JP2005300362A - Gas sample introduction device - Google Patents

Gas sample introduction device Download PDF

Info

Publication number
JP2005300362A
JP2005300362A JP2004117193A JP2004117193A JP2005300362A JP 2005300362 A JP2005300362 A JP 2005300362A JP 2004117193 A JP2004117193 A JP 2004117193A JP 2004117193 A JP2004117193 A JP 2004117193A JP 2005300362 A JP2005300362 A JP 2005300362A
Authority
JP
Japan
Prior art keywords
gas
sample
sample gas
valve
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004117193A
Other languages
Japanese (ja)
Other versions
JP4182913B2 (en
Inventor
Shigeo Yasui
茂夫 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004117193A priority Critical patent/JP4182913B2/en
Publication of JP2005300362A publication Critical patent/JP2005300362A/en
Application granted granted Critical
Publication of JP4182913B2 publication Critical patent/JP4182913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein a pressurized carrier gas in a weighing tube is introduced into a vessel in each measurement, when the sample gas sealed in the vessel of a fixed volume is weighed repeatedly and introduced into a GC, and wherein a sample gas is thereby diluted to disturb the accurate measurement. <P>SOLUTION: Valves 5, 6 are provided to block respectively a supply flow passage F1 from the measuring vessel 1 to a ten-way valve 4, and a recovery flow passage F2 for return from the ten-way valve 4 to the measuring vessel 1, and the flow passage F2 between the flow passage F2 and the valve 6 is connected to a discharge port 10 via a valve 9. The valves 5, 6 are closed and the valve 9 is opened in advance to switching of the valve 4 from to a condition showed by a solid line to a condition showed by a dotted line, and the valve 4 is switched thereafter. The carrier gas more than required is prevented from flowing into the measuring vessel 1, when the valves 5, 6 are opened and when the valve 9 is closed, followed thereto, since the gas is discharged to the atmosphere until an inside of the weighing tube is brought substantially into the atmospheric pressure after the switching 11, although the pressurized carrier gas is remained in the weighing tube before the switching. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばガスクロマトグラフ等のガス分析部に気体試料を導入するための気体試料導入装置に関する。   The present invention relates to a gas sample introduction device for introducing a gas sample into a gas analyzer such as a gas chromatograph.

気体試料を対象とするガスクロマトグラフ分析では、カラムの入口に、流路切替え用のバルブや計量管を含む気体試料導入装置を設け、計量管内に所定ガス圧となるように試料ガスを採取した後に、その採取した試料ガスをカラムに送り込むようにしている。図7は、従来知られている気体試料分析用のガスクロマトグラフ装置の流路構成を示す概略図である(例えば特許文献1など参照)。   In gas chromatographic analysis for a gas sample, a gas sample introduction device including a flow path switching valve and a metering tube is provided at the column inlet, and the sample gas is sampled so that a predetermined gas pressure is obtained in the metering tube. The collected sample gas is sent to the column. FIG. 7 is a schematic diagram showing a flow path configuration of a conventionally known gas chromatograph for gas sample analysis (see, for example, Patent Document 1).

サンプリングバルブである六方バルブ52は、手動力又は機械力により、図7中に実線で示す接続状態と点線で示す接続状態との二状態で切替え可能である。点線で示す接続状態であるとき、図示しないガスボンベ等からキャリアガス供給口54に供給されるキャリアガスは六方バルブ52のポート[2],[1]を経由して、カラム56、検出器57を通過して流れる。一方、試料ガス供給口50に供給される試料ガスは電磁開閉弁51を介して六方バルブ52のポート[3],[6]を経由し、計量管55を通った後に六方バルブ52のポート[5],[4]を経由してガス排出口53から排出される。このように計量管55に試料ガスを流す過程を一般にチャージングという。   The six-way valve 52 which is a sampling valve can be switched between a connection state indicated by a solid line and a connection state indicated by a dotted line in FIG. 7 by manual force or mechanical force. In the connection state indicated by the dotted line, the carrier gas supplied to the carrier gas supply port 54 from a gas cylinder (not shown) or the like passes through the ports [2] and [1] of the six-way valve 52 and passes through the column 56 and the detector 57. Flow through. On the other hand, the sample gas supplied to the sample gas supply port 50 passes through the ports [3] and [6] of the six-way valve 52 via the electromagnetic on-off valve 51, passes through the measuring tube 55, and then enters the port [ It is discharged from the gas discharge port 53 via 5] and [4]. The process of flowing the sample gas through the measuring tube 55 in this way is generally called charging.

こうしたチャージングの後に、六方バルブ52を図7中に実線で示す接続状態に切り替える。すると、それまで六方バルブ52中を短絡して流れていたキャリアガスは、計量管55を先の試料ガスの流れとは逆方向に通過する。したがって、計量管55内に残留していた計量管55の内容積で決まる一定量の試料ガスがキャリアガスに押し出され、六方バルブ52のポート[6],[1]を経由してカラム56へと流れ込む。カラム56を通過する際に試料ガスに含まれる各種成分は時間的に分離され、カラム56から出て検出器57により順次検出される。このように所定量の試料ガスをキャリアガスの流れの中に導入する操作を一般にサンプリングという。   After such charging, the six-way valve 52 is switched to a connection state indicated by a solid line in FIG. Then, the carrier gas that has been flowing in a short circuit in the six-way valve 52 until then passes through the measuring tube 55 in the opposite direction to the flow of the sample gas. Accordingly, a certain amount of sample gas determined by the internal volume of the measuring tube 55 remaining in the measuring tube 55 is pushed out to the carrier gas, and is sent to the column 56 via the ports [6] and [1] of the hexagonal valve 52. And flow into. Various components contained in the sample gas when passing through the column 56 are temporally separated, and are sequentially detected by the detector 57 as they leave the column 56. The operation of introducing a predetermined amount of the sample gas into the carrier gas flow is generally called sampling.

計量管55に保持していた試料ガスを完全にカラム56に送り込んだ後に再び六方バルブ52を点線で示す接続状態に切り替えると、上述したように計量管55には試料ガスが流れ込むから、その直前に計量管55内に残留していたキャリアガスは試料ガスに押されてガス排出口53から排出されることになる。一般に、ガス排出口53は大気に開放されていたり排ガスタンクに接続されていたりする。通常は、十分な容積の試料ガスにより、計量管55内に残留していたキャリアガスは完全に置換されることになる。   When the sample gas held in the measuring tube 55 is completely sent to the column 56 and the hexagonal valve 52 is switched again to the connection state indicated by the dotted line, the sample gas flows into the measuring tube 55 as described above. The carrier gas remaining in the measuring tube 55 is pushed by the sample gas and discharged from the gas discharge port 53. In general, the gas outlet 53 is open to the atmosphere or connected to an exhaust gas tank. Usually, the carrier gas remaining in the measuring tube 55 is completely replaced by a sufficient volume of the sample gas.

ところで、分析目的によっては、チャージング時にガス排出口53から排出される試料ガスを回収して再び分析に使用する場合があり得る。例えば、所定の内容積を有し、略大気圧である気密容器内に封入されている試料ガスの濃度を繰り返し測定してその濃度変化を得たいような場合には、図8に示すように、気密容器58やポンプ59を含むループ状の流路を構成することになる。すなわち、チャージング時にはポンプ59を作動させ、気密容器58内から吸引した試料ガスを計量管55に通過させ、通過した試料ガスを気密容器58に戻す。   By the way, depending on the purpose of analysis, the sample gas discharged from the gas discharge port 53 during charging may be collected and used again for analysis. For example, when it is desired to obtain the concentration change by repeatedly measuring the concentration of the sample gas enclosed in the airtight container having a predetermined internal volume and approximately atmospheric pressure, as shown in FIG. A loop-shaped flow path including the airtight container 58 and the pump 59 is formed. That is, at the time of charging, the pump 59 is operated, the sample gas sucked from the inside of the airtight container 58 is passed through the measuring tube 55, and the passed sample gas is returned to the airtight container 58.

この構成では、差圧によってカラム56に一定流量のキャリアガスが流れるようにするために、キャリアガス供給口54に供給されるキャリアガスのガス圧は高くなっている。そのため、サンプリング時には計量管55内のガス圧は高くなっており、六方バルブ52が実線で示す状態から点線で示す状態に切り替わる際には、計量管55内には一時的に加圧されたキャリアガスが保持される。そして、六方バルブ52が点線で示す状態に切り替わると、計量管55内のガス圧は気密容器58内のガス圧よりも高いため、計量管55に保持されていたキャリアガスは差圧によって気密容器58内に流れ込む。そのため、加圧されていたキャリアガスの分だけ目的成分以外のガス成分が増加することになり、結果として試料ガスは希釈されることになる。繰り返し気密容器58内の試料ガスを少量ずつ採取してガスクロマトグラフ分析する場合には、その測定毎に試料ガスが希釈されてゆくことになり、正確な濃度測定に支障をきたすことになる。   In this configuration, the gas pressure of the carrier gas supplied to the carrier gas supply port 54 is high so that a constant flow rate of carrier gas flows through the column 56 due to the differential pressure. Therefore, the gas pressure in the measuring tube 55 is high at the time of sampling, and when the hexagonal valve 52 is switched from the state shown by the solid line to the state shown by the dotted line, the carrier that is temporarily pressurized in the measuring tube 55 Gas is retained. When the hexagonal valve 52 is switched to the state indicated by the dotted line, the gas pressure in the measuring tube 55 is higher than the gas pressure in the hermetic vessel 58, so that the carrier gas held in the measuring tube 55 is sealed by the differential pressure. 58 flows into. Therefore, gas components other than the target component increase by the amount of the pressurized carrier gas, and as a result, the sample gas is diluted. When the sample gas in the hermetic container 58 is repeatedly collected and analyzed by gas chromatography, the sample gas is diluted for each measurement, which hinders accurate concentration measurement.

特開2001−165918号公報JP 2001-165918 A

本発明はこのような点に鑑みて成されたものであり、その目的とするところは、例えば気密容器内の試料ガスを少量ずつ採取して繰り返し測定するような場合でも、そうした試料ガスのチャージング及びサンプリングの過程でキャリアガスによって試料ガスが希釈されることを防止することができる気体試料導入装置を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to charge such a sample gas even when, for example, a sample gas in an airtight container is collected and repeatedly measured. An object of the present invention is to provide a gas sample introduction device capable of preventing a sample gas from being diluted by a carrier gas in the process of sampling and sampling.

上記課題を解決するために成された本発明は、ガス分析部に試料ガスを導入するための気体試料導入装置であって、所定内容積の計量管と、該計量管に試料ガスを保持させるように該計量管に試料ガスを流すチャージング状態と該計量管に保持させた試料ガスを押し出して前記ガス分析部に導入するように該計量管にキャリアガスを流すサンプリング状態とで流路を切り替えるサンプリングバルブと、チャージング状態時に前記サンプリングバルブに試料ガスを供給する試料ガス供給流路と、そのチャージング状態時に計量管を通過した試料ガスを前記サンプリングバルブから回収するための試料ガス回収流路と、を具備する気体試料導入装置において、
a)前記試料ガス供給流路上に設けられた第1流路開閉手段と、
b)前記試料ガス回収流路上に設けられた第2流路開閉手段と、
c)該第2流路開閉手段と前記サンプリングバルブとの間の試料ガス回収流路に一端が接続され、他端が排出口に至る第3流路開閉手段と、
d)前記サンプリングバルブをサンプリング状態からチャージング状態に切り替える際には、それに先立って第1及び第2流路開閉手段を閉鎖するとともに第3流路開閉手段を開放し、前記サンプリングバルブをチャージング状態に切り替えて所定時間が経過してから第1及び第2流路開閉手段を開放するとともに第3流路開閉手段を閉鎖するように、各流路開閉手段及びサンプリングバルブの動作を制御する制御手段と、
を備えることを特徴としている。
The present invention made to solve the above-mentioned problems is a gas sample introduction device for introducing a sample gas into a gas analysis section, and has a measuring tube with a predetermined internal volume, and holds the sample gas in the measuring tube Thus, the flow path is set in a charging state in which the sample gas flows through the measuring tube and a sampling state in which the carrier gas flows into the measuring tube so that the sample gas held in the measuring tube is pushed out and introduced into the gas analyzer. A sampling valve for switching, a sample gas supply channel for supplying a sample gas to the sampling valve in a charging state, and a sample gas recovery flow for recovering from the sampling valve the sample gas that has passed through the measuring tube in the charging state A gas sample introduction device comprising:
a) first channel opening / closing means provided on the sample gas supply channel;
b) a second channel opening / closing means provided on the sample gas recovery channel;
c) third flow path opening / closing means having one end connected to the sample gas recovery flow path between the second flow path opening / closing means and the sampling valve and the other end reaching the discharge port;
d) When the sampling valve is switched from the sampling state to the charging state, the first and second flow path opening / closing means are closed and the third flow path opening / closing means are opened prior to charging the sampling valve. Control for controlling the operation of each channel opening / closing means and the sampling valve so that the first and second channel opening / closing means are opened and the third channel opening / closing means are closed after a predetermined time has elapsed after switching to the state. Means,
It is characterized by having.

この発明に係る気体試料導入装置は、例えば、前記試料ガス供給流路及び試料ガス回収流路の端部が所定内容積を有する測定容器に接続され、該測定容器内に封入された試料ガスを前記計量管に採取して前記ガス分析部に導入する動作を繰り返し行うような構成に好適に利用することができる。   In the gas sample introduction device according to the present invention, for example, the end portions of the sample gas supply channel and the sample gas recovery channel are connected to a measurement container having a predetermined internal volume, and the sample gas sealed in the measurement container is removed. It can utilize suitably for the structure which repeats the operation | movement which extract | collects to the said measuring tube and introduces into the said gas analysis part.

本発明に係る気体試料導入装置において、制御手段は、基本的にチャージングを行う際には第1及び第2流路開閉手段を開放するとともに第3流路開閉手段を閉鎖する。これにより、例えば測定容器から試料ガス供給流路を通ってサンプリングバルブに供給された試料ガスは計量管に流れ、さらにサンプリングバルブから試料ガス回収流路を通って測定容器に回収される。このときに、計量管内にはその内容積で決まる一定量の試料ガスが保持される。次いで、サンプリングバルブをサンプリング状態に切り替えると、先に試料ガスが保持された計量管にはキャリアガスが供給され、このキャリアガスに押されて試料ガスは計量管から出てサンプリングバルブを介してガス分析部へと導入される。これによって、ガス分析部での試料ガスの分析が可能となる。このときには、例えばサンプリングバルブにより試料ガス供給流路と試料ガス回収流路とは短絡されるようになっており、キャリアガスは試料ガス回収流路には流れ込まない。   In the gas sample introduction device according to the present invention, the control means basically opens the first and second flow path opening / closing means and closes the third flow path opening / closing means when charging. Thereby, for example, the sample gas supplied from the measurement container to the sampling valve through the sample gas supply flow path flows into the measuring tube, and is further recovered from the sampling valve to the measurement container through the sample gas recovery flow path. At this time, a certain amount of sample gas determined by the internal volume is held in the measuring tube. Next, when the sampling valve is switched to the sampling state, the carrier gas is supplied to the measuring tube in which the sample gas has been previously held, and the sample gas is pushed out by the carrier gas and is discharged from the measuring tube through the sampling valve. Introduced to the analysis department. As a result, the sample gas can be analyzed in the gas analyzer. At this time, for example, the sampling gas supply channel and the sample gas recovery channel are short-circuited by a sampling valve, and the carrier gas does not flow into the sample gas recovery channel.

サンプリングバルブをサンプリング状態からチャージング状態に切り替える際には、制御手段はその切替え動作に先立って第1及び第2流路開閉手段を閉鎖するとともに第3流路開閉手段を開放する。これによって、サンプリングバルブを挟んで試料ガス供給流路及び試料ガス回収流路は第1流路開閉手段と第2流路開閉手段との間で封鎖される。但し、第3流路開閉手段は開放しているので、これを通して封鎖された流路は排出口に連通している。排出口は例えば大気に開放する等、略大気圧になるようにしておく。   When switching the sampling valve from the sampling state to the charging state, the control means closes the first and second flow path opening / closing means and opens the third flow path opening / closing means prior to the switching operation. Thereby, the sample gas supply channel and the sample gas recovery channel are sealed between the first channel opening / closing means and the second channel opening / closing means with the sampling valve interposed therebetween. However, since the third channel opening / closing means is open, the channel blocked through this means communicates with the discharge port. For example, the discharge port is opened to the atmosphere so as to be at substantially atmospheric pressure.

このような流路の状態でサンプリングバルブがチャージング状態に切り替わると、上記封鎖された流路内に計量管が挿入されることになる。その切替えの直前には計量管には加圧された(大気圧よりも高いガス圧の)キャリアガスが保持されているから、この計量管内のガス圧と排出口のガス圧との差圧によって、計量管に保持されているキャリアガスがサンプリングバルブを介して排出口に向かって上記封鎖された流路を流れる。そして、排出口からキャリアガスは排出され、計量管内のガス圧が排気口のガス圧と同じになるまでキャリアガスの排出は続く。こうしてキャリアガスを十分に排出するだけ所定時間が経過した後に、制御手段は、第1及び第2流路開閉手段を開放するとともに第3流路開閉手段を閉鎖するように切り替え、実際のチャージング動作を開始する。   When the sampling valve is switched to the charging state in such a state of the flow path, the measuring tube is inserted into the blocked flow path. Immediately before the switching, a pressurized carrier gas (having a gas pressure higher than the atmospheric pressure) is held in the measuring tube, so that the pressure difference between the gas pressure in the measuring tube and the gas pressure at the discharge port The carrier gas held in the measuring tube flows through the sealed flow path toward the discharge port through the sampling valve. Then, the carrier gas is discharged from the discharge port, and the discharge of the carrier gas continues until the gas pressure in the measuring tube becomes the same as the gas pressure in the exhaust port. After a predetermined time has passed so that the carrier gas is sufficiently discharged, the control means switches to open the first and second flow path opening / closing means and closes the third flow path opening / closing means to perform actual charging. Start operation.

以上のような手順で、計量管内で加圧された状態で残留しているキャリアガスのうちの加圧分を流路外に排出することにより、チャージング開始時に試料ガス回収流路を介して測定容器に流れ込むのは、もともと計量管により採取された試料ガスと略等量のキャリアガスである。そのため、測定容器内に封入されている試料ガスが希釈されることを回避することができる。   Through the procedure as described above, the pressurized portion of the carrier gas remaining in a pressurized state in the measuring tube is discharged out of the flow path, so that the charging is started through the sample gas recovery flow path at the start of charging. What flows into the measurement container is a carrier gas that is substantially equivalent to the sample gas originally collected by the measuring tube. Therefore, dilution of the sample gas sealed in the measurement container can be avoided.

なお、本発明に係る気体試料導入装置において、ガス分析部としては各種のものが考えられるが、内容積の小さな計量管に採取した試料ガスの成分を分析できるものとして、典型的には、分離用カラムと、該カラムで分離された試料成分を検出する検出器とを備えるガスクロマトグラフとすることができる。   In the gas sample introduction device according to the present invention, various types of gas analysis units are conceivable. Typically, separation is performed on the assumption that the components of the sample gas collected in a measuring tube having a small internal volume can be analyzed. And a gas chromatograph comprising a detector for detecting a sample component separated by the column.

本発明に係る気体試料導入装置によれば、試料ガスのチャージング及びサンプリングの過程で計量管に加圧された状態で保持されたキャリアガスが必要以上に試料ガス回収流路を通って測定容器に流れ込んでしまうことを防止することができるので、測定容器内の試料ガスが希釈されることを回避することができる。それによって、例えば、測定容器内の試料ガス中の任意の試料成分の分析、例えば濃度の測定を、安定して正確に行うことができる。したがって、例えば測定容器中の試料ガスに含まれる任意の成分の濃度変化の測定を高い精度で行うことが可能となる。   According to the gas sample introduction device of the present invention, the carrier gas held in the state where the measuring tube is pressurized in the process of charging and sampling of the sample gas passes through the sample gas recovery channel more than necessary and is measured. It is possible to prevent the sample gas in the measurement container from being diluted. Thereby, for example, analysis of any sample component in the sample gas in the measurement container, for example, measurement of the concentration can be performed stably and accurately. Therefore, for example, it is possible to measure the concentration change of an arbitrary component contained in the sample gas in the measurement container with high accuracy.

本発明に係る気体試料導入装置の一実施例について図面を参照して説明する。図1は本実施例の気体試料導入装置を用いたガスクロマトグラフの流路を中心とする構成図である。   An embodiment of a gas sample introduction device according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram centering on a flow path of a gas chromatograph using the gas sample introduction device of this embodiment.

図1において、一定内容積の測定容器1の試料ガス出口1bは、実線及び点線で示す二つの接続状態に切替え可能である六方バルブ3のポート[4]に接続され、六方バルブ3のポート[2]はキャリブレーションのための定量分析用標準ガスが供給される標準ガス供給口2に接続されている。サンプリングバルブである十方バルブ4も実線及び点線で示す二つの接続状態に切替え可能となっており、そのポート[2]とポート[6]の間にはプリカラム(PC)12が接続され、ポート[7]とポート[10]の間には内容積が4.5mLである計量管11が接続されている。測定容器1の試料ガス出口1bから十方バルブ4のポート[9]にまで至る流路が試料ガス供給流路F1となっており、六方バルブ3のポート[5]と十方バルブ4のポート[9]との間の試料ガス供給流路F1には第1電磁開閉弁5が設けられている。一方、十方バルブ4のポート[8]から測定容器1の試料ガス入口1aにまで至る流路が試料ガス回収流路F2となっており、この流路F2上には試料ガスの流れに沿って、第2電磁開閉弁6、ポンプ7、及び流量計8が設けられている。さらに、十方バルブ4のポート[8]と第2電磁開閉弁6との間の流路F2は、第3電磁開閉弁9を介して大気に開放したガス排出口10に接続されている。   In FIG. 1, the sample gas outlet 1b of the measuring container 1 having a constant internal volume is connected to the port [4] of the six-way valve 3 which can be switched between two connection states indicated by a solid line and a dotted line. 2] is connected to a standard gas supply port 2 to which a standard gas for quantitative analysis for calibration is supplied. The 10-way valve 4 which is a sampling valve can also be switched between two connection states indicated by a solid line and a dotted line, and a precolumn (PC) 12 is connected between the port [2] and the port [6]. A measuring tube 11 having an internal volume of 4.5 mL is connected between [7] and port [10]. The flow path from the sample gas outlet 1b of the measurement container 1 to the port [9] of the ten-way valve 4 is a sample gas supply flow path F1, and the port [5] of the six-way valve 3 and the port of the ten-way valve 4 A first electromagnetic on-off valve 5 is provided in the sample gas supply flow path F1 between [9]. On the other hand, a flow path from the port [8] of the ten-way valve 4 to the sample gas inlet 1a of the measurement container 1 is a sample gas recovery flow path F2, and the flow of the sample gas is along the flow path F2. A second electromagnetic on-off valve 6, a pump 7, and a flow meter 8 are provided. Further, the flow path F2 between the port [8] of the ten-way valve 4 and the second electromagnetic on-off valve 6 is connected to a gas discharge port 10 opened to the atmosphere via the third electromagnetic on-off valve 9.

十方バルブ4のポート[1]はキャリアガス供給口17に接続され、十方バルブ4のポート[4]はダミーカラム(DC)14を介して別のキャリアガス供給口18に接続されている。キャリアガス供給口17、18には大気圧の2倍程度のガス圧で、ガスクロマトグラフの移動相となるキャリアガス(例えばヘリウムなど)が供給されている。また、十方バルブ4のポート[5]はチョークカラム(CC)15を介してチョークベント(CC VENT)に至り、十方バルブ4のポート[3]にはメインカラム(MC)の入口端が接続され、メインカラム13の出口端は水素炎イオン化検出器(FID)である検出器16に接続されている。この検出器16の検出信号はデータ処理部21に入力され、データ処理部21は後述するように検出信号に基づいた各種データ処理を実行する。   The port [1] of the ten-way valve 4 is connected to the carrier gas supply port 17, and the port [4] of the ten-way valve 4 is connected to another carrier gas supply port 18 via a dummy column (DC) 14. . A carrier gas (for example, helium) serving as a mobile phase of the gas chromatograph is supplied to the carrier gas supply ports 17 and 18 at a gas pressure about twice the atmospheric pressure. The port [5] of the ten-way valve 4 reaches the choke vent (CC VENT) via the choke column (CC) 15, and the port [3] of the ten-way valve 4 has an inlet end of the main column (MC). The outlet end of the main column 13 is connected to a detector 16 which is a flame ionization detector (FID). The detection signal of the detector 16 is input to the data processing unit 21, and the data processing unit 21 executes various data processing based on the detection signal as will be described later.

第1、第2、第3電磁開閉弁5、6、9の開閉動作、十方バルブ4、六方バルブ3の切替え動作、及びポンプ7の動作などをそれぞれ制御するために制御部20が設けられ、制御部20にはキーボードや各種スイッチを備えた操作部22と表示部23とが付設されている。制御部20は例えばパーソナルコンピュータにより具現化され、所定の制御プログラムに従って上記各部の動作を制御することにより、試料ガスのチャージング及びサンプリングを実行する。また、データ処理部21も同一のパーソナルコンピュータにより具現化することができるほか、専用のデータ処理装置(例えば島津製作所のクロマトパック(登録商標))を用いることもできる。   A control unit 20 is provided to control the opening / closing operation of the first, second, and third electromagnetic opening / closing valves 5, 6, 9, the switching operation of the ten-way valve 4, the six-way valve 3, and the operation of the pump 7. The control unit 20 is provided with an operation unit 22 having a keyboard and various switches and a display unit 23. The control unit 20 is embodied by a personal computer, for example, and performs charging and sampling of the sample gas by controlling the operation of each of the above units according to a predetermined control program. The data processing unit 21 can also be realized by the same personal computer, and a dedicated data processing device (for example, Chromatopack (registered trademark) manufactured by Shimadzu Corporation) can be used.

上記構成のガスクロマトグラフは、例えば、内部に特定のガスを封入した測定対象物(例えばエアコンや冷蔵庫など)のガス漏れの程度を測定するために利用される。こうした測定では、測定容器1内に測定対象物Sが収容され、測定容器1内には大気圧の空気が封入される。測定対象物Sから特定ガス(例えばフロンなど)が漏出している場合、測定容器1内の空気中の特定ガスの濃度は徐々に増加する。したがって、測定容器1内の空気中の特定ガス濃度を或る期間に亘って繰り返し測定すれば、その結果から例えば数年といった長期間に亘るガス漏れの程度を推定することができる。このような多数回の繰り返し測定を行う際に、本実施例の装置では、測定容器1内の空気(試料ガス)を少量ずつ採取してガスクロマトグラフ分析するが、その際に特徴的な試料ガスの採取動作を行う。この試料ガスの採取動作について図2〜図5を参照して、以下に説明する。   The gas chromatograph having the above-described configuration is used, for example, for measuring the degree of gas leakage of a measurement object (for example, an air conditioner or a refrigerator) in which a specific gas is sealed. In such measurement, the measurement object S is accommodated in the measurement container 1, and atmospheric pressure air is sealed in the measurement container 1. When a specific gas (for example, chlorofluorocarbon) leaks from the measurement object S, the concentration of the specific gas in the air in the measurement container 1 gradually increases. Therefore, if the specific gas concentration in the air in the measurement container 1 is repeatedly measured over a certain period, the degree of gas leakage over a long period of time such as several years can be estimated from the result. When performing such a large number of repeated measurements, the apparatus of this embodiment collects a small amount of air (sample gas) in the measurement container 1 and performs gas chromatographic analysis. Perform the sampling operation. The sampling operation of the sample gas will be described below with reference to FIGS.

まず、制御部20は、六方バルブ3を図1に実線で示す接続状態とし、十方バルブ4を点線で示す接続状態とし、第1、第2電磁開閉弁5、6を開放、第3電磁開閉弁9を閉鎖する。そして、その状態で流量計8により流量をモニタしつつ、ポンプ7により一定流量でガスを吸引する。図2にこのときの流路構成を示す。このときには図2中に太線で示すように、測定容器1の試料ガス出口1b−六方バルブ3のポート[4],[5]−第1電磁開閉弁5−十方バルブ4のポート[9],[10]−計量管11−十方バルブ4のポート[7],[8]−第2電磁開閉弁6−ポンプ7−流量計8−測定容器1の試料ガス入口1a、というループ状の流路が形成される。すなわち、試料ガス供給流路F1と試料ガス回収流路F2との間に計量管11が挟まれた状態となり、ポンプ7により吸引された試料ガスが上記流路を通って流れ、計量管11内にその内容積で決まる一定量の試料ガスが保持される。このような試料ガスの保持の過程がチャージングである。測定容器1内の試料ガスは循環的に流れるから、このときには測定容器1内の試料ガスの濃度は変化しない。   First, the control unit 20 sets the hexagonal valve 3 to the connection state indicated by the solid line in FIG. 1, sets the ten-way valve 4 to the connection state indicated by the dotted line, opens the first and second electromagnetic opening / closing valves 5 and 6, and sets the third electromagnetic valve The on-off valve 9 is closed. In this state, the pump 7 sucks gas at a constant flow rate while monitoring the flow rate with the flow meter 8. FIG. 2 shows the flow path configuration at this time. At this time, as shown by a thick line in FIG. 2, the sample gas outlet 1b of the measuring vessel 1—the ports [4], [5] of the six-way valve 3—the first electromagnetic on-off valve 5—the port [9] of the ten-way valve 4 , [10] -metering pipe 11-port 10 of the 10-way valve 4 [7], [8] -second electromagnetic on-off valve 6-pump 7-flow meter 8-sample gas inlet 1a of the measuring vessel 1 A flow path is formed. That is, the measuring tube 11 is sandwiched between the sample gas supply flow path F1 and the sample gas recovery flow path F2, and the sample gas sucked by the pump 7 flows through the flow path, and the inside of the measuring tube 11 A fixed amount of sample gas determined by the internal volume is held. Such a process of holding the sample gas is charging. Since the sample gas in the measurement container 1 flows cyclically, the concentration of the sample gas in the measurement container 1 does not change at this time.

なお、キャリアガス供給口17に供給されたキャリアガスは十方バルブ4のポート[1],[2]を経由してプレカラム12に流れ、さらに十方バルブ4のポート[6],[5]を経由してチョークカラム15に流れてチョークベントから排出される。一方、キャリアガス供給口18に供給されたキャリアガスはダミーカラム14を経由して十方バルブ4のポート[4],[3]を通り、さらにメインカラム13、検出器16と流れる。このように各カラム12、13、14、15にはキャリアガスが流れるから、カラム内が汚染されることはない。   The carrier gas supplied to the carrier gas supply port 17 flows to the pre-column 12 via the ports [1] and [2] of the ten-way valve 4 and further to the ports [6] and [5] of the ten-way valve 4. To the choke column 15 and discharged from the choke vent. On the other hand, the carrier gas supplied to the carrier gas supply port 18 passes through the ports [4] and [3] of the ten-way valve 4 via the dummy column 14, and further flows to the main column 13 and the detector 16. Thus, since the carrier gas flows through each of the columns 12, 13, 14, and 15, the inside of the column is not contaminated.

上記のようなチャージングを開始してから所定時間が経過した後に、制御部20は、十方バルブ4を図1中に点線で示す接続状態から実線で示す接続状態に切り替える。図3にこのときの流路構成を示す。このときには、図3中に太線で示すように、キャリアガス供給口17−十方バルブ4のポート[1],[10]−計量管11−十方バルブ4のポート[7],[6]−プレカラム12−十方バルブ4のポート[2],[3]−メインカラム13−検出器16、という流路が形成される。これによって、その直前に計量管11内に保持されていた試料ガスは右方から入って来るキャリアガスに押されて、プレカラム12、メインカラム13と順に流れ、それぞれのカラム12、13で時間的に成分分離されて検出器16で検出される。検出器16による検出信号はデータ処理部21に送られ、データ処理部21では時間経過に伴って順次得られる検出信号によりクロマトグラムを作成し、例えばそのクロマトグラムに現れたピークの面積から特定ガス成分の濃度を算出する等の所定の演算処理を行う。   After a predetermined time has elapsed since the start of charging as described above, the control unit 20 switches the ten-way valve 4 from the connection state indicated by the dotted line in FIG. 1 to the connection state indicated by the solid line. FIG. 3 shows the flow path configuration at this time. At this time, as shown by a thick line in FIG. 3, the carrier gas supply port 17—the ports [1], [10] of the ten-way valve 4—the measuring tube 11—the ports [7], [6] of the ten-way valve 4 -Pre-column 12-Ports [2] and [3] of the ten-way valve 4-Main column 13-Detector 16 are formed. As a result, the sample gas held in the measuring tube 11 immediately before is pushed by the carrier gas entering from the right side and flows in the order of the pre-column 12 and the main column 13. The components are separated and detected by the detector 16. The detection signal from the detector 16 is sent to the data processing unit 21. The data processing unit 21 creates a chromatogram based on the detection signals sequentially obtained as time elapses. For example, a specific gas is determined from the peak area appearing in the chromatogram. Predetermined arithmetic processing such as calculation of component concentrations is performed.

なお、このときには、キャリアガス供給口18に供給されたキャリアガスはダミーカラム14を経由して十方バルブ4のポート[4],[5]を通り、チョークカラム15に流れてチョークベントから排出される。また、測定容器1の試料ガス出口1b−六方バルブ3のポート[4],[5]−第1電磁開閉弁5−十方バルブ4のポート[9],[8]−第2電磁開閉弁6−ポンプ7−流量計8−容器1の試料ガス入口1a、というループ状の流路、すなわち、試料ガス供給流路F1と試料ガス回収流路F2とが短絡された流路が形成され、この流路中を試料ガスが循環的に流れる。   At this time, the carrier gas supplied to the carrier gas supply port 18 passes through the dummy column 14 through the ports [4] and [5] of the ten-way valve 4 and flows into the choke column 15 and is discharged from the choke vent. Is done. Also, the sample gas outlet 1b of the measuring vessel 1-the ports [4], [5] of the hexagonal valve 3-the first electromagnetic on-off valve 5-the ports [9], [8] of the ten-way valve 4-the second electromagnetic on-off valve 6-pump 7—flow meter 8—sample gas inlet 1a of container 1, a loop-shaped flow path, that is, a flow path in which sample gas supply flow path F1 and sample gas recovery flow path F2 are short-circuited is formed, The sample gas flows cyclically in this flow path.

計量管11に保持されていた試料ガスを完全にメインカラム13に送り込むだけの時間が経過した以降の適宜のタイミングで、制御部20は、十方バルブ4を図1中に実線で示す接続状態から点線で示す接続状態に再び切り替えるわけであるが、それに先立って、まず、ポンプ7の動作を停止させる。測定容器1内はほぼ大気圧であって、試料ガス出口1bと試料ガス入口1aとの間には圧力差はないものとみなせるから、ポンプ7が停止すると試料ガスの循環は止まる。次に、第1、第2電磁開閉弁5、6を閉鎖し、それと同時に又はそれから少し遅れて第3電磁開閉弁9を開放するように切り替える。図4にこのときの流路構成を示す。このときには、図4中に太線で示すように、十方バルブ4のポート[9],[8]を挟んで第1電磁開閉弁5と第2電磁開閉弁6との間で流路の両端は閉じられ、この流路は第3電磁開閉弁9を通してガス排出口10にのみ連通する。ここで特に重要なことは、十方バルブ4のポート[9],[8]に接続された試料ガス供給流路F1、試料ガス回収流路F2が測定容器1と完全に遮断され、その代わりに第3電磁開閉弁9を介して十方バルブ4のポート[8]とガス排出口10とが接続されることである。   At an appropriate timing after the time necessary for completely sending the sample gas held in the measuring tube 11 to the main column 13 has elapsed, the control unit 20 connects the ten-way valve 4 to the connection state indicated by the solid line in FIG. However, prior to this, the operation of the pump 7 is first stopped. Since the inside of the measurement container 1 is almost atmospheric pressure and there is no pressure difference between the sample gas outlet 1b and the sample gas inlet 1a, the circulation of the sample gas stops when the pump 7 is stopped. Next, the first and second electromagnetic on-off valves 5 and 6 are closed, and switching is performed so that the third electromagnetic on-off valve 9 is opened at the same time or a little later than that. FIG. 4 shows the flow path configuration at this time. At this time, as shown by a thick line in FIG. 4, both ends of the flow path between the first electromagnetic on-off valve 5 and the second electromagnetic on-off valve 6 sandwiching the ports [9], [8] of the ten-way valve 4 are sandwiched. Is closed, and this flow path communicates only with the gas discharge port 10 through the third electromagnetic on-off valve 9. What is particularly important here is that the sample gas supply flow path F1 and the sample gas recovery flow path F2 connected to the ports [9] and [8] of the ten-way valve 4 are completely disconnected from the measurement container 1, and instead. In addition, the port [8] of the ten-way valve 4 and the gas discharge port 10 are connected via the third electromagnetic opening / closing valve 9.

上記のように流路が切り替えられた状態で、十方バルブ4は図1中に点線で示す接続状態に切り替わる。図5にこのときの流路構成を示す。このときには、図5中に太線で示すように、上述した第1電磁開閉弁5と第2電磁開閉弁6との間で両端が閉じられた流路中に計量管11が挿入されることになる。十方バルブ4の切替えの直前には計量管11にはキャリアガスが流通しているが、その際に計量管11内のガス圧はキャリアガス供給口17のガス圧とほぼ等しい。キャリアガス供給口10へのガス供給圧が大気圧の2倍であるとすると、計量管11内に存在し得るキャリアガスの容量は通常の大気圧下での2倍となる。つまり、いま計量管11の内容積が4.5mLであるとき、計量管11内に存在し得るキャリアガス量は大気圧下では9mLに相当する容量である。   In the state where the flow path is switched as described above, the ten-way valve 4 is switched to the connection state indicated by the dotted line in FIG. FIG. 5 shows the flow path configuration at this time. At this time, as shown by a thick line in FIG. 5, the measuring tube 11 is inserted into the flow path whose both ends are closed between the first electromagnetic on-off valve 5 and the second electromagnetic on-off valve 6 described above. Become. Immediately before the switching of the ten-way valve 4, the carrier gas flows through the measuring tube 11, and at this time, the gas pressure in the measuring tube 11 is substantially equal to the gas pressure in the carrier gas supply port 17. Assuming that the gas supply pressure to the carrier gas supply port 10 is twice the atmospheric pressure, the capacity of the carrier gas that can exist in the measuring tube 11 is twice the normal atmospheric pressure. That is, when the inner volume of the measuring tube 11 is 4.5 mL, the amount of carrier gas that can exist in the measuring tube 11 is a volume corresponding to 9 mL under atmospheric pressure.

このように、十方バルブ4の切替え時点では計量管11内にはキャリアガスが大気圧よりも高いガス圧で封入された状態にある。一方、十方バルブ4が切り替えられて上記流路が形成されるとガス排出口10は略大気圧であるため、計量管11とガス排出口10との間には圧力差が生じ、この差圧によって、計量管11内のキャリアガスはガス排出口10に向かって流路内を流れ、最終的に大気中に放出される。そして、計量管11内が略大気圧になって上記流路内でガス圧が平衡するまでキャリアガスの放出は続く。ガス排出口10からのキャリアガスの放出が終了する時点では、計量管11内には4.5mLの容量のキャリアガスが残る筈であり、結局、加圧されていた4.5mLの容量のキャリアガスが減少することになる。   Thus, when the ten-way valve 4 is switched, the carrier gas is sealed in the measuring tube 11 at a gas pressure higher than the atmospheric pressure. On the other hand, when the ten-way valve 4 is switched and the flow path is formed, the gas discharge port 10 is at substantially atmospheric pressure. Therefore, a pressure difference is generated between the measuring tube 11 and the gas discharge port 10. Due to the pressure, the carrier gas in the measuring tube 11 flows in the flow path toward the gas outlet 10 and is finally released into the atmosphere. The discharge of the carrier gas continues until the inside of the measuring tube 11 becomes substantially atmospheric pressure and the gas pressure is balanced in the flow path. At the time when the release of the carrier gas from the gas discharge port 10 is completed, a carrier gas with a volume of 4.5 mL should remain in the measuring tube 11, and eventually the carrier with a volume of 4.5 mL that has been pressurized is used. Gas will decrease.

このようにして計量管11から加圧されていた分のキャリアガスを排出した後に、制御部20は再び第1、第2電磁開放弁5、6を開放し、第3電磁開放弁9を閉鎖するように切り替え、またポンプ7を作動させる。それによって、再び図2に示した流路が形成され、測定容器1から吸引された試料ガスが計量管11内に流れて一定量の試料ガスが保持される。このときに、前述の如く計量管11内に残留していたキャリアガスは測定容器1に流れ込むが、このキャリアガスの容量はそもそもチャージングによって計量管11に採取された試料ガスの容量と同じであって、全体のガス容量が増加するわけではないので測定容器1内の試料成分が希釈されることはない。   After discharging the pressurized carrier gas from the metering tube 11 in this way, the control unit 20 opens the first and second electromagnetic release valves 5 and 6 again and closes the third electromagnetic release valve 9. Then, the pump 7 is operated. Accordingly, the flow path shown in FIG. 2 is formed again, and the sample gas sucked from the measurement container 1 flows into the measuring tube 11 to hold a certain amount of sample gas. At this time, the carrier gas remaining in the measuring tube 11 flows into the measuring container 1 as described above, and the capacity of the carrier gas is the same as that of the sample gas collected in the measuring tube 11 by charging. Thus, since the total gas capacity does not increase, the sample components in the measurement container 1 are not diluted.

但し、1回の測定毎に、測定容器1内の試料ガスは、計量管11の内容積(ここでは4.5mL)に相当する分ずつ試料ガスがキャリアガスに入れ替わることになる。つまり、測定容器1内の試料ガスは希釈されはしないが、測定容器1内の試料ガス中の特定ガス成分は、4.5mLの試料ガスに含まれる分だけ消費されて減少してゆく。これは、ガスクロマトグラフ分析では分析時に試料成分を消費してしまう(つまり還流させることはできない)という本質的な理由によるため、この分析では避けられない問題である。したがって、測定容器1内の特定ガス成分の濃度を繰り返し測定する場合には、測定毎に上記の試料ガスの減少に相当する分だけ濃度が下がることを考慮する必要がある。各測定における試料ガスの減少量は決まっているから、上記のような濃度の減少分を補正して濃度を算出することは比較的容易に行うことができる。   However, for each measurement, the sample gas in the measurement container 1 is replaced with the carrier gas by an amount corresponding to the internal volume of the measuring tube 11 (here, 4.5 mL). That is, the sample gas in the measurement container 1 is not diluted, but the specific gas component in the sample gas in the measurement container 1 is consumed and reduced by the amount contained in 4.5 mL of the sample gas. This is an unavoidable problem in this analysis because of the essential reason that the sample components are consumed (that is, cannot be refluxed) in the gas chromatographic analysis. Therefore, when the concentration of the specific gas component in the measurement container 1 is repeatedly measured, it is necessary to consider that the concentration decreases by an amount corresponding to the decrease in the sample gas for each measurement. Since the amount of decrease in the sample gas in each measurement is determined, it is relatively easy to calculate the concentration by correcting the concentration decrease as described above.

上述した本実施例の構成で繰り返し測定を行った場合と、従来装置(図1に示す構成で常に第1、第2電磁開閉弁5、6を開放し、第3電磁開閉弁9を閉鎖した状態)で繰り返し測定を行った場合との、濃度の安定性の実験結果を図6に示す。この実験は、繰り返し測定開始前に、図示しない基準ガス導入部から少量の基準ガス(例えばプロパンガス等)を密閉した測定容器1内に導入し、その基準ガス成分の濃度を繰り返し測定したものである。測定は一定時間間隔で19回まで行い、各測定毎に得られるクロマトグラム上に現れる基準ガスのピークのピーク面積を求めるとともに、そのピーク面積から濃度を算出している。   When repeated measurement is performed with the configuration of the above-described embodiment, the conventional device (the first and second electromagnetic on-off valves 5 and 6 are always opened and the third electromagnetic on-off valve 9 is closed with the configuration shown in FIG. 1). FIG. 6 shows the experimental results of the stability of the concentration when the measurement is repeated in the state). In this experiment, a small amount of reference gas (for example, propane gas) was introduced into a sealed measurement vessel 1 from a reference gas introduction unit (not shown) before repeated measurement, and the concentration of the reference gas component was repeatedly measured. is there. The measurement is performed up to 19 times at regular time intervals, the peak area of the peak of the reference gas appearing on the chromatogram obtained for each measurement is obtained, and the concentration is calculated from the peak area.

従来装置では、測定毎に測定容器1内から試料ガスが採取されて基準ガス成分が少しずつ減少するのみならず、キャリアガスによる基準ガス成分の希釈も生じるため、図6(a)に示すようにトータルで約4.6%、基準ガス濃度が低下してしまう。これに対し、本実施例の構成では、キャリアガスによる基準ガス成分の希釈はなくなるため、図6(b)に示すようにトータルでの基準ガス濃度の低下は2.0%と、従来装置の半分以下に軽減されることが分かる。なお、上述したように測定毎に消費された基準ガス成分の減少量を考慮した補正をデータ処理により行うと、その結果は図6(c)に示すようになる。消費された基準ガス成分の減少量は比較的正確に把握できるため、補正処理を行うことにより、トータルでの濃度の減衰を約0.4%と大きく減らすことができる。   In the conventional apparatus, the sample gas is sampled from the measurement container 1 for each measurement and the reference gas component is decreased little by little, and the reference gas component is also diluted with the carrier gas. Therefore, as shown in FIG. In total, the reference gas concentration is reduced by about 4.6%. On the other hand, in the configuration of the present embodiment, since the reference gas component is not diluted by the carrier gas, the total decrease in the reference gas concentration is 2.0% as shown in FIG. It can be seen that it is reduced to less than half. As described above, when correction is performed by data processing in consideration of the reduction amount of the reference gas component consumed for each measurement, the result is as shown in FIG. Since the reduction amount of the consumed reference gas component can be grasped relatively accurately, the total concentration attenuation can be greatly reduced to about 0.4% by performing the correction process.

このように、本実施例の構成によれば、測定容器1内の試料ガスの任意の成分の濃度を繰り返し測定する際に、必要以上の濃度の減衰を防止することができるので、それにより任意の成分の濃度を安定して正確に測定することができる。したがって、例えば上述したような測定対象物からのガス漏れなどを測定する際にも、その特定ガス成分の濃度の変動を高い精度で捉えることができ、ガス漏れの程度の推定精度を向上させることができる。   As described above, according to the configuration of this embodiment, when the concentration of an arbitrary component of the sample gas in the measurement container 1 is repeatedly measured, it is possible to prevent the concentration from being attenuated more than necessary. The concentration of the component can be measured stably and accurately. Therefore, for example, when measuring gas leakage from the measurement object as described above, for example, it is possible to capture the fluctuation of the concentration of the specific gas component with high accuracy, and to improve the estimation accuracy of the degree of gas leakage. Can do.

上記実施例の構成は単に一例であり、各種の変形や追加を行うことができる。例えば、上記実施例ではサンプリングバルブとして十方バルブを用いたが、これは適宜の構成のバルブとすることができる。また、試料ガスを測定容器1から吸引するとともに測定容器1に戻すポンプ7や流量を計測する流量計7の挿入位置は上記記載に限るものではない。必要なことは、測定容器1から試料ガスをサンプリングバルブに供給するための試料ガス供給流路F1とサンプリングバルブから試料ガスを測定容器1へ戻すための試料ガス回収流路F2とにそれぞれ電磁開閉弁等の流路開閉手段を設けるとともに、該流路開閉手段で両端が遮断され得る流路内のガスを排出するための排出手段を設けることである。また、これら以外の点においても、本発明の趣旨の範囲で適宜変形や追加、修正を行っても本願発明に包含されることは明らかである。   The configuration of the above embodiment is merely an example, and various modifications and additions can be made. For example, in the above embodiment, a ten-way valve is used as a sampling valve, but this may be a valve having an appropriate configuration. The insertion position of the pump 7 for sucking the sample gas from the measurement container 1 and returning it to the measurement container 1 and the flow meter 7 for measuring the flow rate are not limited to the above description. What is required is that the sample gas supply flow path F1 for supplying the sample gas from the measurement container 1 to the sampling valve and the sample gas recovery flow path F2 for returning the sample gas from the sampling valve to the measurement container 1 are electromagnetically opened and closed, respectively. In addition to providing flow path opening / closing means such as a valve, a discharge means for discharging gas in the flow path whose both ends can be blocked by the flow path opening / closing means is provided. In addition to these points, it is obvious that the invention of the present application is included even if appropriate changes, additions and modifications are made within the scope of the present invention.

本発明の一実施例による気体試料導入装置を備えたガスクロマトグラフの流路を中心とする構成図。The block diagram centering on the flow path of the gas chromatograph provided with the gas sample introduction apparatus by one Example of this invention. 本実施例におけるガスクロマトグラフにおける試料ガスの採取動作を説明するための流路構成図。The flow-path block diagram for demonstrating sampling operation | movement of the sample gas in the gas chromatograph in a present Example. 本実施例におけるガスクロマトグラフにおける試料ガスの採取動作を説明するための流路構成図。The flow-path block diagram for demonstrating sampling operation | movement of the sample gas in the gas chromatograph in a present Example. 本実施例におけるガスクロマトグラフにおける試料ガスの採取動作を説明するための流路構成図。The flow-path block diagram for demonstrating sampling operation | movement of the sample gas in the gas chromatograph in a present Example. 本実施例におけるガスクロマトグラフにおける試料ガスの採取動作を説明するための流路構成図。The flow-path block diagram for demonstrating sampling operation | movement of the sample gas in the gas chromatograph in a present Example. 本実施例の構成と従来装置との効果の相違を説明するための実験結果を示す図。The figure which shows the experimental result for demonstrating the difference of the effect of the structure of a present Example, and a conventional apparatus. 従来の気体試料導入装置を備えたガスクロマトグラフの流路構成図。The flow-path block diagram of the gas chromatograph provided with the conventional gas sample introducing device. 図7の装置で気密容器内の試料ガスを繰り返し測定する場合の流路構成図。The flow-path block diagram in the case of measuring repeatedly the sample gas in an airtight container with the apparatus of FIG.

符号の説明Explanation of symbols

1…測定容器
1a…試料ガス入口
1b…試料ガス出口
2…定量分析用標準ガス供給口
3…六方バルブ
4…十方バルブ
5…第1電磁開閉弁
6…第2電磁開閉弁
7…ポンプ
8…流量計
9…第3電磁開閉弁
10…ガス排出口
11…計量管
12…プレカラム
13…メインカラム
14…ダミーカラム
15…チョークカラム
16…検出器
17、18…キャリアガス供給口
20…制御部
21…データ処理部
22…操作部
23…表示部
F1…試料ガス供給流路
F2…試料ガス回収流路
DESCRIPTION OF SYMBOLS 1 ... Measurement container 1a ... Sample gas inlet 1b ... Sample gas outlet 2 ... Standard gas supply port 3 for quantitative analysis ... Six-way valve 4 ... Ten-way valve 5 ... First electromagnetic on-off valve 6 ... Second electromagnetic on-off valve 7 ... Pump 8 ... Flow meter 9 ... Third electromagnetic on-off valve 10 ... Gas discharge port 11 ... Measuring tube 12 ... Pre-column 13 ... Main column 14 ... Dummy column 15 ... Choke column 16 ... Detectors 17, 18 ... Carrier gas supply port 20 ... Control unit 21 ... Data processing unit 22 ... Operation unit 23 ... Display unit F1 ... Sample gas supply channel F2 ... Sample gas recovery channel

Claims (3)

ガス分析部に試料ガスを導入するための気体試料導入装置であって、所定内容積の計量管と、該計量管に試料ガスを保持させるように該計量管に試料ガスを流すチャージング状態と該計量管に保持させた試料ガスを押し出して前記ガス分析部に導入するように該計量管にキャリアガスを流すサンプリング状態とで流路を切り替えるサンプリングバルブと、チャージング状態時に前記サンプリングバルブに試料ガスを供給する試料ガス供給流路と、そのチャージング状態時に計量管を通過した試料ガスを前記サンプリングバルブから回収するための試料ガス回収流路と、を具備する気体試料導入装置において、
a)前記試料ガス供給流路上に設けられた第1流路開閉手段と、
b)前記試料ガス回収流路上に設けられた第2流路開閉手段と、
c)該第2流路開閉手段と前記サンプリングバルブとの間の試料ガス回収流路に一端が接続され、他端が排出口に至る第3流路開閉手段と、
d)前記サンプリングバルブをサンプリング状態からチャージング状態に切り替える際には、それに先立って第1及び第2流路開閉手段を閉鎖するとともに第3流路開閉手段を開放し、前記サンプリングバルブをチャージング状態に切り替えて所定時間が経過してから第1及び第2流路開閉手段を開放するとともに第3流路開閉手段を閉鎖するように、各流路開閉手段及びサンプリングバルブの動作を制御する制御手段と、
を備えることを特徴とする気体試料導入装置。
A gas sample introduction device for introducing a sample gas into a gas analysis unit, a measuring tube having a predetermined internal volume, and a charging state in which the sample gas is flown through the measuring tube so as to hold the sample gas in the measuring tube A sampling valve that switches a flow path between a sampling state in which a carrier gas is flown through the measuring tube so that the sample gas held in the measuring tube is pushed out and introduced into the gas analyzer, and a sample is supplied to the sampling valve in a charging state In a gas sample introduction device comprising: a sample gas supply channel for supplying a gas; and a sample gas recovery channel for recovering the sample gas that has passed through the measuring tube in the charging state from the sampling valve;
a) first channel opening / closing means provided on the sample gas supply channel;
b) a second channel opening / closing means provided on the sample gas recovery channel;
c) third flow path opening / closing means having one end connected to the sample gas recovery flow path between the second flow path opening / closing means and the sampling valve and the other end reaching the discharge port;
d) When the sampling valve is switched from the sampling state to the charging state, the first and second flow path opening / closing means are closed and the third flow path opening / closing means are opened prior to charging the sampling valve. Control for controlling the operation of each channel opening / closing means and the sampling valve so that the first and second channel opening / closing means are opened and the third channel opening / closing means are closed after a predetermined time has elapsed after switching to the state. Means,
A gas sample introduction device comprising:
前記試料ガス供給流路及び試料ガス回収流路の端部は所定内容積を有する測定容器に接続され、該測定容器内に封入された試料ガスを前記計量管に採取して前記ガス分析部に導入する動作を繰り返し行うことを特徴とする請求項1に記載の気体試料導入装置。   The ends of the sample gas supply channel and the sample gas recovery channel are connected to a measurement container having a predetermined internal volume, and the sample gas sealed in the measurement container is collected in the measuring tube and supplied to the gas analysis unit. The gas sample introducing device according to claim 1, wherein the introducing operation is repeatedly performed. 前記ガス分析部が、分離用カラムと、該カラムで分離された試料成分を検出する検出器とを備えるガスクロマトグラフであることを特徴とする請求項1に記載の気体試料導入装置。
The gas sample introduction device according to claim 1, wherein the gas analysis unit is a gas chromatograph including a separation column and a detector that detects a sample component separated by the column.
JP2004117193A 2004-04-12 2004-04-12 Gas sample introduction device Expired - Lifetime JP4182913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004117193A JP4182913B2 (en) 2004-04-12 2004-04-12 Gas sample introduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004117193A JP4182913B2 (en) 2004-04-12 2004-04-12 Gas sample introduction device

Publications (2)

Publication Number Publication Date
JP2005300362A true JP2005300362A (en) 2005-10-27
JP4182913B2 JP4182913B2 (en) 2008-11-19

Family

ID=35332058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004117193A Expired - Lifetime JP4182913B2 (en) 2004-04-12 2004-04-12 Gas sample introduction device

Country Status (1)

Country Link
JP (1) JP4182913B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980962A (en) * 2012-12-05 2013-03-20 重庆市电力公司电力科学研究院 Sampling system and processing method for gas chromatograph
CN103604897A (en) * 2013-10-31 2014-02-26 陕西延长石油(集团)有限责任公司研究院 On-line multidimensional gas chromatographic analysis device universal for low carbon catalytic conversion reaction
WO2017061803A1 (en) * 2015-10-06 2017-04-13 주식회사 엘지화학 Gas sample injection device for gas chromatographic analysis, and method thereof
WO2020202868A1 (en) * 2019-04-01 2020-10-08 株式会社島津製作所 Gas analysis device and gas sampling device
CN112946120A (en) * 2021-02-01 2021-06-11 西安奕斯伟硅片技术有限公司 Ion concentration detection equipment and method
CN115917308A (en) * 2020-06-03 2023-04-04 株式会社村田制作所 Gas component detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102980962A (en) * 2012-12-05 2013-03-20 重庆市电力公司电力科学研究院 Sampling system and processing method for gas chromatograph
CN103604897A (en) * 2013-10-31 2014-02-26 陕西延长石油(集团)有限责任公司研究院 On-line multidimensional gas chromatographic analysis device universal for low carbon catalytic conversion reaction
WO2017061803A1 (en) * 2015-10-06 2017-04-13 주식회사 엘지화학 Gas sample injection device for gas chromatographic analysis, and method thereof
JP2018526635A (en) * 2015-10-06 2018-09-13 エルジー・ケム・リミテッド Gas sample injection apparatus and injection method for gas chromatography analysis
US10705059B2 (en) 2015-10-06 2020-07-07 Lg Chem, Ltd. Gas sample injection device for gas chromatographic analysis, and method thereof
WO2020202868A1 (en) * 2019-04-01 2020-10-08 株式会社島津製作所 Gas analysis device and gas sampling device
CN115917308A (en) * 2020-06-03 2023-04-04 株式会社村田制作所 Gas component detection device
CN112946120A (en) * 2021-02-01 2021-06-11 西安奕斯伟硅片技术有限公司 Ion concentration detection equipment and method

Also Published As

Publication number Publication date
JP4182913B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
CN114981654B (en) Anomaly detection and diagnosis in chromatographic applications
US8968560B2 (en) Chromatography using multiple detectors
US7511268B2 (en) Ion mobility spectrometer and its method of operation
CN106461592B (en) Gas component concentration measuring apparatus and method for measuring gas component concentration
CN110308216B (en) Integrated analysis system for trace permanent impurity gas and water in gas and use method thereof
WO2017050096A1 (en) Simulated internal standard method, device and application for mass spectrometry quantitative analysis
US5552600A (en) Pressure stabilized ion mobility spectrometer
CN111337598B (en) Trace detection device
EP2876438B1 (en) Head space sample introduction device and gas chromatograph including same
JP4182913B2 (en) Gas sample introduction device
GB2391700A (en) Ion mobility spectrometer with GC column and internal regulated gas cycle
US10753916B2 (en) Systems, methods, and devices for detecting leaks in a chromatography system
US20090206246A1 (en) Detection Apparatus and Methods
JP2000146932A (en) Device for introducing gas sample for gas chromatograph
US10386343B2 (en) Gas chromatograph
JP7169775B2 (en) Separation method by gas chromatography, gas chromatograph device, gas analyzer, concentrator tube, concentrator, method for manufacturing concentrator tube, and gas detector
JP7120471B2 (en) Sample introduction device
JP3114926U (en) Flow controller and sample concentrator using the same
CN221926249U (en) Smiling gas rapid detection device
JP2837779B2 (en) Radioactive gas measuring device
JPH06148162A (en) Gas chromatiographic mass spectrometer
JP2005265666A (en) Analyzing apparatus and analyzing method of gas in oil
US20150041335A1 (en) System and Method for Fuel Cell Based Compositional Sample Analysis
CN117630231A (en) Smiling gas rapid detection device and detection method
CN114609257A (en) Gas chromatography-mass spectrometer and gas path control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

EXPY Cancellation because of completion of term