JP2005298778A - Ring-opening polymerization of oxetane derivative using aluminum compound - Google Patents

Ring-opening polymerization of oxetane derivative using aluminum compound Download PDF

Info

Publication number
JP2005298778A
JP2005298778A JP2004121328A JP2004121328A JP2005298778A JP 2005298778 A JP2005298778 A JP 2005298778A JP 2004121328 A JP2004121328 A JP 2004121328A JP 2004121328 A JP2004121328 A JP 2004121328A JP 2005298778 A JP2005298778 A JP 2005298778A
Authority
JP
Japan
Prior art keywords
group
formula
polymerization
molecular weight
bnoad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004121328A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Kano
重義 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University Technology Licensing Organization (KUTLO)
Original Assignee
Kanazawa University Technology Licensing Organization (KUTLO)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University Technology Licensing Organization (KUTLO) filed Critical Kanazawa University Technology Licensing Organization (KUTLO)
Priority to JP2004121328A priority Critical patent/JP2005298778A/en
Publication of JP2005298778A publication Critical patent/JP2005298778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyoxetane having higher molecular weight than conventional one, its production process and an initiator used in the process. <P>SOLUTION: A polyether composed of a recurring unit expressed by formula (1) [where R<SP>1</SP>represents substituted or unsubstututed 1-3C alkyl group; X represents a halogen atom or a group expressed by formula(a): -O-R<SP>2</SP>(R<SP>2</SP>represents an organic group)] and having a number-average molecular weight Mn measured by size exclusion chromatography of 3.5×10<SP>4</SP>-2.0×10<SP>5</SP>is disclosed. And a method for producing the polyether by ring-opening polymerization of an oxetane derivative by using aluminium benzyl alcoholate bis(2, 6-di-tert-butyl-4-methyl phenolate) as the initiator is also disclosed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、オキセタン誘導体の開環重合により得られるポリエーテル、その製造方法及び該方法に用いる有機アルミニウム化合物に関する。   The present invention relates to a polyether obtained by ring-opening polymerization of an oxetane derivative, a method for producing the same, and an organoaluminum compound used in the method.

オキセタン誘導体の開環重合により得られるポリエーテルであるポリオキセタンは、高分子液晶(特許文献1)、熱可塑性エラストマー組成物の樹脂成分(特許文献2)等として利用されている。これらのポリオキセタンは、通常、代表的なルイス酸である三フッ化ホウ素−ジエチルエーテル(BFOEt)を用いたカチオン重合により製造されている(例えば、特許文献1)。 Polyoxetane, which is a polyether obtained by ring-opening polymerization of an oxetane derivative, is used as a polymer liquid crystal (Patent Document 1), a resin component of a thermoplastic elastomer composition (Patent Document 2), and the like. These polyoxetanes are usually produced by cationic polymerization using boron trifluoride-diethyl ether (BF 3 OEt 2 ), which is a typical Lewis acid (for example, Patent Document 1).

しかしながら、BFOEtを用いたカチオン重合により得られるポリオキセタンは分子量が低く、より高分子量のポリオキセタンの開発が望まれている。 However, polyoxetane obtained by cationic polymerization using BF 3 OEt 2 has a low molecular weight, and development of a higher molecular weight polyoxetane is desired.

特開平8−20641号公報Japanese Patent Laid-Open No. 8-20641 特開平8−27352号公報Japanese Patent Laid-Open No. 8-27352

本発明は、従来品よりも高分子量のポリオキセタン、その製造方法、及び該方法に用いる開始剤を提供することを目的とする。   An object of the present invention is to provide a polyoxetane having a higher molecular weight than conventional products, a method for producing the same, and an initiator used in the method.

本発明は、以下の発明を包含する。
(1)次式(I):

Figure 2005298778
[式中、Rは置換又は非置換のC1−3−アルキル基を表し、Xはハロゲン原子又は次式(a):−O−R(式中、Rは有機基を表す。)で示される基を表す。]
で示される繰り返し単位からなり、サイズ排除クロマトグラフィーで測定した数平均分子量Mnが3.5×10〜2.0×10であるポリエーテル。 The present invention includes the following inventions.
(1) The following formula (I):
Figure 2005298778
[In the formula, R 1 represents C 1-3 substituted or unsubstituted - alkyl group, X is a halogen atom or the following formula (a): - O-R 2 ( wherein, R 2 represents an organic group. ) Represents a group represented by ]
A polyether having a number average molecular weight Mn of 3.5 × 10 4 to 2.0 × 10 5 measured by size exclusion chromatography.

(2)サイズ排除クロマトグラフィーで測定した重量平均分子量Mwと数平均分子量Mnの比(Mw/Mn)が1.3〜4.5である前記(1)に記載のポリエーテル。 (2) The polyether according to (1) above, wherein the ratio (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn measured by size exclusion chromatography is 1.3 to 4.5.

(3)次式(II):

Figure 2005298778
(式中、R及びXは前記(1)と同義である。)
で示されるオキセタン誘導体を、次式(III):
Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Phはフェニル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物を開始剤として用いて開環重合させることを特徴とする、次式(I):
Figure 2005298778
(式中、R及びXは前記と同義である。)
で示される繰り返し単位からなるポリエーテルの製造方法。 (3) The following formula (II):
Figure 2005298778
(In the formula, R 1 and X have the same meanings as the above (1).)
An oxetane derivative represented by the following formula (III):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, Ph represents a phenyl group, and Me represents a methyl group.)
Ring opening polymerization using an organoaluminum compound represented by the following formula (I):
Figure 2005298778
(In the formula, R 1 and X are as defined above.)
The manufacturing method of the polyether which consists of a repeating unit shown by these.

(4)次式(IV):

Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物の存在下で反応させる前記(3)に記載の製造方法。 (4) Formula (IV):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, and Me represents a methyl group.)
The manufacturing method as described in said (3) made to react in presence of the organoaluminum compound shown by these.

(5)次式(III):

Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Phはフェニル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物。 (5) The following formula (III):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, Ph represents a phenyl group, and Me represents a methyl group.)
An organoaluminum compound represented by

(6)前記式(III)で示される有機アルミニウム化合物からなる開始剤。 (6) An initiator comprising the organoaluminum compound represented by the formula (III).

本発明によれば、従来品よりも高分子量のポリオキセタン、その製造方法、及び該方法に用いる開始剤を提供することができる。   According to the present invention, it is possible to provide a polyoxetane having a higher molecular weight than conventional products, a method for producing the same, and an initiator used in the method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

前記式(I)及び(II)において、Rで表されるC1−3−アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。これらのアルキル基は、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、C1−6−アルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基)、芳香族基(例えばフェニル基、トリル基、ナフチル基等の芳香族炭化水素基;フリル基等の芳香族複素環)、カルボニル官能基等から選ばれる1以上の置換基で置換されていてもよい。 In the formulas (I) and (II), examples of the C 1-3 -alkyl group represented by R 1 include a methyl group, an ethyl group, a propyl group, and an isopropyl group. These alkyl groups are halogen atoms (for example, fluorine atom, chlorine atom, bromine atom, iodine atom), C 1-6 -alkoxy groups (for example, methoxy group, ethoxy group, propoxy group), aromatic groups (for example, phenyl group, An aromatic hydrocarbon group such as a tolyl group and a naphthyl group; an aromatic heterocycle such as a furyl group), a carbonyl functional group and the like, which may be substituted.

Xで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。   Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

前記式(I)及び(II)において、Xは次式(a):−O−R(式中、Rは有機基を表す。)で示される基でもよい。 In the formula (I) and (II), X is the following formula (a): - O-R 2 ( wherein, R 2 represents an organic group.) Or a group represented by.

で表される有機基としては、例えばC1−10−アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基)、アリール基(例えば、フェニル基、1−ナフチル基、2−ナフチル基等の芳香族炭化水素基;フリル基等の芳香族複素環)、カルボニル官能基等が挙げられる。前記のC1−10−アルキル基、アリール基は、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、C1−6−アルコキシ基(例えばメトキシ基、エトキシ基、プロポキシ基)、カルボニル官能基等から選ばれる1以上の置換基で置換されていてもよい。 Examples of the organic group represented by R 2 include a C 1-10 -alkyl group (eg, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl). Group, isopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group), aryl group (for example, phenyl group, 1-naphthyl group, 2-naphthyl group) Aromatic hydrocarbon groups such as groups; aromatic heterocycles such as furyl groups), carbonyl functional groups and the like. The C 1-10 -alkyl group and aryl group are each a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), C 1-6 -alkoxy group (eg, methoxy group, ethoxy group, propoxy group), It may be substituted with one or more substituents selected from carbonyl functional groups and the like.

例えば、置換されたC1−10−アルキル基としては、−(CH−Hal(式中、nは1〜10の整数を表し、Halはハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)を表す。)、−(CH−O−Ar−COO−Ar−R(式中、nは1〜10の整数を表し、Arは2価のアリール基(例えばフェニレン基、ビフェニレン基、テルフェニレン基、ナフチレン基)を表し、Rはハロゲン原子で置換されていてもよい、C1−10−アルキル基又はC1−10−脂肪族アシル基を表す。)等が挙げられるが、これらに限定されるものではない。 For example, as a substituted C 1-10 -alkyl group, — (CH 2 ) n —Hal (wherein n represents an integer of 1 to 10, and Hal represents a halogen atom (for example, a fluorine atom, a chlorine atom, bromine) atom, an iodine atom)), -. (CH 2 ) in n -O-Ar-COO-Ar -R 3 ( wherein, n represents an integer of 1 to 10, Ar is a divalent aryl group (e.g. A phenylene group, a biphenylene group, a terphenylene group, a naphthylene group), and R 3 represents a C 1-10 -alkyl group or a C 1-10 -aliphatic acyl group which may be substituted with a halogen atom. However, it is not limited to these.

本発明のポリエーテルは、前記式(I)で示される繰り返し単位からなり、サイズ排除クロマトグラフィーで測定した数平均分子量Mnが3.5×10〜2.0×10であることを特徴とするものである。本発明のポリエーテルの重合度は、通常150〜850、好ましくは320〜850である。従来のBFOEtを用いたカチオン重合により得られるポリオキセタンのサイズ排除クロマトグラフィーによる数平均分子量は0.35×10程度である。 The polyether of the present invention comprises the repeating unit represented by the formula (I), and has a number average molecular weight Mn measured by size exclusion chromatography of 3.5 × 10 4 to 2.0 × 10 5. It is what. The degree of polymerization of the polyether of the present invention is usually 150 to 850, preferably 320 to 850. The number average molecular weight of polyoxetane obtained by cationic polymerization using conventional BF 3 OEt 2 by size exclusion chromatography is about 0.35 × 10 4 .

本発明のポリエーテルのサイズ排除クロマトグラフィーで測定した重量平均分子量Mwと数平均分子量Mnの比(Mw/Mn)は、好ましくは1.3〜4.5、更に好ましくは1.3〜3.5である。   The ratio (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn measured by size exclusion chromatography of the polyether of the present invention is preferably 1.3 to 4.5, more preferably 1.3 to 3. 5.

本発明のポリエーテルは、前記式(II)で示されるオキセタン誘導体を、前記式(III)で示される有機アルミニウム化合物(aluminium benzyl alcoholate bis(2,6-di-tert-butyl-4-methylphenolate;以下、場合により「BnOAD」という。)を開始剤(重合開始剤)として用いて開環重合させること容易に製造することができる。この際、前記式(IV)で示される有機アルミニウム化合物(methylaluminium bis(2,6-di-tert-butyl-4-methylphenolate;以下、場合により「MAD」という。)の存在下で、好ましくはBnOADで重合開始後にMADを添加して反応を行うと、反応速度が著しく向上する。   The polyether of the present invention comprises an oxetane derivative represented by the formula (II) and an organoaluminum compound represented by the formula (III) (aluminum benzyl alcoholate bis (2,6-di-tert-butyl-4-methylphenolate; Hereinafter, it may be easily produced by ring-opening polymerization using “BnOAD” as an initiator (polymerization initiator) in some cases, in which case the organoaluminum compound (methylaluminium represented by the above formula (IV)) is prepared. In the presence of bis (2,6-di-tert-butyl-4-methylphenolate; hereinafter referred to as “MAD” in some cases), preferably the reaction is carried out by adding MAD after initiation of polymerization with BnOAD. Is significantly improved.

本発明のポリエーテルの製造原料として用いられる前記式(II)で示されるオキセタン誘導体は、種々のものが知られており、多くのものが宇部興産(株)、東亞合成(株)等から市販されているので、これらをそのまま用いることができる。また、市販品を常法に従って側鎖(ペンダント)を化学修飾して用いることもできる。   Various oxetane derivatives represented by the formula (II) used as a raw material for producing the polyether of the present invention are known, and many are commercially available from Ube Industries, Toagosei Co., Ltd. These can be used as they are. Further, commercially available products can be used after chemically modifying the side chain (pendant) according to a conventional method.

前記式(II)で示されるオキセタン誘導体の具体例としては、3,3−ビス(クロロメチル)オキセタン、3−(4−ブロモブトキシメチル)−3−メチルオキセタン、特開平8−20641号公報(特許文献1)に記載の、前記式(II)においてRがメチル基であり、Xが−O(CH−O−Ar−COO−Ar−R(式中、nは1〜10の整数を表し、Arは2価のアリール基(例えばフェニレン基、ビフェニレン基、テルフェニレン基、ナフチレン基)を表し、Rはハロゲン原子で置換されていてもよい、C1−10−アルキル基又はC1−10−脂肪族アシル基を表す。)で示される基である化合物が挙げられる。 Specific examples of the oxetane derivative represented by the formula (II) include 3,3-bis (chloromethyl) oxetane, 3- (4-bromobutoxymethyl) -3-methyloxetane, and JP-A-8-20641. In the formula (II) described in Patent Document 1), R 1 is a methyl group, and X is —O (CH 2 ) n —O—Ar—COO—Ar—R 3 (wherein n is 1 to 1) Represents an integer of 10, Ar represents a divalent aryl group (for example, a phenylene group, a biphenylene group, a terphenylene group, or a naphthylene group), and R 3 represents a C 1-10 -alkyl which may be substituted with a halogen atom. A group or a C 1-10 -aliphatic acyl group).

前記の開環重合は、無溶媒で、又は溶媒中で行うことができる。ここで使用できる溶媒は、実質的に開環重合を妨げなければ、制限されないが、ベンゼン、トルエンのような芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロベンゼンのようなハロゲン系溶媒等を例示することができる。なお、テトラヒドロフラン中では、前記の開環重合はほとんど進行しない。この開環重合の反応温度は、通常0〜35℃、好ましくは20〜30℃であり、反応時間は、通常2〜168時間、好ましくは24〜168時間である。   The ring-opening polymerization can be performed without a solvent or in a solvent. Solvents that can be used here are not limited as long as they do not substantially prevent ring-opening polymerization, but aromatic hydrocarbon solvents such as benzene and toluene, chloroform, dichloromethane, 1,2-dichloroethane, 1,1,2, and the like. , 2-tetrachloroethane, halogen solvents such as chlorobenzene, and the like. In tetrahydrofuran, the ring-opening polymerization hardly proceeds. The reaction temperature of this ring-opening polymerization is usually 0 to 35 ° C., preferably 20 to 30 ° C., and the reaction time is usually 2 to 168 hours, preferably 24 to 168 hours.

このようにして得られるポリエーテルは、主鎖の末端に水酸基とベンジルオキシ基を有するが、必要に応じて、脱ベンジル化、アルキル化(又はアリール化)、エステル化、アシル化等の方法により化学修飾することができる。   The polyether thus obtained has a hydroxyl group and a benzyloxy group at the end of the main chain, and if necessary, by a method such as debenzylation, alkylation (or arylation), esterification, acylation, etc. Can be chemically modified.

前記の開環重合において、開始剤として用いられる前記式(III)で示されるBnOADは新規物質であり、等モルのベンジルアルコールと前記式(IV)で示されるMADを反応させることにより得ることができる。   In the ring-opening polymerization, BnOAD represented by the formula (III) used as an initiator is a novel substance, and can be obtained by reacting equimolar benzyl alcohol with the MAD represented by the formula (IV). it can.

また、MADの存在下で、好ましくはBnOADで重合開始後にMADを添加して反応を行うと、反応速度が著しく向上する。この際のBnOADとMADのモル比は、好ましくは1:1〜1:3である。   In addition, when MAD is added and the reaction is carried out in the presence of MAD, preferably after the start of polymerization with BnOAD, the reaction rate is remarkably improved. In this case, the molar ratio of BnOAD to MAD is preferably 1: 1 to 1: 3.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.

1.試薬
アルミニウムトリフェノラート(Al(OPh)3, Aldrich)、トリメチルアルミニウムのヘキサン溶液(1.0 mol L-1)(関東化学)、2,6−ジ−tert−ブチル−4−メチルフェノール (関東化学)は市販品そのまま用いた。オキセタン(Aldrich)は金属ナトリウムの小片を加えて、窒素気流下で蒸留した。ベンジルアルコール(関東化学)は水素化カルシウム(CaH2)で乾燥し、窒素気流下で減圧蒸留した。三フッ化ホウ素−ジエチルエーテル(BF3OEt2)(ナカライ)は窒素気流下、減圧下で分別蒸留により精製した。無水溶媒が必要な場合には、ジクロロメタンとクロロベンゼンは粉末状の水素化カルシウムから、直前に窒素気流下で蒸留し、トルエンとテトラヒドロフラン(THF)はそれぞれブチルリチウムとsodium benzophenone ketylから、直前に蒸留して用いた。生成物分離に使ったカラムクロマトグラフィーにはメルク社製Aluminiumoxid 90 (70-230 mesh ASTM)を用いた。薄層クロマトグラフィー(TLC)にはメルク社製aluminium sheets Aluminiumoxid 60 F254 neutralを用いた。
1. Reagents Aluminum triphenolate (Al (OPh) 3 , Aldrich), hexane solution of trimethylaluminum (1.0 mol L −1 ) (Kanto Chemical), 2,6-di-tert-butyl-4-methylphenol (Kanto Chemical) Were used as they were on the market. Oxetane (Aldrich) was distilled under a nitrogen stream with small pieces of metallic sodium. Benzyl alcohol (Kanto Chemical) was dried over calcium hydride (CaH 2 ) and distilled under reduced pressure under a nitrogen stream. Boron trifluoride-diethyl ether (BF 3 OEt 2 ) (Nacalai) was purified by fractional distillation under reduced pressure under a nitrogen stream. If an anhydrous solvent is required, dichloromethane and chlorobenzene are distilled from powdered calcium hydride immediately before in a nitrogen stream, while toluene and tetrahydrofuran (THF) are distilled immediately before from butyllithium and sodium benzophenone ketyl, respectively. Used. The column chromatography used for product separation was Aluminumoxid 90 (70-230 mesh ASTM) manufactured by Merck. For thin layer chromatography (TLC), aluminum sheets Aluminumoxid 60 F 254 neutral manufactured by Merck & Co. were used.

2.測定機器
サイズ排除クロマトグラフィー(SEC)は示差屈折検出計を付けた島津LC-10A高速液体クロマトグラフィー装置で、溶離液として流量1.0 mL min-1のTHFを用いて室温で測定した。数平均分子量(Mn SEC)は標準ポリスチレン(PSt)による分子量校較曲線から決定した。赤外スペクトルは島津FTIR-8100赤外分光光度計で測定した。1H及び13C NMRスペクトルはJEOL JNM EX-270分光計を用い、CDCl3中、1Hと13C核に対してそれぞれ270.05及び67.80 MHzで測定した。1H及び13C化学シフトは、それぞれTMS (δ 0.00 ppm)、CDCl3 (δ 77.00 ppm)基準で決定した。同核多重結合相間スペクトル(HMBC)はJEOL JNM GX-500分光計を用いてCDCl3中で測定した。質量分光分析(HRMSとEIMS)は金沢大学の機器分析センターのJEOL JMS-SX102A質量分析装置(イオン化ポテンシャル,70 eVに対してEIMS)を用いて行った。
2. Measuring instrument Size exclusion chromatography (SEC) was measured at room temperature using a Shimadzu LC-10A high performance liquid chromatography apparatus equipped with a differential refractometer, using THF at a flow rate of 1.0 mL min −1 as an eluent. The number average molecular weight (M n SEC ) was determined from a molecular weight comparison curve with standard polystyrene (PSt). Infrared spectra were measured with Shimadzu FTIR-8100 infrared spectrophotometer. 1 H and 13 C NMR spectra were measured at 270.05 and 67.80 MHz for 1 H and 13 C nuclei in CDCl 3 using a JEOL JNM EX-270 spectrometer, respectively. 1 H and 13 C chemical shifts were determined on the basis of TMS (δ 0.00 ppm) and CDCl 3 (δ 77.00 ppm), respectively. Homonuclear multiple bond interphase spectra (HMBC) were measured in CDCl 3 using a JEOL JNM GX-500 spectrometer. Mass spectrometric analysis (HRMS and EIMS) was performed using the JEOL JMS-SX102A mass spectrometer (ionization potential, EIMS for 70 eV) at the Instrument Analysis Center of Kanazawa University.

3.オキセタンモノマーの合成
(1)3−(4−ブロモブトキシメチル)−3−メチルオキセタン
3−ヒドロキシメチル−3−メチルオキセタンは、水酸化カリウムのアルコール溶液存在下、等モルの2−ヒドロキシメチル−2−メチルプロパン−1,3−ジオールと炭酸ジエチルから既報法((a) Kanoh, S.; Nishimura, T.; Senda, H.; Motoi, M.; Tanaka, T.; Kano, K. Macromolecules 1999, 32, 2438-2448. (b) Kanoh, S.; Nishimura, T.; Tsuchida, T.; Senda, H.; Motoi, M.; Takani, M.; Matsuura, N. Macromol Chem Phys 2001, 202, 2489-2503)に従って合成した(収率, 70%)。50重量%水酸化ナトリウム水溶液(100 mL)とテトラブチルアンモニウムブロミド(2.37 g, 7.4 mmol)のヘキサン溶液(100 mL)の混合物中に3−ヒドロキシメチル−3−メチルオキセタン(15.0 g, 147 mmol)と1,4−ジブロモブタン(95.4 g, 442 mmol)を加えた。混合物を激しく撹拌しながら4時間還流し、水を加えて希釈した。エーテル抽出物を無水硫酸ナトリウムで乾燥してから溶媒を除去した。残渣油分を水素化カルシウムから減圧下で蒸留して3−(4−ブロモブトキシメチル)−3−メチルオキセタンを得た(収率, 65%)。
無色液体.
沸点: 68-71℃ (1 mmHg).
FTIR (neat, cm-1): 1110 (ether stretching), 975 and 830 (cyclic ether stretching), 644 (C-Br stretching).
1H NMR (CDCl3, δ, ppm): 4.50 (d, 2H, J = 5.8 Hz, oxetane methylene trans to Me), 4.35 (d, J = 5.8 Hz, 2H, oxetane methylene cis to Me), 3.50 (t, 2H, OCH 2 (CH2)3Br), 3.47 (s, 2H, CqCH 2 O(CH2)4Br), 3.45 (t, 2H, O(CH2)3CH 2 Br), 1.97 (qui, 2H, O(CH2)2CH 2 CH2Br), 1.74 (qui, 2H, OCH2CH 2 (CH2)2Br), 1.31 (s, 3H, CH3).
13C NMR (CDCl3, δ, ppm): 80.1 (OCH2 in oxetane ring), 76.1 (Cq CH2O in the pendant group), 70.5 (OCH2(CH2)3Br), 39.9 (Cq), 33.8 (CH2Br), 29.7 (CH2CH2Br), 28.2 (CH2(CH2)2Br), 21.4 (CH3).
3. Synthesis of Oxetane Monomer (1) 3- (4-Bromobutoxymethyl) -3-methyloxetane 3-Hydroxymethyl-3-methyloxetane is prepared by equimolar 2-hydroxymethyl-2 in the presence of an alcohol solution of potassium hydroxide. -Reported from methylpropane-1,3-diol and diethyl carbonate ((a) Kanoh, S .; Nishimura, T .; Senda, H .; Motoi, M .; Tanaka, T .; Kano, K. Macromolecules 1999 , 32, 2438-2448. (B) Kanoh, S .; Nishimura, T .; Tsuchida, T .; Senda, H .; Motoi, M .; Takani, M .; Matsuura, N. Macromol Chem Phys 2001, 202 , 2489-2503) (yield, 70%). 3-hydroxymethyl-3-methyloxetane (15.0 g, 147 mmol) in a mixture of 50 wt% aqueous sodium hydroxide (100 mL) and tetrabutylammonium bromide (2.37 g, 7.4 mmol) in hexane (100 mL) And 1,4-dibromobutane (95.4 g, 442 mmol) were added. The mixture was refluxed for 4 hours with vigorous stirring and diluted with water. The ether extract was dried over anhydrous sodium sulfate and then the solvent was removed. The residual oil was distilled from calcium hydride under reduced pressure to give 3- (4-bromobutoxymethyl) -3-methyloxetane (yield, 65%).
Colorless liquid.
Boiling point: 68-71 ℃ (1 mmHg).
FTIR (neat, cm -1 ): 1110 (ether stretching), 975 and 830 (cyclic ether stretching), 644 (C-Br stretching).
1 H NMR (CDCl 3 , δ, ppm): 4.50 (d, 2H, J = 5.8 Hz, oxetane methylene trans to Me), 4.35 (d, J = 5.8 Hz, 2H, oxetane methylene cis to Me), 3.50 ( t, 2H, OC H 2 (CH 2 ) 3 Br), 3.47 (s, 2H, C q C H 2 O (CH 2 ) 4 Br), 3.45 (t, 2H, O (CH 2 ) 3 C H 2 Br), 1.97 (qui, 2H, O (CH 2 ) 2 C H 2 CH 2 Br), 1.74 (qui, 2H, OCH 2 C H 2 (CH 2 ) 2 Br), 1.31 (s, 3H, CH 3 ).
13 C NMR (CDCl 3 , δ, ppm): 80.1 (O C H 2 in oxetane ring), 76.1 (C q C H 2 O in the pendant group), 70.5 (O C H 2 (CH 2 ) 3 Br) , 39.9 (C q ), 33.8 ( C H 2 Br), 29.7 ( C H 2 CH 2 Br), 28.2 ( C H 2 (CH 2 ) 2 Br), 21.4 (CH 3 ).

(2)(3−メチルオキセタン−3−イル)メチルベンゾエート
ジクロロメタン中、無水トリエチルアミン存在下、3−ヒドロキシメチル−3−メチルオキセタンを塩化ベンゾイルでエステル化した(Kanoh, S.; Naka, M.; Yokozuka, T.; Itoh, S.; Nishimura, T.; Honda, M.; Motoi, M.; Matsuura, N. Macromol Chem Phys 2002, 203, 511-521)。常法により抽出して粗製のエステルを得た。水素化カルシウム存在下で減圧蒸留して(3−メチルオキセタン−3−イル)メチルベンゾエートを得た(収率, 66%)。
無色液体.
沸点: 90-92℃ (1 mmHg).
FTIR (neat, cm-1): 1720 (C=O stretching), 1280, 1115 (C-O stretching), 970 and 835 (cyclic ether stretching).
1H NMR (CDCl3, δ, ppm): 8.07 (dd-like, 2H, o-HPh), 7.58 (t-like, 1H, p-HPh), 7.46 (t, 2H, m-HPh), 4.65 (d, J = 6.4 Hz, oxetane methylene trans to Me), 4.46 (d, J = 5.9 Hz, 2H, oxetane methylene cis to Me), 4.40 (s, 2H, CqCH 2 O), 1.43 (s, 3H, CH3).
(2) (3-Methyloxetane-3-yl) methylbenzoate 3-hydroxymethyl-3-methyloxetane was esterified with benzoyl chloride in dichloromethane in the presence of anhydrous triethylamine (Kanoh, S .; Naka, M .; Yokozuka, T .; Itoh, S .; Nishimura, T .; Honda, M .; Motoi, M .; Matsuura, N. Macromol Chem Phys 2002, 203, 511-521). Extraction by a conventional method gave a crude ester. Distillation under reduced pressure in the presence of calcium hydride gave (3-methyloxetan-3-yl) methylbenzoate (yield, 66%).
Colorless liquid.
Boiling point: 90-92 ° C (1 mmHg).
FTIR (neat, cm -1 ): 1720 (C = O stretching), 1280, 1115 (CO stretching), 970 and 835 (cyclic ether stretching).
1 H NMR (CDCl 3 , δ, ppm): 8.07 (dd-like, 2H, oH Ph ), 7.58 (t-like, 1H, pH Ph ), 7.46 (t, 2H, mH Ph ), 4.65 (d, J = 6.4 Hz, oxetane methylene trans to Me), 4.46 (d, J = 5.9 Hz, 2H, oxetane methylene cis to Me), 4.40 (s, 2H, C q C H 2 O), 1.43 (s, 3H, CH 3 ).

4.有機アルミニウム化合物の合成
(1)Methylaluminium Bis(2,6-di-tert-butyl-4-methylphenolate) (MAD)
MADは相田の方法(Adachi, T.; Sugimoto, H.; Aida, T.; Inoue, S. Macromolecules 1993, 26, 1238-1243)に従ってトリメチルアルミニウムと2,6−ジ−tert−ブチル−4−メチルフェノールから合成し、窒素気流下でヘキサンから再結晶して無色の結晶を得た(収率, 60%)。MADは0.43 mol L-1のトルエン溶液として窒素雰囲気下で保存した。
4). Synthesis of organoaluminum compounds (1) Methylaluminium Bis (2,6-di-tert-butyl-4-methylphenolate) (MAD)
MAD was prepared according to Aida's method (Adachi, T .; Sugimoto, H .; Aida, T .; Inoue, S. Macromolecules 1993, 26, 1238-1243) and trimethylaluminum and 2,6-di-tert-butyl-4- It was synthesized from methylphenol and recrystallized from hexane under a nitrogen stream to obtain colorless crystals (yield, 60%). MAD was stored as a 0.43 mol L -1 toluene solution in a nitrogen atmosphere.

(2)Aluminium Benzyl Alcoholate Bis(2,6-di-tert-butyl-4-methylphenolate) (BnOAD)
上述した無色のMAD溶液(10.0 mL, 4.3 mmol)を、三方コックを取り付け窒素気流下にした試験管中にシリンジを用いて移送した。等モルのベンジルアルコール(0.44 mL, 4.3 mmol)をその試験管に滴下して得られたBnOADの淡黄色溶液は窒素雰囲気下で保存した。同様にして半量のベンジルアルコールをMAD溶液に添加してBnOAD/MAD (1:1)の開始剤系も調製した。
(2) Aluminum Benzyl Alcoholate Bis (2,6-di-tert-butyl-4-methylphenolate) (BnOAD)
The colorless MAD solution (10.0 mL, 4.3 mmol) described above was transferred using a syringe into a test tube fitted with a three-way cock and under a nitrogen stream. A pale yellow solution of BnOAD obtained by dropping equimolar benzyl alcohol (0.44 mL, 4.3 mmol) into the test tube was stored under a nitrogen atmosphere. Similarly, an initiator system of BnOAD / MAD (1: 1) was prepared by adding half the amount of benzyl alcohol to the MAD solution.

5.配位アニオン重合
三方コックを取り付けた25-mL重合管を繰り返し脱気窒素置換し、無水トルエン(1.0 mL)、3−(4−ブロモブトキシメチル)−3−メチルオキセタン(0.20 g, 0.18 mL, 0.86 mmol)、BnOADのトルエン溶液(0.10 mL, 0.043 mmol, 5 mol%)を順次加えた。重合管を25℃で24時間静置し、少量のメタノールを加えて重合を停止した。反応混合物をジクロロメタン(10 mL)に溶解し、不溶の無機物が現れた場合にはこれを濾過し、溶媒を除去して乾燥した。粗生成物を1H NMRとSEC分析して、生成比と平均分子量(MnとMw)をそれぞれ決定した。分析用のポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)試料はジクロロメタン溶液にメタノールを加えて再沈澱して精製し、更に減圧下80℃で五酸化二リン上で乾燥した。
5). Coordinated Anionic Polymerization A 25-mL polymerization tube equipped with a three-way cock was repeatedly degassed with nitrogen, and anhydrous toluene (1.0 mL), 3- (4-bromobutoxymethyl) -3-methyloxetane (0.20 g, 0.18 mL, 0.86 mmol) and a toluene solution of BnOAD (0.10 mL, 0.043 mmol, 5 mol%) were sequentially added. The polymerization tube was allowed to stand at 25 ° C. for 24 hours, and a small amount of methanol was added to terminate the polymerization. The reaction mixture was dissolved in dichloromethane (10 mL), and when an insoluble inorganic substance appeared, it was filtered, and the solvent was removed and dried. The crude product was analyzed by 1 H NMR and SEC to determine the product ratio and average molecular weight (Mn and Mw), respectively. An analytical poly (3- (4-bromobutoxymethyl) -3-methyloxetane) sample was purified by reprecipitation by adding methanol to a dichloromethane solution, and further dried over diphosphorus pentoxide at 80 ° C. under reduced pressure. .

BnOADの代わりにAl(OPh)3を用いる重合では、固体の開始剤(13 mg, 0.043 mmol, 5 mol%)を脱気窒素置換した重合管に入れ、無水トルエン中に懸濁して重合を行った。
ポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)
FTIR (neat, cm-1): 1100 (ether stretching), 640 (C-Br stretching).
1H NMR (CDCl3, δ, ppm): 3.49-3.38 (m, 4H, OCH 2 (CH2)2CH 2 Br), 3.25 (s, 2H, CqCH 2 O in the pendant group), 3.20 (s, 4H, OCH 2 in the main chain), 1.94 (qui, 2H, O(CH2)2CH 2 CH2Br), 1.69 (qui, 2H, OCH2CH 2 (CH2)2Br), 0.91 (s, 3H, CH3).
13C NMR (CDCl3, δ, ppm): 74.3 (OCH2 in the main chain), 73.6 (Cq CH2O in the pendant group), 70.4 (OCH2(CH2)3Br), 41.4 (Cq), 33.9 (CH2Br), 30.0 (CH2CH2Br), 28.4 (CH2(CH2)2Br), 17.7 (CH3).
In polymerization using Al (OPh) 3 instead of BnOAD, a solid initiator (13 mg, 0.043 mmol, 5 mol%) is placed in a degassed nitrogen-substituted polymerization tube and suspended in anhydrous toluene for polymerization. It was.
Poly (3- (4-bromobutoxymethyl) -3-methyloxetane)
FTIR (neat, cm -1 ): 1100 (ether stretching), 640 (C-Br stretching).
1 H NMR (CDCl 3 , δ, ppm): 3.49-3.38 (m, 4H, OC H 2 (CH 2 ) 2 C H 2 Br), 3.25 (s, 2H, C q C H 2 O in the pendant group ), 3.20 (s, 4H, OC H 2 in the main chain), 1.94 (qui, 2H, O (CH 2 ) 2 C H 2 CH 2 Br), 1.69 (qui, 2H, OCH 2 C H 2 (CH 2) 2 Br), 0.91 ( s, 3H, CH 3).
13 C NMR (CDCl 3 , δ, ppm): 74.3 (OCH 2 in the main chain), 73.6 (C q C H 2 O in the pendant group), 70.4 (O C H 2 (CH 2 ) 3 Br), 41.4 (C q ), 33.9 (CH 2 Br), 30.0 ( C H 2 CH 2 Br), 28.4 ( C H 2 (CH 2 ) 2 Br), 17.7 (CH 3 ).

6.カチオン重合
3−(4−ブロモブトキシメチル)−3−メチルオキセタンのカチオン重合は5 mol%のBF3OEt2を用いて前記と同様の手順で行った。1H NMRとSEC分析の後、粗製のポリマーのクロロホルムの濃厚溶液にメタノールを加えて分別沈澱して高分子量部をほとんど除去した。得られた上澄液から溶媒を除去した後、残渣のオリゴマー部をカラムクロマトグラフィー(酢酸エチル/ヘキサン = 1:4 v/v)で分離し、3−(4−ブロモブトキシメチル)−3−メチルオキセタンの環状テトラマー(収率, 10%)を得た。
3,7,11,15−テトラ(4−ブロモブトキシメチル)−3,7,11,15−テトラメチル−1,5,9,13−テトラオキサシクロヘキサデカン(環状テトラマー)
TLC: Rf = 0.48, 酢酸エチル/ヘキサン (1:4 v/v).
FTIR (neat, cm-1): 1100 (ether stretching), 650 (C-Br stretching).
1H NMR (CDCl3, δ, ppm): 3.47-3.33 (m, 4H, OCH 2 (CH2)2CH 2 Br), 3.24-3.11 (m, 6H, CqCH 2 O in the main chain and the pendant group), 1.95 (qui, 2H, O(CH2)2CH 2 CH2Br), 1.68 (qui, 2H, O(CH2)2CH 2 CH2Br), 0.92-0.89 (s with fine splitting, 3H, CH3).
13C NMR (CDCl3, δ, ppm): 74.6 with fine splitting (Cq CH2O in the pendant group), 72.1 (OCH2 in the main chain), 70.4 (OCH2(CH2)3Br), 41.4 with fine splitting (Cq), 33.9 (CH2Br), 29.9 (CH2CH2Br), 28.3 (CH2(CH2)2Br), 17.8 with fine splitting (CH3).
FAB HRMS: Found, m/e 949.1674 (calcd for C36H68O8 79Br2 81Br2 + H, 949.1687).
6). Cationic Polymerization Cationic polymerization of 3- (4-bromobutoxymethyl) -3-methyloxetane was performed in the same procedure as described above using 5 mol% of BF 3 OEt 2 . After 1 H NMR and SEC analysis, methanol was added to a concentrated solution of crude polymer in chloroform and fractionated to remove most of the high molecular weight portion. After removing the solvent from the resulting supernatant, the oligomer part of the residue was separated by column chromatography (ethyl acetate / hexane = 1: 4 v / v), and 3- (4-bromobutoxymethyl) -3- A cyclic tetramer of methyloxetane (yield, 10%) was obtained.
3,7,11,15-tetra (4-bromobutoxymethyl) -3,7,11,15-tetramethyl-1,5,9,13-tetraoxacyclohexadecane (cyclic tetramer)
TLC: Rf = 0.48, ethyl acetate / hexane (1: 4 v / v).
FTIR (neat, cm -1 ): 1100 (ether stretching), 650 (C-Br stretching).
1 H NMR (CDCl 3 , δ, ppm): 3.47-3.33 (m, 4H, OC H 2 (CH 2 ) 2 C H 2 Br), 3.24-3.11 (m, 6H, C q C H 2 O in the main chain and the pendant group), 1.95 (qui, 2H, O (CH 2 ) 2 C H 2 CH 2 Br), 1.68 (qui, 2H, O (CH 2 ) 2 C H 2 CH 2 Br), 0.92- 0.89 (s with fine splitting, 3H, CH 3 ).
13 C NMR (CDCl 3 , δ, ppm): 74.6 with fine splitting (C q C H 2 O in the pendant group), 72.1 (O C H 2 in the main chain), 70.4 (O C H 2 (CH 2 ) 3 Br), 41.4 with fine splitting (C q ), 33.9 (CH 2 Br), 29.9 ( C H 2 CH 2 Br), 28.3 ( C H 2 (CH 2 ) 2 Br), 17.8 with fine splitting (CH 3 ).
FAB HRMS: Found, m / e 949.1674 (calcd for C 36 H 68 O 8 79 Br 2 81 Br 2 + H, 949.1687).

7.結果と考察
(1)3−(4−ブロモブトキシメチル)−3−メチルオキセタンの重合
オキセタンモノマーには、合成が容易で且つその官能基が酸や塩基に対して比較的安定な3−(4−ブロモブトキシメチル)−3−メチルオキセタンを選んだ。3−(4−ブロモブトキシメチル)−3−メチルオキセタンに対して5 mol%の開始剤を用いてトルエン中、25℃で3−(4−ブロモブトキシメチル)−3−メチルオキセタンを重合した結果を表1にまとめた。代表的なルイス酸のBF3OEt2を用いた通常のカチオン重合では低分子量のポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)(Mn = 3.5 ´ 103)が得られた(run 1)。MADはオキセタンのカチオン重合開始剤としてあまり有効ではないが、MAD単独でも3−(4−ブロモブトキシメチル)−3−メチルオキセタンの重合が起きた。得られたポリマーはBF3OEt2で得られたものよりかなり高分子量(Mn = 2.9 ´ 104)で、ブロードな分子量分布を示した(Mw/Mn = 5.0)(図1)。相当量の高分子量部が生成する理由としてはカチオン的な連鎖成長における対イオン効果によるのかもしれない。他方で、一部のMADが系中にわずかに混入した水やアルコールなどの水酸基成分と反応してアルミニウムトリアルコキシド種になり、これが開始反応で重要な役割を果たす可能性も考えられる。
7). Results and Discussion (1) Polymerization of 3- (4-bromobutoxymethyl) -3-methyloxetane Oxetane monomers are easily synthesized and their functional groups are relatively stable to acids and bases. -Bromobutoxymethyl) -3-methyloxetane was chosen. Results of polymerizing 3- (4-bromobutoxymethyl) -3-methyloxetane in toluene at 25 ° C. using 5 mol% of initiator with respect to 3- (4-bromobutoxymethyl) -3-methyloxetane Are summarized in Table 1. Normal cationic polymerization using a representative Lewis acid, BF 3 OEt 2 , yielded low molecular weight poly (3- (4-bromobutoxymethyl) -3-methyloxetane) (Mn = 3.5'10 3 ). (run 1). Although MAD is not very effective as a cationic polymerization initiator for oxetane, polymerization of 3- (4-bromobutoxymethyl) -3-methyloxetane occurred even with MAD alone. The obtained polymer had a considerably higher molecular weight (Mn = 2.9′10 4 ) than that obtained with BF 3 OEt 2 and a broad molecular weight distribution (Mw / Mn = 5.0) (FIG. 1). The reason for the formation of a substantial amount of high molecular weight may be due to the counter ion effect in cationic chain growth. On the other hand, some MAD may react with hydroxyl components such as water and alcohol slightly mixed in the system to form aluminum trialkoxide species, which may play an important role in the initiation reaction.

Figure 2005298778
Figure 2005298778

このような仮説を立証するためにMADのトルエン溶液に等モルのベンジルアルコールを添加して構造明確なアルミニウムトリアルコキシドを合成した。反応は反応式1に示したようにメタンの発生を伴ってBnOADが生成すると考えられる。アルコキシ交換反応(不均化反応)は2,6−ジ置換フェノラートの立体混雑のために起こりにくいと思われる。従って、生成したBnOADは溶液中に単一種として存在すると考えられる。本発明者らはBnOADを用いて3−(4−ブロモブトキシメチル)−3−メチルオキセタンを重合することに成功したが、重合はゆっくり進みポリマー収率は24時間でも60%にしかならなかった(表1、run 5)。得られたポリマーは高分子量(Mn = 10.1 ´ 104)で、分子量分布はわずかにブロードになった(Mw/Mn = 3.0)。それとは異なって、重合中に後からベンジルアルコール添加すると重合は停止した。例えばMAD単独で開始した重合を2時間後にメタノールで停止した場合(表1、run 3)と2時間後にベンジルアルコールを加えた上で24時間後にメタノールを加えた場合(表1、run 4)では結果はほとんど変わらない。 In order to prove such a hypothesis, an equimolar amount of benzyl alcohol was added to a toluene solution of MAD to synthesize a well-defined aluminum trialkoxide. The reaction is considered to produce BnOAD with the generation of methane as shown in Reaction Scheme 1. Alkoxy exchange reactions (disproportionation reactions) are unlikely to occur due to steric congestion of 2,6-disubstituted phenolates. Therefore, it is considered that the produced BnOAD exists as a single species in the solution. The inventors succeeded in polymerizing 3- (4-bromobutoxymethyl) -3-methyloxetane using BnOAD, but the polymerization proceeded slowly and the polymer yield was only 60% even in 24 hours. (Table 1, run 5). The obtained polymer had a high molecular weight (Mn = 10.1 × 10 4 ), and the molecular weight distribution was slightly broad (Mw / Mn = 3.0). In contrast, the polymerization stopped when benzyl alcohol was added later during the polymerization. For example, when polymerization initiated by MAD alone was stopped with methanol after 2 hours (Table 1, run 3) and when benzyl alcohol was added after 2 hours and methanol was added after 24 hours (Table 1, run 4) The result is almost unchanged.

Figure 2005298778
Figure 2005298778

(2)カチオン的に生成したポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)
BnOADとBF3OEt2を用いて得られた二つのポリマーはMnだけでなくSEC曲線や1H NMRスペクトルにも明確な違いが見られた。図1に示したようにBF3OEt2で得られたポリマーは特にシャープなフラクションBを含んだ多峰性のSEC曲線を示した。1H NMR(図2)ではBF3OEt2で得られたポリマーのメチルプロトンシグナルに微細分裂が見られたが、BnOADの場合には相当するシグナルは微細分裂のないシングレットとして現れた。オリゴマー成分をキャラクタリゼーションするために、カチオン機構で生成したポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)を分別沈澱法とアルミナによるカラムクロマトグラフィーで分離した。単離したフラクションBのSEC曲線を図1に点線で示し、図3では線状ポリマーのIRスペクトルと13C NMRスペクトルとの違いを比較した。フラクションBのIRスペクトルには水酸基吸収がないので(図3矢印部分)、末端水酸基を持たないことを示していた。FAB HRMSでは親ピークが949.1674 質量数/電荷に現れ、プロトン化したテトラマーのひとつの同位体イオン、(C9H17 79BrO2)2 + (C9H17 81BrO2)2 + Hに対する計算値とよく一致した。従って、フラクションBは反応式2に示したようにバックバイティング又はエンドバイティング環化によって生成した環状テトラマーに構造決定した。
(2) Cationically produced poly (3- (4-bromobutoxymethyl) -3-methyloxetane)
The two polymers obtained using BnOAD and BF 3 OEt 2 showed clear differences not only in Mn but also in SEC curves and 1H NMR spectra. As shown in FIG. 1, the polymer obtained with BF 3 OEt 2 exhibited a multi-modal SEC curve containing a particularly sharp fraction B. In 1 H NMR (FIG. 2), fine splitting was observed in the methyl proton signal of the polymer obtained with BF 3 OEt 2 , but in the case of BnOAD, the corresponding signal appeared as a singlet without fine splitting. In order to characterize the oligomer component, poly (3- (4-bromobutoxymethyl) -3-methyloxetane) produced by a cationic mechanism was separated by fractional precipitation and column chromatography with alumina. The SEC curve of the isolated fraction B is shown by a dotted line in FIG. 1, and FIG. 3 compares the difference between the IR spectrum and 13 C NMR spectrum of the linear polymer. The IR spectrum of fraction B has no hydroxyl group absorption (arrow portion in FIG. 3), indicating that it has no terminal hydroxyl group. In FAB HRMS, the parent peak appears at 949.1674 mass number / charge and is calculated for one isotopic ion of protonated tetramer, (C 9 H 17 79 BrO 2 ) 2 + (C 9 H 17 81 BrO 2 ) 2 + H It was in good agreement with the value. Therefore, the structure of fraction B was determined as a cyclic tetramer produced by back-biting or end-biting cyclization as shown in Reaction Scheme 2.

Figure 2005298778
Figure 2005298778

これはオキセタンのカチオンオリゴメリゼーションでは環状テトラマーが主に形成するというこれまでの報告と一致している((a) Penczek, S.; Slomkowski, S. Cationic Ring-opening Polymerization: Formation of Cyclic Oligomers. In Comprehensive Polymer Science, Allen, G.; Bevington, J. C.; Eastmond, G. C.; Ledwith, A.; Russo, S.; Sigwalt, P. Eds.; Pergamon Press: Oxford, 1989; Vol. 3, Chapter 47, pp 725-750. (b) Rose, J. B. J Chem Soc 1956, 542-546. (c) Arimatsu, Y. J Polym Sci: A-1 1966, 4, 728-729. (d) Dreyfuss, P.; Dreyfuss, M. P. Polym J 1976, 8, 81-87. (e) Bucquoye, M.; Goethals, E. J. Makromol Chem 1978, 179, 1681-1688. (f) Bucquoye, M. R.; Goethals, E. J. Makromol Chem 1981, 182, 3379-3386)。同様の方法でフラクションAとCはそれぞれ線状ポリマーと、線状の二量体と三量体の混合物に同定した。図3に示した13Cシグナルの帰属はheteroCOSYスペクトルとHMBCスペクトルの両方に基づいた。環状テトラマーのC1(環に直結するペンダントメチレン炭素)とCm(環内メチレン炭素)シグナルは線状ポリマーで対応するシグナルと比較すると、化学シフト値が逆になって出現することがわかった。環状テトラマーのCq(環内四級炭素)シグナルや特にC1シグナルに微細分裂が見られることは注目すべきである。1H NMRでも同様にメチルプロトンシグナルに、丁度トリプレットのような分裂が見られた。おそらくこれらの現象は環状テトラマーの配座異性、即ち、cone、partial cone、1,2-alternate、1,3-alternateコンホマーによると考えられる。 This is consistent with previous reports that cyclic tetramers mainly form in oxetane cationic oligomerization ((a) Penczek, S .; Slomkowski, S. Cationic Ring-opening Polymerization: Formation of Cyclic Oligomers. In Comprehensive Polymer Science, Allen, G .; Bevington, JC; Eastmond, GC; Ledwith, A .; Russo, S .; Sigwalt, P. Eds .; Pergamon Press: Oxford, 1989; Vol. 3, Chapter 47, pp 725-750. (B) Rose, JB J Chem Soc 1956, 542-546. (C) Arimatsu, Y. J Polym Sci: A-1 1966, 4, 728-729. (D) Dreyfuss, P .; Dreyfuss , MP Polym J 1976, 8, 81-87. (E) Bucquoye, M .; Goethals, EJ Makromol Chem 1978, 179, 1681-1688. (F) Bucquoye, MR; Goethals, EJ Makromol Chem 1981, 182, 3379 -3386). In a similar manner, fractions A and C were identified as a linear polymer and a mixture of linear dimers and trimers, respectively. The 13 C signal assignments shown in FIG. 3 were based on both the heteroCOSY spectrum and the HMBC spectrum. Cyclic tetramer C 1 (pendant methylene carbon directly attached to the ring) and C m (ring methylene carbon) signals were found to appear with opposite chemical shift values when compared to the corresponding signals in linear polymers. . It should be noted that there is a fine splitting in the cyclic tetramer C q (intra-ring quaternary carbon) signal and especially the C 1 signal. In 1 H NMR, the methyl proton signal was also split just like a triplet. Perhaps these phenomena are thought to be due to the conformational isomerism of the cyclic tetramer, ie, cone, partial cone, 1,2-alternate, 1,3-alternate conformer.

Figure 2005298778
Figure 2005298778

上述したようにBnOADにより得られたポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)はカチオン的に生成したポリマーとMnにおいても、線状や環状のオリゴマーを生成しない点でもはっきりと異なるものであることが分かった。   As described above, the poly (3- (4-bromobutoxymethyl) -3-methyloxetane) obtained by BnOAD is clear in that it does not form a linear or cyclic oligomer in the cationically produced polymer and Mn. It turned out to be different.

(3)MADにより促進された3−(4−ブロモブトキシメチル)−3−メチルオキセタンの重合
BnOADによる遅い重合を加速するため、嵩高いルイス酸のMADを加えた。MADはオキセタンに配位してα−炭素の電子求引性を増大することが既に実証されている(Takeuchi, D.; Aida, T. Macromolecules 1996, 29, 8096-8100)。5 mol%のBnOADで重合を開始した直後にMAD(5 mol%)を加えると、重合は著しく加速されて24時間で高分子量のポリマーがほぼ定量的に得られた(表1、run 6)。その上、MADを添加した場合でもMnには殆ど変化がなかった。一方、BnOADとMADを1:1混合物として同時に添加した場合(表1、run 7)にはMAD単独での重合(表1、run 2)とよく似た結果になった。MADによる加速効果を2時間に限った重合時間内でのポリマー収率から評価した(表1、runs 8-10)。重合速度はMADの添加量の増加と共に著しく上昇した。図4は、5 mol%のBnOADを用いる重合において、MAD無添加の場合と添加した場合(5 mol%)の時間−ポリマー収率プロットである。どちらのプロットも広い時間尺度に亘って線形になり擬一次速度論になることを示している。直線部の傾きの差からBnOAD単独の重合と比べてMADを添加すると約5.4倍速く重合することが分かった。しかし、MADを添加した場合、ポリマー収率が85%以上になると、おそらく粘性効果のため重合速度が低下した。MADの添加とは無関係にポリマーのMnは例え低転化率であっても1.2-1.4 ´ 105にまで達し、Mnはポリマー収率が約80%になるまで殆ど変化しなかった。このことはBnOADによる重合過程が遅い開始反応と何らかの停止反応を伴った非常に速い成長反応からなることを示している。更に、高転化率では比較的低分子量のポリマーが生成する傾向が見られた。従って、100%に近い転化率で得られたポリマーのMnはわずかに低下するうえ(Mn = 8.1 ´ 104)、分子量分布もブロードになった(Mw/Mn = 3.0)。
(3) Polymerization of 3- (4-bromobutoxymethyl) -3-methyloxetane promoted by MAD
To accelerate the slow polymerization with BnOAD, bulky Lewis acid MAD was added. It has already been demonstrated that MAD coordinates to oxetane to increase the electron withdrawing property of α-carbon (Takeuchi, D .; Aida, T. Macromolecules 1996, 29, 8096-8100). When MAD (5 mol%) was added immediately after the start of polymerization with 5 mol% BnOAD, the polymerization was significantly accelerated and a high molecular weight polymer was obtained almost quantitatively in 24 hours (Table 1, run 6). . Moreover, there was almost no change in Mn even when MAD was added. On the other hand, when BnOAD and MAD were added simultaneously as a 1: 1 mixture (Table 1, run 7), the results were very similar to polymerization with MAD alone (Table 1, run 2). The acceleration effect by MAD was evaluated from the polymer yield within the polymerization time limited to 2 hours (Table 1, runs 8-10). The polymerization rate increased remarkably with increasing amount of MAD added. FIG. 4 is a time-polymer yield plot in the case of polymerization using 5 mol% of BnOAD, with and without addition of MAD (5 mol%). Both plots show that they are linear over a wide time scale and become pseudo-first order kinetics. From the difference in the slope of the straight line, it was found that the polymerization was about 5.4 times faster when MAD was added compared to the polymerization of BnOAD alone. However, when MAD was added, the polymerization rate decreased when the polymer yield was 85% or more, probably due to a viscous effect. A low conversion rate regardless Mn of the polymer is for example the addition of MAD reach even 1.2-1.4 '10 5, Mn did not change almost until the polymer yield of about 80%. This indicates that the polymerization process with BnOAD consists of a very fast growth reaction with a slow initiation reaction and some termination reaction. Furthermore, there was a tendency for relatively low molecular weight polymers to be formed at high conversions. Therefore, the Mn of the polymer obtained at a conversion rate close to 100% was slightly lowered (Mn = 8.1 × 10 4 ) and the molecular weight distribution was also broad (Mw / Mn = 3.0).

MADで加速されたBnOADによる重合はジクロロメタンやクロロベンゼン中の他に、無溶媒でも進行した(表1、runs 11-13)。無溶媒の重合で、ポリマーは24時間でほぼ定量的に得られたが、Mw/Mnはブロードになり、Mnは低下した。無溶媒中で重合して得られたポリマーはTHFやジクロロメタン、熱クロロベンゼンにほとんど溶けなかったが、その理由はまだよく分かっていない。高極性・高配位性溶媒のTHF中では反応しなかった(表1、run 14)。   Polymerization with BnOAD accelerated by MAD proceeded in the absence of solvent in addition to dichloromethane and chlorobenzene (Table 1, runs 11-13). With solvent-free polymerization, the polymer was obtained almost quantitatively in 24 hours, but Mw / Mn became broad and Mn decreased. The polymer obtained by polymerization in the absence of solvent was hardly soluble in THF, dichloromethane, or hot chlorobenzene, but the reason for this is still not well understood. There was no reaction in THF, a highly polar and highly coordinating solvent (Table 1, run 14).

(4)重合機構
次に、本発明者らはBnOADによる重合の反応機構に焦点を絞って調べた。BnOADやMADのルイス酸性は(3−メチルオキセタン−3−イル)メチルベンゾエートから双環オルソエステルを与える反応の触媒活性から定性的に評価できる(反応式3)。この異性化ではエステルカルボニル基の分子内求核攻撃がオキセタニル基の分子間求核攻撃(開環重合)よりも常に優先する((a) Kanoh, S.; Naka, M.; Yokozuka, T.; Itoh, S.; Nishimura, T.; Honda, M.; Motoi, M.; Matsuura, N. Macromol Chem Phys 2002, 203, 511-521. (b) Corey, E. J.; Raju, N. Tetrahedron Lett 1983, 24, 5571-5574. (c) Kanoh, S.; Naka, M.; Nishimura, T.; Motoi, M. Tetrahedron 2002, 58, 7049-7064)。これらの有機アルミニウム錯体はオキセタンエステルを異性化させる程十分なルイス酸性を持っていないことが分かった。この結果はどちらのアルミニウム錯体も3−(4−ブロモブトキシメチル)−3−メチルオキセタンをカチオン的に重合できないことを強く示唆している。
(4) Polymerization mechanism Next, the inventors focused on the reaction mechanism of polymerization by BnOAD. The Lewis acidity of BnOAD and MAD can be qualitatively evaluated from the catalytic activity of the reaction giving a bicyclic orthoester from (3-methyloxetane-3-yl) methylbenzoate (Reaction Formula 3). In this isomerization, the intramolecular nucleophilic attack of the ester carbonyl group always takes precedence over the intermolecular nucleophilic attack (ring-opening polymerization) of the oxetanyl group ((a) Kanoh, S .; Naka, M .; Yokozuka, T. Itoh, S .; Nishimura, T .; Honda, M .; Motoi, M .; Matsuura, N. Macromol Chem Phys 2002, 203, 511-521. (B) Corey, EJ; Raju, N. Tetrahedron Lett 1983 , 24, 5571-5574. (C) Kanoh, S .; Naka, M .; Nishimura, T .; Motoi, M. Tetrahedron 2002, 58, 7049-7064). These organoaluminum complexes were found not to have sufficient Lewis acidity to isomerize oxetane esters. This result strongly suggests that neither aluminum complex can cationically polymerize 3- (4-bromobutoxymethyl) -3-methyloxetane.

Figure 2005298778
Figure 2005298778

もしBnOADで開始した重合がアニオン的に進行するならば、ベンジルオキシ基か1,2-二置換のフェニルオキシ基の何れかが開始末端に取り込まれるはずである。しかし、重合の極初期に得たポリマーでも分子量があまりにも高いため1H NMRで問題になっているフラグメントを確認することはできなかった。そこで、BnOADの代わりにAl(OPh)3を用いて重合を行った(表1、run 15)。このアルミニウム化合物はトルエンに溶けにくいため、あまり適切な開始剤ではなく、反応時間を延長してもポリマーは低収率であった。幸いにも分子量が低いため(Mn SEC = 1.1 ´ 104)、容易にNMR分析ができた。1H NMRスペクトルの芳香族領域を図2に示した。6.87-6.90 ppmの小さなシグナルはモデル化合物の1−フェニルオキシブタンの化学シフトに基づいて、末端フェニルオキシ基のo-,p-プロトンに帰属した。ポリマーのMn NMRは積分値より1.7 ´ 104に見積もられた。Mn SECとMn NMRの差はおそらく積分誤差か、ポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)と標準ポリスチレンの流体力学的体積の差から生じたと考えられる。 If the polymerization initiated by BnOAD proceeds anionically, either a benzyloxy group or a 1,2-disubstituted phenyloxy group should be incorporated at the initiation end. However, even in the polymer obtained at the very early stage of polymerization, the molecular weight was so high that the problematic fragment could not be confirmed by 1 H NMR. Therefore, polymerization was carried out using Al (OPh) 3 instead of BnOAD (Table 1, run 15). Since this aluminum compound is hardly soluble in toluene, it is not a suitable initiator, and the polymer yield was low even if the reaction time was extended. Fortunately, the molecular weight was low (M n SEC = 1.1 ´ 10 4 ), so NMR analysis was easy. The aromatic region of the 1 H NMR spectrum is shown in FIG. A small signal of 6.87-6.90 ppm was attributed to the o-, p-protons of the terminal phenyloxy group based on the chemical shift of the model compound 1-phenyloxybutane. The M n NMR of the polymer was estimated to be 1.7 ′ 10 4 from the integrated value. The difference between M n SEC and M n NMR is probably due to integration error or the difference in hydrodynamic volume between poly (3- (4-bromobutoxymethyl) -3-methyloxetane) and standard polystyrene.

Al(OPh)3で開始した重合から類推してBnOADによる3−(4−ブロモブトキシメチル)−3−メチルオキセタンの重合機構が提案できる。反応式4に示したように、BnOADが3−(4−ブロモブトキシメチル)−3−メチルオキセタンに配位してモノマーを活性化する。そして立体的により小さく、従ってより求電子的なベンジルアルコレートが分子内的に電子不足のα−炭素を求核攻撃してベンジルオキシ基が開環した3−(4−ブロモブトキシメチル)−3−メチルオキセタンのアルコレートに開始末端として挿入される。このようにしてできた開始種に他の3−(4−ブロモブトキシメチル)−3−メチルオキセタンが配位した後、そのオキセタンがオキセタンアルコレートの分子内求核攻撃を受けるか、あるいは未反応のBnOADに配位した3−(4−ブロモブトキシメチル)−3−メチルオキセタンが分子間求核攻撃を受けて成長反応が進む。よりルイス酸性の高いMAD存在下では3−(4−ブロモブトキシメチル)−3−メチルオキセタンは更に活性化されるので分子間成長過程の寄与の方が当然大きくなる。 By analogy from polymerization initiated with Al (OPh) 3 , a polymerization mechanism of 3- (4-bromobutoxymethyl) -3-methyloxetane by BnOAD can be proposed. As shown in Reaction Scheme 4, BnOAD coordinates to 3- (4-bromobutoxymethyl) -3-methyloxetane to activate the monomer. And 3- (4-bromobutoxymethyl) -3, which is sterically smaller and therefore more electrophilic, benzyl alcoholate has opened a benzyloxy group by nucleophilic attack on an α-carbon which is electron-deficient in the molecule. -Inserted into the alcoholate of methyl oxetane as the starting end. After other 3- (4-bromobutoxymethyl) -3-methyloxetane is coordinated to the starting species thus formed, the oxetane is subjected to intramolecular nucleophilic attack of oxetane alcoholate or unreacted. 3- (4-Bromobutoxymethyl) -3-methyloxetane coordinated to BnOAD in the molecule undergoes an intermolecular nucleophilic attack and the growth reaction proceeds. In the presence of MAD having a higher Lewis acidity, 3- (4-bromobutoxymethyl) -3-methyloxetane is further activated, so that the contribution of the intermolecular growth process naturally becomes larger.

Figure 2005298778
(式中、OxBrは3−(4−ブロモブトキシメチル)−3−メチルオキセタンを表す。)
Figure 2005298778
(In the formula, OxBr represents 3- (4-bromobutoxymethyl) -3-methyloxetane.)

BnOADは他のオキセタン類も重合することができた。これらのモノマーには常にその3-位に3−(4−ブロモブトキシメチル)−3−メチルオキセタンのペンダント(側鎖)オキシメチレン基のような電子求引基が必要であった。電子求引基によりα−炭素の電子求引性が増大されることで起こりにくい開始反応におけるベンジルアルコレートの分子内求核攻撃を促進しているのかもしれない。更に、MADが配位するとこれらのオキセタンの開環重合性にも共同的な活性化効果を及ぼす。無置換のオキセタンはBnOADでは重合しなかった。工業的に入手できるオキセタンは3-位にヒドロキシメチル基を持つので、一般的な化学修飾を施した後でも多かれ少なかれ電子求引基は残ることになる。そのようなオキセタンの開環重合で高分子量のポリエーテルを合成する上でBnOADは有用な開始剤として期待される。   BnOAD could polymerize other oxetanes. These monomers always required an electron withdrawing group such as the pendant (side chain) oxymethylene group of 3- (4-bromobutoxymethyl) -3-methyloxetane at the 3-position. The electron withdrawing group may promote the intramolecular nucleophilic attack of benzyl alcoholate in the initiation reaction which is unlikely to occur due to the increase of the electron withdrawing property of the α-carbon. Furthermore, the coordination of MAD also has a synergistic activation effect on the ring-opening polymerizability of these oxetanes. Unsubstituted oxetane did not polymerize with BnOAD. Oxetane, which is commercially available, has a hydroxymethyl group at the 3-position, so that more or less electron withdrawing groups remain after general chemical modification. BnOAD is expected to be a useful initiator in the synthesis of high molecular weight polyethers by such ring-opening polymerization of oxetane.

(5)結論
等モルのベンジルアルコールとMADから調製した有機アルミニウム錯体のBnOADを用いて3−(4−ブロモブトキシメチル)−3−メチルオキセタンを温和な条件下で重合して高分子量のポリマーを得ることに成功した。得られたポリマーはカチオン的に生成したポリマーとMnにおいても、線状や環状のオリゴマーを形成しない点でもはっきりと異なるものであることが分かった。BnOADによる重合は、Al(OPh)3を用いて得られたポリマーの末端基分析に基づき、アニオン開環機構で進むと考えられる。嵩高いルイス酸のMAD存在下では重合は著しく加速され、24時間でほぼ定量収率となった。無置換のオキセタンはBnOADでは重合しなかった。
(5) Conclusion 3- (4-Bromobutoxymethyl) -3-methyloxetane is polymerized under mild conditions using BnOAD, an organoaluminum complex prepared from equimolar benzyl alcohol and MAD, to form a high molecular weight polymer. Succeeded in getting. It was found that the obtained polymer was clearly different from the cationically produced polymer and Mn in that no linear or cyclic oligomer was formed. Polymerization by BnOAD is considered to proceed by an anion ring-opening mechanism based on end group analysis of the polymer obtained using Al (OPh) 3 . In the presence of bulky Lewis acid MAD, the polymerization was remarkably accelerated, with almost quantitative yield in 24 hours. Unsubstituted oxetane did not polymerize with BnOAD.

本発明のポリエーテルは、従来のポリオキセタンの利用分野で、例えば高分子液晶、熱可塑性エラストマー組成物の樹脂成分等として利用されている。また、本発明のアルミニウム化合物は、環状エーテルの開環重合の開始剤として有用である。   The polyether of the present invention is used in the field of application of conventional polyoxetanes, for example, as a polymer liquid crystal, a resin component of a thermoplastic elastomer composition, and the like. The aluminum compound of the present invention is useful as an initiator for ring-opening polymerization of cyclic ethers.

BF3OEt2、MAD及びBnOADをそれぞれ用いて得られたポリマーのSEC曲線を示す。Shows the SEC curve of the polymer obtained with BF 3 OEt 2, MAD and BnOAD respectively. 3−(4−ブロモブトキシメチル)−3−メチルオキセタン(OxBr)(図下)、並びにBF3OEt2(図上)、BnOAD(図右中)及びAl(OPh)3(図左中、芳香族領域)をそれぞれ用いて得られたポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)の1H NMRスペクトルを示す。3- (4-bromobutoxymethyl) -3-methyloxetane (OxBr) (bottom), BF 3 OEt 2 (top), BnOAD (middle right) and Al (OPh) 3 (left middle, fragrance 1 H NMR spectrum of poly (3- (4-bromobutoxymethyl) -3-methyloxetane) obtained by using each of the above (group region). ポリ(3−(4−ブロモブトキシメチル)−3−メチルオキセタン)(図上)及び環状テトラマー(図1のフラクションB)(図下)の13C NMRスペクトル及び部分IRスペクトルを示す。The 13 C NMR spectrum and partial IR spectrum of poly (3- (4-bromobutoxymethyl) -3-methyloxetane) (upper figure) and cyclic tetramer (fraction B of FIG. 1) (lower figure) are shown. 5 mol%のBnOADを用いる重合において、MAD無添加の場合と添加した場合(5 mol%)の時間−ポリマー収率プロットを示す。The polymerization using 5 mol% BnOAD shows the time-polymer yield plot when MAD is not added and when it is added (5 mol%).

Claims (6)

次式(I):
Figure 2005298778
[式中、Rは置換又は非置換のC1−3−アルキル基を表し、Xはハロゲン原子又は次式(a):−O−R(式中、Rは有機基を表す。)で示される基を表す。]
で示される繰り返し単位からなり、サイズ排除クロマトグラフィーで測定した数平均分子量Mnが3.5×10〜2.0×10であるポリエーテル。
Formula (I):
Figure 2005298778
[In the formula, R 1 represents C 1-3 substituted or unsubstituted - alkyl group, X is a halogen atom or the following formula (a): - O-R 2 ( wherein, R 2 represents an organic group. ) Represents a group represented by ]
A polyether having a number average molecular weight Mn of 3.5 × 10 4 to 2.0 × 10 5 measured by size exclusion chromatography.
サイズ排除クロマトグラフィーで測定した重量平均分子量Mwと数平均分子量Mnの比(Mw/Mn)が1.3〜4.5である請求項1記載のポリエーテル。   The polyether according to claim 1, wherein the ratio (Mw / Mn) of the weight average molecular weight Mw and the number average molecular weight Mn measured by size exclusion chromatography is 1.3 to 4.5. 次式(II):
Figure 2005298778
(式中、R及びXは請求項1と同義である。)
で示されるオキセタン誘導体を、次式(III):
Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Phはフェニル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物を開始剤として用いて開環重合させることを特徴とする、次式(I):
Figure 2005298778
(式中、R及びXは前記と同義である。)
で示される繰り返し単位からなるポリエーテルの製造方法。
Formula (II):
Figure 2005298778
(Wherein R 1 and X are as defined in claim 1).
An oxetane derivative represented by the following formula (III):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, Ph represents a phenyl group, and Me represents a methyl group.)
Ring opening polymerization using an organoaluminum compound represented by the following formula (I):
Figure 2005298778
(In the formula, R 1 and X are as defined above.)
The manufacturing method of the polyether which consists of a repeating unit shown by these.
次式(IV):
Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物の存在下で反応させる請求項3記載の製造方法。
Formula (IV):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, and Me represents a methyl group.)
The production method according to claim 3, wherein the reaction is carried out in the presence of an organoaluminum compound represented by
次式(III):
Figure 2005298778
(式中、t−Buはtert−ブチル基を表し、Phはフェニル基を表し、Meはメチル基を表す。)
で示される有機アルミニウム化合物。
Formula (III):
Figure 2005298778
(In the formula, t-Bu represents a tert-butyl group, Ph represents a phenyl group, and Me represents a methyl group.)
An organoaluminum compound represented by
前記式(III)で示される有機アルミニウム化合物からなる開始剤。   An initiator comprising an organoaluminum compound represented by the formula (III).
JP2004121328A 2004-04-16 2004-04-16 Ring-opening polymerization of oxetane derivative using aluminum compound Pending JP2005298778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121328A JP2005298778A (en) 2004-04-16 2004-04-16 Ring-opening polymerization of oxetane derivative using aluminum compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121328A JP2005298778A (en) 2004-04-16 2004-04-16 Ring-opening polymerization of oxetane derivative using aluminum compound

Publications (1)

Publication Number Publication Date
JP2005298778A true JP2005298778A (en) 2005-10-27

Family

ID=35330707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121328A Pending JP2005298778A (en) 2004-04-16 2004-04-16 Ring-opening polymerization of oxetane derivative using aluminum compound

Country Status (1)

Country Link
JP (1) JP2005298778A (en)

Similar Documents

Publication Publication Date Title
Wu et al. Preparation of alternating copolymers from the ring-opening metathesis polymerization of 3-methylcyclobutene and 3, 3-dimethylcyclobutene
Davin et al. Alkaline earth metal complexes of a chiral polyether as initiator for the ring-opening polymerization of lactide
JPWO2008150033A1 (en) Stereoselective alternating copolymerization of epoxides with carbon dioxide.
JP6389307B2 (en) Method for producing aluminum catalyst
KR20100067593A (en) An efficient synthetic route for highly active catalysts for co2/epoxide copolymerization
Drozdov et al. Synthesis of new functional siloxane derivatives of limonene. Part I: Combination of hydrosilylation and hydrothiolation reactions
Michel et al. α, ω-Bis (trialkoxysilyl) difunctionalized polycyclooctenes from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization
JP5791768B2 (en) Method for forming a polyaryl polymer
CN109651598B (en) Ruthenium metal composite catalyst and application thereof
Watanabe et al. Stereochemistry of ring-opening reactions of epoxide with aluminum and zinc porphyrins. Relation to the mechanism of ring-opening polymerization
JPH0768336B2 (en) Process for producing polyether copolymer having oligooxyethylene side chain
JP3871463B2 (en) Propylene oxide polymerization catalyst composition and process for producing poly (propylene oxide)
Matsuo et al. A novel observation in anionic ring‐opening polymerization behavior of cyclic carbonates having aromatic substituents
KR20110124310A (en) Thermally switchable ruthenium initiators
JP2005298778A (en) Ring-opening polymerization of oxetane derivative using aluminum compound
El Alami et al. Telomerization of 1, 3-butadiene with glycerol carbonate and subsequent ring-opening lactone co-polymerization
CN101282982B (en) Catalysts for polymerizing cyclic olefin
US20030069385A1 (en) Optically active maleimide derivatives, optically active polymaleimide derivatives,production method thereof, separating agent using the same derivative, and method for separating optically active compounds using the same agent
JP5492711B2 (en) Isobutylene polymer
Rodriguez-Delgado et al. Ligand exchange and abstraction reactions involving titanium isopropoxide with tris (pentafluorophenyl) borane and-alane: ramifications for ring-opening polymerization of propylene oxide
Saegusa et al. Stereochemistry of the ring-opening polymerization of 2-methyl-7-oxabicyclo [2.2. 1] heptane
Cao et al. Cationic polymerizations of substituted 2‐methylene‐1, 3‐dioxocyclic acetals, 2‐methylene‐1, 3‐dithiolane and copolymerization of 2‐methylene‐1, 3‐dithiolane with 4‐(t‐butyl)‐2‐methylene‐1, 3‐dioxolane1
JP5391002B2 (en) Vinyl ether polymer
Kanoh et al. Coordinate anionic ring‐opening polymerization of oxetanes with aluminum benzyl alcoholate bis (2, 6‐di‐tert‐butyl‐4‐methylphenolate)
Crivello et al. The dicobaltoctacarbonyl catalyzed polymerization of allylic ethers