JP2005297758A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2005297758A
JP2005297758A JP2004116748A JP2004116748A JP2005297758A JP 2005297758 A JP2005297758 A JP 2005297758A JP 2004116748 A JP2004116748 A JP 2004116748A JP 2004116748 A JP2004116748 A JP 2004116748A JP 2005297758 A JP2005297758 A JP 2005297758A
Authority
JP
Japan
Prior art keywords
sipe
tread
maximum displacement
tire
tread surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004116748A
Other languages
Japanese (ja)
Other versions
JP4420722B2 (en
Inventor
Nobutaka Tanabe
信貴 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004116748A priority Critical patent/JP4420722B2/en
Publication of JP2005297758A publication Critical patent/JP2005297758A/en
Application granted granted Critical
Publication of JP4420722B2 publication Critical patent/JP4420722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire improving steering safety at the time of straight ahead traveling on snow and cornering by optimizing a wall surface shape of a wavy sipe. <P>SOLUTION: The tire 1 has a land part 6 arranged with the sipe 5 extending in a generally tire width direction in a shoulder area 4 when a tread portion 2 is sectioned into a center area 3 and the shoulder area 4. The sipe 5 has a wavelike extending shape alternately coupling a crest portion 7 and a trough portion 8 to keep a fixed wavelength. In the sipe 5 arranged on the land part 6, angles θ1 to θ7 made by a line segment connecting the maximum displacement points 10, 14 of the crest portion 7 on a tread surface 9 and a sipe bottom 12, a line segment connecting the maximum displacement points 11, 16 of the trough portion 8, and a normal raised on the tread are gradually increased from the inside to the outside in the tire width direction. The wall surface shape of the sipe 5 over full length is formed to gradually widen from the sipe bottom position toward an opening position of the tread surface 9. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明はトレッド部を中央域とショルダー域に区画したときのショルダー域に、略タイヤ幅方向に沿って延びる少なくとも1本のサイプを配設した陸部を有し、前記サイプは、山部と谷部を交互に連結して一定波長をもつ波状の踏面開口形状を有する空気入りタイヤ、特にはスタッドレスタイヤに関し、かかるタイヤの雪上走行時の操縦安定性の向上を図る。   This invention has a land portion in which at least one sipe extending substantially along the tire width direction is disposed in a shoulder region when the tread portion is divided into a central region and a shoulder region, The present invention relates to a pneumatic tire having a wavy tread surface opening shape having a certain wavelength by alternately connecting valleys, and particularly to a studless tire, and to improve the handling stability of the tire during running on snow.

従来より、スタッドレスタイヤの雪上走行時の操縦安定性を向上させるため、陸部に略タイヤ幅方向に延びるサイプを配設して、サイプにより路面に張った薄い水膜を切ってタイヤのグリップ力を確保する効果、いわゆるエッジ効果を高めたタイヤが知られている。かかるサイプとしては、さらにエッジ長さを長くするために、山部と谷部を交互に連結した波状の踏面開口形状としてエッジ効果を高めたサイプが一般的である。また、かかるサイプは、製造を容易にするため深さ方向には形状がほとんど変化せず、トレッド踏面における山部の最大変位点とサイプ底における山部の最大変位点を結んだ線分、及びトレッド踏面における谷部の最大変位点とサイプ底における谷部の最大変位点を結んだ線分(以下、これらの線分の延在方向をサイプの「深さ方向」という。)がともにトレッド踏面に立てた法線と略一致するように形成されるのが一般的である。   Conventionally, in order to improve the steering stability of a studless tire when running on snow, a sipe extending approximately in the width direction of the tire is provided on the land, and a thin water film stretched on the road surface is cut by the sipe to grip the tire. Tires with an improved effect of so-called edge effects are known. As such sipe, in order to further increase the edge length, a sipe is generally used in which the edge effect is enhanced as a wavy tread opening shape in which peaks and valleys are alternately connected. In addition, the shape of the sipe is hardly changed in the depth direction in order to facilitate manufacture, and a line segment connecting the maximum displacement point of the peak portion on the tread surface and the maximum displacement point of the peak portion on the sipe bottom, and Both the line segment connecting the maximum displacement point of the valley on the tread surface and the maximum displacement point of the valley on the sipe bottom (hereinafter, the extending direction of these line segments is called the “depth direction” of the sipe) is the tread surface. In general, it is formed so as to substantially coincide with the normal line.

かかるタイヤ100は、図6(a)に示すように、直進走行時にはトレッド端部に位置する上記線分101とトレッド接地面102とのなす角が略直角となりエッジ効果を発揮するものの、図6(b)に示すように、コーナリング時には横力SFの作用によりサイプが倒れ込み、上記線分101とトレッド接地面102とのなす角が小さくなり、十分なエッジ効果が得られなかった。   As shown in FIG. 6 (a), the tire 100 exhibits an edge effect when the straight line travels while the angle between the line segment 101 located at the end of the tread and the tread contact surface 102 is substantially perpendicular. As shown in FIG. 6B, when cornering, the sipe collapses due to the action of the lateral force SF, the angle formed by the line segment 101 and the tread contact surface 102 becomes small, and a sufficient edge effect cannot be obtained.

