JP2005299593A - Silencer - Google Patents

Silencer Download PDF

Info

Publication number
JP2005299593A
JP2005299593A JP2004120358A JP2004120358A JP2005299593A JP 2005299593 A JP2005299593 A JP 2005299593A JP 2004120358 A JP2004120358 A JP 2004120358A JP 2004120358 A JP2004120358 A JP 2004120358A JP 2005299593 A JP2005299593 A JP 2005299593A
Authority
JP
Japan
Prior art keywords
flow path
pipe
silencer
sound
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004120358A
Other languages
Japanese (ja)
Other versions
JP4408237B2 (en
Inventor
Zenzo Yamaguchi
善三 山口
Yasumasa Kimura
康正 木村
Kazuki Tsugibashi
一樹 次橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004120358A priority Critical patent/JP4408237B2/en
Publication of JP2005299593A publication Critical patent/JP2005299593A/en
Application granted granted Critical
Publication of JP4408237B2 publication Critical patent/JP4408237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silencer sufficiently absorbing sound with a saved space. <P>SOLUTION: This silencer comprises a pipe 1a forming a flow passage 2 for a gas including sound wave, a porous plate 3 extending in the axial direction of the pipe 1a and partitioning the flow passage 2 so as to form an auxiliary flow passage, through holes 3a formed in a porous plate 3 to pass a gas therethrough, and a reflection plate 4 reflecting a part of the sound wave propagating so that the sound pressure difference of the sound wave occurs on the front and rear sides of the through holes 3a and installed in the auxiliary passage making nonuniform the distribution of the sound pressure in the cross sectional direction of the pipe 1a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体の流れ重畳する音波を消音する消音器に関するものである。   The present invention relates to a silencer that silences a sound wave superimposed on a fluid flow.

これまでに、空気に含まれる騒音を吸音するために、様々な構造が提案されている。例えば、特許文献1には、共鳴(ヘルムホルツの原理)を利用した吸音構造が記載されている。特許文献1に記載の吸音構造体は、空気が流通する配管に設けられた小孔と、小孔よりも大きい中空とを有している。そして、流通する空気が小孔から中空に入ると、中空内の空気がバネの作用をし、それにより小孔部分で空気の出入りが激しく行われる。その結果、小孔を空気が通過するときの小孔部分の壁面での粘性減衰と、小孔に空気が出入りするときの圧力損失とによって、音響エネルギーが熱エネルギーに変換されて、吸音を実現している。   So far, various structures have been proposed to absorb noise contained in air. For example, Patent Document 1 describes a sound absorbing structure using resonance (Helmholtz principle). The sound absorbing structure described in Patent Literature 1 has a small hole provided in a pipe through which air flows and a hollow larger than the small hole. Then, when the circulating air enters the hollow through the small hole, the air in the hollow acts as a spring, whereby the air enters and exits vigorously in the small hole portion. As a result, sound absorption is achieved by converting acoustic energy into thermal energy due to viscous damping at the wall surface of the small hole when air passes through the small hole and pressure loss when air enters and exits the small hole. is doing.

特開2001−199287(図4)Japanese Patent Laid-Open No. 2001-1992287 (FIG. 4)

しかしながら、特許文献1の構造は、共鳴を起こさせるための中空、即ち、配管内に空気層を設ける必要があり、構造自体が大きくなってしまうという問題点がある。   However, the structure of Patent Document 1 has a problem in that a hollow for causing resonance, that is, an air layer needs to be provided in the pipe, and the structure itself becomes large.

そこで、本発明の目的は、省スペースで、十分に吸音することができる消音器を提案することである。   Therefore, an object of the present invention is to propose a silencer that can sufficiently absorb sound in a small space.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明は、音波を含む流体の流路を形成する配管と、配管の軸方向に延設し、副流路を形成するように流路を仕切る仕切部材と、仕切部材に設けられ、流体が通過する貫通孔と、貫通孔の表裏において音波の音圧差が生じるように、伝搬する音波の一部を反射し、音圧分布を配管の断面方向において不均一とする、副流路に設けられた反射部材を有している。   The present invention provides a pipe that forms a flow path of a fluid containing sound waves, a partition member that extends in the axial direction of the pipe and partitions the flow path so as to form a sub-flow path, and the partition member. Provided in a sub-flow path that reflects a part of the propagating sound wave and makes the sound pressure distribution non-uniform in the cross-sectional direction of the pipe so that a sound pressure difference between the sound wave of the sound wave occurs between the through hole and the front and back of the through hole. A reflective member.

この構成によると、伝搬する音波の一部を反射することで、音圧分布が配管の断面方向において不均一となる、つまり、貫通孔の表裏で音圧差が生じるようになり、それに伴って流体が貫通孔を移動するようになる。そして、流体が貫通孔を通過することによって騒音を吸音することができる。また、反射部材を設けることで生じる音圧差を利用して流体を貫通孔に通過させるため、共鳴の原理(ヘルムホルツ)を利用した消音の構造、即ち、配管内に背後空気層を設ける構造との対比において、配管のスペースを小さくすることができる。   According to this configuration, by reflecting a part of the propagating sound wave, the sound pressure distribution becomes non-uniform in the cross-sectional direction of the pipe, that is, a sound pressure difference is generated between the front and back of the through hole, and the fluid is accompanied accordingly. Moves through the through hole. And a noise can be absorbed when a fluid passes a through-hole. In addition, in order to allow the fluid to pass through the through-hole using the sound pressure difference generated by providing the reflecting member, the structure of silencing using the principle of resonance (Helmholtz), that is, the structure of providing a back air layer in the pipe In contrast, the piping space can be reduced.

本発明の反射部材が、仕切部材および/または配管に配設されていることが好ましい。これによると、反射部材を施工性等により設置位置を適宜変更することができる。   It is preferable that the reflecting member of the present invention is disposed on the partition member and / or the pipe. According to this, the installation position of the reflecting member can be appropriately changed depending on the workability and the like.

別の観点において、本発明は、音波を含む流体の流路を形成する配管と、配管の軸方向に延設し、副流路を形成するように流路を仕切る仕切部材と、仕切部材に設けられ、流体が通過する貫通孔と、配管および/または仕切部材に設けられ、副流路を伝搬する音波の一部を反射する反射部材とを有している。   In another aspect, the present invention provides a pipe that forms a flow path of a fluid containing sound waves, a partition member that extends in the axial direction of the pipe and partitions the flow path so as to form a sub-flow path, and a partition member A through-hole through which the fluid passes; and a reflecting member that is provided in the pipe and / or the partition member and reflects a part of the sound wave propagating through the sub-flow path.

本発明は、2以上の副流路のそれぞれに2以上の反射部材が設けられており、同一の副流路に配設されている反射部材の軸方向における間隔が、副流路毎に異なることが好ましい。これによると、副流路毎の反射部材の間隔を異ならせることで、貫通孔の表裏における音圧差がさらに生じやすくなり、吸音性能を向上させることができる。   In the present invention, two or more reflecting members are provided in each of the two or more sub-flow channels, and the interval in the axial direction of the reflecting member disposed in the same sub-flow channel is different for each sub-flow channel. It is preferable. According to this, a difference in sound pressure between the front and back of the through hole is more likely to occur by changing the interval of the reflecting member for each sub-channel, and the sound absorption performance can be improved.

本発明は、同一の副流路に配設されている反射部材の前記軸方向における間隔が、不均一であってもよい。この構成によると、反射部材の間隔により決まる吸音周波数帯域を様々な周波数にすることで、吸音帯域を広帯域化できる。   In the present invention, the interval in the axial direction of the reflecting members disposed in the same sub-flow path may be non-uniform. According to this configuration, the sound absorption band can be widened by setting the sound absorption frequency band determined by the interval between the reflecting members to various frequencies.

以下、本発明の好適な実施の形態について図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
まず、本発明の第1の実施形態について説明する。本実施形態に係る消音器1は、例えば自動車や鉄道車両、建設車両、船舶、自動搬送装置のように内部にエンジン等の駆動機構を備えた移動装置、モータやギヤ等の駆動機構を内部に備えた設備機械等から騒音を含む、つまり、騒音が重畳した気流(気体)を排出する際に用いる排気筒、または、圧縮機等、圧縮気体の流れに重畳して騒音が伝搬する配管等に好適に使用される。尚、本実施の形態では、消音器1に流通する流体を気体として説明するが、水や油などの液体であってもよい。
(First embodiment)
First, a first embodiment of the present invention will be described. The silencer 1 according to the present embodiment includes a moving device including a driving mechanism such as an engine, and a driving mechanism such as a motor and a gear inside, such as an automobile, a railway vehicle, a construction vehicle, a ship, and an automatic transfer device. To exhaust pipes that contain noise, that is, when exhausting airflow (gas) with superimposed noise, or pipes that transmit noise superimposed on the flow of compressed gas, such as compressors, etc. Preferably used. In the present embodiment, the fluid flowing through the silencer 1 is described as a gas, but it may be a liquid such as water or oil.

