JP2005302224A5 - - Google Patents

Download PDF

Info

Publication number
JP2005302224A5
JP2005302224A5 JP2004120019A JP2004120019A JP2005302224A5 JP 2005302224 A5 JP2005302224 A5 JP 2005302224A5 JP 2004120019 A JP2004120019 A JP 2004120019A JP 2004120019 A JP2004120019 A JP 2004120019A JP 2005302224 A5 JP2005302224 A5 JP 2005302224A5
Authority
JP
Japan
Prior art keywords
meandering
pattern
deflection
region
reproduction signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004120019A
Other languages
Japanese (ja)
Other versions
JP2005302224A (en
JP4157073B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004120019A priority Critical patent/JP4157073B2/en
Priority claimed from JP2004120019A external-priority patent/JP4157073B2/en
Publication of JP2005302224A publication Critical patent/JP2005302224A/en
Publication of JP2005302224A5 publication Critical patent/JP2005302224A5/ja
Application granted granted Critical
Publication of JP4157073B2 publication Critical patent/JP4157073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

原盤露光方法及び情報記録ディスクMaster exposure method and information recording disk

本発明は、原盤露光方法及び情報記録ディスクに関し、より詳細には、露光ビームを情報記録ディスク用原盤の径方向に蛇行させながらウォブルパターンを露光する原盤露光方法及びその原盤露光方法で作製された原盤を用いて製造された情報記録ディスクに関する。   The present invention relates to a master exposure method and an information recording disc, and more specifically, produced by a master exposure method for exposing a wobble pattern while causing an exposure beam to meander in the radial direction of the master for the information recording disc, and the master exposure method thereof. The present invention relates to an information recording disc manufactured using a master disc.

光ディスクの分野では、情報の高密度化に伴い光ディスクに形成される記録マークのピッチを高めると同時にトラックピッチを狭めることが求められている。しかしながら、情報の高密度化に伴い、記録マークから得られる再生信号の再生ビームのスポット径に対する影響が大きくなる。例えば、再生ビームのスポット径が最短記録マーク長以上の大きさになるような領域では、所定の記録マークを再生すると、トラック方向に隣接する記録マークの情報の一部も干渉して再生される(符号間干渉)。その結果、再生信号の品質が劣化するなどの問題が生じる。符号間干渉を発生させないためには、再生ビームのスポットサイズと記録マークのサイズとの関係を、所定の再生ビームのスポットサイズにおいて、記録マークの大きさに対する再生信号の振幅が直線的に変化(以下、再生信号の直線性ともいう)する領域に止めることが望ましい。   In the field of optical discs, it is required to increase the pitch of recording marks formed on the optical disc and to reduce the track pitch as the information density increases. However, as the information density increases, the influence of the reproduction signal obtained from the recording mark on the spot diameter of the reproduction beam increases. For example, in a region where the spot diameter of the reproduction beam is larger than the shortest recording mark length, when a predetermined recording mark is reproduced, a part of the information of the recording mark adjacent in the track direction is also reproduced by interference. (Intersymbol interference). As a result, problems such as degradation of the quality of the reproduction signal occur. In order to prevent intersymbol interference, the relationship between the reproduction beam spot size and the recording mark size is such that the reproduction signal amplitude changes linearly with respect to the recording mark size at a predetermined reproduction beam spot size ( Hereinafter, it is desirable to stop in a region where the reproduction signal is also referred to as linearity.

また、一般に、光ディスクを大量に生産する際には、スタンパを用いた射出成形により基板に所定のパターン(溝、ピットあるいは記録情報などの物理的なパターン)を形成する。スタンパは、ガラス原盤に感光レジストを塗布したのち、集光レーザ装置(カッティング装置)等で露光し、その後、現像・メッキ等の手段を通じて作製される。その際、スタンパ表面にはカッティング装置で露光された所定のパターンに対応する凹凸(ピットや連続溝など)が形成される。このようなマスタリングプロセスの際に、情報の記録マークの携帯情報をピットや連続溝、あるいは、ピット列を蛇行させたパターンとして記録することができる。この場合、蛇行パターンによる情報記録は溝と一体的に形成することができるため、光ディスクのセキュリティに関する副次情報が蛇行パターンにより記録される場合がある。さらに、光ディスクに追記するための情報(アドレス情報等)を原盤露光時に蛇行パターンにより記録することもできる。このようなマスタリングプロセスにおけるカッティング装置の露光はクリーン度の高い温湿度を管理した環境で精密に行われるが、集光レーザ(露光ビーム)の収束光径以下のマーク(蛇行パターン)を形成しても再生信号の記録マーク長に対する直線性を確保することが難しく、集光レーザの収束光径により記録密度が決定される。   In general, when an optical disk is produced in large quantities, a predetermined pattern (physical pattern such as a groove, pit, or recording information) is formed on a substrate by injection molding using a stamper. The stamper is manufactured through a method such as development / plating after applying a photosensitive resist to the glass master, exposing it with a condensing laser device (cutting device) or the like. At that time, irregularities (pits, continuous grooves, etc.) corresponding to a predetermined pattern exposed by the cutting device are formed on the stamper surface. In such a mastering process, the portable information of the information recording mark can be recorded as a pattern in which the pits, continuous grooves, or pit rows meander. In this case, since the information recording by the meandering pattern can be formed integrally with the groove, the secondary information related to the security of the optical disc may be recorded by the meandering pattern. Furthermore, information (address information or the like) for additionally recording on the optical disc can be recorded in a meandering pattern during exposure of the master. The exposure of the cutting device in such a mastering process is performed precisely in an environment where the temperature and humidity are controlled with a high degree of cleanness, but a mark (meandering pattern) that is smaller than the convergent light diameter of the focused laser (exposure beam) is formed. However, it is difficult to ensure the linearity of the reproduction signal with respect to the recording mark length, and the recording density is determined by the convergent light diameter of the focused laser.

特開2002−237039号公報JP 2002-237039 A 特開平9−288824号公報JP-A-9-288824

ところで、近年、蛇行パターンにより情報を記録するフォーマットにおいて高密度記録化が要求されている。以下に、蛇行パターンを高密度記録する際の問題点について説明する。By the way, in recent years, high-density recording is required in a format for recording information using a meandering pattern. In the following, problems in high-density recording of meander patterns will be described.

原盤上に所定の蛇行パターンを露光する際、蛇行パターンに含まれる蛇行周期が一定であれば、図1に示すように、単一露光ビーム10の偏向動作を同じ周期で繰り返して(図1中の矢印11)蛇行パターン13が露光されるので、マスタリングプロセスで実際に形成された蛇行パターン13の軌跡は全て一様となる。ただし、図1中の蛇行周期Tは情報記録時のクロック周期などの所定の情報記録マーク単位とする。When exposing a predetermined meandering pattern on the master, if the meandering period included in the meandering pattern is constant, the deflection operation of the single exposure beam 10 is repeated at the same period as shown in FIG. 11) Since the meandering pattern 13 is exposed, the trajectory of the meandering pattern 13 actually formed by the mastering process is all uniform. However, the meandering period T in FIG. 1 is a predetermined information recording mark unit such as a clock period at the time of information recording.

なお、蛇行パターン13を露光ビーム10で露光する際、露光ビーム10を駆動する偏向駆動信号は、図1(a)に示すように、所定の蛇行周期Tで矩形波形状に切り替えられる。しかしながら、実際に、露光ビーム10により露光される蛇行パターンの軌跡は、偏向器の動作速度と偏向器を偏向駆動するためのドライバの動作速度との制限から、図1(b)に示すように、偏向駆動信号と同様の矩形状のパターンでなくなる。それゆえ、図1(b)に示すように、マスタリングプロセスで実際に形成される蛇行パターン13の偏向量が最大となる領域のトラック方向の長さは偏向駆動信号の偏向量が最大となる領域の長さ(蛇行周期T)より短くなる。なお、以下では、蛇行パターンの最大偏向量の1/2以上の領域長さを実効的な記録マーク長さという。実効的な記録マーク長もまた、図1(b)に示すように、偏向駆動信号の偏向量が最大となる領域の長さ(蛇行周期T)より短くなる。偏向駆動信号を忠実に動作する偏向器と偏向ドライバとを用い、且つ、点としてみなせるような露光ビームを用いた場合には偏向駆動信号に対応した理想的な蛇行パターンを実現できるが、実際には、露光ビームは有限の広がりを有し、且つ、偏向器にも動作速度に限界があるため、図1(b)のように、偏向駆動信号波形とは異なる蛇行パターン13が形成される。When the meandering pattern 13 is exposed with the exposure beam 10, the deflection drive signal for driving the exposure beam 10 is switched to a rectangular wave shape with a predetermined meandering period T as shown in FIG. However, actually, the locus of the meandering pattern exposed by the exposure beam 10 is as shown in FIG. 1B due to the limitation of the operating speed of the deflector and the operating speed of the driver for driving the deflector to deflect. This is not the same rectangular pattern as the deflection drive signal. Therefore, as shown in FIG. 1B, the length in the track direction of the region where the deflection amount of the meandering pattern 13 actually formed in the mastering process is maximum is the region where the deflection amount of the deflection drive signal is maximum. Shorter than the length (meandering period T). In the following, an area length of 1/2 or more of the maximum deflection amount of the meander pattern is referred to as an effective recording mark length. The effective recording mark length is also shorter than the length (meandering period T) of the region where the deflection amount of the deflection drive signal is maximum, as shown in FIG. When using a deflector and a deflection driver that faithfully operate the deflection drive signal and using an exposure beam that can be regarded as a point, an ideal meander pattern corresponding to the deflection drive signal can be realized. Since the exposure beam has a finite spread and the operation speed of the deflector is also limited, a meandering pattern 13 different from the deflection drive signal waveform is formed as shown in FIG.

また、このような蛇行パターン13が形成された原盤からスタンパを作製し、スタンパを用いて射出成形により基板上に蛇行パターン13に対応するウォブル溝を形成すると、基板上には原盤上に形成された蛇行パターンと同様のウォブル溝が形成される。それゆえ、以下の説明では、適宜図1(b)の蛇行パターンを基板上に形成されるウォブル溝のパターンとして説明する。その場合には蛇行パターン13をウォブル溝13という。なお、後述する図2〜図4の説明においても同様に、適宜蛇行パターンを基板上に形成されるウォブル溝のパターンとして説明する。Further, when a stamper is manufactured from a master on which such a meandering pattern 13 is formed and a wobble groove corresponding to the meandering pattern 13 is formed on the substrate by injection molding using the stamper, the stamper is formed on the master on the substrate. A wobble groove similar to the meandering pattern is formed. Therefore, in the following description, the meander pattern of FIG. 1B will be described as a wobble groove pattern formed on the substrate. In that case, the meandering pattern 13 is called a wobble groove 13. Similarly, in the description of FIGS. 2 to 4 to be described later, a meander pattern is described as a wobble groove pattern formed on the substrate as appropriate.

図1に示すような蛇行パターンで光ディスク上に形成されたウォブル溝13に再生光100を図1中の矢印12の方向に走査してウォブル溝13からの再生信号を検出すると、図1(c)に示すように、振幅一定の再生信号が得られる。When the reproduction light 100 is scanned in the direction of the arrow 12 in FIG. 1 in the wobble groove 13 formed on the optical disk in a meandering pattern as shown in FIG. 1, the reproduction signal from the wobble groove 13 is detected. As shown in (), a reproduction signal having a constant amplitude is obtained.

一方、図2に示すように、所定のトラックの蛇行パターン内に複数の蛇行周期が含まれる場合、偏向駆動信号の蛇行周期の実効的な記録マークの長さに対する線形性が崩れてしまう。具体的には、図2に示すように、蛇行周期2Tで露光された領域の実効的な記録マーク長さが、蛇行周期Tで露光された領域の実効的な記録マーク長さの2倍以上となる。すなわち、偏向駆動信号の蛇行周期が異なると、蛇行周期の違い以上に実効的な記録マーク長さに差が生じる。この原因は、主に情報の高密度記録化に伴い蛇行パターンの蛇行周期が短くなると、露光ビームの偏向動作時間が記録マーク(蛇行パターン)の形成に必要な露光時間に対して十分な時間でなくなるためである。それゆえ、蛇行周期が小さくなるほど実効的な記録マーク長さが短くなり、再生光スポット内に占める情報再生に寄与する偏向領域(記録マーク領域)の面積も小さくなる。その結果、蛇行周期が短くなるほど蛇行パターンで形成された記録マーク領域からの再生信号も小さくなる。それゆえ、所定のトラックの蛇行パターン内に複数の蛇行周期が含まれる場合には蛇行周期により再生信号の振幅値に差が生じるという問題が生じる。例えば、図2(b)に示すように、所定のトラックのウォブル溝内に複数の蛇行周期(T及び2T)のウォブルパターンが含まれる場合、図2(c)に示すように、最短蛇行周期Tの領域から得られる再生信号が、蛇行周期2Tの領域から得られる再生信号より振幅が小さくなる。すなわち、蛇行周期の変化に対する再生信号の直線性(一様性)が劣化してしまう。On the other hand, as shown in FIG. 2, when a plurality of meandering periods are included in the meandering pattern of a predetermined track, the linearity of the meandering period of the deflection drive signal with respect to the effective recording mark length is lost. Specifically, as shown in FIG. 2, the effective recording mark length of the area exposed at the meandering period 2T is at least twice the effective recording mark length of the area exposed at the meandering period T. It becomes. That is, if the meandering cycle of the deflection drive signal is different, the effective recording mark length is different from that of the meandering cycle. This is mainly due to the fact that the meandering cycle of the meandering pattern is shortened with the high density recording of information, the deflection operation time of the exposure beam is sufficient for the exposure time required for forming the recording mark (meandering pattern). This is because it disappears. Therefore, the smaller the meander period, the shorter the effective recording mark length, and the smaller the area of the deflection area (recording mark area) that contributes to information reproduction in the reproduction light spot. As a result, the shorter the meander cycle, the smaller the reproduction signal from the recording mark area formed by the meander pattern. Therefore, when a plurality of meandering periods are included in the meandering pattern of a predetermined track, there arises a problem that a difference occurs in the amplitude value of the reproduction signal depending on the meandering period. For example, as shown in FIG. 2B, when a wobble pattern having a plurality of meandering cycles (T and 2T) is included in a wobble groove of a predetermined track, as shown in FIG. The reproduction signal obtained from the region T has a smaller amplitude than the reproduction signal obtained from the region having the meandering period 2T. That is, the linearity (uniformity) of the reproduction signal with respect to the change of the meandering cycle is deteriorated.

また、情報の高密度記録化に伴い蛇行パターンの蛇行周期が短くなると、再生光の径が有限の大きさを持つために、再生光の径より蛇行周期が短いような場合には、符号間干渉が起こり易くなり、蛇行周期に対する再生信号の直線性が確保できなくなるという問題が生じる。例えば、図2に示すように、複数の蛇行周期(T及び2T)を有する蛇行パターンから形成されたウォブル溝23上を再生光100で矢印12の方向に走査してウォブルパターンの再生信号を検出すると、再生光100が蛇行周期2Tの記録マーク領域B上に存在する場合は、再生光100内にはほとんど蛇行周期2Tの情報しか含まれないが、蛇行周期Tの記録マーク領域A上に再生光100がある場合には、再生光100内にトラック方向に隣接する記録マークの一部(ウォブルパターンの傾斜部等)が含まれてしまう。それゆえ、ウォブル溝23内の蛇行周期Tの記録マーク領域Aの情報を再生すると、再生すべき記録マーク領域Aの情報だけでなくトラック方向に隣接する記録マーク領域の情報の一部も一緒に再生することになる。すなわち、図2に示すようなウォブルパターンでは、蛇行周期Tの記録マーク領域の情報を再生する際に、符号間干渉が起こり易くなり、蛇行周期Tの記録マーク領域から得られる再生信号の振幅は、図2(c)に示すように、蛇行周期2Tの記録マーク領域から得られる再生信号の振幅より小さくなる。上述のような符号間干渉は情報の高密度記録化に伴い、蛇行周期が短くなるほど起こり易くなる。In addition, when the meandering cycle of the meander pattern is shortened due to the high density recording of information, the diameter of the reproduction light has a finite size. Interference is likely to occur, resulting in a problem that the linearity of the reproduction signal with respect to the meandering cycle cannot be ensured. For example, as shown in FIG. 2, the reproduction signal of the wobble pattern is detected by scanning the wobble groove 23 formed of the meandering pattern having a plurality of meandering periods (T and 2T) with the reproduction light 100 in the direction of the arrow 12. Then, when the reproducing light 100 is present on the recording mark area B having the meandering period 2T, the reproducing light 100 contains almost only information on the meandering period 2T, but is reproduced on the recording mark area A having the meandering period T. When the light 100 is present, the reproduction light 100 includes a part of a recording mark adjacent to the track direction (such as an inclined portion of a wobble pattern). Therefore, when the information of the recording mark area A having the meandering period T in the wobble groove 23 is reproduced, not only the information of the recording mark area A to be reproduced but also a part of the information of the recording mark area adjacent in the track direction is together. Will play. That is, in the wobble pattern as shown in FIG. 2, when reproducing the information in the recording mark area having the meandering period T, intersymbol interference is likely to occur, and the amplitude of the reproduction signal obtained from the recording mark area having the meandering period T is As shown in FIG. 2C, the amplitude is smaller than the amplitude of the reproduction signal obtained from the recording mark area having the meandering period 2T. Intersymbol interference as described above is more likely to occur as the meander period becomes shorter as information is recorded at higher density.

実際に、蛇行パターンに情報を記録する際には、種々の蛇行周期で偏向されて記録される。それゆえ、上述したような蛇行周期に対する実効的な記録マーク長さの線形性の崩れや符号間干渉による再生信号の直線性の劣化は、再生信号の分解能を限定することになる。また、蛇行パターンからの再生信号が小さくなれば信号対雑音比(S/N)も小さくなり、蛇行パターンで形成された記録マークに対するジッタ特性も劣化して再生エラー率が増大する。それゆえ、情報の高記録密度化に伴い発生する蛇行周期の変化に対する再生信号の直線性のずれを補正するための蛇行パターンの補正手段が求められている。特に、線記録方向(トラック方向)の蛇行周期の減少及び径方向のトラックピッチ縮減に対する有効な蛇行パターンの補正手段が要求されている。Actually, when information is recorded in the meandering pattern, it is deflected and recorded at various meandering periods. Therefore, the degradation of the linearity of the effective recording mark length with respect to the meandering period and the deterioration of the linearity of the reproduced signal due to intersymbol interference limit the resolution of the reproduced signal. Further, if the reproduction signal from the meandering pattern becomes small, the signal-to-noise ratio (S / N) also becomes small, the jitter characteristic for the recording mark formed by the meandering pattern deteriorates, and the reproduction error rate increases. Therefore, there is a need for meandering pattern correction means for correcting a deviation in linearity of a reproduction signal with respect to a change in meandering cycle that occurs as information density increases. In particular, effective meandering pattern correction means for reducing the meander period in the linear recording direction (track direction) and reducing the track pitch in the radial direction is required.

本発明は上記課題を解決するためになされたものであり、本発明の目的はウォブル溝の蛇行パターンに情報が記録される光ディスクの原盤露光方法において、情報の高記録密度化に伴い発生する再生信号の直線性の劣化を補正して高密度記録に最適な原盤露光方法を提供することである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is an optical disc master exposure method in which information is recorded in a wobble groove meander pattern, and reproduction that occurs with an increase in information recording density. An object of the present invention is to provide a master exposure method optimal for high-density recording by correcting signal linearity deterioration.

本発明の第1の態様に従えば、露光ビームを原盤の径方向に蛇行させながら蛇行パターンを露光する原盤露光方法において、該蛇行パターンの蛇行周期に応じて、該露光ビームの径方向の蛇行量を変化させることを特徴とする原盤露光方法が提供される。According to the first aspect of the present invention, in the master exposure method for exposing the meandering pattern while causing the exposure beam to meander in the radial direction of the master, the meandering in the radial direction of the exposure beam according to the meandering cycle of the meandering pattern. A master exposure method characterized by changing the amount is provided.

本発明の第1の態様に従う原盤露光方法では、上記蛇行パターンが複数の蛇行周期を含み、該複数の蛇行周期が所定の情報記録マーク単位の整数倍であることが好ましい。ここで、所定の情報記録マーク単位とは、情報を符号化して記録する際の記録マークの長さを決めるための基準単位のことをいう。一般に、媒体上に記録される記録マークの長さは記録クロックの整数倍に設定されるので、所定の情報記録マーク単位もまた記録クロックの整数倍であることが好ましい。In the master exposure method according to the first aspect of the present invention, it is preferable that the meandering pattern includes a plurality of meandering cycles, and the plurality of meandering cycles is an integral multiple of a predetermined information recording mark unit. Here, the predetermined information recording mark unit refers to a reference unit for determining the length of a recording mark when information is encoded and recorded. In general, since the length of a recording mark recorded on a medium is set to an integral multiple of the recording clock, the predetermined information recording mark unit is also preferably an integral multiple of the recording clock.

従来、原盤露光装置(カッティング装置)の光学系では、できる限り露光ビームの径を小さくするように工夫されているが、再生時に用いられる再生光のビーム径は、一般に原盤露光装置で用いられる露光ビームの径より大きい。それゆえ、上述のように、情報の高密度化に伴いウォブル溝の蛇行周期が小さくなると、蛇行周期の変化に対する再生信号の直線性が確保できなくなる。Conventionally, the optical system of a master exposure apparatus (cutting apparatus) has been devised to reduce the diameter of the exposure beam as much as possible. However, the beam diameter of the reproduction light used at the time of reproduction is generally an exposure used in the master exposure apparatus. It is larger than the beam diameter. Therefore, as described above, when the wobble groove meander period becomes smaller as the information density increases, the linearity of the reproduction signal with respect to the change of the meander period cannot be ensured.

一般に情報が高密度化される領域において記録マークに対する再生信号の直線性を確保するということは、再生信号のジッタを改善することと同じである。それゆえ、再生信号の直線性の劣化は再生信号のジッタにより評価できる。再生信号のジッタは、記録マークの大きさを補償することによりある程度改善されることが知られている。記録マークの大きさを補償して原盤露光する方法としては、ピットの大きさを補償してピットパターンを露光する方法、すなわち、露光ビームの露光量を変化させることによりピットの大きさを補償する方法が知られている。しかしながら、この方法は、蛇行パターンにより情報が記録された記録マークに適用することはできない。蛇行パターンによる記録は連続溝やピット列を蛇行させてその蛇行パターンに情報を割り当てるものであるため、例えば溝を形成する際に露光量を補正しても蛇行パターンの大きさ(蛇行周期など)を改善することはできない。また、蛇行パターンの長さは溝として連続しているものであるので、蛇行パターンの長さもまた露光量では調整できない。Generally, ensuring the linearity of a reproduction signal with respect to a recording mark in an area where information is densified is the same as improving the jitter of the reproduction signal. Therefore, the deterioration of the linearity of the reproduction signal can be evaluated by the jitter of the reproduction signal. It is known that the jitter of the reproduction signal is improved to some extent by compensating the size of the recording mark. Compensating the size of the recording mark and exposing the master disk is a method of exposing the pit pattern by compensating the pit size, that is, compensating the pit size by changing the exposure amount of the exposure beam. The method is known. However, this method cannot be applied to a recording mark in which information is recorded by a meandering pattern. Since recording with a meandering pattern meanders a continuous groove or pit row and assigns information to the meandering pattern, the size of the meandering pattern (eg meandering period) even if the exposure amount is corrected when the groove is formed. Cannot be improved. Further, since the length of the meandering pattern is continuous as a groove, the length of the meandering pattern cannot be adjusted by the exposure amount.

そこで、本発明の第1の態様に従う原盤露光方法では、原盤上に露光ビームを照射して所定の蛇行パターンを形成する際に、蛇行パターンの蛇行周期に応じて、露光ビームの原盤の径方向の蛇行量を変化させることにより、上述のような蛇行周期の変化に対する再生信号の直線性の劣化を補正する。Therefore, in the master exposure method according to the first aspect of the present invention, when a predetermined meandering pattern is formed by irradiating the master with an exposure beam, the exposure beam master radial direction depends on the meandering cycle of the meandering pattern. By changing the amount of meandering, the deterioration of the linearity of the reproduction signal with respect to the change of the meandering period as described above is corrected.

本発明の第1の態様に従う原盤露光方法の一例を図3に示した。本発明の第1の態様に従う原盤露光方法では、図3(a)に示すように、蛇行周期Tの蛇行パターンを露光する際の単一露光ビーム10の蛇行量a2及びb2を、蛇行周期2Tの蛇行パターンを露光する際の蛇行量a1及びb1より大きくする。なお、図3の例では、蛇行周期2Tの蛇行パターンを露光する際の蛇行量a1及びb1は図2で示した従来例と同じとする。この結果、マスタリングプロセスにより実際に原盤上に形成される蛇行パターン33は、図3(b)に示すように、蛇行周期Tの領域の蛇行量が蛇行周期2Tの領域の蛇行量より大きくなる。An example of a master exposure method according to the first aspect of the present invention is shown in FIG. In the master exposure method according to the first aspect of the present invention, as shown in FIG. 3A, the meandering amounts a2 and b2 of the single exposure beam 10 when the meandering pattern having the meandering period T is exposed are changed to the meandering period 2T. The meandering amounts a1 and b1 when exposing the meandering pattern are made larger. In the example of FIG. 3, meandering amounts a1 and b1 when exposing a meandering pattern with a meandering period 2T are the same as in the conventional example shown in FIG. As a result, the meandering pattern 33 actually formed on the master by the mastering process has a meandering amount in the meandering period T region larger than the meandering amount in the meandering period 2T region, as shown in FIG.

図3(b)に示すような蛇行パターンが形成された原盤から作製された光ディスク上のウォブル溝33に図2の例と同様のスポットサイズを有する再生光100を照射して再生信号を検出すると、蛇行周期2Tの記録マーク領域Bの蛇行量は図2の従来例と同じであるので、蛇行周期2Tの記録マーク領域Bからの再生信号は図2と同じ振幅の再生信号が検出される。When a reproduction signal is detected by irradiating the reproduction light 100 having the same spot size as the example of FIG. 2 onto the wobble groove 33 on the optical disk manufactured from the master having the meandering pattern as shown in FIG. Since the meandering amount of the recording mark area B with the meandering period 2T is the same as that of the conventional example of FIG. 2, a reproducing signal with the same amplitude as that of FIG. 2 is detected from the recording mark area B with the meandering period 2T.

一方、蛇行周期Tの記録マーク領域Aでは、図2の従来例より蛇行量が大きくなっているので、再生光100内に占める情報再生に寄与する偏向領域(再生すべき記録マーク領域)の面積が大きくなるとともに、トラック方向に隣接する記録マーク領域との径方向の距離も広がるので、再生光100内に占める隣接記録マーク領域の面積も小さくなる。すなわち、蛇行周期Tの記録マーク領域の蛇行量を大きくすることにより、再生光内に占める再生すべき記録マーク領域の面積が増え且つ符号間干渉の影響も小さくなる。その結果、本発明では蛇行周期Tの記録マーク領域から得られる再生信号の振幅の劣化が抑制され、蛇行周期Tの記録マーク領域から得られる再生信号の振幅が図2の従来例で得られる再生信号の振幅より大きくなる。それゆえ、図3の例では、原盤露光時に蛇行周期Tの蛇行パターンを露光する際の露光ビームの蛇行量を適宜調整することにより、図3(c)に示すように、蛇行周期に関係無く振幅一定の再生信号を得ることができる。すなわち、本発明の第1の態様に従う原盤露光方法では、上述のような情報の高記録密度化に伴い発生する蛇行周期の変化に対する再生信号の直線性の劣化を改善することができる。On the other hand, in the recording mark area A having the meandering period T, the amount of meandering is larger than that in the conventional example of FIG. 2, so the area of the deflection area (recording mark area to be reproduced) contributing to information reproduction in the reproduction light 100 is increased. And the radial distance from the recording mark area adjacent in the track direction also increases, so that the area of the adjacent recording mark area in the reproduction light 100 also decreases. That is, by increasing the meandering amount of the recording mark area having the meandering period T, the area of the recording mark area to be reproduced in the reproduction light is increased and the influence of intersymbol interference is reduced. As a result, in the present invention, the deterioration of the amplitude of the reproduction signal obtained from the recording mark area having the meandering period T is suppressed, and the reproduction signal obtained from the recording mark area having the meandering period T is reproduced in the conventional example shown in FIG. It becomes larger than the amplitude of the signal. Therefore, in the example of FIG. 3, by adjusting the amount of meandering of the exposure beam when exposing the meandering pattern with the meandering period T during exposure of the master, as shown in FIG. 3C, regardless of the meandering period. A reproduction signal having a constant amplitude can be obtained. That is, in the master exposure method according to the first aspect of the present invention, it is possible to improve the deterioration of the linearity of the reproduction signal with respect to the change in the meandering cycle that occurs with the increase in the information recording density as described above.

本発明の第2の態様に従えば、露光ビームを原盤の径方向に蛇行させながら蛇行パターンを露光する原盤露光方法において、所定トラックの蛇行パターンを露光ビームで露光する際に、該所定トラックに隣接するトラックの蛇行パターンに応じて、該露光ビームの径方向の蛇行量を変化させることを特徴とする原盤露光方法が提供される。According to the second aspect of the present invention, in the master exposure method for exposing the meandering pattern while meandering the exposure beam in the radial direction of the master, when exposing the meandering pattern of the predetermined track with the exposure beam, There is provided a master exposure method characterized in that the amount of meandering in the radial direction of the exposure beam is changed in accordance with the meandering pattern of adjacent tracks.

本発明の第2の態様に従う原盤露光方法では、上記所定トラックの蛇行パターンと上記所定トラックに隣接するトラックの蛇行パターンとの間の位相関係に応じて、上記所定トラックの蛇行パターンを露光する際の露光ビームの蛇行量を変化させることが好ましい。In the master exposure method according to the second aspect of the present invention, when the meandering pattern of the predetermined track is exposed according to the phase relationship between the meandering pattern of the predetermined track and the meandering pattern of the track adjacent to the predetermined track. It is preferable to change the meandering amount of the exposure beam.

本発明第2の態様に従う原盤露光方法は、蛇行パターンがトラック毎に異なる場合に発生する再生信号の変動を補正する原盤露光方法である。その一例を図4に示した。The master exposure method according to the second aspect of the present invention is a master exposure method that corrects fluctuations in the reproduction signal that occur when the meandering pattern differs from track to track. An example is shown in FIG.

図4に示す例では、図4(b)に示すように、蛇行パターン43とそれに隣接するトラックの蛇行パターン44のパターンが異なる場合を示した。図4(b)に示すように、蛇行パターン43が蛇行周期T一定のパターンであり、蛇行パターン43に隣接するトラックの蛇行パターン44は蛇行周期T及び2Tのパターンを含んだパターンである。隣接するトラック間で蛇行パターンが異なると、図4(b)に示すように、蛇行パターン43に形成された記録マーク領域と、それとトラック方向に隣接する蛇行パターン44に形成された記録マーク領域との位相関係(径方向の記録マーク間の距離)がトラック内の位置により異なる。具体的には、図4(b)に示すように、隣接トラックの記録マーク領域と同位相であり隣接トラックの記録マークとの径方向の距離がトラックピッチと同じである領域(図4(b)中の蛇行パターン43内の領域X)、隣接トラックの記録マークとの距離がトラックピッチより広くなる領域(図4(b)中の蛇行パターン43内の領域Y)、そして、隣接トラックの記録マークとの距離がトラックピッチより狭くなる領域(図4(b)中の蛇行パターン43内の領域Z)が発生する。In the example shown in FIG. 4, as shown in FIG. 4B, the case where the patterns of the meandering pattern 43 and the meandering pattern 44 of the adjacent track are different is shown. As shown in FIG. 4B, the meandering pattern 43 is a pattern with a constant meandering period T, and the meandering pattern 44 of the track adjacent to the meandering pattern 43 is a pattern including the meandering periods T and 2T. When the meandering pattern differs between adjacent tracks, as shown in FIG. 4B, the recording mark area formed in the meandering pattern 43 and the recording mark area formed in the meandering pattern 44 adjacent thereto in the track direction The phase relationship (distance between recording marks in the radial direction) differs depending on the position in the track. Specifically, as shown in FIG. 4 (b), an area having the same phase as the recording mark area of the adjacent track and the radial distance from the recording mark of the adjacent track is the same as the track pitch (FIG. 4 (b)). ) In the meander pattern 43), an area where the distance from the recording mark of the adjacent track is larger than the track pitch (area Y in the meander pattern 43 in FIG. 4B), and recording of the adjacent track A region where the distance from the mark becomes narrower than the track pitch (region Z in the meander pattern 43 in FIG. 4B) is generated.

通常、原盤露光時に用いる露光ビームはガウシャンビーム波形をしているので、蛇行パターンを露光する際には実効径(例えば、図4中のビーム10で示した範囲)より外側の領域も露光されるので蛇行パターン間(トラック間)もある程度露光される。その露光量(以下、クロス露光量ともいう)は径方向の記録マーク(蛇行パターンで形成された記録マーク)間の距離により異なる。それゆえ、情報の高記録密度化に伴いトラックピッチが狭くなると、実際に形成される蛇行パターンに与えるクロス露光量の影響が大きくなる。例えば、図4中の領域Z’のように径方向の記録マーク間の距離が近い領域ではクロス露光量は増え、逆に、図4中の領域Y’のように径方向の記録マーク間の距離が遠い領域ではクロス露光量は減る。従って、蛇行パターン44を露光した後、同じ蛇行量の露光ビームで蛇行パターン43を露光すると、図4中の領域Y’及びZ’のような領域におけるクロス露光量が意図した露光量でなくなり、蛇行パターン43内の領域Y及びZでは所望の蛇行パターン(図4中の点線40)が得られなくなる。Usually, since the exposure beam used for exposure of the master has a Gaussian beam waveform, when exposing the meandering pattern, an area outside the effective diameter (for example, the range indicated by the beam 10 in FIG. 4) is also exposed. Therefore, exposure is also performed to some extent between the meandering patterns (between tracks). The exposure amount (hereinafter also referred to as cross exposure amount) differs depending on the distance between the recording marks in the radial direction (recording marks formed in a meandering pattern). Therefore, when the track pitch is narrowed as the information recording density is increased, the influence of the cross exposure amount on the actually formed meander pattern is increased. For example, in a region where the distance between the recording marks in the radial direction is short like the region Z ′ in FIG. 4, the cross exposure amount increases, and conversely, between the recording marks in the radial direction like the region Y ′ in FIG. The cross exposure amount decreases in an area where the distance is long. Therefore, after exposing the meandering pattern 44 and exposing the meandering pattern 43 with an exposure beam having the same meandering amount, the cross exposure amount in the regions Y ′ and Z ′ in FIG. 4 is not the intended exposure amount. In the regions Y and Z in the meandering pattern 43, a desired meandering pattern (dotted line 40 in FIG. 4) cannot be obtained.

上述のような意図しない蛇行パターン(不図示)で形成されたウォブル溝から再生信号を検出すると、図4中の蛇行パターン43内の領域Zのように隣接トラックの記録マークとの距離が近い領域から得られる再生信号は、図4中の蛇行パターン43内の領域Xの領域から得られる再生信号より大きくなり、図4中の蛇行パターン43内の領域Yのように隣接トラックの記録マークとの距離が遠い領域から得られる再生信号は、図4中の蛇行パターン43内の領域Xの領域から得られる再生信号より小さくなるため、再生信号の振幅がトラック方向で一様でなくなる。これは、クロス露光量に違いによりトラック方向の溝幅が部分的に異なるためである。When a reproduction signal is detected from a wobble groove formed with an unintended meandering pattern (not shown) as described above, an area having a short distance from the recording mark of the adjacent track, such as area Z in meandering pattern 43 in FIG. 4 is larger than the reproduction signal obtained from the region X in the meandering pattern 43 in FIG. 4, and the recording signal of the adjacent track as in the region Y in the meandering pattern 43 in FIG. Since the reproduction signal obtained from the far distance area is smaller than the reproduction signal obtained from the area X in the meandering pattern 43 in FIG. 4, the amplitude of the reproduction signal is not uniform in the track direction. This is because the groove width in the track direction is partially different depending on the amount of cross exposure.

本発明の第2の態様に従う原盤露光方法では、上記問題を解決するために、所定のトラックの蛇行パターンを露光する際に、隣接トラックの蛇行パターンの状態(位相等)に応じて偏向器を駆動する変調信号の偏向レベル、すなわち、露光ビームの蛇行量を変化させる。この際、隣接トラックのウォブル溝の蛇行パターンに関係無く、所定のウォブル溝から得られる再生信号の振幅が一定となるように露光ビームの蛇行量を調整する。In the master exposure method according to the second aspect of the present invention, in order to solve the above problem, when exposing a meandering pattern of a predetermined track, a deflector is used according to the state (phase, etc.) of the meandering pattern of an adjacent track. The deflection level of the modulation signal to be driven, that is, the amount of meandering of the exposure beam is changed. At this time, the meandering amount of the exposure beam is adjusted so that the amplitude of the reproduction signal obtained from the predetermined wobble groove is constant regardless of the meandering pattern of the wobble groove of the adjacent track.

本発明の第2の態様に従う原盤露光方法を図4の例で具体的に説明すると、図4(b)中の蛇行パターン43内の領域Xのように隣接トラックと同位相であるような領域では、偏向駆動信号の偏向量(露光ビームの蛇行量)を特別に補正する必要はないが、図4(b)中の蛇行パターン43内の領域Zのように隣接トラックの記録マークとの距離が近くなる領域では、領域Zにおける露光ビーム10の蛇行量a3を領域Xにおける蛇行量a1より小さくして径方向の記録マーク間(領域Z’)のクロス露光量分を調整する。図4(b)中の蛇行パターン43内の領域Zではクロス露光量が大きいので露光ビーム10の蛇行量を小さくしても十分な再生信号が得られ、所望の再生信号に必要な蛇行量の蛇行パターン43が形成される。この際、蛇行パターン43内の領域Zから得られる再生信号の振幅が蛇行パターン43内の領域Xから得られる再生信号の振幅と同じになるように、領域Zにおける露光ビーム10の蛇行量a3を適宜調整する。The master exposure method according to the second aspect of the present invention will be described in detail with reference to the example of FIG. 4. Regions that are in phase with adjacent tracks, such as region X in meander pattern 43 in FIG. In this case, the deflection amount of the deflection drive signal (the meandering amount of the exposure beam) does not need to be specifically corrected, but the distance from the recording mark of the adjacent track as in the region Z in the meandering pattern 43 in FIG. In the region where the distance is close, the meandering amount a3 of the exposure beam 10 in the region Z is made smaller than the meandering amount a1 in the region X to adjust the amount of cross exposure between the recording marks in the radial direction (region Z ′). In the region Z in the meandering pattern 43 in FIG. 4B, the cross exposure amount is large, so that a sufficient reproduction signal can be obtained even if the exposure beam 10 meandering amount is small, and the amount of meandering necessary for the desired reproduction signal is obtained. A meandering pattern 43 is formed. At this time, the meandering amount a3 of the exposure beam 10 in the region Z is set so that the amplitude of the reproduction signal obtained from the region Z in the meandering pattern 43 is the same as the amplitude of the reproduction signal obtained from the region X in the meandering pattern 43. Adjust as appropriate.

一方、図4(b)中の蛇行パターン43内の領域Yのように径方向に隣接するトラックの記録マークとの距離が遠くなる領域では、露光ビーム10の蛇行量b3を蛇行パターン43内の領域Xにおける蛇行量b1より大きくして、情報再生に寄与する偏向領域(記録マーク領域)の面積を増大させることにより、領域Yから得られる再生信号の振幅を調整する。ただし、この際、蛇行パターン43内の領域Yから得られる再生信号の振幅が蛇行パターン43内の領域Xから得られる再生信号の振幅と同じレベルになるように、露光ビーム10の蛇行量b3を適宜調整する。上述のような本発明の第2の態様に従う原盤露光方法を用いることにより、情報の高密度記録化に伴い互いに隣接するトラックの蛇行パターン間の位相関係により発生する再生信号の直線性の劣化を補正することが可能になる。なお、上述の例では、所定トラックの一方の側に隣接するトラックの蛇行パターンを考慮して、所定トラックの蛇行量を調節する方法を説明したが、本発明はこれに限定されない。所定トラックの蛇行パターンを露光する際に、所定トラックの蛇行パターンと所定トラックの両側に隣接するトラックの蛇行パターンとの位相関係を考慮して所定トラックの蛇行パターンの偏向量を調節しても良い。On the other hand, in the region where the distance from the recording mark of the track adjacent in the radial direction is long like the region Y in the meandering pattern 43 in FIG. The amplitude of the reproduction signal obtained from the region Y is adjusted by increasing the area of the deflection region (recording mark region) that contributes to information reproduction by making it larger than the meandering amount b1 in the region X. However, at this time, the meandering amount b3 of the exposure beam 10 is set so that the amplitude of the reproduction signal obtained from the region Y in the meandering pattern 43 is the same level as the amplitude of the reproduction signal obtained from the region X in the meandering pattern 43. Adjust as appropriate. By using the master exposure method according to the second aspect of the present invention as described above, the linearity of the reproduction signal generated due to the phase relationship between the meandering patterns of the tracks adjacent to each other with the high density recording of information is reduced. It becomes possible to correct. In the above example, the method for adjusting the meandering amount of the predetermined track in consideration of the meandering pattern of the track adjacent to one side of the predetermined track has been described, but the present invention is not limited to this. When exposing the serpentine pattern of the predetermined track, the deflection amount of the serpentine pattern of the predetermined track may be adjusted in consideration of the phase relationship between the serpentine pattern of the predetermined track and the serpentine pattern of the track adjacent to both sides of the predetermined track. .

本発明の第3の態様に従えば、本発明の第1または第2の態様に従う原盤露光方法で作製された原盤を用いて情報記録ディスクを製造する方法が提供される。According to the third aspect of the present invention, there is provided a method for manufacturing an information recording disc using a master disc produced by the master exposure method according to the first or second embodiment of the present invention.

本発明の第4の態様に従えば、複数の蛇行周期を有するウォブル溝が形成された情報記録ディスクにおいて、該ウォブル溝の径方向の蛇行量が、該ウォブル溝の該蛇行周期に応じて異なることを特徴とする情報記録ディスクが提供される。According to the fourth aspect of the present invention, in the information recording disc in which the wobble groove having a plurality of meandering periods is formed, the amount of meandering in the radial direction of the wobble groove differs depending on the meandering period of the wobble groove. An information recording disc is provided.

本発明の第4の態様に従う情報記録ディスクでは、上記複数の蛇行周期のうち最短蛇行周期で形成されたウォブル溝領域の径方向の蛇行量が最も大きいことが好ましい。In the information recording disc according to the fourth aspect of the present invention, it is preferable that the wobble groove region formed in the shortest meander period among the plurality of meander periods has the largest radial meander amount.

本発明の第4の態様に従う情報記録ディスクには、図3(b)に示すような蛇行パターンでウォブル溝が形成されており、ウォブル溝から得られる再生信号の振幅が蛇行周期に関係無く一定になるように、各記録マーク領域の蛇行周期に応じて蛇行量が調節されている。また、本発明の第4の態様に従う光ディスクでは、最短蛇行周期の記録マーク領域(図3(b)中では蛇行周期Tの領域)の蛇行量が最も大きくなる。The information recording disk according to the fourth aspect of the present invention has wobble grooves formed in a meandering pattern as shown in FIG. 3B, and the amplitude of the reproduction signal obtained from the wobble grooves is constant regardless of the meander period. The amount of meandering is adjusted according to the meandering period of each recording mark area. Further, in the optical disc according to the fourth aspect of the present invention, the meandering amount of the recording mark area having the shortest meandering period (the area having the meandering period T in FIG. 3B) is the largest.

本発明の第5の態様に従えば、複数の蛇行周期を有するウォブル溝が形成された情報記録ディスクにおいて、所定トラックのウォブル溝のパターンと該所定トラックに隣接するトラックのウォブル溝のパターンとの間の位相関係に応じて、該所定トラックのウォブル溝の径方向の蛇行量が変化していることを特徴とする情報記録ディスクが提供される。According to the fifth aspect of the present invention, in an information recording disc in which a wobble groove having a plurality of meandering periods is formed, a wobble groove pattern of a predetermined track and a wobble groove pattern of a track adjacent to the predetermined track An information recording disc is provided in which the amount of wobbling in the radial direction of the predetermined track varies according to the phase relationship between them.

本発明の第5の態様に従う情報記録ディスクには、図4(b)に示すような蛇行パターンでウォブル溝が形成されており、図4(b)中のウォブル溝43のように、隣接するトラックのウォブル溝44のパターンとの位相関係を考慮して、ウォブル溝43から得られる再生信号の振幅が均一になるようにウォブル溝43内の各記録マーク領域の蛇行量が適宜調節されている。The information recording disk according to the fifth aspect of the present invention has wobble grooves formed in a meandering pattern as shown in FIG. 4B, and is adjacent to the wobble groove 43 in FIG. 4B. In consideration of the phase relationship with the pattern of the wobble groove 44 of the track, the meandering amount of each recording mark area in the wobble groove 43 is appropriately adjusted so that the amplitude of the reproduction signal obtained from the wobble groove 43 is uniform. .

なお、本発明における情報記録ディスクとは、蛇行パターンにより情報を記録するフォーマットを有するディスクのことであり、そのようなディスクであれば本発明は適用可能であり同様の効果が得られる。本発明の情報記録ディスクとしては、例えば、再生専用光ディスク、追記型光ディスク、相変化型光ディスク、光磁気ディスク、ハイブリッド(光アシスト)記録可能なディスク等がある。The information recording disk in the present invention is a disk having a format for recording information in a meandering pattern, and the present invention can be applied to such a disk and the same effect can be obtained. Examples of the information recording disk of the present invention include a read-only optical disk, a write-once optical disk, a phase change optical disk, a magneto-optical disk, and a hybrid (optical assist) recordable disk.

本発明の第1の態様に従う原盤露光方法によれば、所定のウォブル溝に対応した蛇行パターンを露光する際に、蛇行パターンの蛇行周期に応じて露光ビームの径方向の蛇行量を変化させて露光する。その際、露光ビームの蛇行量を蛇行周期に応じて適宜調整することにより、蛇行パターンにより形成されたウォブル溝から得られる再生信号の振幅を蛇行周期に関係無く一定にすることができる。それゆえ、本発明の第1の態様に従う原盤露光方法を用いることにより、情報記録ディスクのトラック方向の情報記録密度を高めても、蛇行周期の変化に対する再生信号の直線性が優れた情報記録ディスクが得られる。According to the master exposure method according to the first aspect of the present invention, when the meander pattern corresponding to the predetermined wobble groove is exposed, the meandering amount in the radial direction of the exposure beam is changed according to the meander cycle of the meander pattern. Exposure. At that time, by appropriately adjusting the meandering amount of the exposure beam according to the meandering cycle, the amplitude of the reproduction signal obtained from the wobbled groove formed by the meandering pattern can be made constant regardless of the meandering cycle. Therefore, by using the master exposure method according to the first aspect of the present invention, an information recording disk having excellent linearity of a reproduced signal with respect to a change in meandering cycle even if the information recording density in the track direction of the information recording disk is increased. Is obtained.

本発明の第2の態様に従う原盤露光方法によれば、所定のウォブル溝に対応した蛇行パターンを露光する際に、隣接するトラックの蛇行パターンに応じて、所定トラックの露光ビームの蛇行量を変化させて露光する。その際、露光ビームの蛇行量を適宜調整することにより、所定トラックの蛇行パターンにより形成されたウォブル溝から得られる再生信号の振幅を隣接するトラックの蛇行パターンに関係無く一定にすることができる。それゆえ、本発明の第2の態様に従う原盤露光方法を用いることにより、情報の高密度化に伴い情報記録ディスクのトラックピッチを狭くしても、再生信号の直線性が優れた情報記録ディスクが得られる。According to the master exposure method according to the second aspect of the present invention, when the meander pattern corresponding to the predetermined wobble groove is exposed, the meandering amount of the exposure beam of the predetermined track is changed according to the meander pattern of the adjacent track. Let it be exposed. At this time, by appropriately adjusting the meandering amount of the exposure beam, the amplitude of the reproduction signal obtained from the wobble groove formed by the meandering pattern of the predetermined track can be made constant irrespective of the meandering pattern of the adjacent track. Therefore, by using the master exposure method according to the second aspect of the present invention, an information recording disc having excellent linearity of a reproduced signal can be obtained even when the track pitch of the information recording disc is narrowed as the information density is increased. can get.

以下に、本発明の原盤露光方法について実施例を用いて具体的に説明するが、本発明はこれに限定されない。なお、以下の実施例では光ディスクの原盤露光方法について説明する。Hereinafter, the master exposure method of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the following embodiments, an optical disc master exposure method will be described.

実施例1の原盤露光方法を図3に示した。図3(a)は、単一露光ビームを偏向する際の偏向駆動信号の変化を示した図であり、図3(b)は、この例で形成した蛇行パターンの概略図であり、図3(c)は、この例で形成された光ディスク上のウォブル溝から得られる再生信号を示した図である。この例では、図3(b)に示すように、各トラック内に蛇行周期T及び2Tの蛇行周期を含む蛇行パターン33を形成し、トラックの径方向には同じ蛇行周期の記録マーク(蛇行パターンにより記録された記録マーク)が並ぶように蛇行パターン33を形成した。なお、この例では、蛇行周期Tを情報記録時のクロック周期とした。蛇行パターン33は次のようにして形成した。The master exposure method of Example 1 is shown in FIG. FIG. 3A is a diagram showing a change in the deflection drive signal when deflecting a single exposure beam, and FIG. 3B is a schematic diagram of the meander pattern formed in this example. (C) is the figure which showed the reproduction signal obtained from the wobble groove | channel on the optical disk formed in this example. In this example, as shown in FIG. 3B, a meandering pattern 33 including meandering periods T and 2T is formed in each track, and recording marks (meandering patterns) having the same meandering period are formed in the track radial direction. The meandering pattern 33 was formed so that the recording marks recorded by (1) were aligned. In this example, the meandering cycle T is the clock cycle for recording information. The meandering pattern 33 was formed as follows.

まず、用意した原盤(ガラス原盤等)に感光レジストを塗布した後、原盤をカッティング装置に装着して、図3(b)に示すような所定の蛇行パターンを露光した。この際、図3(b)に示すように、単一露光ビーム10を図3(b)中の矢印11の方向に蛇行させながら蛇行パターン33を形成した。First, after a photosensitive resist was applied to a prepared master (such as a glass master), the master was mounted on a cutting device, and a predetermined meandering pattern as shown in FIG. 3B was exposed. At this time, as shown in FIG. 3B, the meandering pattern 33 was formed while meandering the single exposure beam 10 in the direction of the arrow 11 in FIG. 3B.

また、蛇行パターン33を露光する際、蛇行パターン33内の蛇行周期Tの領域における偏向駆動信号の偏向量a2及びb2を、図3(a)に示すように、蛇行周期2Tの領域における偏向駆動信号の偏向量a1及びb1より大きくした。なお、この例では、図2の従来例と比較するために、蛇行周期2Tの領域における偏向駆動信号の偏向量a1及びb1は、図2の従来例で示した蛇行周期2Tの領域における偏向駆動信号の偏光量と同じにした。ただし、この例では、後述するように、蛇行周期Tの記録マーク領域から得られる再生信号の振幅と蛇行周期2Tの記録マーク領域から得られる再生信号の振幅とが同じようなるように、予め原盤露光前に、蛇行周期Tの領域における偏向駆動信号の偏向量a2及びb2と、蛇行周期2Tの領域における偏向駆動信号の偏向量a1及びb1との差δa(=a2−a1)及びδb(=b2−b1)を調整した。When the meandering pattern 33 is exposed, the deflection amounts a2 and b2 of the deflection drive signal in the meandering period T region in the meandering pattern 33 are converted into the deflection driving in the meandering period 2T region as shown in FIG. The amount of deflection of the signal is larger than a1 and b1. In this example, for comparison with the conventional example of FIG. 2, the deflection amounts a1 and b1 of the deflection drive signal in the region of the meandering cycle 2T are the deflection driving in the region of the meandering cycle 2T shown in the conventional example of FIG. The amount of polarization of the signal was the same. However, in this example, as will be described later, the master disk is previously set so that the amplitude of the reproduction signal obtained from the recording mark area having the meandering period T is the same as the amplitude of the reproduction signal obtained from the recording mark area having the meandering period 2T. Before exposure, the differences δa (= a2−a1) and δb (=) between the deflection amounts a2 and b2 of the deflection drive signal in the region of the meander cycle T and the deflection amounts a1 and b1 of the deflection drive signal in the region of the meander cycle 2T. b2-b1) was adjusted.

次に、露光終了後、現像処理を行い、原盤上に図3(b)に示すような蛇行パターンで形成された凹凸を形成した。この際、原盤上に実際に形成された蛇行パターンは、図3(b)に示すように、蛇行周期Tの記録マーク領域(例えば、図3(b)中の領域A)の蛇行量が、蛇行周期2Tの記録マーク領域(例えば、図3(b)中の領域B)の蛇行量より大きくなる。Next, after completion of the exposure, development processing was performed to form irregularities formed in a meandering pattern as shown in FIG. At this time, the meandering pattern actually formed on the master has a meandering amount in a recording mark area (for example, area A in FIG. 3B) having a meandering period T as shown in FIG. It becomes larger than the amount of meandering in the recording mark area (for example, area B in FIG. 3B) having a meandering period of 2T.

次いで、蛇行パターンが形成された原盤に対して、従来と同様の方法でメッキ等のプロセスを施してスタンパを作製した。そして、作製されたスタンパを用いて射出成形により、光ディスクの基板上に、図3(b)に示したような蛇行パターンに対応するウォブル溝を形成した。Next, a stamper was produced by subjecting the master on which the meandering pattern was formed to a process such as plating in the same manner as in the past. Then, a wobble groove corresponding to a meandering pattern as shown in FIG. 3B was formed on the substrate of the optical disk by injection molding using the produced stamper.

なお、図3中の蛇行周期Tの領域における偏向駆動信号の偏向量a2及びb2と、蛇行周期2Tの領域における偏向駆動信号の偏向量a1及びb1との差δa(=a2−a1)及びδb(=b2−b1)の具体的な設定方法は次の通りである。  Note that the differences δa (= a2−a1) and δb between the deflection amounts a2 and b2 of the deflection drive signal in the region of the meandering period T in FIG. 3 and the deflection amounts a1 and b1 of the deflection drive signal in the region of the meandering cycle 2T are shown. A specific setting method of (= b2-b1) is as follows.

まず、蛇行周期T及び2Tの蛇行パターンを偏向駆動信号の偏向量を変化させて露光した。次いで、種々の偏向量で露光した蛇行周期T及び2Tの蛇行パターンを実際にディスクの再生時に用いるヘッドで再生し、偏向駆動信号の偏向量に対する再生信号の出力レベルの変化を測定した。通常、蛇行パターンから得られる再生信号の出力レベルは蛇行周期に関係なく偏向駆動信号の偏向量の増加とともに直線的に増大するが、その特性の傾きは蛇行周期により異なる。また、偏向駆動信号の偏向量に対する再生信号の出力レベルの特性は、偏向駆動信号の極性、すなわち、偏向方向(図3上では上下方向)により異なることがあるので、この例では偏向方向別に偏向駆動信号の偏向量に対する再生信号の出力レベルの特性を測定した。すなわち、この例では、蛇行周期T及び2Tの蛇行パターンにおいてそれぞれ偏向方向別に偏向駆動信号の偏向量に対する再生信号の出力レベルの特性を測定した。First, the meandering pattern with meandering periods T and 2T was exposed by changing the deflection amount of the deflection drive signal. Next, the meandering patterns with meandering periods T and 2T exposed with various deflection amounts were reproduced with a head that is actually used for reproducing the disk, and the change in the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal was measured. Normally, the output level of the reproduction signal obtained from the meandering pattern increases linearly with an increase in the deflection amount of the deflection drive signal regardless of the meandering period, but the slope of the characteristic varies depending on the meandering period. The characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal may vary depending on the polarity of the deflection drive signal, that is, the deflection direction (vertical direction in FIG. 3). The characteristics of the output level of the reproduction signal with respect to the deflection amount of the drive signal were measured. That is, in this example, the characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal are measured for each deflection direction in the meandering patterns with meandering periods T and 2T.

次いで、上記測定で得られた各特性から、所望の再生信号レベルに対応する偏向駆動信号の偏向量をそれぞれ求めた。この際、蛇行周期Tの蛇行パターンにおける偏向方向別の偏向駆動信号の偏向量に対する再生信号の出力レベルの特性からは偏向駆動信号の偏向量a2及びb2が得られ、蛇行周期2Tの蛇行パターンにおける偏向方向別の偏向駆動信号の偏向量に対する再生信号の出力レベルの特性からは偏向駆動信号の偏向量a1及びb1が得られる。こうして得られた、所望の再生信号レベルに対応する蛇行周期Tの偏向駆動信号の偏向量a2及びb2と、蛇行周期2Tの偏向駆動信号の偏向量a1及びb1とから偏向駆動信号の偏向量の差δa(=a2−a1)及びδb(=b2−b1)を求めた。Next, the deflection amount of the deflection drive signal corresponding to the desired reproduction signal level was obtained from each characteristic obtained by the above measurement. At this time, the deflection amounts a2 and b2 of the deflection drive signal are obtained from the characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal for each deflection direction in the meander pattern of the meander cycle T. From the characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal for each deflection direction, the deflection amounts a1 and b1 of the deflection drive signal are obtained. The deflection amount of the deflection drive signal is calculated from the deflection amounts a2 and b2 of the deflection drive signal having the meandering period T corresponding to the desired reproduction signal level and the deflection amounts a1 and b1 of the deflection drive signal having the meandering period 2T. Differences δa (= a2−a1) and δb (= b2−b1) were determined.

上述のような露光方法で形成されたウォブル溝33上に図2と同様のスポットサイズを有する再生光100を照射して、ウォブル溝33の蛇行パターンにより形成された記録マークを再生した。その結果を図3(c)に示した。この例では、蛇行周期2Tの記録マーク領域(例えば、図3(b)中の領域B)の蛇行量は図2の従来例と同様であるので、その領域から得られる再生信号の振幅もまた、図2(c)に示した再生信号の振幅と同じであった。一方、蛇行周期Tの記録マーク領域(例えば、図3(b)中の領域A)から得られる再生信号の振幅は、図3(c)に示すように、蛇行周期2Tの記録マーク領域から得られる再生信号の振幅と同じになった。The wobble groove 33 formed by the exposure method as described above was irradiated with the reproduction light 100 having the same spot size as in FIG. 2 to reproduce the recording mark formed by the wobbling groove 33 meander pattern. The result is shown in FIG. In this example, the amount of meandering in the recording mark area (for example, area B in FIG. 3B) having a meandering period of 2T is the same as in the conventional example of FIG. 2, so the amplitude of the reproduction signal obtained from that area is also The amplitude of the reproduction signal shown in FIG. On the other hand, the amplitude of the reproduction signal obtained from the recording mark area having the meandering period T (for example, the area A in FIG. 3B) is obtained from the recording mark area having the meandering period 2T as shown in FIG. The amplitude of the reproduced signal is the same.

これは次のような原因によるものである。蛇行周期Tの記録マーク領域では蛇行量を大きくしたので、蛇行周期Tの記録マーク領域が径方向に広がり、再生光100内に占める再生すべき記録マーク領域の面積が増加する。さらに、蛇行周期Tの記録マーク領域では、トラック方向に隣接する記録マークと間の径方向の距離が広がるので、再生光のスポット100内に含まれる隣接する記録マーク領域の面積も小さくなる。すなわち、符号間干渉を抑制することができる。これらの効果により、蛇行周期Tの記録マーク領域から得られる再生信号の劣化が抑制される。This is due to the following reasons. Since the amount of meandering is increased in the recording mark area having the meandering period T, the recording mark area having the meandering period T spreads in the radial direction, and the area of the recording mark area to be reproduced in the reproducing light 100 is increased. Further, in the recording mark area having the meandering period T, the radial distance between the recording marks adjacent in the track direction is widened, so that the area of the adjacent recording mark area included in the spot 100 of the reproduction light is also reduced. That is, intersymbol interference can be suppressed. By these effects, deterioration of the reproduction signal obtained from the recording mark area having the meandering period T is suppressed.

この例では、上述のように、予め蛇行周期Tの記録マーク領域から得られる再生信号の振幅と蛇行周期2Tの記録マーク領域から得られる再生信号の振幅とが同じようなるように、蛇行周期Tの領域における偏向駆動信号の偏向量a2及びb2と、蛇行周期2Tの領域における偏向駆動信号の偏向量a1及びb1との差δa(=a2−a1)及びδb(=b2−b1)を調整して露光したので、図3(c)に示すように、蛇行周期に関係無く一定振幅の再生信号が得られた。In this example, as described above, the amplitude of the reproduction signal obtained from the recording mark area having the meandering period T in advance is the same as the amplitude of the reproduction signal obtained from the recording mark area having the meandering period 2T. The difference δa (= a2−a1) and δb (= b2−b1) between the deflection amounts a2 and b2 of the deflection drive signal in the region of 2 and the deflection amounts a1 and b1 of the deflection drive signal in the region of the meandering period 2T are adjusted. As shown in FIG. 3C, a reproduction signal having a constant amplitude was obtained regardless of the meandering period.

上述のような原盤露光方法を用いることにより、蛇行周期に関係無く一定振幅の再生信号が得られるので、蛇行パターンの高密度記録化に伴い発生する蛇行周期に対する再生信号の直線性の劣化を補正することができる。By using the master exposure method as described above, a reproduction signal with a constant amplitude can be obtained regardless of the meandering cycle, so correction of deterioration in the linearity of the reproduction signal with respect to the meandering cycle caused by high density recording of the meandering pattern is corrected. can do.

実施例2の原盤露光方法を図4に示した。図4(a)は、露光ビームを偏向する際の偏向駆動信号の変化を示した図であり、図4(b)は、この例で形成した蛇行パターンの概略図であり、図4(c)は、この例で形成したウォブル溝43から得られる再生信号を示した図である。この例では、図4(b)に示すように、蛇行パターン43は蛇行周期T一定で形成し、その蛇行パターン43に隣接する蛇行パターン44はトラック方向に蛇行周期T及び2Tの蛇行周期を含むパターンで形成した。なお、この例では、蛇行周期Tは情報記録時のクロック周期とした。The master exposure method of Example 2 is shown in FIG. FIG. 4A is a diagram showing a change in the deflection drive signal when deflecting the exposure beam, and FIG. 4B is a schematic diagram of the meander pattern formed in this example. ) Is a diagram showing a reproduction signal obtained from the wobble groove 43 formed in this example. In this example, as shown in FIG. 4B, the meandering pattern 43 is formed at a constant meandering period T, and the meandering pattern 44 adjacent to the meandering pattern 43 includes meandering periods T and 2T in the track direction. Formed with a pattern. In this example, the meandering cycle T is the clock cycle during information recording.

図4(b)中の蛇行パターン43及びそれに隣接する蛇行パターン44に示すように隣接するトラック間の蛇行パターンが異なると、図4(b)に示すように、蛇行パターン43とそれに隣接する蛇行パターン44との間の位相関係(径方向の記録マーク間距離)がトラック内の場所により異なる。具体的には、図4(b)中の蛇行パターン43内の領域Xのように蛇行パターン44と同位相であり、径方向の記録マーク間距離がトラックピッチと同じである領域、図4(b)中の蛇行パターン43内の領域Yのように隣接トラックの記録マークとの径方向の距離がトラックピッチより広くなる領域、そして、図4(b)中の蛇行パターン43内の領域Zのように隣接トラックの記録マークとの径方向の距離がトラックピッチより狭くなる領域が発生する。If the meandering pattern between adjacent tracks is different as shown in the meandering pattern 43 in FIG. 4B and the meandering pattern 44 adjacent thereto, the meandering pattern 43 and the meandering adjacent thereto as shown in FIG. The phase relationship with the pattern 44 (distance between recording marks in the radial direction) differs depending on the location in the track. Specifically, as in a region X in the meandering pattern 43 in FIG. 4B, the region having the same phase as the meandering pattern 44 and the distance between the recording marks in the radial direction being the same as the track pitch, FIG. b) A region where the radial distance from the recording mark of the adjacent track is larger than the track pitch, such as a region Y in the meander pattern 43 in FIG. 4B, and a region Z in the meander pattern 43 in FIG. As described above, there is a region where the radial distance from the recording mark of the adjacent track is narrower than the track pitch.

図4に示すような蛇行パターンを露光する際には、上述したように、径方向に隣接するトラックの記録マーク(蛇行パターン)間の領域(図4中の領域X’、Y’及びZ’)のクロス露光量は径方向の記録マーク間の距離により異なる。例えば、図4中の領域Z’のように径方向の記録マーク間の距離が近い領域ではクロス露光量は増え、逆に、図4中の領域Y’のように径方向の記録マーク間との距離が遠い領域ではクロス露光量は減る。従って、図4中の蛇行パターン43内の領域Y及びZの領域を露光する際に、図4中の蛇行パターン43内の領域Xを露光する際と同様の偏向駆動信号の偏光量a1及びb1で露光すると、所望の蛇行パターン43が得られなくなる。その結果、意図しない蛇行パターンで形成されたウォブル溝からの再生信号を検出すると、再生信号の振幅もトラック方向で一様でなくなる。When the meandering pattern as shown in FIG. 4 is exposed, as described above, the area between the recording marks (meandering patterns) of tracks adjacent in the radial direction (areas X ′, Y ′ and Z ′ in FIG. 4). ) Cross exposure amount depends on the distance between the recording marks in the radial direction. For example, in a region where the distance between the recording marks in the radial direction is short, such as a region Z ′ in FIG. 4, the cross exposure amount increases, and conversely, between the recording marks in the radial direction as in region Y ′ in FIG. The cross exposure amount decreases in an area where the distance is long. Therefore, when the regions Y and Z in the meander pattern 43 in FIG. 4 are exposed, the polarization amounts a1 and b1 of the deflection drive signal similar to those in the region X in the meander pattern 43 in FIG. 4 are exposed. When the exposure is carried out, the desired meandering pattern 43 cannot be obtained. As a result, when a reproduction signal from a wobble groove formed with an unintended meandering pattern is detected, the amplitude of the reproduction signal is not uniform in the track direction.

この例の原盤露光方法では、上記問題を解決するために、例えば、図4(b)中の蛇行パターン43を露光する際に、隣接トラックの蛇行パターン44の状態(位相等)に応じて偏向器を駆動する変調信号の偏向レベルを変化させた。具体的には、次のようにして、図4(b)に示すような蛇行パターン43を形成した。In the master exposure method of this example, in order to solve the above problem, for example, when the meander pattern 43 in FIG. 4B is exposed, deflection is performed according to the state (phase, etc.) of the meander pattern 44 of the adjacent track. The deflection level of the modulation signal that drives the detector was changed. Specifically, a meander pattern 43 as shown in FIG. 4B was formed as follows.

まず、実施例1と同様に、用意した原盤(ガラス原盤等)に感光レジストを塗布した後、原盤をカッティング装置に装着して、所定の蛇行パターンを露光した。この際、図4(b)に示すように、単一露光ビーム10を図4(b)中の矢印11の方向に蛇行させながら蛇行パターンを形成した。First, as in Example 1, a photosensitive resist was applied to a prepared master (such as a glass master), and then the master was mounted on a cutting device to expose a predetermined meandering pattern. At this time, as shown in FIG. 4B, a meandering pattern was formed while meandering the single exposure beam 10 in the direction of the arrow 11 in FIG. 4B.

また、蛇行パターン43を露光する際には、図4(b)中の蛇行パターン43内の領域Zのように隣接トラックの記録マークとの距離が近い領域では、露光ビーム10の偏向量a3を蛇行パターン43内の領域Xにおける偏向量a1より小さくして露光した。蛇行パターン43内の領域Zにおける偏向駆動信号の偏向量a3と、蛇行パターン43内の領域Xにおける偏向駆動信号の偏向量a1との差δa’(=a1−a3)を調整することにより、領域Zにおける記録マーク間のクロス露光量を調整して所望の蛇行パターン43(図4(b)中の破線41のパターン)を形成した。なお、図4中の蛇行パターン43内の領域Zのように隣接トラックの記録マークとの距離が近い領域ではクロス露光量が大きいので露光ビームの蛇行量を小さくしても十分な再生信号が得られ、所望の再生信号に必要な蛇行量を有する蛇行パターンが形成される。ただし、この際、後述するように、予め蛇行パターン43内の領域Zから得られる再生信号の振幅が蛇行パターン43内の領域Xから得られる再生信号の振幅と同じになるように、領域Zにおける偏向駆動信号の偏向量a3と領域Xにおける偏向駆動信号の偏向量a1との差δa’(=a1−a3)を調整した。また、この例では、図4(b)中の蛇行パターン43内の領域Xのように隣接トラックと同位相であるような領域では、偏向駆動信号の偏向量を補正せず、図2の従来例に示した蛇行周期Tのおける偏向駆動信号の偏向量と同じ偏向量で露光した。Further, when exposing the meandering pattern 43, the deflection amount a3 of the exposure beam 10 is set in a region close to the recording mark of the adjacent track, such as the region Z in the meandering pattern 43 in FIG. The exposure was performed by making it smaller than the deflection amount a <b> 1 in the region X in the meandering pattern 43. By adjusting the difference δa ′ (= a1−a3) between the deflection amount a3 of the deflection drive signal in the region Z in the meandering pattern 43 and the deflection amount a1 of the deflection drive signal in the region X in the meandering pattern 43, A desired meandering pattern 43 (pattern indicated by a broken line 41 in FIG. 4B) was formed by adjusting the cross exposure amount between the recording marks in Z. Incidentally, since the cross exposure amount is large in a region where the distance from the recording mark of the adjacent track is close, such as the region Z in the meander pattern 43 in FIG. 4, a sufficient reproduction signal can be obtained even if the exposure beam meander amount is small. Thus, a meandering pattern having a meandering amount necessary for a desired reproduction signal is formed. At this time, however, as will be described later, the amplitude of the reproduction signal obtained from the region Z in the meandering pattern 43 in advance is the same as the amplitude of the reproduction signal obtained from the region X in the meandering pattern 43. The difference δa ′ (= a1−a3) between the deflection amount a3 of the deflection drive signal and the deflection amount a1 of the deflection drive signal in the region X was adjusted. In this example, the deflection amount of the deflection drive signal is not corrected in a region that is in phase with the adjacent track, such as the region X in the meandering pattern 43 in FIG. The exposure was performed with the same deflection amount as that of the deflection drive signal in the meandering period T shown in the example.

一方、図4(b)中の蛇行パターン43内の領域Yのように隣接トラックの記録マークとの距離が遠くなる領域では、露光ビーム10の偏向量b3を蛇行パターン43内の領域Xにおける露光ビーム10の偏向量b1より大きくした。これにより、再生光内に占める再生すべき記録マーク領域の面積を増大させて、蛇行パターン43内の領域Yから得られる再生信号の振幅を調整した。ただし、この際、後述するように、予め蛇行パターン43内の領域Yから得られる再生信号の振幅と蛇行パターン43内の領域Xから得られる再生信号の振幅が同じレベルになるように、領域Yにおける露光ビーム10の偏向量b3と領域Xにおける露光ビーム10の偏向量b1との差δb’(=b3−b1)を調整した。On the other hand, in the region where the distance from the recording mark of the adjacent track is long like the region Y in the meandering pattern 43 in FIG. 4B, the deflection amount b3 of the exposure beam 10 is exposed in the region X in the meandering pattern 43. The deflection amount b1 of the beam 10 is made larger. As a result, the area of the recording mark region to be reproduced in the reproduction light was increased, and the amplitude of the reproduction signal obtained from the region Y in the meandering pattern 43 was adjusted. However, at this time, as described later, the region Y is set so that the amplitude of the reproduction signal obtained from the region Y in the meandering pattern 43 in advance and the amplitude of the reproduction signal obtained from the region X in the meandering pattern 43 are the same level. The difference δb ′ (= b3−b1) between the deflection amount b3 of the exposure beam 10 and the deflection amount b1 of the exposure beam 10 in the region X is adjusted.

次に、露光終了後、現像処理を行い、原盤上に図4(b)に示すような蛇行パターンで形成された凹凸を形成した。この際、実際に形成された蛇行パターン43は、図4(b)中の破線41で表わされたパターンとなる。蛇行パターン43内の領域Yのように隣接トラックの記録マークとの距離が遠くなる領域では、露光ビームの偏向量を蛇行パターン43内の領域Xより大きくしたので、領域Yに実際に形成される蛇行パターンの蛇行量は領域Xより大きくなり、蛇行パターン43内の領域Zのように隣接トラックの記録マークとの距離が近くなる領域では、露光ビームの偏向量を蛇行パターン43内の領域Xより小さくしたので、領域Zに実際に形成される蛇行パターンの蛇行量は領域Xより小さくなった。Next, after completion of the exposure, development processing was performed to form irregularities formed in a meandering pattern as shown in FIG. At this time, the actually formed meandering pattern 43 is a pattern represented by a broken line 41 in FIG. In the region where the distance from the recording mark of the adjacent track is long like the region Y in the meandering pattern 43, the deflection amount of the exposure beam is made larger than the region X in the meandering pattern 43, so that it is actually formed in the region Y. The meandering amount of the meandering pattern is larger than that of the region X, and in the region where the distance from the recording mark of the adjacent track is close, such as the region Z in the meandering pattern 43, the deflection amount of the exposure beam is larger than that of the region X in the meandering pattern 43. Since it was made smaller, the meandering amount of the meander pattern actually formed in the region Z was smaller than that in the region X.

次いで、図4(b)に示すような蛇行パターンが形成された原盤に対して、従来と同様の方法でメッキ等のプロセスを施してスタンパを作製した。そして、作製されたスタンパを用いて射出成形により、光ディスクの基板上に、図4(b)に示すような蛇行パターンに対応するウォブル溝を形成した。Next, a stamper was manufactured by performing a process such as plating on the master on which the meandering pattern as shown in FIG. Then, a wobble groove corresponding to a meandering pattern as shown in FIG. 4B was formed on the substrate of the optical disk by injection molding using the produced stamper.

なお、図4中の領域Zにおける偏向駆動信号の偏向量a3と領域Xにおける偏向駆動信号の偏向量a1との差δa’(=a1−a3)及び領域Yにおける露光ビーム10の偏向量b3と領域Xにおける露光ビーム10の偏向量b1との差δb’(=b3−b1)の具体的な設定方法は次の通りである。  4, the difference δa ′ (= a1−a3) between the deflection amount a3 of the deflection drive signal in the region Z and the deflection amount a1 of the deflection drive signal in the region X and the deflection amount b3 of the exposure beam 10 in the region Y A specific method for setting the difference δb ′ (= b3−b1) from the deflection amount b1 of the exposure beam 10 in the region X is as follows.

まず、図4(b)中の領域Xのように隣接トラックの記録マークとの距離が所定の間隔となるような状況、図4(b)中の領域Yのように隣接トラックの記録マークとの距離が遠くなるような状況、及び、図4(b)中の領域Zのように隣接トラックの記録マークとの距離が近くなるような状況を設定し、各状況下において蛇行周期Tの蛇行パターンの偏向駆動信号の偏向量を変化させて露光した。次いで、種々の偏向量で露光した蛇行パターンを実際にディスクの再生時に用いるヘッドで再生し、偏向駆動信号の偏向量に対する再生信号の出力レベルの変化を測定した。この際、領域Xのような位相状態に対しては偏向方向別に偏向駆動信号の偏向量に対する再生信号の出力レベルの特性を測定した。一方、領域Yのような位相状態に対しては、隣接トラックの記録マークと離れる方向(図4(b)中では下方向)の偏向駆動信号の偏向量に対する再生信号の出力レベルの特性を測定し、領域Zのような位相状態に対しては、隣接トラックの記録マークと近づく方向(図4(b)中では上方向)の偏向駆動信号の偏向量に対する再生信号の出力レベルの特性を測定した。First, a situation where the distance from the recording mark of the adjacent track is a predetermined interval as in the area X in FIG. 4B, and the recording mark of the adjacent track as in the area Y in FIG. 4B. And a situation in which the distance from the recording mark of the adjacent track is close as in the region Z in FIG. 4B, and the meander of the meandering period T under each situation. The exposure was performed by changing the deflection amount of the pattern deflection drive signal. Next, the meandering pattern exposed with various deflection amounts was reproduced with a head actually used for reproducing the disk, and the change in the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal was measured. At this time, for the phase state such as the region X, the characteristic of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal was measured for each deflection direction. On the other hand, for a phase state such as region Y, the output signal characteristics of the reproduction signal with respect to the deflection amount of the deflection drive signal in the direction away from the recording mark of the adjacent track (downward in FIG. 4B) are measured. For the phase state such as the region Z, the output signal characteristics of the reproduction signal with respect to the deflection amount of the deflection drive signal in the direction approaching the recording mark of the adjacent track (upward in FIG. 4B) are measured. did.

次いで、上記測定で得られた各特性から、所望の再生信号レベルに対応する偏向駆動信号の偏向量をそれぞれ求めた。この際、領域Xの位相状態における偏向方向別の偏向駆動信号の偏向量に対する再生信号の出力レベルの特性からは、所望の再生信号レベルに対応する偏向駆動信号の偏向量a1及びb1が得られる。一方、領域Z及びYの位相状態における偏向駆動信号の偏向量に対する再生信号の出力レベルの特性からは、所望の再生信号レベルに対応する偏向駆動信号の偏向量a3及びb3がそれぞれ得られる。こうして得られた所望の再生信号レベルに対応する偏向駆動信号の偏向量a1、b1、a3及びb3から偏向駆動信号の偏向量の差δa(=a1−a3)及びδb(=b3−b1)を求めた。Next, the deflection amount of the deflection drive signal corresponding to the desired reproduction signal level was obtained from each characteristic obtained by the above measurement. At this time, from the characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal for each deflection direction in the phase state of the region X, the deflection amounts a1 and b1 of the deflection drive signal corresponding to the desired reproduction signal level are obtained. . On the other hand, from the characteristics of the output level of the reproduction signal with respect to the deflection amount of the deflection drive signal in the phase states of the regions Z and Y, the deflection amounts a3 and b3 of the deflection drive signal corresponding to the desired reproduction signal level are obtained, respectively. Differences δa (= a1−a3) and δb (= b3−b1) of the deflection amount of the deflection drive signal from the deflection amounts a1, b1, a3 and b3 of the deflection drive signal corresponding to the desired reproduction signal level thus obtained are obtained. Asked.

上述のような露光方法を用いて形成された光ディスクのウォブル溝43上に図2の従来例と同様のスポットサイズを有する再生光(不図示)を照射して再生信号を検出した。その結果を図4(c)に示した。図4(c)の結果から明らかなように、ウォブル溝43から得られた再生信号の振幅は、ウォブル溝43と隣接するトラックのウォブル溝44との位相関係に関係無く一定となった。A reproduction signal (not shown) having the same spot size as that of the conventional example shown in FIG. 2 is irradiated onto the wobble groove 43 of the optical disk formed by using the exposure method as described above to detect a reproduction signal. The result is shown in FIG. As is apparent from the result of FIG. 4C, the amplitude of the reproduction signal obtained from the wobble groove 43 is constant regardless of the phase relationship between the wobble groove 43 and the wobble groove 44 of the adjacent track.

上記実施例1では、蛇行周期Tの蛇行パターンを形成する際の単一露光ビームの偏向量a2及びb2を、蛇行周期2Tの蛇行パターンを形成する際の偏向量a1及びb1より大きくする例を説明したが、本発明はこれに限定されない。逆に、蛇行周期2Tの蛇行パターンを形成する際の単一露光ビームの偏向量a1及びb1を、蛇行周期Tの蛇行パターンを形成する際の偏向量a2及びb2より小さくしても良い。そのような場合にも、蛇行周期2Tの蛇行パターンを形成する際の単一露光ビームの偏光量a1及びb1を適宜調整することにより、蛇行周期に関係無く振幅一定の再生信号を得ることができる。In the first embodiment, the deflection amounts a2 and b2 of the single exposure beam when forming the meandering pattern with the meandering period T are larger than the deflection amounts a1 and b1 when forming the meandering pattern with the meandering period 2T. Although described, the present invention is not limited to this. Conversely, the deflection amounts a1 and b1 of the single exposure beam when forming a meandering pattern with a meandering period 2T may be smaller than the deflection amounts a2 and b2 when forming a meandering pattern with a meandering period T. Even in such a case, a reproduction signal having a constant amplitude can be obtained regardless of the meandering period by appropriately adjusting the polarization amounts a1 and b1 of the single exposure beam when the meandering pattern having the meandering period 2T is formed. .

上記実施例1及び2では、図2に示した従来例と比較するために、露光ビームの偏向駆動信号の偏光量a1及びb1は一定として説明したが、本発明はこれに限定されない。所望の再生信号を得るために偏向駆動信号の偏光量a1〜a3及びb1〜b3をそれぞれ適宜調整しても良い。In the first and second embodiments, the polarization amounts a1 and b1 of the deflection drive signal of the exposure beam are described as being constant for comparison with the conventional example shown in FIG. 2, but the present invention is not limited to this. In order to obtain a desired reproduction signal, the polarization amounts a1 to a3 and b1 to b3 of the deflection drive signal may be appropriately adjusted.

上記実施例1では、情報の高密度化に伴いトラック方向の記録マークピッチが狭くなった時に発生する再生信号の直線性に劣化を補正するための原盤露光方法を説明し、上記実施例2では、情報の高密度化に伴いトラックピッチが狭くなった時に発生する再生信号の直線性に劣化を補正するための原盤露光方法を説明した。本発明の原盤露光方法では、上記実施例1と実施例2を組合わせて原盤露光を行っても良い。その場合には、情報の高密度化に伴いトラック方向の記録マークピッチ及びトラックピッチを同時に狭くしても再生信号の直線性に劣化を補正することができる。In the first embodiment, a master exposure method for correcting deterioration in the linearity of a reproduction signal generated when the recording mark pitch in the track direction becomes narrower as the information density is increased. In the second embodiment, The master exposure method for correcting the deterioration in the linearity of the reproduction signal generated when the track pitch becomes narrow as the information density increases has been described. In the master exposure method of the present invention, master exposure may be performed by combining the first and second embodiments. In that case, the deterioration of the linearity of the reproduction signal can be corrected even if the recording mark pitch in the track direction and the track pitch are simultaneously narrowed as the information density increases.

上記実施例1及び2では、光ディスクの原盤露光方法について説明したが本発明はこれに限定されず、蛇行パターンにより情報を記録するフォーマットを有するディスクであれば適用可能であり同様の効果が得られる。例えば、蛇行パターンにより情報を記録するフォーマットを有する光磁気ディスク、ハイブリッド(光アシスト)記録可能なディスク、色素記録媒体、相変化媒体、パターンドメディア等についても本発明の原盤露光方法は適用可能である。In the first and second embodiments, the master disk exposure method of the optical disk has been described. However, the present invention is not limited to this, and the present invention can be applied to any disk having a format for recording information by a meandering pattern, and similar effects can be obtained. . For example, the master exposure method of the present invention can be applied to a magneto-optical disk having a format for recording information by a meander pattern, a hybrid (optical assist) recordable disk, a dye recording medium, a phase change medium, a patterned medium, and the like. is there.

上記実施例1で示した原盤露光方法では、蛇行パターンの蛇行周期に応じて、露光ビームの蛇行量を変化させるので、ウォブル溝からの再生信号の振幅を蛇行周期に関係無く一定にすることができる。それゆえ、光ディスクのトラック方向の情報記録密度を高めても、蛇行周期に対する再生信号の直線性が優れた光ディスクが得られる。In the master exposure method shown in the first embodiment, since the amount of exposure beam meandering is changed in accordance with the meandering period of the meandering pattern, the amplitude of the reproduction signal from the wobble groove can be made constant regardless of the meandering period. it can. Therefore, even if the information recording density in the track direction of the optical disk is increased, an optical disk with excellent reproduction signal linearity with respect to the meandering cycle can be obtained.

また、上記実施例2で示した原盤露光方法では、所定のトラックの蛇行パターンを露光する際に、隣接するトラックの蛇行パターンに応じて、所定トラックの露光ビームの蛇行量を変化させて蛇行パターンの形状を調整するので、所定トラックの蛇行パターンに対応するウォブル溝からの再生信号の振幅を隣接トラックの蛇行パターンに関係無く一定にすることができる。それゆえ、光ディスクのトラックピッチを狭くしても、再生信号の直線性が優れた光ディスクが得られる。In the master exposure method shown in the second embodiment, when the meandering pattern of a predetermined track is exposed, the meandering pattern is changed by changing the meandering amount of the exposure beam of the predetermined track according to the meandering pattern of the adjacent track. Thus, the amplitude of the reproduction signal from the wobble groove corresponding to the meandering pattern of the predetermined track can be made constant regardless of the meandering pattern of the adjacent track. Therefore, even if the track pitch of the optical disk is narrowed, an optical disk with excellent reproduction signal linearity can be obtained.

すなわち、本発明の原盤露光方法は、蛇行パターンに情報を記録するフォーマットの光ディスクに対して高密度記録化を図る場合の原盤露光方法として最適である。また、本発明の原盤露光方法で形成された原盤を用いて光ディスクを製造することにより、より高記録密度の光ディスクを製造することができる。That is, the master exposure method of the present invention is most suitable as a master exposure method for achieving high-density recording on an optical disc having a format for recording information in a meandering pattern. Further, by manufacturing an optical disc using a master disc formed by the master exposure method of the present invention, a higher recording density optical disc can be manufactured.

図1は、単一蛇行周期の蛇行パターンを形成する際の原盤露光方法を示した図であり、図1(a)は原盤露光時の偏向駆動信号の変化を示した図であり、図1(b)は蛇行パターンの概略図であり、図1(c)は基板上に形成されたウォブル溝から得られる再生信号の変化図である。FIG. 1 is a diagram showing a master exposure method when forming a meandering pattern having a single meander cycle, and FIG. 1A is a diagram showing a change in a deflection drive signal during master exposure. FIG. 1B is a schematic diagram of a meandering pattern, and FIG. 1C is a change diagram of a reproduction signal obtained from a wobble groove formed on a substrate. 図2は、複数の蛇行周期を含む蛇行パターンを形成する際の原盤露光方法を示した図であり、図2(a)は原盤露光時の偏向駆動信号の変化を示した図であり、図2(b)は蛇行パターンの概略図であり、図2(c)は基板上に形成されたウォブル溝から得られる再生信号の変化図である。FIG. 2 is a diagram showing a master exposure method when forming a meandering pattern including a plurality of meandering periods, and FIG. 2A is a diagram showing a change in a deflection drive signal during master exposure. 2 (b) is a schematic view of a meandering pattern, and FIG. 2 (c) is a change diagram of a reproduction signal obtained from a wobble groove formed on the substrate. 図3は、実施例1の原盤露光方法を示した図であり、図3(a)は原盤露光時の偏向駆動信号の変化を示した図であり、図3(b)は蛇行パターンの概略図であり、図3(c)は基板上に形成されたウォブル溝から得られる再生信号の変化図である。3A and 3B are diagrams showing a master exposure method according to the first embodiment, FIG. 3A is a diagram showing a change in a deflection drive signal during master exposure, and FIG. 3B is an outline of a meander pattern. FIG. 3C is a variation diagram of the reproduction signal obtained from the wobble groove formed on the substrate. 図4は、実施例2の原盤露光方法を示した図であり、図4(a)は原盤露光時の偏向駆動信号の変化を示した図であり、図4(b)は蛇行パターンの概略図であり、図4(c)は基板上に形成されたウォブル溝から得られる再生信号の変化図である。4A and 4B are diagrams showing a master exposure method according to the second embodiment. FIG. 4A is a diagram showing a change in a deflection drive signal at the time of master exposure, and FIG. 4B is an outline of a meandering pattern. FIG. 4C is a variation diagram of the reproduction signal obtained from the wobble groove formed on the substrate.

符号の説明Explanation of symbols

10 露光ビーム10 Exposure beam
13,23,33,43,44 蛇行パターン13, 23, 33, 43, 44 Meander pattern
100 再生光100 Reproducing light

JP2004120019A 2004-04-15 2004-04-15 Master exposure method and information recording disk Expired - Fee Related JP4157073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120019A JP4157073B2 (en) 2004-04-15 2004-04-15 Master exposure method and information recording disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004120019A JP4157073B2 (en) 2004-04-15 2004-04-15 Master exposure method and information recording disk

Publications (3)

Publication Number Publication Date
JP2005302224A JP2005302224A (en) 2005-10-27
JP2005302224A5 true JP2005302224A5 (en) 2007-12-06
JP4157073B2 JP4157073B2 (en) 2008-09-24

Family

ID=35333517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120019A Expired - Fee Related JP4157073B2 (en) 2004-04-15 2004-04-15 Master exposure method and information recording disk

Country Status (1)

Country Link
JP (1) JP4157073B2 (en)

Similar Documents

Publication Publication Date Title
US6975579B2 (en) Optical information recording medium and optical information recording and reproducing apparatus
JP4075185B2 (en) Optical information recording / reproducing method and optical information recording / reproducing apparatus
JP3089280B2 (en) Optical recording medium, method for reproducing preformat information, and reproducing apparatus therefor
US20070177478A1 (en) Method and apparatus for reproducing optical information
JP3730084B2 (en) Light control circuit
US20060044968A1 (en) Optical information recording method, optical information recording device and optical information recording medium
US20060083155A1 (en) Optical information recording medium and manufacturing method of the same
JP4157073B2 (en) Master exposure method and information recording disk
JP2005302224A5 (en)
US6259669B1 (en) Technique for reducing cross erasure in an optical disc recording apparatus
JP2002063721A (en) Optical information recording method and device therefor
US7489611B2 (en) Optical disc device
JP2002288890A (en) Method, device to radiate beam, and method of manufacturing recording medium
JP4435444B2 (en) Information recording medium
US20030147321A1 (en) Recording power adjusting method and optical information record apparatus using the same
JP2000163748A (en) Information recording system and information recording and reproducing device
JP4244691B2 (en) Recording method and recording apparatus
JP2003248983A (en) Information recording method, information recording apparatus, and recording medium
JP3895274B2 (en) Multilevel information recording method and multilevel information recording / reproducing apparatus
KR100554904B1 (en) Information recording medium, information recording/reproducing method, and information recording/reproducing device
JP2002109734A (en) Optical information recording medium and method for recording data
JP2924877B2 (en) How to play information
JPH11126376A (en) High-density optical disk and optical disk reproducing device and manufacture of master optical disk
JP4138410B2 (en) Optical information recording method and optical information recording apparatus
JP2008047256A (en) Optical disk device and crosstalk adjusting method