また近年では、エッジ効果を向上させる目的でサイプの形状を深さ方向で変化させた、いわゆる3次元サイプが注目されている。例えば特許文献1には踏面からサイプ底部に向かって前記踏面と平行な面における前記サイプの長さが長くなる波状サイプを配設し、摩耗しても安定したウェット性能を維持できるようにした空気入りタイヤが記載されている。また特許文献2にはタイヤ表面側からサイプ最深部側へと向かって波長を徐々に長くした波状サイプを配設し、氷上走行時の制動性能、耐偏摩耗性能及び耐久性能を向上させた空気入りタイヤが記載されている。しかし、これらのタイヤも直進走行時のエッジ効果の向上についてのみ検討されており、上記したコーナリング時のエッジ効果の低下については考慮されていない。
特開平11−208223号公報 特開2003−118322号公報
In recent years, so-called three-dimensional sipe, in which the shape of the sipe is changed in the depth direction for the purpose of improving the edge effect, has attracted attention. For example, in Patent Document 1, a wavy sipe in which the length of the sipe in a surface parallel to the tread surface is extended from the tread surface toward the bottom of the sipe so that stable wet performance can be maintained even if worn. Entered tires are described. Further, in Patent Document 2, a wavy sipe whose wavelength is gradually increased from the tire surface side toward the deepest part of the sipe is arranged to improve the braking performance, uneven wear resistance performance and durability performance when traveling on ice. Entered tires are described. However, these tires are also considered only for improving the edge effect during straight traveling, and the above-described reduction in the edge effect during cornering is not considered.
Japanese Patent Laid-Open No. 11-208223 JP 2003-118322 A

したがって、この発明の目的は波状サイプの壁面形状の適正化を図ることにより雪上の直進走行時及びコーナリング時の双方における操縦安定性を向上させた空気入りタイヤを提供することにある。   Accordingly, an object of the present invention is to provide a pneumatic tire that has improved steering stability both when traveling straight on snow and during cornering by optimizing the wall surface shape of the wavy sipe.

上記の目的を達成するため、この発明は、トレッド部を中央域とショルダー域に区画したときのショルダー域に、略タイヤ幅方向に沿って延びる少なくとも1本のサイプを配設した陸部を有し、前記サイプは、山部と谷部を交互に連結して一定波長をもつ波状の延在形状を有する空気入りタイヤにおいて、少なくともショルダー域に位置する陸部に配設されたサイプは、トレッド踏面における山部の最大変位点とサイプ底における山部の最大変位点を結んだ線分と、トレッド踏面における谷部の最大変位点とサイプ底における谷部の最大変位点を結んだ線分とが交互に位置し、これら線分とトレッド踏面に立てた法線とのなす角がタイヤ幅方向内側から外側に向かって漸増し、かつ全長にわたるサイプの壁面形状がサイプ底位置から踏面開口位置に向かって末広がり状になるよう形成することを特徴とする空気入りタイヤである。   In order to achieve the above object, the present invention has a land portion in which at least one sipe extending substantially along the tire width direction is disposed in a shoulder region when the tread portion is divided into a central region and a shoulder region. The sipe is a pneumatic tire having a wavy extending shape having a constant wavelength by alternately connecting peaks and valleys, and the sipe disposed at least on a land portion located in a shoulder region is a tread. A line connecting the maximum displacement point of the peak on the tread and the maximum displacement point of the peak on the sipe bottom, and a line connecting the maximum displacement point of the valley on the tread surface and the maximum displacement of the valley on the sipe bottom Are alternately positioned, the angle between the line segment and the normal line standing on the tread surface gradually increases from the inner side to the outer side in the tire width direction, and the sipe wall surface shape extends from the sipe bottom position to the tread surface. A pneumatic tire and forming so as to be flared toward the location.

なお、ここでいう「中央域」とはタイヤ赤道面を中心としてトレッド幅の0〜50%の範囲であり、「ショルダー域」とはこの中央域の両側の領域をいうものとし、「略タイヤ幅方向」とはタイヤ幅方向±20°、好ましくはタイヤ幅方向±10°の範囲をいうものとし、「波長」とは隣接する山部の最大変位点(山)の間をサイプの延在方向に沿って測定した距離、又は隣接する谷部の最大変位点(谷)の間をサイプの延在方向に沿って測定した距離をいうものとする。   Here, the “central area” is a range of 0 to 50% of the tread width centering on the tire equator plane, and the “shoulder area” is an area on both sides of the central area. “Width direction” refers to a range of ± 20 ° in the tire width direction, preferably ± 10 ° in the tire width direction, and “wavelength” refers to the extension of the sipe between the maximum displacement points (mountains) of adjacent peaks. The distance measured along the direction or the distance measured along the extending direction of the sipe between the maximum displacement points (valleys) of adjacent valleys.

またサイプは、トレッド踏面における波長がサイプ底における波長の1.1〜2.0倍であることが好ましい。   Moreover, it is preferable that the wavelength in a tread tread is 1.1 to 2.0 times the wavelength in a sipe bottom at a sipe.

さらにサイプは、前記線分のうちタイヤ幅方向で最も外側に位置する線分とトレッド踏面に立てた法線とのなす角である広がり角が10〜30°の範囲にあることが好ましい。   Furthermore, it is preferable that the sipe has a divergence angle in a range of 10 to 30 °, which is an angle formed by a line segment located on the outermost side in the tire width direction and a normal line standing on the tread surface.

さらにまたサイプの山部の最大変位点と谷部の最大変位点の間をサイプの延在方向と直交する方向に沿って測定した距離を高低差とするとき、サイプは、サイプ底における高低差がトレッド踏面における高低差より小さいことが好ましい。   Furthermore, when the distance measured along the direction perpendicular to the extending direction of the sipe between the maximum displacement point of the sipe peak and the maximum displacement point of the valley is taken as the height difference, the sipe is the height difference at the sipe bottom. Is preferably smaller than the height difference on the tread surface.

加えてサイプは、三角波、台形波、方形波又は正弦波の踏面開口形状を有することが好ましい。   In addition, the sipe preferably has a tread opening shape of a triangular wave, a trapezoidal wave, a square wave or a sine wave.

この発明によれば、波状サイプの壁面形状の適正化を図ることにより、雪上の直進走行時及びコーナリング時の双方において優れたエッジ効果を得ることができ、操縦安定性を格段に向上させることができる。   According to the present invention, by optimizing the wall surface shape of the wavy sipe, it is possible to obtain an excellent edge effect both when traveling straight on snow and during cornering, and dramatically improve steering stability. it can.

以下、図面を参照しつつ、この発明の実施の形態を説明する。図1はこの発明に従う代表的な空気入りタイヤ(以下「タイヤ」という。)のトレッド部の一部の展開図であり、図2は図1に示すタイヤのショルダー域の陸部の斜視図であり、図3は図1に示すタイヤのショルダー域のサイプ延在方向断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a development view of a part of a tread portion of a typical pneumatic tire (hereinafter referred to as “tire”) according to the present invention, and FIG. 2 is a perspective view of a land portion of a shoulder region of the tire shown in FIG. FIG. 3 is a sipe extending direction sectional view of the shoulder region of the tire shown in FIG.

タイヤ1は、トレッド部2を中央域3とショルダー域4に区画したときのショルダー域4に、略タイヤ幅方向に沿って延びる少なくとも1本のサイプ、図1では2本のサイプ5を配設した陸部6を有する。サイプ5は、山部7と谷部8を交互に連結して一定波長をもつ波状の延在形状を有する。   In the tire 1, at least one sipe extending substantially along the tire width direction is disposed in the shoulder region 4 when the tread portion 2 is divided into the central region 3 and the shoulder region 4, and in FIG. 1, two sipes 5 are arranged. The land portion 6 is provided. The sipe 5 has a wavy extending shape having a constant wavelength by alternately connecting the crests 7 and the troughs 8.

そしてこの発明の構成上の主な特徴は、少なくともショルダー域4に位置する陸部6に配設されたサイプ5は、トレッド踏面9における山部7の最大変位点10とサイプ底12における山部13の最大変位点14を結んだ線分l、l、lと、トレッド踏面9における谷部8の最大変位点11とサイプ底12における谷部15の最大変位点16を結んだ線分l、l、l、lとが交互に位置し、これら線分l〜lとトレッド踏面9に立てた法線n〜nとのなす角θ〜θがともにタイヤ幅方向内側から外側に向かって漸増する、すなわちθ<θ<θ<θ<θ<θ<θなる関係にあり、かつ全長にわたるサイプ5の壁面形状が、図3に示すように、サイプ底位置12から踏面9の開口位置に向かって末広がり状になるよう形成することにある。 The main structural features of the present invention are that the sipe 5 disposed at least in the land portion 6 located in the shoulder region 4 includes the maximum displacement point 10 of the ridge 7 on the tread surface 9 and the ridge on the sipe bottom 12. Lines l 2 , l 4 , and l 6 connecting the 13 maximum displacement points 14, lines connecting the maximum displacement point 11 of the valley portion 8 in the tread tread 9 and the maximum displacement point 16 of the valley portion 15 in the sipe bottom 12. Minutes l 1 , l 3 , l 5 , and l 7 are alternately positioned, and angles θ 1 to θ 7 formed by these line segments l 1 to l 7 and normal lines n 1 to n 7 standing on the tread tread 9. Are gradually increased from the inner side to the outer side in the tire width direction, that is, θ 1234567 , and the wall shape of the sipe 5 over the entire length is As shown in FIG. 3, the opening position of the tread surface 9 from the sipe bottom position 12 It is to be formed so as to be widened toward the end.

以下、この発明が上記構成を採用するに至った経緯を作用とともに説明する。
上記のとおり、トレッド踏面におけるサイプの山部の最大変位点とサイプ底におけるサイプの山部の最大変位点を結んだ線分、及びトレッド踏面におけるサイプの谷部の最大変位点とサイプ底におけるサイプの谷部の最大変位点を結んだ線分がともにトレッド踏面に立てた法線と略一致するタイヤにおいては、特に図6(b)に示すように、コーナリング時に横力の作用によりショルダー域の陸部が変形してサイプが倒れ込み、十分なエッジ効果が得られないという問題があった。かかるコーナリング時にも十分なエッジ効果を得るには、陸部が変形した際にサイプの深さ方向が踏面と略垂直となるように、陸部の頂面に対するサイプの深さ方向が所定の角度となるようにサイプを配設することが考えられるが、全てのサイプの深さ方向を一定にしたタイヤでは、反対に直進走行時に十分なエッジ効果が得られなくなり、トラクション性能及びブレーキ性能が低下するという問題がある。発明者は、直進走行時とコーナリング時の双方におけるショルダー域の陸部の変形と接地圧について検討を行ったところ、陸部のタイヤ幅方向内側では、直進走行時には比較的接地圧が高く、コーナリング時には比較的変形及び接地圧が小さく、一方陸部のタイヤ幅方向外側では、直進走行時には比較的接地圧が低く、コーナリング時には比較的変形及び接地圧が大きく、したがって直進走行時にはサイプのタイヤ幅方向内側部分がエッジ効果に大きく寄与し、コーナリング時にはサイプのタイヤ幅方向外側部分がエッジ効果に大きく寄与するとの知見を得た。そこで発明者は、コーナリング時の変形の程度に合せてサイプの深さ方向を陸部のタイヤ幅方向内側と外側とで変える、すなわちサイプの深さ方向とトレッド踏面に立てた法線とのなす角を、タイヤ幅方向内側では比較的小さくし、タイヤ幅方向外側では比較的大きくし、全長にわたるサイプの壁面形状が、サイプ底位置から踏面開口位置に向かって末広がり状になるよう形成することによって、直進走行時には、図4(a)に示すように、タイヤ幅方向外側に傾いていたサイプ5が、コーナリング時には横力SFの作用を受け、図4(b)に示すように、トレッド踏面に略垂直となり、十分なエッジ効果を得ることができることを見出し、この発明を完成させるに至ったのである。
Hereinafter, how the present invention has adopted the above configuration will be described together with the operation.
As described above, the line connecting the maximum displacement point of the sipe peak on the tread surface and the maximum displacement point of the sipe peak on the sipe bottom, and the maximum displacement point of the sipe valley on the tread surface and the sipe on the sipe bottom. In tires in which the line segments connecting the maximum displacement points of the valleys of the tires substantially coincide with the normals raised on the tread surface, as shown in FIG. There was a problem that the land part deformed and the sipe collapsed, and a sufficient edge effect could not be obtained. In order to obtain a sufficient edge effect even during such cornering, the sipe depth direction with respect to the top surface of the land portion is at a predetermined angle so that the sipe depth direction is substantially perpendicular to the tread surface when the land portion is deformed. It is conceivable that the sipe is arranged so that the sipe has a constant depth direction, but on the contrary, sufficient edge effect cannot be obtained during straight running, and the traction performance and braking performance are reduced. There is a problem of doing. The inventor has examined the deformation of the land portion of the shoulder region and the contact pressure during both straight running and cornering, and the ground pressure inside the land portion in the tire width direction has a relatively high contact pressure during straight running. Sometimes the deformation and the contact pressure are relatively small, while on the outer side of the land width in the tire width direction, the contact pressure is relatively low when traveling straight, the deformation and contact pressure is relatively large when cornering, and therefore the sipe tire width direction when traveling straight It was found that the inner part greatly contributed to the edge effect, and the outer part in the tire width direction of the sipe greatly contributed to the edge effect during cornering. Therefore, the inventor changes the sipe depth direction between the inside and the outside of the land width in the tire width direction according to the degree of deformation during cornering, that is, the sipe depth direction and the normal line standing on the tread surface. By making the corner relatively small on the inner side in the tire width direction and relatively large on the outer side in the tire width direction, the wall surface shape of the sipe over the entire length is formed so as to be divergent from the sipe bottom position toward the tread opening position. When traveling straight, as shown in FIG. 4 (a), the sipe 5 inclined to the outside in the tire width direction is subjected to the action of lateral force SF during cornering, and as shown in FIG. The inventors have found that it becomes substantially vertical and a sufficient edge effect can be obtained, and the present invention has been completed.

またサイプ5は、トレッド踏面9における波長λがサイプ底12における波長λ
1.1〜2.0倍であることが好ましい。波長λが波長λの1.1倍未満の場合には、タイヤ幅方向外側におけるサイプ5の深さ方向とトレッド踏面9に立てた法線とのなす角、図3では法線nとのなす角θが過小となり、2.0倍を超える場合には角θが過大となり、いずれの場合にもコーナリング時にタイヤ幅方向外側においてサイプ5の深さ方向とトレッド踏面9とが垂直にならず、十分なエッジ効果を得ることができないからである。
In the sipe 5, the wavelength λ 1 at the tread surface 9 is preferably 1.1 to 2.0 times the wavelength λ 2 at the sipe bottom 12. When the wavelength λ 1 is less than 1.1 times the wavelength λ 2, the angle formed by the depth direction of the sipe 5 on the outer side in the tire width direction and the normal line standing on the tread tread surface 9, the normal line n 7 in FIG. When the angle θ 7 formed by the angle is too small and exceeds 2.0 times, the angle θ 7 becomes excessive, and in any case, the depth direction of the sipe 5 and the tread tread surface 9 are outside in the tire width direction during cornering. This is because they are not vertical and a sufficient edge effect cannot be obtained.

さらにサイプ5は、線分l〜lのうちタイヤ幅方向で最も外側に位置する線分lとトレッド踏面9に立てた法線nとのなす角である広がり角θが10〜30°の範囲にあることが好ましい。広がり角θが10°未満の場合又は30°を超える場合には、コーナリング時にサイプ5とトレッド踏面9とが略垂直にならず、十分なエッジ効果を得ることができないからである。なお、広がり角はクラウン形状に応じて設定することがより好ましい。 Further sipe 5 is spread angle theta 7 is an angle between the normal line n 7 stood in line l 7 and the tread surface 9 of the outermost in the tire width direction of the line segment l 1 to l 7 10 It is preferably in the range of -30 °. This is because when the divergence angle θ 7 is less than 10 ° or exceeds 30 °, the sipe 5 and the tread surface 9 are not substantially vertical during cornering, and a sufficient edge effect cannot be obtained. The spread angle is more preferably set according to the crown shape.

さらにまたサイプ5の山部7、13の最大変位点10、14と谷部8、15の最大変位点11、16の間をサイプ5の延在方向と直交する方向に沿って測定した距離を高低差とするとき、サイプ5は、サイプ底12における高低差Aがトレッド踏面9における高低差Aより大きいことが好ましい。トレッド踏面9における波長λがサイプ底12における波長λより大きいので、サイプ5の長さはサイプ底12に向かって短くなる傾向があるが、このようにサイプ底12における高低差Aをトレッド踏面9における高低差Aより大きくすることにより、トレッド部2の摩耗の進行に伴って踏面9に露出するサイプ5の長さを維持又はより長くできるため、トレッドゴムの劣化等によるタイヤのグリップ力の低下をエッジ効果の向上により補うことができ、タイヤの使用寿命にわたって安定した操縦安定性を得ることができるからである。 Furthermore, the distance measured between the maximum displacement points 10 and 14 of the peak portions 7 and 13 of the sipe 5 and the maximum displacement points 11 and 16 of the valley portions 8 and 15 along the direction orthogonal to the extending direction of the sipe 5 is obtained. When making the height difference, the sipe 5 is preferably such that the height difference A 2 at the sipe bottom 12 is larger than the height difference A 1 at the tread surface 9. Since the wavelength lambda 1 in the tread surface 9 is greater than the wavelength lambda 2 in the sipe bottoms 12, the length of the sipe 5 tends to become shorter toward the sipe bottom 12, the height difference A 2 in such a sipe bottom 12 by greater than height difference a 1 in the tread surface 9, since it longer than maintain or the length of the sipe 5 exposed to the tread surface 9 with the progress of wear of the tread portion 2, the tire according to the deterioration of the tread rubber This is because the decrease in grip force can be compensated by improving the edge effect, and stable steering stability can be obtained over the service life of the tire.

加えてまたサイプは、図1に示した三角波の他、図5(a)に示す台形波、図5(b)に示す方形波又は図5(c)に示す正弦波の延在形状とすることもできる。これらの延在形状を有する場合には、波形の1周期をサイプの延在方向に沿って計った長さを波長とする。また、台形波及び方形波の場合には、山部及び谷部の中点をそれぞれの最大変位点とする。   In addition to the triangular wave shown in FIG. 1, the sipe has a trapezoidal wave shown in FIG. 5 (a), a square wave shown in FIG. 5 (b), or an extended shape of a sine wave shown in FIG. 5 (c). You can also. In the case of having these extended shapes, the wavelength is a length obtained by measuring one period of the waveform along the extending direction of the sipe. In the case of a trapezoidal wave and a square wave, the midpoints of the peaks and valleys are the maximum displacement points.

かかるサイプは次のようにして形成する。すなわち、所定の形状、波長及び高低差を有するブレードを金型に配置する。この際、ブレードの片端を他端に寄せることによって高低差を変化させることができる。かかるブレードを金型に植え込むに際して、ブレードのタイヤ幅方向内側端と金型のトレッド踏面となる部分に立てた法線とのなす角が所定の角度となるように取り付ける。そして、かかるブレードを植え込んだ金型を用いてグリーンタイヤの加硫成形を行えば、所望の形状のサイプを有するタイヤを得ることができる。   Such a sipe is formed as follows. That is, a blade having a predetermined shape, wavelength, and height difference is disposed in the mold. At this time, the height difference can be changed by moving one end of the blade toward the other end. When such a blade is implanted in the mold, the blade is attached so that an angle formed by the inner end of the blade in the tire width direction and a normal line standing on the tread surface of the mold is a predetermined angle. If a green tire is vulcanized using a mold in which such a blade is implanted, a tire having a sipe having a desired shape can be obtained.

なお、上述したところは、この発明の実施態様の一部を示したにすぎず、請求の範囲において種々の変更を加えることができる。例えば、図1ではショルダー域の陸部に配設したサイプについてのみ説明を行ったが、中央域のサイプも、クラウン形状に応じて、全長にわたるサイプの壁面形状がサイプ底位置から踏面開口位置に向かって末広がり状になるよう形成することもできる。   In addition, the place mentioned above only showed a part of embodiment of this invention, and can change a various change in a claim. For example, in FIG. 1, only the sipe disposed on the land portion of the shoulder region has been described, but the sipe in the central region also has a wall shape of the sipe extending from the sipe bottom position to the tread opening position according to the crown shape. It can also be formed so as to expand toward the end.

次に、この発明に従うタイヤを試作し、性能評価を行ったので、以下に説明する。   Next, tires according to the present invention were prototyped and performance evaluations were performed, which will be described below.

実施例1〜4のタイヤは、タイヤサイズが205/55R16の乗用車用スタッドレスタイヤであり、図1に示すトレッドパターンを有し、表1に示す諸元を有する。   The tires of Examples 1 to 4 are studless tires for passenger cars having a tire size of 205 / 55R16. The tires have the tread pattern shown in FIG. 1 and the specifications shown in Table 1.

比較のため、タイヤサイズが実施例1〜4のタイヤと同じであり、図1に示すトレッドパターンを有するものの、サイプの深さ方向とトレッド踏面に立てた法線とのなす角が、タイヤ幅方向内側及び外側で零であり、表1に示す諸元を有するタイヤ(従来例)についても併せて試作した。   For comparison, although the tire size is the same as that of the tires of Examples 1 to 4 and has the tread pattern shown in FIG. 1, the angle formed by the sipe depth direction and the normal line standing on the tread surface is the tire width. A tire (conventional example) having zeros on the inside and outside in the direction and having the specifications shown in Table 1 was also prototyped.

なお、表中、「深さ方向角度」とは、トレッド踏面における山部の最大変位点とサイプ底における山部の最大変位点を結んだ線分とトレッド踏面に立てた法線とのなす角、又はトレッド踏面における谷部の最大変位点とサイプ底における谷部の最大変位点を結んだ線分とトレッド踏面に立てた法線とのなす角のことをいうものとする。   In the table, “depth direction angle” means the angle between the line connecting the maximum displacement point of the peak on the tread surface and the maximum displacement point of the peak on the sipe bottom and the normal on the tread surface. Or the angle between the line segment connecting the maximum displacement point of the valley on the tread surface and the maximum displacement point of the valley on the sipe bottom and the normal line standing on the tread surface.

前記各供試タイヤをリムサイズが6 1/2JJのリムに取り付けてタイヤ車輪とし、このタイヤ車輪をテスト車両の4輪に装着して、前輪には210kPa(相対圧)、後輪には230kPa(相対圧)の内圧を適用し、フロントタイヤ負荷荷重:4.8kN、リアタイヤ負荷荷重:2.8kNの条件下で次の各試験を行った。なお、各試験は新品タイヤ(新品時)及び10,000km走行後のタイヤ(摩耗時)の双方に対して行った。   Each of the test tires is attached to a rim having a rim size of 61 / 2JJ to form a tire wheel, and the tire wheel is attached to four wheels of a test vehicle. The front wheel is 210 kPa (relative pressure) and the rear wheel is 230 kPa ( The following tests were performed under the conditions of a front tire load: 4.8 kN and a rear tire load: 2.8 kN. Each test was performed on both a new tire (when new) and a tire after running 10,000 km (when worn).

1.直進走行時操縦安定性
長さ50mの圧雪路のテストコースを直進走行し、このコースを走破するのに要した時間を測定し、この測定値から直進走行時操縦安定性を評価した。評価結果を表1に示す。
1. Steering stability during straight running The test course on a 50 m long snowy road was run straight, and the time required to run through this course was measured. From this measured value, the steering stability during straight running was evaluated. The evaluation results are shown in Table 1.

2.コーナリング時操縦安定性
長さ80mの圧雪路に、9m間隔で合計6個のパイロンを設置したテストコースをスラローム走行し、このコースをこのコースを走破するのに要した時間を測定し、この測定値からコーナリング時操縦安定性を評価した。評価結果を表1に示す。
2. Steering stability during cornering Slalom running on a test course with a total of 6 pylons installed at intervals of 9 m on a 80 m long snowy road, and measuring the time required to run this course The steering stability during cornering was evaluated from the values. The evaluation results are shown in Table 1.

Figure 2005297758
Figure 2005297758

表1に示す評価結果から、実施例1〜4のタイヤはいずれも従来例のタイヤに比べて、直進走行時操縦安定性は同等でありながら、コーナリング時操縦安定性に優れていることが分かる。   From the evaluation results shown in Table 1, it can be seen that the tires of Examples 1 to 4 are superior in steering stability during cornering while having the same steering stability when traveling straight ahead as compared to the conventional tires. .

この発明により、雪上の直進走行時及びコーナリング時の双方における操縦安定性を向上させた空気入りタイヤを提供することが可能となった。   According to the present invention, it is possible to provide a pneumatic tire with improved steering stability both when traveling straight on snow and during cornering.

この発明に従う代表的な空気入りタイヤのトレッド部の一部の展開図である。1 is a development view of a part of a tread portion of a typical pneumatic tire according to the present invention. 図1に示すタイヤのショルダー域の陸部の斜視図である。It is a perspective view of the land part of the shoulder region of the tire shown in FIG. 図1に示すタイヤのショルダー域のサイプ延在方向断面図である。It is a sipe extending direction sectional drawing of the shoulder region of the tire shown in FIG. この発明に従う空気入りタイヤが横力を受けた際の変形状態を説明するための図であり、(a)が直進走行時のタイヤ状態、(b)がコーナリング走行時のタイヤ状態を示す。It is a figure for demonstrating the deformation | transformation state at the time of the pneumatic tire according to this invention receiving lateral force, (a) shows the tire state at the time of straight running, (b) shows the tire state at the time of cornering traveling. (a)〜(c)は、この発明に従う他の空気入りタイヤのトレッド部の一部の展開図である。(A)-(c) is a partial expanded view of the tread part of the other pneumatic tire according to this invention. 従来の空気入りタイヤが横力を受けた際の変形状態を説明するための図であり、(a)が直進走行時のタイヤ状態、(b)がコーナリング走行時のタイヤ状態を示す。It is a figure for demonstrating the deformation | transformation state at the time of the conventional pneumatic tire receiving a lateral force, (a) is a tire state at the time of straight running, (b) shows the tire state at the time of cornering driving | running | working.

符号の説明Explanation of symbols

1 タイヤ
2 トレッド部
3 中央域
4 ショルダー域
5 サイプ
6 陸部
7、13 山部
8、15 谷部
9 トレッド踏面
10、14 山部最大変位点
11、16 谷部最大変位点
12 サイプ底
DESCRIPTION OF SYMBOLS 1 Tire 2 Tread part 3 Center area 4 Shoulder area 5 Sipe 6 Land part 7,13 Mountain part 8,15 Valley part 9 Tread tread 10,14 Mountain part maximum displacement point 11,16 Valley maximum displacement point 12 Sipe bottom

Claims (5)

トレッド部を中央域とショルダー域に区画したときのショルダー域に、略タイヤ幅方向に沿って延びる少なくとも1本のサイプを配設した陸部を有し、前記サイプは、山部と谷部を交互に連結して一定波長をもつ波状の延在形状を有する空気入りタイヤにおいて、
少なくともショルダー域に位置する陸部に配設されたサイプは、トレッド踏面における山部の最大変位点とサイプ底における山部の最大変位点を結んだ線分と、トレッド踏面における谷部の最大変位点とサイプ底における谷部の最大変位点を結んだ線分とが交互に位置し、これら線分とトレッド踏面に立てた法線とのなす角がタイヤ幅方向内側から外側に向かって漸増し、かつ全長にわたるサイプの壁面形状がサイプ底位置から踏面開口位置に向かって末広がり状になるよう形成することを特徴とする空気入りタイヤ。
The shoulder region when the tread portion is divided into a central region and a shoulder region has a land portion in which at least one sipe extending substantially along the tire width direction is disposed, and the sipe has a mountain portion and a valley portion. In a pneumatic tire having a wavy extended shape with a constant wavelength connected alternately,
The sipe placed on the land located at least in the shoulder area is the line connecting the maximum displacement point of the peak on the tread surface and the maximum displacement point of the peak on the bottom of the sipe, and the maximum displacement of the valley on the tread surface. The line and the line connecting the maximum displacement point of the valley at the sipe bottom are alternately positioned, and the angle between the line and the normal line standing on the tread surface gradually increases from the inside to the outside in the tire width direction. A pneumatic tire characterized in that the wall shape of the sipe extending over the entire length is formed so as to widen toward the tread opening position from the sipe bottom position.
前記サイプは、トレッド踏面における波長がサイプ底における波長の1.1〜2.0倍である請求項1記載の空気入りタイヤ。   2. The pneumatic tire according to claim 1, wherein the sipe has a wavelength at a tread surface of 1.1 to 2.0 times a wavelength at a sipe bottom. 前記サイプは、前記線分のうちタイヤ幅方向で最も外側に位置する線分とトレッド踏面に立てた法線とのなす角が10〜30°の範囲にある請求項1又は2記載の空気入りタイヤ。   The pneumatic sipe according to claim 1 or 2, wherein the sipe has an angle formed by a line segment located on the outermost side in the tire width direction of the line segment and a normal line standing on a tread surface in a range of 10 to 30 °. tire. 前記サイプの山部の最大変位点と谷部の最大変位点の間をサイプの延在方向と直交する方向に沿って測定した距離を高低差とするとき、前記サイプは、サイプ底における高低差がトレッド踏面における高低差より大きい請求項1〜3のいずれか一項記載の空気入りタイヤ。   When the distance measured along the direction orthogonal to the extending direction of the sipe between the maximum displacement point of the peak portion of the sipe and the maximum displacement point of the valley portion is defined as a height difference, the sipe is a height difference at the bottom of the sipe. The pneumatic tire according to any one of claims 1 to 3, wherein is larger than a difference in height on a tread surface. 前記サイプは、三角波、台形波、方形波又は正弦波の踏面開口形状を有する請求項1〜4のいずれか一項記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 4, wherein the sipe has a tread opening shape of a triangular wave, a trapezoidal wave, a square wave, or a sine wave.
JP2004116748A 2004-04-12 2004-04-12 Pneumatic tire Expired - Fee Related JP4420722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116748A JP4420722B2 (en) 2004-04-12 2004-04-12 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004116748A JP4420722B2 (en) 2004-04-12 2004-04-12 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2005297758A true JP2005297758A (en) 2005-10-27
JP4420722B2 JP4420722B2 (en) 2010-02-24

Family

ID=35329829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116748A Expired - Fee Related JP4420722B2 (en) 2004-04-12 2004-04-12 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4420722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528040A (en) * 2009-05-29 2012-11-12 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ Winter tires
KR101354410B1 (en) 2006-02-28 2014-01-22 가부시키가이샤 브리지스톤 Tyre

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354410B1 (en) 2006-02-28 2014-01-22 가부시키가이샤 브리지스톤 Tyre
US8967212B2 (en) * 2006-02-28 2015-03-03 Bridgestone Corporation Tire with tread including blocks and sipes
JP2012528040A (en) * 2009-05-29 2012-11-12 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ Winter tires
US9919566B2 (en) 2009-05-29 2018-03-20 Pirelli Tyre S.P.A. Winter tyre

Also Published As

Publication number Publication date
JP4420722B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
US10894446B2 (en) Tire
US8925602B2 (en) Pneumatic tire
JP4223064B2 (en) Pneumatic tire
US10099441B2 (en) Tire vulcanization mold and method for manufacturing tire
JP4397956B1 (en) Pneumatic tire
JP2010241267A (en) Pneumatic tire
JP2007153338A (en) Tread of tire for large-size vehicle
JP7187255B2 (en) pneumatic tire
US20170232799A1 (en) Pneumatic Tire
JP4262817B2 (en) Pneumatic tire
US8162015B2 (en) Pneumatic tire having asymmetrical tread pattern
JP4369729B2 (en) Pneumatic tire
JP4404398B2 (en) Pneumatic tire
JP5171179B2 (en) Pneumatic tire
JP4381869B2 (en) Pneumatic tire
JPH09188110A (en) Pneumatic radial tire for heavy load
US11040579B2 (en) Pneumatic tire and stud pin
JP2009067180A (en) Pneumatic tire
JP2000318413A (en) Pneumatic tire and metal mold for vulcanizing thereof
JP3656731B2 (en) Pneumatic tire
JP5698622B2 (en) tire
CN110341389B (en) Tyre for vehicle wheels
JP4420722B2 (en) Pneumatic tire
JP4059723B2 (en) Pneumatic tire
JP5104046B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees