電付着した電極材料粉末が逆極性に帯電するのを防止するための手段が施されていることを特徴とする燃料電池の電極製造装置。   A transfer unit having at least a developing unit having a function of developing the charged electrode material powder into an electrode shape, and a transfer unit having a transfer high-voltage power source for transferring the electrode material powder from the developing unit to the electrolyte film by electrostatic force; and an electrolyte membrane At least a fixing part for fixing the electrode material powder on the electrode, and in the transfer unit, the transfer part and the electrolyte film are arranged apart from the developing part, and the transfer part is an electrode electrostatically attached to the electrolyte film An apparatus for producing an electrode for a fuel cell, characterized in that means for preventing the material powder from being charged with a reverse polarity is applied. 電極材料粉末が逆極性に帯電するのを防止するための手段が、転写部の電解質膜に面することとなる領域を高抵抗値を持つ材料で作製する手段であることを特徴とする請求項1に記載の燃料電池の電極製造装置。   The means for preventing the electrode material powder from being charged with a reverse polarity is a means for producing a region that faces the electrolyte membrane of the transfer portion with a material having a high resistance value. The fuel cell electrode manufacturing apparatus according to claim 1. 電極材粉末が逆極性に帯電するのを防止するための手段が、転写部の電極と転写用高圧電源とを高抵抗値を持つ抵抗を介して接続する手段であることを特徴とする請求項1に記載の燃料電池の電極製造装置。   The means for preventing the electrode material powder from being charged with a reverse polarity is a means for connecting the electrode of the transfer portion and the high-voltage power supply for transfer via a resistor having a high resistance value. The fuel cell electrode manufacturing apparatus according to claim 1. 電極材粉末が逆極性に帯電するのを防止するための手段が、電極材料粉末が電解質膜に転写された後、直ちに転写用高圧電源を低電圧あるいは0Vとして転写部の転写電界を弱くするあるいは無くす手段であることを特徴とする請求項1に記載の燃料電池の電極製造装置。   As a means for preventing the electrode material powder from being charged with a reverse polarity, immediately after the electrode material powder is transferred to the electrolyte membrane, the transfer high-voltage power supply is set to a low voltage or 0 V to weaken the transfer electric field of the transfer portion or 2. The fuel cell electrode manufacturing apparatus according to claim 1, wherein the device is a means for eliminating the fuel cell electrode. 転写部を構成する部材以外の部材であって、電極の製造過程で電解質膜に接することとなる部材は、電解質膜に接することとなる領域を高抵抗値を持つ材料で作製されおり、これら部材から電解質膜に静電付着した電極材料粉末が帯電するのをなくして、電極材料粉末が逆極性に帯電するのを防止するようにされていることを特徴とする請求項1〜4のいずれかに記載の燃料電池の電極製造装置。   The members other than the members constituting the transfer portion, which are in contact with the electrolyte membrane in the manufacturing process of the electrodes, are made of a material having a high resistance value in the region that is in contact with the electrolyte membrane. The electrode material powder that is electrostatically attached to the electrolyte membrane is prevented from being charged to prevent the electrode material powder from being charged to a reverse polarity. The fuel cell electrode manufacturing apparatus according to claim 1. 2個以上の転写ユニットが電解質膜の搬送方向にタンデムに並べられていることを特徴とする請求項1〜5のいずれかに記載の燃料電池の電極製造装置。   6. The fuel cell electrode manufacturing apparatus according to claim 1, wherein two or more transfer units are arranged in tandem in the transport direction of the electrolyte membrane. 2個以上の転写ユニットが電解質膜の一面側にその搬送方向にタンデムに並べられており、さらに、2個以上の転写ユニットが電解質膜の他面側にその搬送方向にタンデムに並べられていることを特徴とする請求項6に記載の燃料電池の電極製造装置。   Two or more transfer units are arranged in tandem in the transport direction on one surface side of the electrolyte membrane, and two or more transfer units are arranged in tandem in the transport direction on the other surface side of the electrolyte membrane. The fuel cell electrode manufacturing apparatus according to claim 6. 高抵抗値が10MΩ〜100GΩの範囲であることを特徴とする請求項2、3、5〜7のいずれかに記載の燃料電池の電極製造装置。   8. The fuel cell electrode manufacturing apparatus according to claim 2, wherein the high resistance value is in the range of 10 M [Omega] to 100 G [Omega]. 帯電した電極材料粉末を現像部において電極形状に現像する工程、現像された電極材料粉末を転写用高圧電源を有する転写部において現像部から電解質膜に静電力により転写する工程、電解質膜上の電極材料粉末を定着部において定着する工程とを少なくとも備えた燃料電池の電極製造方法であって、転写部において電極材料粉末が現像部から電解質膜に静電力により転写した後、電解質膜上の電極材料粉末に転写部からの電流が流れにくくすることによって、静電付着した電極材料粉末が逆極性に帯電するのを防止し、それにより、転写部において、静電付着した電極材料粉末が現像部に逆飛翔する転写異常を生じさせないようにしたことを特徴とする燃料電池の電極製造方法。   A step of developing the charged electrode material powder into an electrode shape in the developing portion, a step of transferring the developed electrode material powder from the developing portion to the electrolyte membrane in the transfer portion having a high-voltage power supply for transfer, an electrode on the electrolyte membrane A method for producing an electrode of a fuel cell comprising at least a step of fixing a material powder in a fixing portion, wherein the electrode material powder is transferred from the developing portion to the electrolyte membrane by an electrostatic force in the transfer portion, and then the electrode material on the electrolyte membrane By preventing the current from the transfer part from flowing into the powder, the electrostatically attached electrode material powder is prevented from being charged with a reverse polarity, so that the electrostatically attached electrode material powder is transferred to the developing part in the transfer part. An electrode manufacturing method for a fuel cell, characterized in that a reverse transfer flying abnormality is not caused. 帯電した電極材料粉末を現像部において電極形状に現像する工程、現像された電極材料粉末を転写用高圧電源を有する転写部において現像部から電解質膜に静電力により転写する工程、電解質膜上の電極材料粉末を定着部において定着する工程とを少なくとも備えた燃料電池の電極製造方法であって、転写部において電極材料粉末が現像部から電解質膜に静電力により転写した後、転写部の転写電界を弱くするあるいは無くすことによって、静電付着した電極材料粉末が逆極性に帯電するのを防止し、それにより、転写部において、静電付着した電極材料粉末が現像部に逆飛翔する転写異常を生じさせないようにしたことを特徴とする燃料電池の電極製造方法。   A step of developing the charged electrode material powder into an electrode shape in the developing portion, a step of transferring the developed electrode material powder from the developing portion to the electrolyte membrane in the transfer portion having a high-voltage power supply for transfer, an electrode on the electrolyte membrane A method of manufacturing a fuel cell electrode comprising at least a step of fixing a material powder in a fixing unit, wherein the electrode material powder is transferred from the developing unit to the electrolyte membrane by an electrostatic force in the transfer unit, and then the transfer electric field of the transfer unit is changed. By weakening or eliminating it, the electrostatically attached electrode material powder is prevented from being charged with a reverse polarity, thereby causing a transfer abnormality in which the electrostatically adhered electrode material powder flies back to the developing portion. A method for producing an electrode for a fuel cell, characterized in that it is not allowed to occur.
JP2005079913A 2004-03-19 2005-03-18 Fuel cell electrode manufacturing apparatus and method Expired - Fee Related JP5175423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079913A JP5175423B2 (en) 2004-03-19 2005-03-18 Fuel cell electrode manufacturing apparatus and method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004081405 2004-03-19
JP2004081405 2004-03-19
JP2005079913A JP5175423B2 (en) 2004-03-19 2005-03-18 Fuel cell electrode manufacturing apparatus and method

Publications (2)

Publication Number Publication Date
JP2005302714A true JP2005302714A (en) 2005-10-27
JP5175423B2 JP5175423B2 (en) 2013-04-03

Family

ID=35333916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079913A Expired - Fee Related JP5175423B2 (en) 2004-03-19 2005-03-18 Fuel cell electrode manufacturing apparatus and method

Country Status (1)

Country Link
JP (1) JP5175423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198975A (en) * 2009-02-26 2010-09-09 Dainippon Printing Co Ltd Method for manufacturing recycled electrolyte-covered catalyst
CN108837961A (en) * 2018-06-11 2018-11-20 合肥国轩高科动力能源有限公司 A kind of lithium ion battery cell apparatus for coating and its coating method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220901A (en) * 1995-02-10 1996-08-30 Matsushita Electric Ind Co Ltd Electrophotographic device and control method therefor
JP2000029329A (en) * 1998-07-08 2000-01-28 Mita Ind Co Ltd Image output equipment
JP2001083812A (en) * 1999-09-09 2001-03-30 Canon Inc Image forming device
JP2001154500A (en) * 1999-11-29 2001-06-08 Kyocera Mita Corp Image forming device
JP2001209237A (en) * 2000-01-28 2001-08-03 Nec Niigata Ltd Contact type electrifying device and transfer device
JP2002182496A (en) * 2000-12-18 2002-06-26 Ricoh Co Ltd Transfer device and image forming apparatus
JP2002367616A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing device for the same
JP2003098856A (en) * 2001-09-26 2003-04-04 Sharp Corp Image forming device and transfer roller thereof
JP2003268209A (en) * 2002-03-15 2003-09-25 Fuji Xerox Co Ltd Conductive member and image-forming apparatus using it
JP2004029058A (en) * 2002-06-21 2004-01-29 Canon Inc Image forming apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220901A (en) * 1995-02-10 1996-08-30 Matsushita Electric Ind Co Ltd Electrophotographic device and control method therefor
JP2000029329A (en) * 1998-07-08 2000-01-28 Mita Ind Co Ltd Image output equipment
JP2001083812A (en) * 1999-09-09 2001-03-30 Canon Inc Image forming device
JP2001154500A (en) * 1999-11-29 2001-06-08 Kyocera Mita Corp Image forming device
JP2001209237A (en) * 2000-01-28 2001-08-03 Nec Niigata Ltd Contact type electrifying device and transfer device
JP2002182496A (en) * 2000-12-18 2002-06-26 Ricoh Co Ltd Transfer device and image forming apparatus
JP2002367616A (en) * 2001-06-11 2002-12-20 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for polymer electrolyte fuel cell, and manufacturing device for the same
JP2003098856A (en) * 2001-09-26 2003-04-04 Sharp Corp Image forming device and transfer roller thereof
JP2003268209A (en) * 2002-03-15 2003-09-25 Fuji Xerox Co Ltd Conductive member and image-forming apparatus using it
JP2004029058A (en) * 2002-06-21 2004-01-29 Canon Inc Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010198975A (en) * 2009-02-26 2010-09-09 Dainippon Printing Co Ltd Method for manufacturing recycled electrolyte-covered catalyst
CN108837961A (en) * 2018-06-11 2018-11-20 合肥国轩高科动力能源有限公司 A kind of lithium ion battery cell apparatus for coating and its coating method

Also Published As

Publication number Publication date
JP5175423B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
US7738821B2 (en) Developer supply device and image forming apparatus
WO2005080008A1 (en) Method and apparatus for forming catalyst layer on base constituting membrane electrode assembly
JP6391770B2 (en) Image forming apparatus
JP2007328317A (en) Transfer-separation device and image forming apparatus
JP2003163011A (en) Method and apparatus for manufacturing fuel cell electrode
KR20090024771A (en) System and method for making printed electronic circuits using electrophotography
JP5175423B2 (en) Fuel cell electrode manufacturing apparatus and method
CN107664940B (en) Image forming apparatus with a toner supply device
JPH04220674A (en) Heating device
JP4253491B2 (en) Method and apparatus for manufacturing fuel cell electrode
JP2951678B2 (en) Image forming device
JP4614687B2 (en) Fuel cell electrode manufacturing apparatus and method
JP4619041B2 (en) Fuel cell electrode manufacturing apparatus and method
JPH07254768A (en) Manufacturing method of circuit board
US11644770B2 (en) Intermediate transfer body and image forming apparatus
JP2004185001A (en) Intermediate transfer member for carrying intermediate electrophotographic image
JP2003241543A (en) Image forming apparatus
JP2994840B2 (en) Image forming device
JPH06110350A (en) Roller for fixing and fixing device
JP3308585B2 (en) Charging device
JPH10315525A (en) Image forming apparatus
JP2015072386A (en) Image forming apparatus
JPH11119572A (en) Transfer device
JP2003195657A (en) Image forming apparatus
JP3728382B2 (en) Wet image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130107

R151 Written notification of patent or utility model registration

Ref document number: 5175423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees