JP2005300301A - Bend measuring method and instrument for rod-like body - Google Patents

Bend measuring method and instrument for rod-like body Download PDF

Info

Publication number
JP2005300301A
JP2005300301A JP2004115419A JP2004115419A JP2005300301A JP 2005300301 A JP2005300301 A JP 2005300301A JP 2004115419 A JP2004115419 A JP 2004115419A JP 2004115419 A JP2004115419 A JP 2004115419A JP 2005300301 A JP2005300301 A JP 2005300301A
Authority
JP
Japan
Prior art keywords
rod
axis
bending
fuel
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004115419A
Other languages
Japanese (ja)
Other versions
JP4372603B2 (en
Inventor
Takafumi Naitou
考文 内藤
Taiji Suzuki
耐志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP2004115419A priority Critical patent/JP4372603B2/en
Publication of JP2005300301A publication Critical patent/JP2005300301A/en
Application granted granted Critical
Publication of JP4372603B2 publication Critical patent/JP4372603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To measure bends in a plurality of rod-like bodies. <P>SOLUTION: A probe 9, arranged facing a pair of electrostatic sensors 14, is inserted between two fuel rods 4, 4 adjacent in the X-axis direction and Y-axis-direction, in primary measuring processing, as the large number of fuel rods 4 in a fuel assembly, and pieces of distance information up to the facing fuel rods 4 are thereby output, respectively as ridge-shaped waveforms. Total ridge-shaped waveforms are obtained based thereon by an output waveform totalizing means 31, and the area of the each ridge-shaped waveform is partitioned by a imaginary line, with an equal distance to both sides from the center line thereof. The distance between a bisector in the each area and the X-axis or the Y-axis is calculated by a control means 33. A position of the each fuel rod 4 is measured along the longitudinal direction of the fuel rod, to detect the bending. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料集合体に保持された多数の燃料棒等の棒状体の曲がりを測定するようにした棒状体の曲がり測定方法及び測定装置に関する。   The present invention relates to a method and an apparatus for measuring the bending of a rod-shaped body that measures the bending of a rod-shaped body such as a number of fuel rods held in a fuel assembly.

従来、原子炉用の燃料集合体は所定間隔で配列された複数の支持格子に複数の制御棒案内管を挿通して固定し、制御棒案内管の下部に下部ノズル、上部に上部ノズルをそれぞれ取付けている。そして各支持格子の格子空間には多数の燃料棒が挿通状態で支持されて配列されている。このような構成を有する燃料集合体を原子炉に配設して使用する際、多数の燃料棒や制御棒案内管の間隙からなる流路に冷却水が流れて熱を伝達することになる。
各燃料棒間等にそれぞれ冷却水を通過させて熱を有効に伝達するためには各燃料棒間や燃料棒及び制御棒案内管の間の間隙をそれぞれ所定の寸法に保持しなければならない。そのため、燃料集合体の使用前に各燃料棒間や燃料棒及び制御棒案内管の間の間隙が許容寸法範囲内にあるかどうかを正確に測定する必要がある。
Conventionally, a fuel assembly for a nuclear reactor is fixed by inserting a plurality of control rod guide tubes through a plurality of support grids arranged at predetermined intervals, and a lower nozzle and an upper nozzle at the lower portion of the control rod guide tube, respectively. It is installed. A large number of fuel rods are supported and arranged in an inserted state in the lattice space of each support lattice. When a fuel assembly having such a configuration is used in a nuclear reactor, cooling water flows through a flow path composed of a large number of fuel rods and control rod guide tubes to transmit heat.
In order to effectively transmit heat by passing cooling water between the fuel rods or the like, the gaps between the fuel rods or between the fuel rods and the control rod guide pipes must be maintained at predetermined dimensions. Therefore, it is necessary to accurately measure whether the gaps between the fuel rods and between the fuel rods and the control rod guide tube are within the allowable dimension range before using the fuel assembly.

ところで、燃料棒間等の間隔を測定する間隔測定装置として、例えば下記特許文献1及び2に記載されたものが提案されている。これらの間隔測定装置では、燃料棒間に挿入して間隔を測定する間隔測定プローブを採用しており、間隔測定プローブは長尺の弾性板の先端付近にプローブチップを両側に突出形成すると共にその近傍にストレインゲージを設けて歪みセンサとしている。そして、燃料集合体の燃料棒間に間隔測定プローブを挿入し、プローブチップが両側の燃料棒に当接して変形した際にその変形量をストレインゲージで測定して、その歪み値から燃料棒の間隔を演算するようにしている。
特公平2−61681号公報 特公平2−61682号公報
By the way, what was described in the following patent documents 1 and 2, for example as a space | interval measuring apparatus which measures space | intervals between fuel rods etc. is proposed. These interval measuring devices employ an interval measuring probe that is inserted between fuel rods to measure the interval. The interval measuring probe has a probe tip that protrudes on both sides in the vicinity of the tip of a long elastic plate, and A strain gauge is provided in the vicinity to provide a strain sensor. Then, an interval measurement probe is inserted between the fuel rods of the fuel assembly, and when the probe tip is deformed by contacting the fuel rods on both sides, the amount of deformation is measured with a strain gauge. The interval is calculated.
Japanese Examined Patent Publication No. 2-61681 Japanese Examined Patent Publication No. 2-61682

しかしながら、上述の間隔測定装置では、燃料棒等の間隔を測定できるが、燃料棒の曲がりを測定することはできなかった。燃料棒は通常4m程度の長さを有しているために支持格子に支持させていても曲がり易かった。また、燃料集合体も燃料棒よりも長尺で構成され且つ重量が大きいために吊り具を用いて起立させていても燃料集合体自体も曲がりを発生させやすく、これによって燃料棒の曲がりを発生させたり曲がりを大きくさせる可能性もあった。
しかしながら、従来の間隔測定装置では、燃料棒の間隔を測定できても燃料棒が曲がって互いに寄り合っている状態の把握ができなかった。そのために、原子炉内で燃料集合体を使用する際に、原子炉稼働後にチャンネル(冷却水の流路)の異常な減少が発生することを推定することもできなかった。しかも、間隔測定プローブが曲がったり傾斜して2つの燃料棒間に進入すると間隔測定であっても測定精度が安定しない不具合がある。
特に、原子炉で燃料集合体を1サイクル稼働した後の定期点検では外周側の燃料棒の間隔と曲がりを画像で観察するため、稼働後のデータと比較判断する場合、外周側の燃料棒の初期曲がりは特に重要である。内側の燃料棒についても外周側の燃料棒で間隔が担保されていることを考慮すると、稼働後には直接観察できない内側の燃料棒の曲がりを推定する上で外周側燃料棒の初期曲がりを測定しておくことは重要である。
However, in the above-described interval measuring device, the interval between fuel rods and the like can be measured, but the bending of the fuel rod cannot be measured. Since the fuel rods usually have a length of about 4 m, they were easy to bend even if they were supported by a support grid. Also, since the fuel assembly is longer than the fuel rod and is heavier, the fuel assembly itself is likely to bend even if it is raised using a lifting tool, which causes the fuel rod to bend. There was also the possibility of making it bend or bend.
However, in the conventional interval measuring device, even if the interval between the fuel rods can be measured, it is impossible to grasp the state in which the fuel rods are bent and face each other. For this reason, when using the fuel assembly in the nuclear reactor, it has not been possible to estimate that an abnormal decrease in the channel (cooling water flow path) occurs after the operation of the nuclear reactor. In addition, when the interval measurement probe is bent or inclined and enters between two fuel rods, there is a problem that the measurement accuracy is not stable even in the interval measurement.
In particular, the periodic inspection after operating the fuel assembly in the nuclear reactor for one cycle observes the interval and bending of the fuel rods on the outer peripheral side with images, so when comparing and judging the data after the operation, The initial bend is particularly important. Considering that the inner fuel rods are spaced by the outer fuel rods, the initial bending of the outer fuel rods is measured to estimate the inner fuel rod bending that cannot be observed directly after operation. It is important to keep it.

本発明は、このような実情に鑑みて、複数の棒状体の曲がりを測定することができるようにした棒状体の曲がり測定方法及び曲がり測定装置を提供することを目的とする。   In view of such a situation, an object of the present invention is to provide a bending measuring method and a bending measuring apparatus for a rod-like body that can measure the bending of a plurality of rod-like bodies.

本発明による棒状体の曲がり測定方法は、互いに交差するX軸方向とY軸方向に複数配列された棒状体の曲がり測定方法であって、X軸方向とY軸方向にそれぞれ隣接する2つの棒状体の間に静電センサを含む距離測定プローブを挿入して、静電センサから対向する棒状体までの距離情報を山形波形としてそれぞれ出力し、これら2つの山形波形を合計した合計山形波形の中央線を得て、この中央線から両側に一定幅の範囲で前記各山形波形の面積を仕切り、これら山形波形の面積をそれぞれ二等分する二等分線によってX軸またはY軸から2つの棒状体までの距離を求める一次測定処理を行い、棒状体の長手方向に沿う1または複数位置で一次測定処理を行うことで、複数配列された棒状体の曲がりを測定するようにしたことを特徴とする。
また、本発明による棒状体の曲がり測定装置は、互いに交差するX軸方向とY軸方向に複数配列された棒状体の曲がり測定装置であって、X軸方向とY軸方向にそれぞれ隣接する2つの棒状体の間に挿入して対向する各棒状体までの距離情報を山形波形としてそれぞれ出力する一対の静電センサを含む距離測定プローブと、2つの山形波形を合計した合計山形波形の中央線から両側に一定幅の範囲で各山形波形の面積を仕切り、これら山形波形の面積をそれぞれ二等分する二等分線によってX軸またはY軸から2つの棒状体までの距離を求める一次測定処理手段とを備え、棒状体の長手方向に沿う1または複数位置でX軸またはY軸から2つの棒状体までの距離を求めることで、各棒状体の曲がりを測定するようにしたことを特徴とする。
The bending measurement method of the rod-like body according to the present invention is a bending measurement method of a plurality of rod-like bodies arranged in the X-axis direction and the Y-axis direction intersecting each other, and is adjacent to each other in the X-axis direction and the Y-axis direction. A distance measurement probe including an electrostatic sensor is inserted between the bodies, and distance information from the electrostatic sensor to the opposing rod-shaped body is output as a chevron waveform, and the center of the total chevron waveform is the sum of these two chevron waveforms A line is obtained, and the area of each chevron corrugation is partitioned in a range of a certain width from both sides of the center line, and two bar shapes from the X-axis or Y-axis are obtained by bisectors that bisect the area of each chevron waveform. The primary measurement processing for obtaining the distance to the body is performed, and the primary measurement processing is performed at one or a plurality of positions along the longitudinal direction of the rod-shaped body, thereby measuring the bending of the plurality of rod-shaped bodies arranged. Do
Further, the bending measurement apparatus for a rod-shaped body according to the present invention is a bending measurement apparatus for a plurality of rod-shaped bodies arranged in the X-axis direction and the Y-axis direction intersecting each other, and is adjacent to each other in the X-axis direction and the Y-axis direction A distance measuring probe including a pair of electrostatic sensors that are inserted between two rod-shaped bodies and output distance information to each of the opposing rod-shaped bodies as a mountain-shaped waveform, and the center line of the total mountain-shaped waveform summing up the two mountain-shaped waveforms A primary measurement process to determine the distance from the X-axis or Y-axis to the two rod-like bodies by dividing the area of each chevron waveform into a fixed width range on both sides from the X-axis or the bisecting line that bisects the area of each chevron waveform And measuring the bending of each rod-shaped body by determining the distance from the X-axis or Y-axis to the two rod-shaped bodies at one or a plurality of positions along the longitudinal direction of the rod-shaped body. To do.

本発明によれば、棒状体の長手方向に沿う1または複数の適宜位置で、X軸方向にそれぞれ隣接する2つの棒状体の間に静電センサを含む距離測定プローブを順次進入させてX軸からの距離を測定する。またY軸方向においても同様に隣接する2つの棒状体の間に静電センサを含む距離測定プローブを順次進入させてY軸からの距離を測定する。これによって各燃料棒のX軸及びY軸を基準とする位置(x、y)をそれぞれ検知できる。そして棒状体の長さ方向に沿う複数の位置でX軸及びY軸を基準とする各燃料棒の位置(x、y)をそれぞれ測定することで各棒状体の曲がりを測定できる。また、棒状体の長さ方向に沿う1の位置で各棒状体の位置(x、y)を測定した場合でも設計値や仕様値等の既知の棒状体位置(x、y)を基準とすれば同様に曲がりを測定できる。
なお、一次測定処理において、各山形波形の面積は合計山形波形の中央線から両側方向に等間隔に設定した2本の仮想線で仕切る領域で設定するのが好ましい。
According to the present invention, at one or a plurality of appropriate positions along the longitudinal direction of the rod-shaped body, a distance measuring probe including an electrostatic sensor is sequentially entered between two rod-shaped bodies adjacent to each other in the X-axis direction. Measure the distance from. Similarly, in the Y-axis direction, a distance measuring probe including an electrostatic sensor is sequentially entered between two adjacent rod-shaped bodies to measure the distance from the Y-axis. As a result, the position (x, y) of each fuel rod relative to the X axis and Y axis can be detected. The bending of each rod-shaped body can be measured by measuring the position (x, y) of each fuel rod with respect to the X-axis and the Y-axis at a plurality of positions along the length direction of the rod-shaped body. Further, even when the position (x, y) of each rod-like body is measured at one position along the length direction of the rod-like body, the known rod-like body position (x, y) such as a design value or a specification value is used as a reference. The bend can be measured in the same way.
In the primary measurement process, the area of each chevron waveform is preferably set in a region partitioned by two imaginary lines set at equal intervals from the center line of the total chevron waveform.

しかも、本発明による棒状体の曲がり測定方法は、複数配列された棒状体の外側で、外側センサをX軸及びY軸に沿って走行させて外周側に配列された棒状体までの距離情報を山形波形として出力し、該山形波形のピーク値によりX軸及びY軸から外周側の棒状体までの距離を求める二次測定処理を行い、棒状体の長手方向に沿う1または複数位置で二次測定処理を行うことで、複数配列された棒状体の曲がりを測定するようにしたことを特徴とする。
本発明によれば、外側センサを用いた二次測定処理によってX軸方向及びY軸方向に沿って外周側に配列された棒状体の距離をX軸またはY軸を基準軸として測定できる。
また、二次測定処理において、外側センサのX軸及びY軸に沿う移動距離を当該外側センサで得る山形波形のピーク値の位置で測定するようにしてもよい。
この場合には、基準軸からピーク値までの距離情報により、基準軸に沿う外周側棒状体の位置を測定できるから、一次測定処理で得られた外周側棒状体のX軸及びY軸方向における距離情報の正確さを検証できる。そして上述したピーク値における基準軸から棒状体までの距離との関係で位置(x、y)を測定できる。
これによって一次測定処理で測定された棒状体の位置(x、y)や曲がりの測定精度を検証できる。このことは、原子炉稼働後の定期点検時に各燃料棒の曲がりを測定する場合、外周側の燃料棒しか測定できず、外周側の燃料棒の曲がりによって内側の燃料棒の曲がりや間隔を推測せざるを得ないために、外周側燃料棒について測定した初期曲がりを原子炉稼働後の定期点検時の曲がりと比較する上で特に重要である。
In addition, the bending measurement method of the rod-shaped body according to the present invention provides the distance information to the rod-shaped bodies arranged on the outer peripheral side by running the outer sensor along the X axis and the Y axis outside the plurality of arranged rod bodies. Output as a chevron waveform, and perform secondary measurement processing to obtain the distance from the X-axis and Y-axis to the rod-shaped body on the outer periphery side based on the peak value of the chevron-shaped waveform. By performing the measurement process, the bending of the plurality of rod-shaped bodies arranged is measured.
According to the present invention, it is possible to measure the distance of the rod-like bodies arranged on the outer peripheral side along the X-axis direction and the Y-axis direction by the secondary measurement process using the outer sensor with the X-axis or the Y-axis as the reference axis.
Further, in the secondary measurement process, the movement distance along the X axis and the Y axis of the outer sensor may be measured at the position of the peak value of the mountain waveform obtained by the outer sensor.
In this case, since the position of the outer peripheral rod-shaped body along the reference axis can be measured from the distance information from the reference axis to the peak value, the outer peripheral rod-shaped body obtained in the primary measurement process in the X-axis and Y-axis directions can be measured. The accuracy of distance information can be verified. The position (x, y) can be measured in relation to the distance from the reference axis to the rod-shaped body at the peak value described above.
Thereby, the measurement accuracy of the position (x, y) and the bending of the rod-shaped body measured in the primary measurement process can be verified. This means that when measuring the bending of each fuel rod during periodic inspections after the reactor operation, only the outer fuel rod can be measured, and the bending and spacing of the inner fuel rods can be estimated by the bending of the outer fuel rod. In order to avoid this, it is particularly important to compare the initial bend measured for the outer peripheral fuel rod with the bend at the periodic inspection after the operation of the reactor.

また、本発明による棒状体の曲がり測定装置は、複数配列された棒状体の外側においてX軸及びY軸に沿って走行させて外周側に配列された棒状体までの距離情報を山形波形として出力する外側センサと、該外側センサで得た山形波形のピーク値によりX軸及びY軸から外周側の棒状体までの距離を求めると共にX軸及びY軸に沿うピーク値までの各外側センサの走行距離を測定する二次測定処理手段とを備え、棒状体の長手方向に沿う1または複数位置で外側センサ及び二次測定手段による測定処理を行うことで、各棒状体の曲がりを測定するようにしたことを特徴とする。
本発明によれば、更に、外側センサを用いた二次測定処理によってX軸方向及びY軸方向に沿って外周側に配列された棒状体の距離をX軸またはY軸を基準軸として測定し位置(x、y)を得られる。これによって一次測定処理で測定された棒状体の位置(x、y)や曲がりの測定精度を検証できる。特に、棒状体の長さ方向に沿う複数の位置でX軸及びY軸方向における外周側の棒状体の基準軸に対する距離を測定することで各外周側の棒状体の曲がりを検証できる。また、棒状体の長さ方向に沿う1の位置で各外周側の燃状体の距離を測定した場合でも設計値や仕様値等の既知の棒状体の距離を基準とすれば同様に曲がりを検証できる。
In addition, the bending measuring apparatus for a rod-shaped body according to the present invention outputs distance information to the rod-shaped bodies arranged on the outer peripheral side by running along the X axis and the Y axis outside the plurality of arranged rod-shaped bodies as a mountain waveform. The outer sensor to be used, and the peak value of the chevron waveform obtained by the outer sensor to obtain the distance from the X axis and the Y axis to the rod-like body on the outer peripheral side, and the travel of each outer sensor to the peak value along the X axis and the Y axis. Secondary measurement processing means for measuring the distance, and measuring the bending of each rod-shaped body by performing measurement processing by the outer sensor and the secondary measurement means at one or a plurality of positions along the longitudinal direction of the rod-shaped body. It is characterized by that.
According to the present invention, the distance of the rod-like bodies arranged on the outer peripheral side along the X-axis direction and the Y-axis direction by the secondary measurement process using the outer sensor is further measured using the X-axis or the Y-axis as the reference axis. A position (x, y) is obtained. Thereby, the measurement accuracy of the position (x, y) and the bending of the rod-shaped body measured in the primary measurement process can be verified. In particular, it is possible to verify the bending of the rods on the outer circumferential side by measuring the distance from the reference axis of the rods on the outer circumferential side in the X-axis and Y-axis directions at a plurality of positions along the length direction of the rod-shaped body. Moreover, even when the distance between the fuel bodies on the outer circumference side is measured at one position along the length direction of the rod-shaped body, the bending similarly occurs based on the distance of the known rod-shaped body such as the design value and the specification value. Can be verified.

また、棒状体は、燃料集合体において所定間隔に配列した複数の支持格子で支持された燃料棒であり、該燃料棒について隣接する二つの支持格子間の当該支持格子近傍位置と中間位置とでそれぞれ測定処理を行うことが好ましい。
この場合には、支持格子近傍位置で測定した各燃料棒の位置(x、y)に対し中間位置で測定した各燃料棒の位置(x、y)とのズレを検知することで、各燃料棒の曲がりの有無や曲がりの程度等を検出できる。なお、支持格子近傍位置は、一方の支持格子近傍位置である1箇所または両方の支持格子近傍位置である2箇所のいずれであってもよい。
或いは、棒状体は、燃料集合体において所定間隔に配列した複数の支持格子で支持された燃料棒であり、該燃料棒について隣接する二つの支持格子間の中間位置でそれぞれ測定処理を行うようにしてもよい。
支持格子近傍位置の燃料棒は支持格子で把持されていて曲がりや傾斜やズレ等は小さいために、設計値や仕様値等で代用でき、中間位置で測定した各燃料棒の位置(x、y)と設計値や仕様値等との差異によって各燃料棒の曲がりの有無や曲がりの程度等を検出でき、測定・検知速度が向上して検査効率が高い。
Further, the rod-shaped body is a fuel rod supported by a plurality of support grids arranged at a predetermined interval in the fuel assembly, and the fuel grid has a position near the support grid and an intermediate position between two adjacent support grids. It is preferable to perform a measurement process for each.
In this case, each fuel rod position (x, y) measured at the position near the supporting grid is detected from each fuel rod position (x, y) measured at the intermediate position, thereby detecting each fuel. The presence / absence of the bending of the bar, the degree of bending, etc. can be detected. The supporting grid vicinity position may be either one of the supporting grid vicinity positions or two supporting grid vicinity positions.
Alternatively, the rod-shaped body is a fuel rod supported by a plurality of support grids arranged at a predetermined interval in the fuel assembly, and the measurement processing is performed on each of the fuel rods at an intermediate position between two adjacent support grids. May be.
Since the fuel rods in the vicinity of the support grid are gripped by the support grid and are not bent, inclined, or misaligned, the design values and specification values can be substituted, and the positions of the fuel rods measured at the intermediate positions (x, y ) And the design value, specification value, etc., it is possible to detect the presence or absence of the bending of each fuel rod, the degree of bending, etc., improving the measurement and detection speed and increasing the inspection efficiency.

本発明による棒状体の曲がり測定方法及び装置によれば、複数の棒状体についてそれぞれの棒状体の曲がりを測定できる。特に、距離測定プローブが基準軸であるX軸、Y軸に対して曲がったり傾斜して棒状体間に進入したり、2つの棒状体の一方側へ偏って進入しても所定の精度で距離を測定できる。   According to the method and apparatus for measuring the bending of a rod-like body according to the present invention, the bending of each rod-like body can be measured for a plurality of rod-like bodies. In particular, even if the distance measuring probe is bent or inclined with respect to the X axis and Y axis which are the reference axes and enters between the rod-shaped bodies, or even if the distance measuring probe is biased toward one side of the two rod-shaped bodies, the distance with a predetermined accuracy Can be measured.

次に本発明の実施の形態について添付の図1乃至図10を参照して説明する。
図1乃至図10は実施の形態による曲がり測定装置を示すもので、図1は曲がり測定装置の概略構成図、図2は燃料集合体と計測ブロックとの関係を示す図、図3は燃料棒の曲がり測定位置を示す図、図4は燃料棒とプローブと進退機構との関係を示す図で、(a)はプローブ挿入前の状態、(b)はプローブを挿入した状態、(c)はプローブが制御棒案内管を通過した状態、図5はプローブの先端部分の断面図、図6はプローブと外側センサとを有する曲がり測定装置の要部構成図、図7〜9は異なる態様の燃料棒間にプローブを挿入した状態と測定した山形波形を示す図、図10(a)は支持格子近傍位置における外側センサによるX軸と燃料棒との距離を測定する静電容量の出力波形図、(b)は中間位置における(a)と同様な図である。
図1乃至図3において、本実施の形態による曲がり測定装置1は、燃料集合体2に配列された隣接する燃料棒4、4や燃料棒4及び制御棒案内管4Sの間隔や曲がりを測定するためのものである。燃料集合体2は、上下方向に所定間隔に配設された複数の支持格子3に制御棒案内管4Sが挿通されて固定され(図4参照)、制御棒案内管4Sの上下端には上部ノズル2aと下部ノズル2bとがそれぞれ連結されている。各支持格子3には多数の燃料棒4が挿通状態で弾性的に支持されている。
図2の平面視で略正方形状をなす燃料集合体2の互いに直交する一方の外周面(辺)に平行な仮想線をX軸とし他方の外周面(辺)に平行な仮想線をY軸とした場合、X軸とY軸は直交しており、複数の燃料棒4及び制御棒案内管4S(以下、燃料棒4等という)はX軸及びY軸方向に配列されている。
そして、燃料集合体2の隣り合うX軸及びY軸方向には曲がり測定装置1の一対の計測ユニット5、5が配設され、燃料集合体2を挟んで計測ユニット5に対向する位置には検査スタンド6が立設されている。
Next, an embodiment of the present invention will be described with reference to FIGS.
1 to 10 show a bending measuring device according to an embodiment, FIG. 1 is a schematic configuration diagram of the bending measuring device, FIG. 2 is a diagram showing a relationship between a fuel assembly and a measuring block, and FIG. 3 is a fuel rod. FIG. 4 is a view showing the relationship between the fuel rod, the probe, and the advance / retreat mechanism, (a) is a state before the probe is inserted, (b) is a state where the probe is inserted, and (c) is a view FIG. 5 is a cross-sectional view of the tip portion of the probe, FIG. 6 is a main part configuration diagram of a bending measuring device having a probe and an outer sensor, and FIGS. The figure which shows the state which inserted the probe between the rods, and the measured angle waveform, FIG. 10 (a) is the output waveform figure of the electrostatic capacitance which measures the distance of the X-axis and fuel rod by the outer sensor in a support grid vicinity position, (B) is the same figure as (a) in an intermediate position. A.
1 to 3, the bending measuring device 1 according to the present embodiment measures the spacing and bending of adjacent fuel rods 4, 4, fuel rods 4, and control rod guide tubes 4 </ b> S arranged in the fuel assembly 2. Is for. The fuel assembly 2 is fixed by inserting control rod guide tubes 4S through a plurality of support grids 3 arranged at predetermined intervals in the vertical direction (see FIG. 4), and upper and lower ends of the control rod guide tubes 4S. The nozzle 2a and the lower nozzle 2b are connected to each other. A large number of fuel rods 4 are elastically supported by each support grid 3 in an inserted state.
An imaginary line parallel to one outer peripheral surface (side) perpendicular to each other of the fuel assembly 2 having a substantially square shape in a plan view of FIG. 2 is an X axis, and an imaginary line parallel to the other outer peripheral surface (side) is a Y axis. In this case, the X axis and the Y axis are orthogonal to each other, and a plurality of fuel rods 4 and control rod guide tubes 4S (hereinafter referred to as fuel rods 4 etc.) are arranged in the X axis and Y axis directions.
Then, a pair of measuring units 5 and 5 of the bending measuring device 1 are arranged in the X-axis and Y-axis directions adjacent to the fuel assembly 2, and at a position facing the measuring unit 5 across the fuel assembly 2. An inspection stand 6 is erected.

各計測ユニット5は、検査スタンド6に支持されて上下動可能なサドル8と、このサドル8の上部に設けられていて燃料集合体2の燃料棒4、4等の間隙に進入して隣り合う燃料棒4、4等の距離を測定する距離測定プローブ(以下、単にプローブという)9と、その進退機構10とを備えている(図2参照)。プローブ9と進退機構10は図2に示すようにそれぞれ燃料集合体2のX軸方向及びY軸方向の面に略直交する方向にそれぞれ1または複数組(図では各二組)配設され、図2に示す例ではX軸方向とY軸方向に移動して順次燃料棒4,4間に進入可能とされている。
そして、燃料集合体2の外周面において、X軸またはY軸方向における燃料集合体2の幅方向中央を検知するための中心検知センサ11(位置決め部材)が設けられている。検知した燃料集合体2の幅方向中央位置から、X軸、Y軸方向に配列された各燃料棒4、4間の中央位置をそれぞれ算出してプローブ9の挿入前の位置決めを行う。なお、中心検知センサ11によって隣り合う燃料棒4,4の間隙の中央位置を直接それぞれ検知するようにしてもよい。
Each measuring unit 5 is supported by an inspection stand 6 and can move up and down, and is provided on the top of the saddle 8 and enters a gap between the fuel rods 4 and 4 of the fuel assembly 2 to be adjacent to each other. A distance measuring probe (hereinafter simply referred to as a probe) 9 for measuring the distance between the fuel rods 4, 4 and the like and an advance / retreat mechanism 10 thereof are provided (see FIG. 2). As shown in FIG. 2, the probe 9 and the advancing / retreating mechanism 10 are respectively arranged in one or more sets (two sets in the figure) in a direction substantially orthogonal to the surfaces of the fuel assembly 2 in the X-axis direction and the Y-axis direction, In the example shown in FIG. 2, movement between the fuel rods 4 and 4 is possible by moving in the X-axis direction and the Y-axis direction.
A center detection sensor 11 (positioning member) for detecting the center in the width direction of the fuel assembly 2 in the X-axis or Y-axis direction is provided on the outer peripheral surface of the fuel assembly 2. From the detected center position in the width direction of the fuel assembly 2, the center position between the fuel rods 4 and 4 arranged in the X-axis and Y-axis directions is calculated, and positioning before inserting the probe 9 is performed. Alternatively, the center detection sensor 11 may directly detect the center position of the gap between the adjacent fuel rods 4 and 4.

次に、図4及び図5によりプローブ9とその進退機構10を説明する。プローブ9は基部9aが断面板状で長尺に延びた絶縁体12からなり、絶縁体12の外周面は剛性のある薄板のステンレスシート13で二面を挟持されている。これによってプローブ9の基部9aを補強して剛性を確保してセンサ14及び絶縁体12を保護する。しかも基部9aは可撓性を有しており、燃料集合体2への挿入時に燃料棒4より径の大きい制御棒案内管4Sに接触した際に逃げて撓むことができる。
プローブ9の先端付近では二面のステンレスシート13が切除されて静電センサ14、14がそれぞれシート13とは非接触で絶縁体12内に埋め込まれている。各静電センサ14により、このセンサ14と対向する燃料棒4または制御棒案内管4Sとの距離に応じた静電容量を検出し、その出力を山形波形(出力波形)として得ることができる(図7〜9参照)。この山形波形のピーク値は静電センサ14と燃料棒4または制御棒案内管4Sとの距離に対応するものであるから、相関によって静電センサ14から燃料棒4または制御棒案内管4Sまでの距離を測定・演算できる。
Next, the probe 9 and its advance / retreat mechanism 10 will be described with reference to FIGS. The probe 9 is composed of an insulator 12 having a base 9a having a cross-sectional plate shape and extending long, and the outer peripheral surface of the insulator 12 is sandwiched between two surfaces by a thin stainless steel sheet 13 having rigidity. This reinforces the base 9a of the probe 9 to ensure rigidity and protect the sensor 14 and the insulator 12. Moreover, the base portion 9a has flexibility, and can escape and bend when contacting the control rod guide tube 4S having a diameter larger than that of the fuel rod 4 when inserted into the fuel assembly 2.
Near the tip of the probe 9, the two stainless steel sheets 13 are cut off, and the electrostatic sensors 14 and 14 are embedded in the insulator 12 without contact with the sheet 13. Each electrostatic sensor 14 detects the capacitance according to the distance from the fuel rod 4 or the control rod guide tube 4S facing the sensor 14, and the output can be obtained as a mountain waveform (output waveform) ( See FIGS. Since the peak value of this chevron waveform corresponds to the distance between the electrostatic sensor 14 and the fuel rod 4 or the control rod guide tube 4S, the correlation between the electrostatic sensor 14 and the fuel rod 4 or the control rod guide tube 4S depends on the correlation. Distance can be measured and calculated.

基部9aの先端部は屋根形に形成され、燃料棒4,4間に進入し易い。基部9aの基端部は台座ブロック15に固定され、この台座ブロック15は基部9aに直交する方向に延びたスライドガイド17上に支持され、小さな負荷で往復動可能である。台座ブロック15の更に基端側には固定部15aが後方に突出し、この固定部15aは二つの腕部18a,18bからなるグリップ部18で挟持可能とされている。
グリップ部18はプローブ9が燃料棒4,4間から後退した状態で、固定部15aを把持して上述の中心検知センサ11で検知した燃料棒4,4間の中央位置へプローブ9を移動させ(図4(a)参照)、その後に固定部15aを離して各腕部18a、18bを等間隔で開放状態に保持する(図4(b)参照)。プローブ9は、燃料棒4,4間に進入した際に制御棒案内管4Sに接触すると離間する方向にスライドガイド17に沿って移動する(図4(c)参照)。その際、グリップ部18の開放状態の各腕部18a、18bはプローブ9の固定部15aの移動範囲を規制する。
なお、プローブ9が図示しない進退部材によって燃料棒4、4間に進入する際に進退機構10も一体に移動する。
The front end of the base 9 a is formed in a roof shape and easily enters between the fuel rods 4 and 4. The base end portion of the base portion 9a is fixed to a pedestal block 15, and this pedestal block 15 is supported on a slide guide 17 extending in a direction orthogonal to the base portion 9a and can reciprocate with a small load. A fixing portion 15a protrudes rearward of the base block 15 on the further proximal end side, and the fixing portion 15a can be held by a grip portion 18 including two arm portions 18a and 18b.
The grip portion 18 moves the probe 9 to the center position between the fuel rods 4 and 4 detected by the above-described center detection sensor 11 by holding the fixed portion 15a with the probe 9 retracted from between the fuel rods 4 and 4. (See FIG. 4 (a)), and then the fixing portion 15a is released to hold the arm portions 18a, 18b at an equal interval (see FIG. 4 (b)). When the probe 9 enters between the fuel rods 4 and 4 and contacts the control rod guide tube 4S, the probe 9 moves along the slide guide 17 in a separating direction (see FIG. 4C). At that time, the arm portions 18 a and 18 b in the opened state of the grip portion 18 regulate the movement range of the fixing portion 15 a of the probe 9.
When the probe 9 enters between the fuel rods 4 and 4 by an advancing / retreating member (not shown), the advancing / retreating mechanism 10 also moves together.

また、基部9aは先端部から固定ブロック15に至るまでの全長に亘ってプローブ厚dを肉薄(例えばd=約0.5mm以下)に形成し、静電センサ14、14の間隔をdtとしている。d=0.5mm以下にすることで、プローブ9を燃料棒4、4間や燃料棒4及び制御棒案内管4S間に挿入した際に接触による摩耗(摩擦抵抗)を低減して寿命を向上させると共に測定値のバラツキを小さくできる。しかも、プローブ9が制御棒案内管4Sに接触しても間隙を押し広げることなく進入させる。
また、図4において、プローブ9の両面に設けたステンレスシート13にはアース線20が接続されている。ステンレスシート13が燃料棒4や制御棒案内管4Sに接触したり擦ったりしても、アース線20を通して静電気を放電して電位差をなくし、その影響を排除でき、静電センサ14による測定結果が安定する。
The base portion 9a is formed with a thin probe thickness d (for example, d = about 0.5 mm or less) over the entire length from the distal end portion to the fixed block 15, and the distance between the electrostatic sensors 14 and 14 is dt. . By making d = 0.5 mm or less, the wear (friction resistance) due to contact when the probe 9 is inserted between the fuel rods 4 and 4 or between the fuel rod 4 and the control rod guide tube 4S is reduced, and the life is improved. And variation in measured values can be reduced. Moreover, even if the probe 9 comes into contact with the control rod guide tube 4S, the probe 9 is allowed to enter without expanding the gap.
In FIG. 4, a ground wire 20 is connected to the stainless steel sheet 13 provided on both surfaces of the probe 9. Even if the stainless steel sheet 13 comes into contact with or rubs against the fuel rod 4 or the control rod guide tube 4S, the static electricity is discharged through the ground wire 20 to eliminate the potential difference. Stabilize.

次に、図6において、燃料集合体2ではX軸に沿って外周側の燃料棒4…(図中、便宜的に符号4a、4b、4c、…で識別する)が、Y軸に沿って外周側の燃料棒4…(同じく便宜的に符号4a、4d、4g、…で識別する)がそれぞれ配列されている。そして、X軸方向には、X軸に沿って走査して燃料棒4a、4b、4c、…との距離を測定するための外側センサ22が配設され、Y軸方向には、Y軸に沿って走査して燃料棒4a、4d、4g、…との距離を測定するための外側センサ23が配設されている。これら外側センサ22、23はプローブ9と同様に静電センサによって構成されるが、レーザセンサ等であってもよい。外側センサ22、23とプローブ9,9は測定処理手段25に接続されている。
外側センサ22、23はY軸、X軸を始点としてX軸、Y軸に沿ってそれぞれ走査し、各燃料棒4との距離に応じた静電容量を検出し、測定信号を測定処理手段25内の二次測定処理手段26の波形出力手段27a、27bに山形波形(出力波形)として出力し、演算手段28で各山形波形のピーク値から距離情報を演算する。距離情報はX軸とY軸が基準軸になる。また、各外側センサ22,23では各山形波形のピーク値を検出する際に始点からピーク値までの距離を同時に検出するのが好ましい。これによってX軸方向とY軸方向の距離をそれぞれ測定でき、位置(x、y)が得られる。
Next, in FIG. 6, in the fuel assembly 2, the fuel rods 4 on the outer peripheral side along the X axis (identified by reference numerals 4 a, 4 b, 4 c,... In the drawing for convenience) extend along the Y axis. The fuel rods 4 on the outer peripheral side (also identified by reference numerals 4a, 4d, 4g,... For convenience) are arranged. In the X-axis direction, an outer sensor 22 for scanning along the X-axis and measuring the distance to the fuel rods 4a, 4b, 4c,... Is arranged. An outer sensor 23 for measuring the distance from the fuel rods 4a, 4d, 4g,. These outer sensors 22 and 23 are constituted by electrostatic sensors similarly to the probe 9, but may be laser sensors or the like. The outer sensors 22 and 23 and the probes 9 and 9 are connected to the measurement processing means 25.
The outer sensors 22 and 23 start scanning from the Y axis and the X axis, respectively, along the X axis and the Y axis, detect capacitances corresponding to the distances from the fuel rods 4, and measure the measurement signals to the measurement processing means 25. Are output as waveform waveforms (output waveforms) to the waveform output means 27a and 27b of the secondary measurement processing means 26, and the calculation means 28 calculates distance information from the peak value of each peak waveform. In the distance information, the X axis and the Y axis are the reference axes. Further, it is preferable that the outer sensors 22 and 23 simultaneously detect the distance from the starting point to the peak value when detecting the peak value of each mountain-shaped waveform. Thereby, the distances in the X-axis direction and the Y-axis direction can be measured, respectively, and the position (x, y) is obtained.

また図6及び図7に示すように、各プローブ9の静電センサ14、14は一次測定処理手段29の波形出力手段30a、30b、30c、30dにそれぞれ接続されていて、各燃料棒4との距離に応じた静電容量を検出して山形波形ha,hdを出力し、各プローブ9毎に出力波形合計手段31、32で山形波形を合計し、合計山形波形hadから中央線Mxを割り出す。そして、合計山形波形hadの中央線Mxから制御手段33で両側に同一幅の仮想線Ma,Maをとって各山形波形を仕切り、その面積を二等分する二等分線Pix(i=a,b,c、…)をそれぞれ求めて二等分線PixとY軸またはX軸との距離情報を演算する。二等分線Pixは各燃料棒4の中心またはより中心に近い位置を通る。
間にプローブ9を挿入する2つの燃料棒4、4の一方または両方に曲がりやずれがある場合でも、二等分線Pixを各燃料棒4の概略中心線として基準軸(X軸、Y軸)からの距離を求めることができる。
6 and 7, the electrostatic sensors 14, 14 of each probe 9 are connected to the waveform output means 30a, 30b, 30c, 30d of the primary measurement processing means 29, respectively. Capacitances corresponding to the distances are detected and angle waveforms ha and hd are output, the angle waveforms are summed by the output waveform summing means 31 and 32 for each probe 9, and the center line Mx is determined from the total angle waveform had. . Then, the control means 33 takes the virtual lines Ma and Ma having the same width on both sides from the center line Mx of the total peak waveform had and partitions each peak waveform and bisects the area into two bisectors Pix (i = a , B, c,...) Are calculated, and distance information between the bisector Pix and the Y or X axis is calculated. The bisector Pix passes through the center of each fuel rod 4 or a position closer to the center.
Even when one or both of the two fuel rods 4 and 4 into which the probe 9 is inserted are bent or displaced, the reference axis (X axis, Y axis) with the bisector Pix as the approximate center line of each fuel rod 4 ).

本実施の形態による曲がり測定装置1は上述の構成を備えており、次に曲がり測定装置1を用いた燃料棒4等の曲がり測定方法を図6乃至図10を中心に説明する。
まず、第一の曲がり測定方法として、プローブ9による一次測定処理方法について図6乃至図9により説明する。
図1及び図2において、検査スタンド6に支持された燃料集合体2に対向して配設された一対の計測ユニット5、5は最下段の支持格子3と第二段の支持格子3との間(これを一次測定領域という)に配列された複数列の燃料棒4…の間隙を順次測定するように配置されて、サドル8が停止している。
この状態で、一次測定領域における燃料棒4の曲がりを測定する。測定位置は図3に示すように二つの支持格子3、3間における支持格子近傍位置S1、S2と中央位置(中間位置)S3とする。なお、位置S3は中央でなくても位置S1、S2の中間であればよい。
The bending measuring apparatus 1 according to the present embodiment has the above-described configuration. Next, a bending measuring method for the fuel rod 4 and the like using the bending measuring apparatus 1 will be described with reference to FIGS.
First, as a first bending measurement method, a primary measurement processing method using the probe 9 will be described with reference to FIGS.
In FIG. 1 and FIG. 2, a pair of measuring units 5, 5 arranged to face the fuel assembly 2 supported by the inspection stand 6 is composed of a lowermost support lattice 3 and a second support lattice 3. The saddles 8 are stopped so as to sequentially measure the gaps between the plurality of rows of fuel rods 4 arranged between them (this is called a primary measurement region).
In this state, the bending of the fuel rod 4 in the primary measurement region is measured. As shown in FIG. 3, the measurement positions are assumed to be support grid vicinity positions S1 and S2 and a center position (intermediate position) S3 between the two support grids 3 and 3. Note that the position S3 need not be in the center, but may be in the middle between the positions S1 and S2.

一次測定処理工程として、先ず、図4(a)に示すように進退機構10におけるグリップ部18でプローブ9の固定部15aを把持し、中心検知センサ11で直接または間接的に検出した燃料棒4、4間の中央にプローブ9が位置するように水平移動させる(図4(a)参照)。そして、グリップ部18を開放位置に離間させる(図4(b)参照)。
図6において、プローブ9を外周側の燃料棒4a,4d間の中央から例えばY軸に直交させて進入させ、一対の静電センサ14,14が各燃料棒4a,4dに対向する位置で各静電センサ14で当該燃料棒4a、4dまでの静電容量を検出する。すると、プローブ9は燃料棒4a、4d間の略中央をX軸に略平行に進入するために、図7(a)に示すように各静電センサ14と燃料棒4a、4dとの距離に対応した静電容量の山形波形ha、hdを波形出力手段30a、30bで得る。出力波形合計手段31で山形波形ha、hdを合計すると、同図(b)に示す合計山形波形hadが得られる。
図7(a)の場合、燃料棒4a、4dに曲がりやずれがないため、合計山形波形hadの幅方向の中央線Mxは波形を二等分する線であり、同時に各山形波形ha,hdのピーク値Pa、Pdと一致する。そして、図7(b)で中央線Mxの両側に等距離a,aの仮想線Ma、MaをMxに平行に引き、各山形波形ha,hdとの交点をL、Mとする。交点L,MについてX軸(基準軸)と平行な線を引くと互いに(波形ha,hdはPa,Pdで線対称であるため)交わり、線LMとなる。波形ha、hdと線LMで囲う面積HA、HDを二等分するX軸に垂直な二等分線Pax、Pdxを引くと、二等分線Pax、Pdx、ピーク値Pa、Pd、中央線Mxは一致する。
各山形波形のピーク値Pa,Pdは各静電センサ14と燃料棒4a、4dとの距離に対応するものであるから、静電センサ14,14間の距離dtを加えることで燃料棒4a、4d間の距離を測定・演算できる。
そして、Y軸を基準軸として二等分線Pax、Pdxまでの距離は概略でY軸から燃料棒4a,4dの中心までのX軸方向の距離Ax、Dxとして測定できる。
As a primary measurement processing step, first, as shown in FIG. 4A, the fuel rod 4 detected by the center detection sensor 11 directly or indirectly by holding the fixed portion 15a of the probe 9 with the grip portion 18 of the advance / retreat mechanism 10. 4 is moved horizontally so that the probe 9 is located in the center between the four (see FIG. 4A). And the grip part 18 is spaced apart to an open position (refer FIG.4 (b)).
In FIG. 6, the probe 9 is entered from the center between the fuel rods 4a and 4d on the outer peripheral side so as to be orthogonal to the Y axis, for example, and a pair of electrostatic sensors 14 and 14 are respectively positioned at positions facing the fuel rods 4a and 4d. The electrostatic sensor 14 detects the capacitance up to the fuel rods 4a, 4d. Then, since the probe 9 enters approximately the center between the fuel rods 4a and 4d substantially parallel to the X axis, the distance between each electrostatic sensor 14 and the fuel rods 4a and 4d as shown in FIG. Corresponding capacitance chevron waveforms ha and hd are obtained by the waveform output means 30a and 30b. When the output waveform summing means 31 sums up the mountain-shaped waveforms ha and hd, a total mountain-shaped waveform had shown in FIG.
In the case of FIG. 7A, since the fuel rods 4a and 4d are not bent or displaced, the center line Mx in the width direction of the total mountain waveform had is a line that bisects the waveform, and at the same time, each mountain waveform ha, hd The peak values Pa and Pd coincide with each other. Then, in FIG. 7B, virtual lines Ma and Ma of equal distances a and a are drawn in parallel to Mx on both sides of the center line Mx, and the intersections with the respective mountain-shaped waveforms ha and hd are L and M, respectively. When a line parallel to the X axis (reference axis) is drawn at the intersections L and M, they intersect each other (because the waveforms ha and hd are symmetrical with respect to Pa and Pd), and become a line LM. When bisectors Pax and Pdx perpendicular to the X axis that bisect the areas HA and HD enclosed by the waveforms ha and hd and the line LM are drawn, the bisectors Pax and Pdx, peak values Pa and Pd, and the center line Mx matches.
Since the peak values Pa and Pd of each mountain-shaped waveform correspond to the distance between each electrostatic sensor 14 and the fuel rods 4a and 4d, the fuel rod 4a, The distance between 4d can be measured and calculated.
The distances from the Y axis to the bisectors Pax and Pdx can be roughly measured as the distances Ax and Dx in the X axis direction from the Y axis to the centers of the fuel rods 4a and 4d.

また、図8(a)の場合、燃料棒4a、4dは曲がりによりX軸方向反対側に互いにずれており、しかもプローブ9は振れながら進入する場合を示しており、各山形波形ha、hdはX軸方向に互いにずれ且つ非対称に変形している。各山形波形ha,hdのピーク値Pa、Pdも同様にずれている。
この場合も、図8(b)で合計山形波形hadをとり、その幅方向の中央線Mxをとる。そして、図8(b)で中央線Mxの両側に等距離a,aの仮想線Ma、MaをMxに平行に引き、各山形波形ha,hdとの交点をL、Mとする。交点L,Mは中央線Mx方向にずれており、そのいずれかでX軸(基準軸)と平行な線を引くと波形ha,hdと交点Kで交わる。波形ha、hdと線MK,LKで囲う面積HA、HDを二等分するX軸に垂直な二等分線Pax、Pdxを引く.このようにして得た二等分線Pax、PdxとY軸との距離を測定するとY軸から燃料棒4a,4dの中心までのX軸方向の距離Ax、Dxが得られる。
また、図9(a)の場合、燃料棒4a、4dが曲がっていてX軸方向に互いにずれていて、プローブ9は一方の燃料棒4d側に寄ってX軸と略平行に燃料棒4a、4d間に進入する。各山形波形ha、hdはX軸方向に互いにずれており、各ピーク値Pa、Pdも同様にずれているが、各山形波形ha,hdは各ピーク値Pa、Pdの線に対して線対称である。そして、図7,図8の場合と同様な手順で、合計山形波形had、その中央線Pad、各山形波形ha,hdの面積、二等分線Pax、Pdxを求める。二等分線Pax、PdxとY軸との距離をY軸から燃料棒4a,4dの中心までのX軸方向の距離Ax、Dxとして求める。
Further, in the case of FIG. 8A, the fuel rods 4a and 4d are displaced from each other on the opposite side in the X-axis direction due to bending, and the probe 9 enters while swinging. They are displaced from each other in the X-axis direction and deformed asymmetrically. The peak values Pa and Pd of the chevron waveforms ha and hd are similarly shifted.
Also in this case, the total peak waveform had is taken in FIG. 8B and the center line Mx in the width direction is taken. Then, in FIG. 8B, virtual lines Ma and Ma of equal distances a and a are drawn on both sides of the center line Mx in parallel with Mx, and the intersections with the mountain-shaped waveforms ha and hd are L and M, respectively. The intersections L and M are shifted in the direction of the center line Mx, and if a line parallel to the X axis (reference axis) is drawn in any of them, the waveforms ha and hd intersect at the intersection K. Draw bisectors Pax and Pdx perpendicular to the X axis that bisect the areas HA and HD enclosed by the waveforms ha and hd and the lines MK and LK. When the distances between the bisectors Pax and Pdx thus obtained and the Y axis are measured, distances Ax and Dx in the X axis direction from the Y axis to the centers of the fuel rods 4a and 4d are obtained.
In the case of FIG. 9A, the fuel rods 4a and 4d are bent and deviated from each other in the X-axis direction, and the probe 9 approaches the one fuel rod 4d and is substantially parallel to the X-axis. Enter between 4d. The chevron waveforms ha and hd are shifted from each other in the X-axis direction, and the peak values Pa and Pd are also shifted in the same manner. However, the chevron waveforms ha and hd are symmetrical with respect to the lines of the peak values Pa and Pd. It is. Then, the total peak waveform had, its center line Pad, the area of each peak waveform ha, hd, and the bisectors Pax and Pdx are obtained by the same procedure as in FIGS. The distances between the bisectors Pax and Pdx and the Y axis are obtained as the distances Ax and Dx in the X axis direction from the Y axis to the centers of the fuel rods 4a and 4d.

このように、一次測定処理において、図7、8、9に示す各燃料棒4の曲がりやずれ、そしてプローブ9の振れにかかわらず、X軸またはY軸から各燃料棒4の中心までの距離をほぼ一定の精度で求めることができる。
そして、燃料棒4a、4dの列の各燃料棒4のY軸からの距離の測定をプローブ9を進入させつつ順次行い、終了したらプローブ9を引き抜いて、燃料棒4d,4g間に挿入して同様な測定を順次行う。プローブ9をY軸に直交させて順次隣り合う燃料棒4,4の間に挿入して静電センサ14、14で測定することで、各燃料棒4についてY軸から各燃料棒4の中心までの距離を順次求めることができる。また、プローブ9をX軸に直交させて隣り合う燃料棒4,4間に順次挿入して同様にX軸から各燃料棒4の中心までの距離を求めることができる。
このようにして一次測定領域において、支持格子近傍位置S1、S2、中央位置S3で、X軸、Y軸からの各燃料棒4の距離を測定し終えると、各燃料棒4の位置(x、y)を測定できる。そして、例えば支持格子近傍位置S1での各燃料棒4の位置(x、y)を基準として、位置S2、位置S3における各燃料棒4の位置(x、y)を対比すれば、この領域での全ての燃料棒4の曲がりを求めることができる。
次の支持格子3,3間の二次測定領域やその上方の各測定領域における燃料棒4…について、同様にして支持格子近傍位置S1、S2、中央位置S3の3箇所でX軸及びY軸を基準として一次測定処理を行うことで、各燃料棒4…の位置(x、y)を測定し、各燃料棒4の曲がりを測定できる。
In this way, in the primary measurement process, the distance from the X axis or the Y axis to the center of each fuel rod 4 regardless of the bending or displacement of each fuel rod 4 shown in FIGS. Can be obtained with substantially constant accuracy.
Then, the measurement of the distance from the Y axis of each fuel rod 4 in the row of fuel rods 4a and 4d is sequentially performed while the probe 9 is inserted, and when completed, the probe 9 is pulled out and inserted between the fuel rods 4d and 4g. The same measurement is sequentially performed. The probe 9 is inserted between the fuel rods 4 and 4 which are adjacent to each other perpendicularly to the Y axis and measured by the electrostatic sensors 14 and 14, so that each fuel rod 4 is from the Y axis to the center of each fuel rod 4. Can be obtained sequentially. Further, the probe 9 is inserted between the adjacent fuel rods 4 and 4 so as to be orthogonal to the X axis, and similarly, the distance from the X axis to the center of each fuel rod 4 can be obtained.
When the distance of each fuel rod 4 from the X-axis and Y-axis is measured at the support grid vicinity positions S1, S2 and the central position S3 in the primary measurement region in this way, the position of each fuel rod 4 (x, y) can be measured. For example, if the positions (x, y) of the fuel rods 4 at the positions S2 and S3 are compared with the position (x, y) of the fuel rods 4 at the position S1 near the support grid as a reference, this region The bending of all the fuel rods 4 can be obtained.
Similarly, for the secondary measurement region between the next support grids 3 and 3 and the fuel rods 4 in each measurement region above the same, the X axis and the Y axis at three positions of the support grid vicinity positions S1, S2 and the central position S3. Is used as a reference to measure the position (x, y) of each fuel rod 4... And the bending of each fuel rod 4 can be measured.

上述のように本実施の形態によれば、静電センサ14、14を有するプローブ9、9によって、支持格子近傍位置S1、S2、中央位置S3の3箇所で各燃料棒4の位置(x、y)を求めることで各燃料棒4の曲がりを測定できる。またこれら燃料棒の位置(x、y)のデータから燃料棒の間隔も検査できる。特に本実施の形態によれば、プローブ9が基準軸であるX軸、Y軸に対して振れながら燃料棒4,4間に進入しても、また2つの燃料棒4,4の一方側へ偏って進入しても一定の精度で距離や曲がりを測定できる。   As described above, according to the present embodiment, the positions of the fuel rods 4 (x, x) at the three positions of the supporting grid vicinity positions S1, S2 and the central position S3 by the probes 9, 9 having the electrostatic sensors 14, 14. By obtaining y), the bending of each fuel rod 4 can be measured. Further, the interval between the fuel rods can be inspected from the data of the positions (x, y) of these fuel rods. In particular, according to the present embodiment, even if the probe 9 enters between the fuel rods 4 and 4 while swinging with respect to the X axis and the Y axis as the reference axes, the probe 9 also moves to one side of the two fuel rods 4 and 4. You can measure distances and bends with a certain degree of accuracy even if you approach with a bias.

次に外側センサ22、23を用いた二次測定処理工程について説明する。
上述した一次測定処理によって各燃料棒4の曲がりを測定した後、燃料集合体2に関してX軸及びY軸方向に沿う外周側の燃料棒4について、X軸及びY軸を基準軸として外周側の各燃料棒4に関する距離の測定を外側センサ22、23で行うことが好ましい。
この場合、外側センサ22,23によって基準軸であるX軸とY軸から外周側燃料棒4までの距離情報により外周側燃料棒4の位置(x、y)を測定できるから、一次測定処理で得られた外周側燃料棒4のX軸及びY軸方向における距離情報の正確さを検証できる。このことは、原子炉稼働後の定期点検時に各燃料棒4の曲がりを測定する場合、外周側の燃料棒4しか測定できず、外周側の燃料棒4の曲がりによって内側の燃料棒4の曲がりや間隔を推測せざるを得ないために、外周側燃料棒について測定した初期曲がりを原子炉稼働後の定期点検時の曲がりと比較する上で特に重要である。そのため、外周側燃料棒4の初期の曲がりの測定精度を検証しておくことが好ましい。
Next, the secondary measurement process using the outer sensors 22 and 23 will be described.
After measuring the bending of each fuel rod 4 by the primary measurement process described above, the fuel rods 4 on the outer circumferential side along the X-axis and Y-axis directions with respect to the fuel assembly 2 are arranged on the outer circumferential side with the X-axis and Y-axis as reference axes. It is preferable to measure the distance for each fuel rod 4 with the outer sensors 22 and 23.
In this case, the position (x, y) of the outer peripheral fuel rod 4 can be measured by the outer sensors 22 and 23 based on the distance information from the reference X axis and Y axis to the outer peripheral fuel rod 4, so that the primary measurement process The accuracy of the distance information in the X-axis and Y-axis directions of the obtained outer peripheral fuel rod 4 can be verified. This is because when measuring the bending of each fuel rod 4 during periodic inspection after the operation of the reactor, only the fuel rod 4 on the outer peripheral side can be measured, and the bending of the fuel rod 4 on the inner side due to the bending of the fuel rod 4 on the outer peripheral side. Therefore, it is particularly important to compare the initial bend measured for the outer peripheral fuel rod with the bend at the periodic inspection after the reactor operation. Therefore, it is preferable to verify the measurement accuracy of the initial bending of the outer peripheral fuel rod 4.

このような測定方法を本発明の第二実施形態として以下に説明する。
第一実施形態で説明した一次測定処理方法を行ない、各燃料棒4の曲がりを測定した後、二次測定処理を行う。
二次測定処理工程において、支持格子近傍位置S1、S2で測定を行う。先ず図6において、Y軸を始点としてX軸に沿って外側センサ22を走査させ、各燃料棒4(4a、4b、4c、…)に対向する位置で外側センサ22と各燃料棒4との距離を測定する。測定は、外側センサ22と各燃料棒4との距離に対応した静電容量を検出し、二次測定処理手段26内の波形出力手段27bで図10(a)に示す山形波形ha、hb、hc、…を得る。そして、各山形波形のピーク値Pa、Pb、Pc、…から演算してX軸(外側センサ22)と各外周側燃料棒4とのY軸方向の距離を得る。これら測定した各距離に燃料棒4の半径を加算すれば、X軸、Y軸から各外周側燃料棒4の中心までの距離Ay、By,Cy…、Ax、Dx、Gx…が得られる。
この場合、各燃料棒4は支持格子3で保持されているため、支持格子近傍位置S1,S2での燃料棒4には曲がりは殆ど発生しておらず、図10(a)に示す山形波形ha、hb、hc、…はほぼ同一形状となり、外側センサ22と燃料棒4との距離もほぼ同一の値を測定する。
Such a measuring method will be described below as a second embodiment of the present invention.
After performing the primary measurement processing method described in the first embodiment and measuring the bending of each fuel rod 4, the secondary measurement processing is performed.
In the secondary measurement processing step, measurement is performed at the supporting grid vicinity positions S1 and S2. First, in FIG. 6, the outer sensor 22 is scanned along the X axis with the Y axis as a starting point, and the outer sensor 22 and each fuel rod 4 are positioned at positions facing the fuel rods 4 (4a, 4b, 4c,...). Measure distance. In the measurement, the electrostatic capacitance corresponding to the distance between the outer sensor 22 and each fuel rod 4 is detected, and the waveform output means 27b in the secondary measurement processing means 26 uses the waveform waveforms ha, hb, Get hc, ... Then, the distance in the Y-axis direction between the X axis (outer sensor 22) and each outer peripheral fuel rod 4 is obtained by calculating from the peak values Pa, Pb, Pc,. If the radius of the fuel rod 4 is added to each measured distance, distances Ay, By, Cy..., Ax, Dx, Gx... From the X axis and Y axis to the center of each outer peripheral fuel rod 4 are obtained.
In this case, since each fuel rod 4 is held by the support grid 3, the fuel rod 4 at the positions S1 and S2 in the vicinity of the support grid is hardly bent, and the chevron waveform shown in FIG. ha, hb, hc,... have substantially the same shape, and the distance between the outer sensor 22 and the fuel rod 4 also measures substantially the same value.

また、外周側燃料棒4a、4b、4c、…までのY軸方向距離を測定するために外側センサ22をX軸に沿って走査させる際、各山形波形ha、hb、hc、…のピーク値Pa、Pb、Pc、…を検出する位置でのY軸からの各走行距離を検出してもよい。このX軸方向の各走行距離を他方の外側センサ23やプローブ9で測定した位置Ax、Bx、Cx…と一致するか否か比較することで位置(x)を得ることができる。
これらによって外周側燃料棒4の位置(x、y)を測定できる。これを一次測定処理における外周側燃料棒4の位置(x、y)と対比することで、測定データの検証を行うことができる。
同様に外側センサ23でも同様に各ピーク値の走行距離を求めて外周側燃料棒4の位置(x、y)を測定して、一次測定処理による外周側燃料棒4の測定位置(x、y)と比較し検証することができる。
Further, when the outer sensor 22 is scanned along the X-axis in order to measure the distance in the Y-axis direction to the outer peripheral fuel rods 4a, 4b, 4c,..., The peak value of each chevron waveform ha, hb, hc,. Each travel distance from the Y axis at a position where Pa, Pb, Pc,... Are detected may be detected. The position (x) can be obtained by comparing whether or not each traveling distance in the X-axis direction matches the positions Ax, Bx, Cx... Measured by the other outer sensor 23 or the probe 9.
By these, the position (x, y) of the outer peripheral fuel rod 4 can be measured. By comparing this with the position (x, y) of the outer peripheral fuel rod 4 in the primary measurement process, the measurement data can be verified.
Similarly, the outer sensor 23 similarly obtains the travel distance of each peak value and measures the position (x, y) of the outer peripheral fuel rod 4 to measure the position (x, y) of the outer peripheral fuel rod 4 by the primary measurement process. ) And can be verified.

次に中央位置S3に外側センサ22、23を移動させ、同様にX軸、Y軸に沿って走査して二次測定処理によって同様に外周側燃料棒4の位置(x、y)を測定する。
この測定において、二次測定処理手段26の各波形出力手段27b、27aで山形波形を得る。図6において、燃料棒4bは一点鎖線で示すように変形して内側(燃料棒4e側)に湾曲しており、他の燃料棒4の変形は殆ど生じていない。そのため、X軸方向では、図10(b)に示す山形波形hb′が他の山形波形ha′、hc′よりも低いピーク値Pb′となって表れ、演算手段28で得た燃料棒4bまでの距離は燃料棒4a、4cの距離より長い。Y軸方向でも各燃料棒4(4a、4d、4g、…)との距離を同様に山形波形のピーク値から測定する。これら測定した各距離に燃料棒4の半径を加算すれば、X軸から各燃料棒4の中心までの距離Ay、By′、Cy、…と、Y軸から各燃料棒4の中心までの距離Ax、Dx、Gx、…が得られる。
これと同時に各山形波形のピーク値Pa′,Pb′、Pc′の位置までの外側センサ22の走行距離によってX軸方向の距離をも測定できる。同様にして外側センサ23を走行させて各山形波形のピーク値までのY軸方向の走行距離を求める。このようにして外側センサ22、23による外周側燃料棒4の位置(x、y)を測定する。
そして、一次測定処理による中央位置S3での外周側燃料棒4の測定位置(x、y)と比較し検証する。
Next, the outer sensors 22 and 23 are moved to the center position S3, and similarly, the position (x, y) of the outer peripheral fuel rod 4 is measured by secondary measurement processing by scanning along the X axis and Y axis. .
In this measurement, a mountain-shaped waveform is obtained by each waveform output means 27b, 27a of the secondary measurement processing means 26. In FIG. 6, the fuel rod 4b is deformed and curved inward (fuel rod 4e side) as shown by a one-dot chain line, and the other fuel rods 4 are hardly deformed. Therefore, in the X-axis direction, the chevron waveform hb ′ shown in FIG. 10B appears as a peak value Pb ′ lower than the other chevron waveforms ha ′ and hc ′, and the fuel rod 4 b obtained by the computing means 28 is reached. Is longer than the distance between the fuel rods 4a and 4c. Similarly in the Y-axis direction, the distance to each fuel rod 4 (4a, 4d, 4g,...) Is also measured from the peak value of the chevron waveform. If the radius of the fuel rod 4 is added to each measured distance, the distances Ay, By ′, Cy,... From the X axis to the center of each fuel rod 4, and the distance from the Y axis to the center of each fuel rod 4 Ax, Dx, Gx,... Are obtained.
At the same time, the distance in the X-axis direction can also be measured by the travel distance of the outer sensor 22 to the position of the peak values Pa ′, Pb ′, Pc ′ of each mountain-shaped waveform. Similarly, the outer sensor 23 is caused to travel to obtain the traveling distance in the Y-axis direction up to the peak value of each chevron waveform. In this manner, the position (x, y) of the outer peripheral fuel rod 4 by the outer sensors 22 and 23 is measured.
And it verifies by comparing with the measurement position (x, y) of the outer peripheral fuel rod 4 at the center position S3 by the primary measurement process.

次に第三の実施の形態による測定方法として簡略的な測定方法を説明する。
上述の各実施の形態では、隣接する支持格子3,3で支持された複数の燃料棒4…について燃料棒4の長手方向3箇所の位置S1,S2,S3で外側センサ22,23とプローブ9、9によって各燃料棒4の位置(x、y)を測定したが、上下の支持格子近傍位置S1,S2では各燃料棒4は支持格子3に固定されている位置に近いために曲がり等は発生し難い。
そのため、一次及び二次測定方法において、支持格子近傍位置S1,S2における各燃料棒4の位置(x、y)は測定することなく設計値や仕様値等で代用し、中央位置S3でのみ上述した一次及び二次測定方法を行い、各燃料棒4の位置(x、y)を測定する。これによって各燃料棒4の曲がりを簡単に測定し、また外周側燃料棒4について簡単に検証できる。
この測定方法を採用すれば、より簡単に各燃料棒4の曲がりを測定できると共に外周側燃料棒4の曲がり測定値の検証を行える。
また、下部ノズル2b側の支持格子近傍位置S1または上部ノズル2a側の一方の支持格子近傍位置S2での一次及び/または二次測定を省略してもよい。
Next, a simple measuring method will be described as a measuring method according to the third embodiment.
In each of the above-described embodiments, the outer sensors 22 and 23 and the probe 9 are located at three positions S1, S2 and S3 in the longitudinal direction of the fuel rod 4 for the plurality of fuel rods 4 supported by the adjacent support grids 3 and 3. 9, the position (x, y) of each fuel rod 4 was measured. However, since the fuel rods 4 are close to the positions fixed to the support grid 3 at the upper and lower support grid vicinity positions S 1 and S 2, Hard to occur.
Therefore, in the primary and secondary measurement methods, the position (x, y) of each fuel rod 4 in the supporting grid vicinity positions S1 and S2 is substituted with the design value or the specification value without measuring, and the above-described only at the central position S3. The primary and secondary measurement methods are performed, and the position (x, y) of each fuel rod 4 is measured. Thus, the bending of each fuel rod 4 can be easily measured, and the outer peripheral fuel rod 4 can be easily verified.
If this measurement method is employed, the bending of each fuel rod 4 can be measured more easily, and the bending measurement value of the outer peripheral fuel rod 4 can be verified.
Further, the primary and / or secondary measurement at the support grid vicinity position S1 on the lower nozzle 2b side or one support grid vicinity position S2 on the upper nozzle 2a side may be omitted.

なお、本実施の形態において、プローブ9を用いて一次測定処理を行う場合、Y軸方向とX軸方向に全ての燃料棒4、4の列の間にプローブ9を挿入して測定を行うとしたが、1列おきにプローブ9を挿入して測定するようにしてもよい。これによって検査時間を一層短縮できて効率的な検査を行える。
また、本発明は燃料集合体2の燃料棒4,4間や燃料棒4及び制御棒案内管4S間の曲がりの測定だけでなく、その他の適宜の被測定対象物を含めた任意の棒状体の曲がりを測定する装置や方法として用いることができる。
In this embodiment, when the primary measurement process is performed using the probe 9, the measurement is performed by inserting the probe 9 between all the fuel rods 4 and 4 in the Y-axis direction and the X-axis direction. However, the measurement may be performed by inserting the probes 9 every other row. As a result, the inspection time can be further reduced and an efficient inspection can be performed.
Further, the present invention is not limited to the measurement of the bend between the fuel rods 4 and 4 of the fuel assembly 2 and between the fuel rod 4 and the control rod guide tube 4S, but also any rod-like body including other appropriate objects to be measured. It can be used as an apparatus or a method for measuring the bending of.

本発明の実施の形態による曲がり測定装置の構成を示す側面図である。It is a side view which shows the structure of the bending measuring apparatus by embodiment of this invention. 燃料集合体と計測ブロックとの関係を示す平面図である。It is a top view which shows the relationship between a fuel assembly and a measurement block. 上下の支持格子間に保持された燃料棒の曲がり測定位置を示す図である。It is a figure which shows the bending measurement position of the fuel rod hold | maintained between the upper and lower support grids. 燃料棒とプローブと進退機構との関係を示す図で、(a)はプローブ挿入前の状態、(b)はプローブを挿入した状態、(c)はプローブが制御棒案内管を通過した状態である。It is a figure which shows the relationship between a fuel rod, a probe, and an advance / retreat mechanism, (a) is the state before inserting the probe, (b) is the state where the probe is inserted, (c) is the state where the probe has passed the control rod guide tube is there. プローブの先端部分の断面図である。It is sectional drawing of the front-end | tip part of a probe. 燃料棒と測定処理手段とを示す曲がり測定状態の要部平面図である。It is a principal part top view of the bending measurement state which shows a fuel rod and a measurement process means. (a)はプローブによって隣接する2つの燃料棒の距離を測定する状態の平面図と、各静電センサで得られた山形波形を示す図、(b)は各静電センサで得た山形波形の合計山形波形図である。(A) is a plan view of a state in which the distance between two adjacent fuel rods is measured by a probe, and a diagram showing a chevron waveform obtained by each electrostatic sensor, and (b) is a chevron waveform obtained by each electrostatic sensor. FIG. プローブが振れながら進入している状態の図7と同様な図である。It is a figure similar to FIG. 7 of the state which the probe has approached while swinging. プローブが一方の燃料棒に偏っている状態の図7と同様な図である。FIG. 8 is a view similar to FIG. 7 with the probe biased to one fuel rod. (a)は支持格子近傍位置における外側センサによるX軸と燃料棒との距離を測定する静電容量の出力波形図、(b)は中央位置における外側センサによる同様な出力波形図である。(A) is the output waveform figure of the electrostatic capacitance which measures the distance of the X-axis and fuel rod by the outer side sensor in the position near a support grid, (b) is the same output waveform figure by the outer side sensor in a center position.

符号の説明Explanation of symbols

1 曲がり測定装置
2 燃料集合体
4 燃料棒(棒状体)
4a 制御棒案内管(棒状体)
9 距離測定プローブ(プローブ)
14 静電センサ
22、23 外側センサ
25 測定処理手段
26 二次測定処理手段
28 演算手段
29 一次測定処理手段
31、32 出力波形合計手段
ha,hd 山形波形
had 合計山形波形
33 制御手段
1 Bend measuring device 2 Fuel assembly 4 Fuel rod (rod-like body)
4a Control rod guide tube (bar-shaped body)
9 Distance measurement probe (probe)
14 Electrostatic sensors 22, 23 Outside sensor 25 Measurement processing means 26 Secondary measurement processing means 28 Calculation means 29 Primary measurement processing means 31, 32 Output waveform summing means ha, hd Yamagata waveform had Total Yamagata waveform 33 Control means

Claims (7)

互いに交差するX軸方向とY軸方向に複数配列された棒状体の曲がり測定方法であって、
X軸方向とY軸方向にそれぞれ隣接する2つの棒状体の間に静電センサを含む距離測定プローブを挿入して、前記静電センサから対向する棒状体までの距離情報を山形波形としてそれぞれ出力し、これら2つの山形波形を合計した合計山形波形の中央線を得て、この中央線から両側に一定幅の範囲で前記各山形波形の面積を仕切り、これら山形波形の面積をそれぞれ二等分する二等分線によってX軸またはY軸から前記2つの棒状体までの距離を求める一次測定処理を行い、
前記棒状体の長手方向に沿う1または複数位置で前記一次測定処理を行うことで、前記複数配列された棒状体の曲がりを測定するようにしたことを特徴とする棒状体の曲がり測定方法。
A method for measuring the bending of a plurality of rod-shaped bodies arranged in the X-axis direction and the Y-axis direction intersecting each other,
A distance measuring probe including an electrostatic sensor is inserted between two rod-shaped bodies adjacent to each other in the X-axis direction and the Y-axis direction, and distance information from the electrostatic sensor to the opposing rod-shaped body is output as a mountain waveform. Then, the central line of the total chevron waveform obtained by summing up these two chevron waveforms is obtained, and the area of each chevron waveform is divided within a certain range on both sides from the center line, and the area of each chevron waveform is divided into two equal parts. Performing a primary measurement process to obtain a distance from the X-axis or Y-axis to the two rod-like bodies by a bisector
A bending measurement method for a rod-shaped body, wherein the bending of the plurality of arranged rod-shaped bodies is measured by performing the primary measurement process at one or a plurality of positions along the longitudinal direction of the rod-shaped body.
前記複数配列された棒状体の外側で、外側センサをX軸及びY軸に沿って走行させて外周側に配列された棒状体までの距離情報を山形波形として出力し、該山形波形のピーク値によりX軸及びY軸から外周側の棒状体までの距離を求める二次測定処理を行い、
前記棒状体の長手方向に沿う1または複数位置で前記二次測定処理を行うことで、前記複数配列された棒状体の曲がりを測定するようにしたことを特徴とする請求項1に記載の棒状体の曲がり測定方法。
Outside the plurality of arranged rod-shaped bodies, an outer sensor is run along the X-axis and the Y-axis, and distance information to the rod-shaped bodies arranged on the outer peripheral side is output as a mountain waveform, and the peak value of the mountain waveform To perform a secondary measurement process for obtaining the distance from the X axis and the Y axis to the rod-like body on the outer peripheral side,
2. The bar shape according to claim 1, wherein the bending of the plurality of arranged bar-shaped bodies is measured by performing the secondary measurement process at one or a plurality of positions along the longitudinal direction of the bar-shaped body. Body bending measurement method.
前記二次測定処理において、前記外側センサのX軸及びY軸に沿う移動距離を当該外側センサで得る山形波形のピーク値の位置で測定するようにした請求項2に記載の棒状体の曲がり測定方法。   3. The bending measurement of the rod-shaped body according to claim 2, wherein in the secondary measurement process, the movement distance along the X axis and the Y axis of the outer sensor is measured at the position of the peak value of the mountain waveform obtained by the outer sensor. Method. 前記棒状体は、燃料集合体において所定間隔に配列した複数の支持格子で支持された燃料棒であり、該燃料棒について隣接する二つの支持格子間の当該支持格子近傍位置と中間位置とでそれぞれ測定処理を行うようにした請求項1乃至3のいずれかに記載の棒状体の曲がり測定方法。   The rod-shaped body is a fuel rod supported by a plurality of support grids arranged at a predetermined interval in the fuel assembly, and each of the fuel rods at a position near the support grid and an intermediate position between two adjacent support grids. The method for measuring bending of a rod-shaped body according to any one of claims 1 to 3, wherein measurement processing is performed. 前記棒状体は、燃料集合体において所定間隔に配列した複数の支持格子で支持された燃料棒であり、該燃料棒について隣接する二つの支持格子間の中間位置でそれぞれ測定処理を行うようにした請求項1乃至3のいずれかに記載の棒状体の曲がり測定方法。   The rod-shaped body is a fuel rod supported by a plurality of support grids arranged at predetermined intervals in the fuel assembly, and the measurement processing is performed at an intermediate position between two adjacent support grids for the fuel rod. The bending measurement method of the rod-shaped body according to any one of claims 1 to 3. 互いに交差するX軸方向とY軸方向に複数配列された棒状体の曲がり測定装置であって、
X軸方向とY軸方向にそれぞれ隣接する2つの棒状体の間に挿入して対向する各棒状体までの距離情報を山形波形としてそれぞれ出力する一対の静電センサを含む距離測定プローブと、
前記2つの山形波形を合計した合計山形波形の中央線から両側に一定幅の範囲で前記各山形波形の面積を仕切り、これら山形波形の面積をそれぞれ二等分する二等分線によってX軸またはY軸から前記2つの棒状体までの距離を求める一次測定処理手段とを備え、
前記棒状体の長手方向に沿う1または複数位置でX軸またはY軸から前記2つの棒状体までの距離を測定することで、各棒状体の曲がりを測定するようにしたことを特徴とする棒状体の曲がり測定装置。
A bending measuring device for a rod-shaped body arranged in a plurality of X-axis and Y-axis directions intersecting each other,
A distance measuring probe including a pair of electrostatic sensors, each of which is inserted between two rod-like bodies adjacent to each other in the X-axis direction and the Y-axis direction and outputs distance information to each of the opposing rod-like bodies as a mountain waveform;
The area of each chevron waveform is partitioned in a range of a certain width on both sides from the center line of the total chevron waveform obtained by summing up the two chevron waveforms, and the X axis or the bisection that bisects the area of each chevron waveform respectively. Primary measurement processing means for obtaining a distance from the Y axis to the two rod-shaped bodies,
A bar shape characterized in that the bending of each bar-shaped body is measured by measuring the distance from the X-axis or the Y-axis to the two bar-shaped bodies at one or a plurality of positions along the longitudinal direction of the bar-shaped body. Body bending measuring device.
前記複数配列された棒状体の外側においてX軸及びY軸に沿って走行させて外周側に配列された棒状体までの距離情報を山形波形として出力する外側センサと、
該外側センサで得た山形波形のピーク値によりX軸及びY軸から外周側の棒状体までの距離を求めると共にX軸及びY軸に沿う前記ピーク値までの各外側センサの走行距離を測定する二次測定処理手段とを備え、
前記棒状体の長手方向に沿う1または複数位置で前記外側センサ及び二次測定処理手段による測定を行うことで、各棒状体の曲がりを測定するようにしたことを特徴とする請求項6に記載の棒状体の曲がり測定装置。
An outer sensor that travels along the X-axis and the Y-axis outside the plurality of arranged rod-shaped bodies and outputs distance information to the rod-shaped bodies arranged on the outer peripheral side as a chevron waveform;
The distance from the X axis and the Y axis to the rod-shaped body on the outer peripheral side is obtained from the peak value of the mountain waveform obtained by the outer sensor, and the travel distance of each outer sensor to the peak value along the X axis and the Y axis is measured. A secondary measurement processing means,
The bending of each rod-shaped body is measured by performing measurement by the outer sensor and secondary measurement processing means at one or a plurality of positions along the longitudinal direction of the rod-shaped body. Measuring device for bending of rod-shaped body.
JP2004115419A 2004-04-09 2004-04-09 Method and apparatus for measuring bending of rod-shaped body Expired - Lifetime JP4372603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115419A JP4372603B2 (en) 2004-04-09 2004-04-09 Method and apparatus for measuring bending of rod-shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115419A JP4372603B2 (en) 2004-04-09 2004-04-09 Method and apparatus for measuring bending of rod-shaped body

Publications (2)

Publication Number Publication Date
JP2005300301A true JP2005300301A (en) 2005-10-27
JP4372603B2 JP4372603B2 (en) 2009-11-25

Family

ID=35332007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115419A Expired - Lifetime JP4372603B2 (en) 2004-04-09 2004-04-09 Method and apparatus for measuring bending of rod-shaped body

Country Status (1)

Country Link
JP (1) JP4372603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265771A (en) * 2004-03-22 2005-09-29 Mitsubishi Nuclear Fuel Co Ltd Measuring method and device for deflection of rod
JP2008246628A (en) * 2007-03-30 2008-10-16 Disco Abrasive Syst Ltd Chuck table mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265771A (en) * 2004-03-22 2005-09-29 Mitsubishi Nuclear Fuel Co Ltd Measuring method and device for deflection of rod
JP4515125B2 (en) * 2004-03-22 2010-07-28 三菱原子燃料株式会社 Method and apparatus for measuring bending of fuel rod
JP2008246628A (en) * 2007-03-30 2008-10-16 Disco Abrasive Syst Ltd Chuck table mechanism

Also Published As

Publication number Publication date
JP4372603B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
RU2392658C2 (en) System and method for two-dimensional and three-dimensional display for inspecting chimneys
CN102706317B (en) Online monitoring device for thermal expansion amount of pressure-containing member of power station boiler
CN102221354A (en) Method for measuring surface harshness of multi-measuring-point floating positioning
KR101841806B1 (en) Apparatus and method for monitoring water level in pipe
CN109307568A (en) The lossless detection method of welding residual stress and the probe for using this method
CN103591902B (en) A kind of wheel diameter of urban rail vehicle detecting device based on laser sensor and method
JP4372603B2 (en) Method and apparatus for measuring bending of rod-shaped body
KR100802315B1 (en) Ultrasonic transducer for measuring thickness
JP4515125B2 (en) Method and apparatus for measuring bending of fuel rod
US20040111910A1 (en) Method and instrument for measuring inside diameter of conduit
JP5886413B2 (en) A method for detecting the presence of component pieces in a steam generator of a nuclear power plant.
KR101662679B1 (en) Method and device for measuring the centricity of a conductor in an insulating casing
JP5669334B2 (en) Non-destructive inspection method for heat exchangers using adaptive noise thresholding
JP2005249591A (en) Device for measuring interval between bar-like materials
JP2012021930A (en) Thickness measuring method
JP2005249698A (en) Method and instrument for measuring furnace wall shape
JP2006349453A (en) Outer-diameter measuring instrument
JP3469029B2 (en) Control rod guide tube deformation measurement system for reactor fuel assemblies
KR20030096396A (en) Measuring head
RU2235317C2 (en) Method and device for determining condition of high-temperature pipelines bends
JPH0781854B2 (en) Dimension inspection method for fuel assemblies
JP2018161666A (en) Rotor profile measuring method
JP2017150901A (en) Creep damage place screening gauge and method for evaluating life of pipe line
US6434845B1 (en) Dual-axis static and dynamic force characterization device
JP2782507B2 (en) Ash erosion inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250