消音器1は、図1(a)及び図1(b)に示すように、騒音等の音波が重畳した気流が流通する流路2を形成する、四角断面を有する長尺形状の配管1aと、板状の多孔板3(仕切部材)と、板状の反射板4(反射部材)とを有している。これらの配管1a、多孔板3および反射板4は、鉄やアルミニウム等の金属や合成樹脂により形成されている。尚、配管1a、多孔板3および反射板4は、リサイクル時の分別処理を不要にするように、同一の材質で形成されていることが望ましい。   As shown in FIGS. 1 (a) and 1 (b), the silencer 1 includes a long pipe 1a having a square cross section that forms a flow path 2 through which an air flow superimposed with sound waves such as noise flows. And a plate-like perforated plate 3 (partition member) and a plate-like reflector 4 (reflecting member). These pipes 1a, the perforated plate 3, and the reflecting plate 4 are made of a metal such as iron or aluminum or a synthetic resin. The pipe 1a, the perforated plate 3 and the reflecting plate 4 are preferably formed of the same material so as to eliminate the separation process at the time of recycling.

多孔板3は、配管1aの軸方向に延在し、流路2を2つの副流路2a・2bに分割している。また、多孔板3は、気体が通過する貫通孔3aを有しており、貫通孔3aを介して、気体は、副流路2a・2b間を移動することができるようになっている。尚、多孔板3の板厚、貫通孔3aの開口率および穴径等のパラメータは、貫通孔3aを通過する気体に対して粘性作用および圧力損失による減衰効果を生じさせるように設定されていることが好ましい。   The perforated plate 3 extends in the axial direction of the pipe 1a and divides the flow path 2 into two sub flow paths 2a and 2b. The perforated plate 3 has a through-hole 3a through which gas passes, and the gas can move between the sub-flow channels 2a and 2b through the through-hole 3a. It should be noted that parameters such as the plate thickness of the perforated plate 3, the opening ratio of the through hole 3a, and the hole diameter are set so as to produce a damping effect due to viscous action and pressure loss on the gas passing through the through hole 3a. It is preferable.

さらに、気体が常温、常圧の空気の場合、貫通孔3aの穴径は、特に範囲が限定されるものではないが、1mm以下であることが望ましい。そして、このように貫通孔3aの穴径を1mm以下に設定した場合には、貫通孔3aを流動する気体に粘性作用および圧力損失を確実に発生させることができる。   Further, when the gas is air at normal temperature and normal pressure, the hole diameter of the through hole 3a is not particularly limited, but is desirably 1 mm or less. And when the hole diameter of the through-hole 3a is set to 1 mm or less in this way, viscous action and pressure loss can be reliably generated in the gas flowing through the through-hole 3a.

尚、貫通孔3aの直径の下限値は、0.2mmであることが好ましい。この理由は、貫通孔3aの直径が0に近づくと、その吸音率のピークが理論上1.0になるが、現実的には1.0に至ることはなく、直径が0.2mm以下のように極めて小さくなると、貫通孔3aの空気の粘性が大きくなりすぎるため、貫通孔3aの空気の流れに対する抵抗が大きくなり、吸音率が却って低下すると考えられるからである。また、直径が0.2mm以下のように極めて小さくなると、製造が大幅に困難となり、使用環境によってはゴミや埃等により貫通孔3aが閉塞し易くなるからである。尚、貫通孔3aの径は、上述の数値に限定されることはなく、気体の状態、特性、消音したい音波の周波数等で好適な数値を決定すればよい。   In addition, it is preferable that the lower limit of the diameter of the through-hole 3a is 0.2 mm. The reason for this is that when the diameter of the through hole 3a approaches 0, the peak of the sound absorption coefficient is theoretically 1.0, but in reality, it does not reach 1.0, and the diameter is 0.2 mm or less. This is because, if it is extremely small, the viscosity of the air in the through hole 3a becomes too large, so that the resistance to the air flow in the through hole 3a increases and the sound absorption rate is considered to decrease. In addition, if the diameter is extremely small, such as 0.2 mm or less, the manufacturing becomes significantly difficult, and the through-hole 3a is likely to be blocked by dust or dust depending on the use environment. In addition, the diameter of the through-hole 3a is not limited to the above-mentioned numerical value, What is necessary is just to determine a suitable numerical value by the state of a gas, a characteristic, the frequency of the sound wave to silence, etc.

また、貫通孔3aは、楕円形状や矩形状、多角形状、スリット状であっても良いし、同一のサイズおよび形状に設定されていても良いし、各種のサイズや形状が混在していても良い。各種のサイズや形状が混在している場合には、十分な吸音性能を発揮する周波数帯域幅を拡大することができる。   Moreover, the through-hole 3a may be oval, rectangular, polygonal, or slit-shaped, may be set to the same size and shape, or may be mixed in various sizes and shapes. good. When various sizes and shapes are mixed, the frequency bandwidth that exhibits sufficient sound absorption performance can be expanded.

反射板4は、副流路2a・2bを伝搬する音波の一部を反射させ音圧分布が配管1aの断面方向において不均一となるように、つまり、伝搬する音波を遮るように配管1aの内壁に垂直に配設されている。また、反射板4は、副流路2a・2bにそれぞれ軸方向に等間隔で、多孔板3と対向する壁面に複数配置されている。副流路2a側に配置されている反射板4は、間隔Laで配置されており、副流路2b側に配置されている反射板4は、間隔Lbで配置されている。ここで、反射板4の配置間隔L(La・Lb)は、ほぼL=c/2fとなるように設定されている。尚、cは音速、fは各副流路内を流通する気体に含まれる音波の周波数である。つまり、反射板4の間隔は、音波のほぼ半波長となっている。   The reflection plate 4 reflects a part of the sound wave propagating through the sub-channels 2a and 2b so that the sound pressure distribution is not uniform in the cross-sectional direction of the pipe 1a, that is, the pipe 1a is shielded from the propagating sound wave. It is arranged perpendicular to the inner wall. A plurality of the reflecting plates 4 are arranged on the wall surface facing the perforated plate 3 at equal intervals in the axial direction in the sub-channels 2a and 2b. The reflectors 4 arranged on the sub-channel 2a side are arranged at the interval La, and the reflectors 4 arranged on the sub-channel 2b side are arranged at the interval Lb. Here, the arrangement interval L (La · Lb) of the reflection plate 4 is set to be approximately L = c / 2f. Here, c is the speed of sound, and f is the frequency of sound waves contained in the gas flowing through each sub-flow channel. That is, the interval between the reflecting plates 4 is approximately half the wavelength of the sound wave.

反射板4を設けることにより、副流路2a・2bを伝播する音波は一部が反射されるため、気体に含まれる音波の音圧分布が、各副流路において図1(a)に示す曲線のようになる。副流路2a・2bで、音圧分布がそれぞれ異なることにより、貫通孔3aの表裏で音圧差が生じるようになる。ここで、貫通孔3aの表とは、副流路2a側、貫通孔3aの裏とは、副流路2b側を言う。   By providing the reflecting plate 4, a part of the sound wave propagating through the sub-channels 2a and 2b is reflected, so that the sound pressure distribution of the sound wave contained in the gas is shown in FIG. It looks like a curve. A difference in sound pressure between the sub-channels 2a and 2b causes a difference in sound pressure between the front and back of the through hole 3a. Here, the front surface of the through hole 3a refers to the sub flow channel 2a side, and the back surface of the through hole 3a refers to the sub flow channel 2b side.

貫通孔3aの表裏で音圧差が生じることにより、図1(c)中の矢印に示すように、空気は、音圧の高い方から低い方へと移動するようになる。従って、副流路2aを流通する気体は、音圧差により、貫通孔3aを通って、副流路2bに移動するようになる。このため、貫通孔3aに気体を通過させることができ、貫通孔3aと気体との粘性作用および圧力損失により、吸音することができるようになっている。   Due to the difference in sound pressure between the front and back of the through-hole 3a, the air moves from the higher sound pressure to the lower one as shown by the arrows in FIG. Therefore, the gas flowing through the sub flow channel 2a moves to the sub flow channel 2b through the through hole 3a due to the sound pressure difference. For this reason, gas can be allowed to pass through the through-hole 3a, and sound can be absorbed by the viscous action and pressure loss between the through-hole 3a and the gas.

また、上述したように、反射板4の間隔を音波のほぼ半波長とすることで、反射板4間に振幅モードが発生するため、貫通孔3aの表裏で音圧差が生じやすくなり吸音力が大きくなるようになっている。尚、反射板4の間隔を、完全に音波の半波長とする必要はなく、音波を反射することで貫通孔3aの表裏で音圧差が生じる間隔であればよい。例えば、配置間隔Lが、音波の周波数fを中心とした1/3オクターブの範囲、つまり、音波の周波数がf×−6√2からf×√2の範囲として求められた値であれば、貫通孔3aの表裏で音圧差が生じやすくなる。 Further, as described above, since the amplitude mode is generated between the reflection plates 4 by setting the interval between the reflection plates 4 to be approximately half the wavelength of the sound wave, a sound pressure difference is easily generated between the front and back of the through hole 3a, and the sound absorption force is increased. It is getting bigger. In addition, it is not necessary to make the space | interval of the reflecting plate 4 into the half wavelength of a sound wave completely, What is necessary is just the space | interval which a sound pressure difference produces in the front and back of the through-hole 3a by reflecting a sound wave. For example, the arrangement interval L is 1/3 octave range around the frequency f of the acoustic wave, that is, if the value of the frequency of the sound wave is determined as a range from f × -6 √2 of f × 6 √2 The sound pressure difference tends to occur between the front and back of the through hole 3a.

以上説明したように、本実施形態の消音器1は、音波を含む気体の流路を形成する配管1aと、配管1aの軸方向に延設し、副流路2a・2bを形成するように流路2を仕切る多孔板3と、多孔板3に設けられ、気体が通過する貫通孔3aと、副流路に設けられ、伝搬する音波の一部を反射させ、音圧分布が配管1aの断面方向において不均一にする反射板とを有した構造となっている。   As described above, the silencer 1 of the present embodiment is configured so that the pipe 1a that forms the flow path of the gas containing the sound wave and the axial direction of the pipe 1a are extended to form the auxiliary flow paths 2a and 2b. A perforated plate 3 that divides the flow path 2, a through hole 3 a that is provided in the perforated plate 3, and a sub-flow path that is provided in the perforated plate 3, reflects a part of the propagating sound wave, and the sound pressure distribution of the pipe 1 a It has a structure having a reflector that makes it non-uniform in the cross-sectional direction.

これにより、貫通孔の表裏で音圧差が生じるため、それに伴って気体が貫通孔を移動するようになり、気体が貫通孔を通過することによって騒音を吸音することができる。また、反射板4を設けることで生じる音圧差を利用して気体を貫通孔3aに通過させるため、共鳴を利用した消音の構造、即ち、配管内に背後空気層を設ける構造との対比において、配管1aのスペースを小さくすることができる。   As a result, a sound pressure difference is generated between the front and back of the through hole. Accordingly, the gas moves through the through hole, and noise can be absorbed by the gas passing through the through hole. In addition, in order to allow the gas to pass through the through-hole 3a using the sound pressure difference generated by providing the reflecting plate 4, in comparison with the structure of silencing using resonance, that is, the structure of providing a back air layer in the pipe, The space of the pipe 1a can be reduced.

また、本実施形態の反射板4が、多孔板3および/または配管1aに配設されていることにより、反射板4を施工性等により設置位置を適宜変更することが可能となる。さらに、本実施形態において、副流路2a・2bそれぞれに2以上の反射板4が設けられており、同一の副流路に配設されている反射板4の軸方向における間隔が、副流路毎に異なることにより、貫通孔3aの表裏における音圧差がさらに生じやすくなり、吸音性能を向上させることができる。   Moreover, when the reflecting plate 4 of this embodiment is arrange | positioned at the perforated plate 3 and / or the piping 1a, it becomes possible to change the installation position of the reflecting plate 4 suitably by workability etc. Further, in the present embodiment, two or more reflectors 4 are provided in each of the sub-channels 2a and 2b, and the interval in the axial direction of the reflectors 4 disposed in the same sub-channel is determined as the sub-stream. By being different for each road, the sound pressure difference between the front and back of the through hole 3a is more likely to occur, and the sound absorption performance can be improved.

さらに、本実施形態において、同一の副流路に配設されている反射板4の軸方向における間隔Lが、音速をc、副流路を流通する気体に含まれる音波の周波数をfとするとき、ほぼL=c/2fを満たすように設定されている。これにより、反射板4の間隔を音波のほぼ半波長とすることで、反射板4間で振幅モードが発生し、貫通孔3aの前後における音圧差がさらに生じやすくなり、吸音性能を向上させることができる。   Furthermore, in this embodiment, the axial interval L of the reflectors 4 disposed in the same sub-flow path is c, the sound speed is c, and the frequency of sound waves contained in the gas flowing through the sub-flow path is f. Is set so as to satisfy approximately L = c / 2f. Thereby, by setting the interval between the reflection plates 4 to be approximately half the wavelength of the sound wave, an amplitude mode is generated between the reflection plates 4, and a sound pressure difference between the front and rear of the through hole 3 a is more likely to occur, thereby improving sound absorption performance. Can do.

尚、本発明を好適な実施の形態に基づいて説明したが、本発明はその趣旨を超えない範囲において変更が可能である。   In addition, although this invention was demonstrated based on suitable embodiment, this invention can be changed in the range which does not exceed the meaning.

即ち、反射板4は、配管1aの内壁にのみ配設されているが、これに限定されることはない。例えば、図3に示すように、多孔板3の表裏面に反射板4を設けるようにしても良いし、図4に示すように、配管1aと多孔板3との両方に配設するようにしてもよい。また、流路2は、多孔板3により2つの副流路2a・2bに分割されているが、3つの流路に分割するようにしてもよいし、完全に流路2を分割せず1つの副流路を形成するようにしてもよい。さらに、配管1aが円筒の形状を有していても良いし、円筒状の多孔板を用いて流路2を分割するようにしても良い。   That is, the reflecting plate 4 is disposed only on the inner wall of the pipe 1a, but is not limited thereto. For example, as shown in FIG. 3, the reflecting plate 4 may be provided on the front and back surfaces of the porous plate 3, or as shown in FIG. 4, the reflecting plate 4 may be provided on both the pipe 1a and the porous plate 3. May be. The flow path 2 is divided into two sub flow paths 2a and 2b by the perforated plate 3. However, the flow path 2 may be divided into three flow paths, or the flow path 2 may not be divided completely. Two sub-channels may be formed. Furthermore, the pipe 1a may have a cylindrical shape, or the flow path 2 may be divided using a cylindrical perforated plate.

また、反射板4は、音波を反射できる形状であれば、板状でなくてもよい。さらに、反射板4は、ほぼL=c/2fを満足する間隔で配置するようにしているが、これに限定されることはないし、反射板4が1つのみ設けられる構造であっても良い。尚、本実施の形態では、消音したい音波が単一の周波数を有する場合について説明しているが、音波が複数の周波数を有する場合は、複数の周波数それぞれについて求めた間隔Lで、反射板4を副流路に設置すればよい。   Further, the reflecting plate 4 may not be plate-shaped as long as it can reflect sound waves. Further, the reflectors 4 are arranged at intervals that substantially satisfy L = c / 2f. However, the present invention is not limited to this, and a structure in which only one reflector 4 is provided may be used. . In the present embodiment, the case where the sound wave to be silenced has a single frequency has been described. However, when the sound wave has a plurality of frequencies, the reflector 4 is spaced at intervals L obtained for each of the plurality of frequencies. May be installed in the secondary flow path.

(第2の実施形態)
次に、本発明の第2の実施の形態について説明する。本実施の形態に係る消音器5は、副流路2a・2bに配設されている反射板4の間隔が不均一、つまり、一定でないという点において第1の実施形態と相違する。図5に示すように、副流路2aに臨む配管5aの内壁に配設されている反射板4は、図中左側(A点)から図中右側(B点)に向かって、徐々に間隔が大きくなるように配置されている。また、副流路2bに臨む配管5aの内壁に配設されている反射板4は、A点からB点に向かって、徐々に間隔が狭くなるように配置されている。反射板4の配置間隔を一定にしないことで、各副流路において、不定期な音圧分布が発生するため、十分な吸音性能を発揮する周波数帯域幅を拡大することができる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The silencer 5 according to the present embodiment is different from the first embodiment in that the interval between the reflecting plates 4 disposed in the sub-flow paths 2a and 2b is not uniform, that is, not constant. As shown in FIG. 5, the reflecting plate 4 disposed on the inner wall of the pipe 5a facing the sub-flow channel 2a is gradually spaced from the left side (point A) in the figure toward the right side (point B) in the figure. Is arranged to be large. Further, the reflecting plate 4 disposed on the inner wall of the pipe 5a facing the sub flow path 2b is disposed so that the interval gradually decreases from the point A toward the point B. By making the arrangement interval of the reflectors 4 constant, irregular sound pressure distribution is generated in each sub-flow channel, so that the frequency bandwidth that exhibits sufficient sound absorption performance can be expanded.

以上説明したように、本実施の形態に係る消音器5は、第1の実施の形態の効果に加え、広帯域の音波を吸音することができるという効果を奏している。   As described above, the silencer 5 according to the present embodiment has the effect of being able to absorb broadband sound waves in addition to the effects of the first embodiment.

第1の実施の形態に係る消音器1についての効果を確認するため、下記の試験を行った。即ち、図1に示す消音器1に図中左側(A点)から図中右側(B点)に流通させる気体に様々な周波数の騒音を載せて、A点における騒音量(単位はdB)と、B点における騒音量との差を計測した。図2は、上記の試験結果から、横軸に騒音の周波数(単位はHz)、縦軸にA点の騒音量とB点の騒音量との低減量とし、グラフ化したものである。また、本実施例で用いた消音器1は、反射板4が周波数1300Hzの騒音を吸音する間隔で配置されており、配管1aの軸方向の長さが1m、多孔板3の板厚が1mm、貫通孔3aの穴径が1mm、開口率が20%に設定されている。   In order to confirm the effect of the silencer 1 according to the first embodiment, the following test was performed. That is, noise of various frequencies is put on the gas flowing from the left side (point A) in the drawing to the right side (point B) in the silencer 1 shown in FIG. The difference from the noise level at point B was measured. FIG. 2 is a graph showing the noise frequency (unit: Hz) on the horizontal axis and the reduction amount of the noise amount at point A and the noise amount at point B on the vertical axis from the above test results. Moreover, the silencer 1 used in the present embodiment is arranged at intervals at which the reflector 4 absorbs noise having a frequency of 1300 Hz, the axial length of the pipe 1a is 1 m, and the thickness of the porous plate 3 is 1 mm. The through hole 3a has a hole diameter of 1 mm and an aperture ratio of 20%.

図2の縦軸において、上方(低減量が大きくなる方向)に行くにつれて、吸音効果がよくなるようになっている。従って、消音器1に反射板4を1つも設けていない場合は、騒音低減量は0dBとなり吸音されていない状態となっている。図から読み取れるように、消音器1を流通する気体の騒音の周波数が約1300Hz近傍で、約20dBの騒音を低減することができるようになっている。   In the vertical axis of FIG. 2, the sound absorption effect is improved as it goes upward (in the direction in which the reduction amount increases). Therefore, when no silencer 4 is provided in the silencer 1, the noise reduction amount is 0 dB, and no sound is absorbed. As can be seen from the figure, when the frequency of the noise of the gas flowing through the silencer 1 is about 1300 Hz, the noise of about 20 dB can be reduced.

次に、第2の実施の形態に係る消音器5についての効果を確認するため、実施例1と同様の試験を行った。消音器5は、副流路2aに配置された反射板4の間隔は、90、110mm、副流路2bに配置された反射板4の間隔は、50、70mm、他は実施例1と同様に設定されている。図6には、本実施例で用いた消音器5の試験結果の曲線61と、実施例1で用いた消音器1の試験結果の曲線62とが示されている。曲線62は、周波数1300Hz近傍から徐々に騒音低減量が低下して行き、周波数1500Hz近傍では吸音効果がなくなっているのに対し、曲線61は、広帯域で吸音効果を有していることが図より読み取ることができる。   Next, in order to confirm the effect of the silencer 5 according to the second embodiment, the same test as in Example 1 was performed. In the silencer 5, the interval between the reflecting plates 4 arranged in the sub-channel 2a is 90, 110 mm, the interval between the reflecting plates 4 arranged in the sub-channel 2b is 50, 70 mm, and the others are the same as in the first embodiment. Is set to FIG. 6 shows a test result curve 61 of the silencer 5 used in the present embodiment and a test result curve 62 of the silencer 1 used in the first embodiment. The curve 62 shows that the amount of noise reduction gradually decreases from around the frequency of 1300 Hz, and the sound absorbing effect disappears near the frequency of 1500 Hz, whereas the curve 61 has a sound absorbing effect in a wide band. Can be read.

本発明は、上述した装置以外にも、油圧を用いた建設機械やプレス機械、又はポンプ等の液体が流通する配管部分等にも適用することができる。   The present invention can be applied not only to the above-described apparatus but also to a construction machine or a press machine using hydraulic pressure, a pipe portion where a liquid such as a pump circulates, or the like.

(a)本発明の第1の実施形態にかかる消音器の側面透視図である。(b)本発明の第1の実施形態にかかる消音器の正面図である。(c)図1(a)中の貫通孔の拡大図である。(A) It is side surface perspective drawing of the silencer concerning the 1st Embodiment of the present invention. (B) It is a front view of the silencer concerning a 1st embodiment of the present invention. (C) It is an enlarged view of the through-hole in Fig.1 (a). 図1(a)に記載の消音器を用いて行った試験結果を示すグラフである。It is a graph which shows the test result done using the silencer as described in Drawing 1 (a). 本発明の第1の実施形態の変形例を示す図である。It is a figure which shows the modification of the 1st Embodiment of this invention. 本発明の第1の実施形態の別の変形例を示す図である。It is a figure which shows another modification of the 1st Embodiment of this invention. 本発明の第2の実施形態に係る消音器の側面透視図である。It is side surface perspective drawing of the silencer which concerns on the 2nd Embodiment of this invention. 図5に記載の消音器を用いて行った試験結果を示すグラフである。It is a graph which shows the test result performed using the silencer of FIG.

符号の説明Explanation of symbols

1 消音器
2 流路
2a・2b 副流路
3 多孔板
3a 貫通孔
4 反射板
DESCRIPTION OF SYMBOLS 1 Silencer 2 Channel 2a, 2b Subchannel 3 Perforated plate 3a Through hole 4 Reflector

Claims (5)

音波を含む流体の流路を形成する配管と、
前記配管の軸方向に延設し、副流路を形成するように前記流路を仕切る仕切部材と、
前記仕切部材に設けられ、前記流体が通過する貫通孔と、
前記貫通孔の表裏において前記音波の音圧差が生じるように、伝搬する音波の一部を反射し、音圧分布を前記配管の断面方向において不均一とする、前記副流路に設けられた反射部材と
を有していることを特徴とする消音器。
Piping that forms a flow path for fluid containing sound waves;
A partition member extending in the axial direction of the pipe and partitioning the flow path so as to form a sub-flow path;
A through hole provided in the partition member through which the fluid passes;
A reflection provided in the sub-flow path that reflects a part of the propagating sound wave so that a sound pressure difference between the sound waves occurs on the front and back sides of the through hole and makes the sound pressure distribution non-uniform in the cross-sectional direction of the pipe. And a silencer.
前記反射部材が、
前記仕切部材および/または前記配管に配設されていることを特徴とする請求項1に記載の消音器。
The reflective member is
The silencer according to claim 1, wherein the silencer is disposed on the partition member and / or the pipe.
音波を含む流体の流路を形成する配管と、
前記配管の軸方向に延設し、副流路を形成するように前記流路を仕切る仕切部材と、
前記仕切部材に設けられ、前記流体が通過する貫通孔と、
前記配管および/または前記仕切部材に設けられ、前記副流路を伝搬する音波の一部を反射する反射部材と
を有していることを特徴とする消音器。
Piping that forms a flow path for fluid containing sound waves;
A partition member extending in the axial direction of the pipe and partitioning the flow path so as to form a sub-flow path;
A through hole provided in the partition member through which the fluid passes;
A silencer, comprising: a reflection member that is provided in the pipe and / or the partition member and reflects a part of a sound wave propagating through the sub-flow channel.
2以上の前記副流路のそれぞれに2以上の前記反射部材が設けられており、同一の前記副流路に配設されている前記反射部材の前記軸方向における間隔が、前記副流路毎に異なることを特徴とする請求項1〜3の何れか1項に記載の消音器。   Two or more reflective members are provided in each of the two or more secondary flow paths, and the interval between the reflective members arranged in the same secondary flow path in the axial direction is different for each secondary flow path. The silencer according to any one of claims 1 to 3, wherein the silencer is different. 同一の前記副流路に配設されている前記反射部材の前記軸方向における間隔が、不均一であることを特徴とする請求項1〜4の何れか1項に記載の消音器。   The silencer according to any one of claims 1 to 4, wherein intervals in the axial direction of the reflection members arranged in the same sub-flow path are non-uniform.
JP2004120358A 2004-04-15 2004-04-15 Silencer Expired - Fee Related JP4408237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004120358A JP4408237B2 (en) 2004-04-15 2004-04-15 Silencer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004120358A JP4408237B2 (en) 2004-04-15 2004-04-15 Silencer

Publications (2)

Publication Number Publication Date
JP2005299593A true JP2005299593A (en) 2005-10-27
JP4408237B2 JP4408237B2 (en) 2010-02-03

Family

ID=35331430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004120358A Expired - Fee Related JP4408237B2 (en) 2004-04-15 2004-04-15 Silencer

Country Status (1)

Country Link
JP (1) JP4408237B2 (en)

Also Published As

Publication number Publication date
JP4408237B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US6715580B1 (en) Gas flow-through line with sound absorption effect
JP5189972B2 (en) Sound attenuation channel device
JP5760071B2 (en) Universal damping device for air conditioning circuits
JP2005099789A (en) Sound absorbing structure and method of producing the same
CN105390131B (en) Noise elimination device electromechanical device
CN107208508B (en) Noise silencer
US20210207508A1 (en) Device for reducing airborne and structure-borne sound
KR102182473B1 (en) Acoustic damping devices for ducts or chambers
JP4408237B2 (en) Silencer
JP2008064042A (en) Noise reducing structure and method
JP4660511B2 (en) Noise reduction device and vacuum cleaner
JP2005009483A (en) Perforated panel noise reduction structure
KR100555375B1 (en) Resonance type duct silencer
KR101937343B1 (en) silencer
Lee et al. Design of multi-chamber cylindrical silencers with microperforated elements
JP2011227519A (en) Silencer
CN204511573U (en) Resonance noise elimination device
Jebasinski et al. Investigations on whistle noise in automotive exhaust system mufflers
JP2011085761A (en) Noise reduction structure
JP4476705B2 (en) Silencer mechanism
JP2006119432A (en) Muffler
JP4567372B2 (en) Silencer
CN209944712U (en) Noise elimination piece, silencer and ventilation system
WO2012147908A1 (en) Sound attenuation system
RU2787427C1 (en) Gas flow noise suppressor (gshgp)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

R150 Certificate of patent or registration of utility model

Ref document number: 4408237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees