JP2005295868A - Magnetic bead and isolation method of specimen using the same - Google Patents

Magnetic bead and isolation method of specimen using the same Download PDF

Info

Publication number
JP2005295868A
JP2005295868A JP2004115683A JP2004115683A JP2005295868A JP 2005295868 A JP2005295868 A JP 2005295868A JP 2004115683 A JP2004115683 A JP 2004115683A JP 2004115683 A JP2004115683 A JP 2004115683A JP 2005295868 A JP2005295868 A JP 2005295868A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic beads
beads
reacts
specifically binds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004115683A
Other languages
Japanese (ja)
Inventor
Kazuko Inoue
和子 井上
Masaki Sekine
正樹 関根
Katsusuke Shimazaki
勝輔 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004115683A priority Critical patent/JP2005295868A/en
Publication of JP2005295868A publication Critical patent/JP2005295868A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic beads deflocculating specimens at a low temperature causing no degeneration nor destruction and capable of preventing degeneration and destruction of the specimens, and to provide a method for isolating the specimens by using the beads. <P>SOLUTION: The method comprises mixing, in a sample 14 containing a several kind of specimens 11, 12 and 13, a several kind of magnetic beads 1B1, 1B2 and 1B3 each covered with a nonmagnetic coat specifically bonding or reacting with the several kind of specimens on the surface of magnetic particles comprising ferrimagnets having compensation temperatures in each different temperature ranges, specifically bonding or reacting each specimen with each magnetic bead, then, being influenced with an external magnetic field to agglomerate superparamagnetic beads in the external magnetic field, adjusting the temperature of the mixture of the sample and the beads at the compensation temperature of the magnetic beads 1 to deflocculate the agglomerated magnetic beads 1 and taking out, under such a condition, the magnetic beads 1 and the specimens specifically bonded or reacted therewith. The steps are repeated required number of repetitions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、細胞、蛋白質、核酸等の検体の定量、分離、精製及び分析等に有用な磁気ビーズとそれを用いた検体の分離方法とに関する。   The present invention relates to a magnetic bead useful for quantification, separation, purification and analysis of specimens such as cells, proteins and nucleic acids, and a specimen separation method using the same.

特定の検体を定量、分析又は分画するためには、目的とする検体を他の物質から分離して取り出す必要がある。従来より、目的とする検体を他の物質から分離する手段としては、遠心分離法、カラム分離法及び電気泳動法などが広く用いられているが、これらの手段はいずれも大量の検体を必要とし、かつ目的とする検体の分離に長時間を要するばかりでなく、検体の環境条件を極端に変化させるために検体が変性しやすいという不都合がある。   In order to quantify, analyze, or fractionate a specific specimen, it is necessary to separate the target specimen from other substances and take it out. Conventionally, centrifugal separation, column separation, electrophoresis and the like have been widely used as means for separating a target specimen from other substances, but these means all require a large amount of specimen. Moreover, not only does it take a long time to separate the target sample, but there is also a disadvantage that the sample is easily denatured because the environmental conditions of the sample are extremely changed.

近年、かかる従来法の短所を克服し得る手法として、超常磁性磁気ビーズを用いる方法が開発され、細胞、蛋白質、DNA及びRNA等の検体の分離及び分析等に利用されている(例えば、特許文献1参照。)。   In recent years, a method using superparamagnetic magnetic beads has been developed as a technique that can overcome the disadvantages of the conventional method, and is used for separation and analysis of specimens such as cells, proteins, DNA, and RNA (for example, patent documents). 1).

超常磁性磁気ビーズは、永久磁性を維持するのに必要な磁区の大きさよりも微細な粒子にした酸化鉄等の磁性体を特定の検体と特異的に結合又は反応する非磁性のビーズ中に分散したもので、外磁場がかかったときのみ強磁性を示す性質を有している。したがって、この超常磁性磁気ビーズを外磁場をかけない状態で目的の検体を含む試料中に投入し、ビーズの表面に目的とする検体を結合させ、しかる後に外磁場を印加して超常磁性磁気ビーズを凝集させることにより、目的とする検体を超常磁性磁気ビーズと共に回収することができる。   Superparamagnetic beads are dispersed in non-magnetic beads that specifically bind to or react with a specific analyte, such as iron oxide, which is finer than the size of the magnetic domain necessary to maintain permanent magnetism. It has the property of exhibiting ferromagnetism only when an external magnetic field is applied. Therefore, this superparamagnetic magnetic bead is put into a sample containing a target specimen without applying an external magnetic field, and the target specimen is bound to the surface of the bead, and then an external magnetic field is applied to superparamagnetic magnetic beads. Can be collected together with superparamagnetic magnetic beads.

また、試料中に含まれる複数の検体を個別に分離する方法として、磁性体のキュリー温度と磁気ビーズの表面に修飾された特定の検体と特異的に結合又は反応する結合パートナーとの組合せが異なる複数種の超常磁性磁気ビーズを複数の検体を含む試料中に投入し、各超常磁性磁気ビーズの表面に目的とする検体を個別に結合させた後、外磁場をかけて全ての超常磁性磁気ビーズを外磁場に凝集させ、しかる後に、試料の温度を1の超常磁性磁気ビーズに含まれる磁性体のキュリー温度に昇温して当該1の超常磁性磁気ビーズの凝集を選択的に解き、当該凝集が解除された1の超常磁性磁気ビーズをこれに結合された検体と共に回収するという過程を必要回数だけ繰り返す方法も提案されている(例えば、特許文献2参照。)。   In addition, as a method for individually separating a plurality of specimens contained in a sample, the combination of the Curie temperature of the magnetic material and the binding partner that specifically binds or reacts with a specific specimen modified on the surface of the magnetic beads is different. Put multiple types of superparamagnetic beads into a sample containing multiple specimens, individually bind the target specimen to the surface of each superparamagnetic magnetic bead, and then apply an external magnetic field to all superparamagnetic magnetic beads. Then, the sample temperature is raised to the Curie temperature of the magnetic substance contained in the superparamagnetic magnetic bead 1 to selectively unaggregate the superparamagnetic magnetic bead 1 and There has also been proposed a method of repeating the process of recovering one superparamagnetic magnetic bead released from the sample together with a specimen bound thereto (see, for example, Patent Document 2).

この方法によると、試料の温度を各超常磁性磁気ビーズに含まれる磁性体のキュリー温度に段階的に昇温することにより、1の試料中に含まれる複数の検体を順次個別に分離することができるので、1の試料からの目的とする複数の検体の分離を効率的に行うことができる。
特表平4−501956号公報 特開平6−300754号公報
According to this method, a plurality of specimens contained in one sample can be sequentially separated individually by raising the temperature of the sample stepwise to the Curie temperature of the magnetic substance contained in each superparamagnetic magnetic bead. Therefore, it is possible to efficiently separate a plurality of target specimens from one sample.
Japanese National Patent Publication No. 4-501956 JP-A-6-300754

しかるに、現在知られている磁性体は、いずれもキュリー温度が100℃以上の高温であるので、例えばある種の抗体については分離の過程でその機能が破壊されてしまうことがあり、適用可能な検体の種類が限定されるという問題点がある。   However, since all of the currently known magnetic materials have a Curie temperature of 100 ° C. or higher, for example, the function of certain antibodies may be destroyed in the process of separation, and can be applied. There is a problem that the types of specimens are limited.

本発明は、かかる従来技術の不備を解決するためになされたものであり、その目的は、検体を変性又は破壊しない温度で凝集を解くことができる磁気ビーズと、これを用いた検体の分離方法とを提供することにある。   The present invention has been made to solve such deficiencies of the prior art, and an object of the present invention is to provide magnetic beads capable of releasing aggregation at a temperature at which the specimen is not denatured or destroyed, and a specimen separation method using the same. And to provide.

本発明は、前記の課題を解決するため、磁気ビーズについては、磁性粒子と当該磁性粒子の表面に被覆された非磁性の被覆層とからなる磁気ビーズであって、前記磁性粒子が補償温度をもつフェリ磁性体からなるという構成にした。   In order to solve the above problems, the present invention relates to a magnetic bead comprising a magnetic particle and a nonmagnetic coating layer coated on the surface of the magnetic particle, wherein the magnetic particle has a compensation temperature. It consists of a ferrimagnetic material.

前記フェリ磁性体としては、補償温度を磁性体の組成によって制御しやすいことから、希土類元素−遷移金属元素系の合金を用いることが特に好ましい。また、前記被覆層としては、磁性体の凝集を防止する機能が高く、かつ特定の検体と特異的に結合又は反応する結合パートナー(プローブ)の選択的な結合が可能であることから、シリカ、アルミナ、アパタイト及びキトサンより選択されるいずれか1種の物質からなるものを用いることが特に好ましい。さらに、前記被覆層の表面には、より多くの検体を特異的に結合又は反応できるようにするため、検体が有する官能基と特異的に結合する官能基等よりなるプローブを備えることもできる。前記プローブとしては、例えば特定の抗原と特異的に結合又は反応する特異的抗原、特定のホルモンと特異的に結合又は反応するホルモン受容体、特定のハプテンと特異的に結合又は反応する抗ハプテン、特定のポリヌクレオチドと特異的に結合又は反応する相補的ポリヌクレオリド、特定のポリヌクレオチドと特異的に結合又は反応するポリヌクレオリド結合蛋白、特定のビオチンと特異的に結合又は反応するアビジン又はストレプトアビジン、特定の酵素と特異的に結合又は反応する酵素補因子、及び特定のレクチンと特異的に結合又は反応する特異的炭化水素などを挙げることができる。   As the ferrimagnetic material, it is particularly preferable to use a rare earth element-transition metal element alloy because the compensation temperature can be easily controlled by the composition of the magnetic material. In addition, since the coating layer has a high function of preventing aggregation of the magnetic substance and can selectively bind a binding partner (probe) that specifically binds or reacts with a specific specimen, silica, It is particularly preferable to use one made of any one material selected from alumina, apatite, and chitosan. Furthermore, a probe made of a functional group or the like that specifically binds to a functional group of the specimen can be provided on the surface of the coating layer so that more specimen can be specifically bound or reacted. Examples of the probe include a specific antigen that specifically binds or reacts with a specific antigen, a hormone receptor that specifically binds or reacts with a specific hormone, an anti-hapten that specifically binds or reacts with a specific hapten, A complementary polynucleotide that specifically binds or reacts with a specific polynucleotide, a polynucleotide-binding protein that specifically binds or reacts with a specific polynucleotide, an avidin or a strep that specifically binds or reacts with a specific biotin Examples include avidin, an enzyme cofactor that specifically binds or reacts with a specific enzyme, and a specific hydrocarbon that specifically binds or reacts with a specific lectin.

一方、磁気ビーズを用いた検体の分離方法としては、第1に、複数種の検体を含む試料中に、それぞれ異なる補償温度をもつフェリ磁性体からなる磁性粒子の表面にそれぞれ前記複数種の検体の1つと特異的に結合又は反応する非磁性の被覆層を被覆してなる複数種の磁気ビーズを混合し、前記複数種の検体と前記複数種の磁気ビーズの被覆層とをそれぞれ特異的に結合又は反応させた後、外磁場をかけて全ての前記磁気ビーズを外磁場に凝集させ、次いで、前記試料と前記磁気ビーズとの混合体の温度を前記複数種の磁性粒子の補償温度に段階的に調整し、前記試料と前記磁気ビーズとの混合体の温度が1種類の磁性粒子の補償温度に達するごとに、当該1種類の磁性粒子を有する前記磁気ビーズとこれに特異的に結合又は反応した前記検体とを選択的に取り出すという構成にした。   On the other hand, as a method for separating specimens using magnetic beads, first, in the specimen containing plural kinds of specimens, the plural kinds of specimens are respectively formed on the surfaces of magnetic particles made of ferrimagnetic materials having different compensation temperatures. A plurality of types of magnetic beads formed by coating a nonmagnetic coating layer that specifically binds or reacts with one of the plurality of samples, and the plurality of types of specimens and the coating layer of the plurality of types of magnetic beads are each specifically After binding or reacting, an external magnetic field is applied to aggregate all the magnetic beads into an external magnetic field, and then the temperature of the mixture of the sample and the magnetic beads is set to the compensation temperature of the plurality of types of magnetic particles. Each time the temperature of the mixture of the sample and the magnetic beads reaches the compensation temperature of one type of magnetic particles, the magnetic beads having the one type of magnetic particles and the specific binding or binding thereto. The test that reacted Was the configuration that selectively take out the door.

また、第2に、複数種の検体を含む試料中に、それぞれ異なる補償温度をもつフェリ磁性体からなる磁性粒子の表面にそれぞれ前記複数種の検体の1つと特異的に結合又は反応するプローブを有する非磁性の被覆層を被覆してなる複数種の磁気ビーズを混合し、前記複数種の検体と前記複数種の磁気ビーズのプローブとをそれぞれ特異的に結合又は反応させた後、外磁場をかけて全ての前記磁気ビーズを外磁場に凝集させ、次いで、前記試料と前記磁気ビーズとの混合体の温度を前記複数種の磁性粒子の補償温度に段階的に調整し、前記試料と前記磁気ビーズとの混合体の温度が1種類の磁性粒子の補償温度に達するごとに、当該1種類の磁性粒子を有する前記磁気ビーズとこれに特異的に結合又は反応した前記検体とを選択的に取り出すという構成にした。   Second, in a sample containing a plurality of types of analytes, probes that specifically bind to or react with one of the plurality of types of analytes on the surface of a magnetic particle made of a ferrimagnetic material having different compensation temperatures. A plurality of types of magnetic beads coated with a nonmagnetic coating layer are mixed, the plurality of types of specimens and the probes of the plurality of types of magnetic beads are respectively specifically bound or reacted, and then an external magnetic field is applied. All the magnetic beads are aggregated in an external magnetic field, and then the temperature of the mixture of the sample and the magnetic beads is adjusted stepwise to the compensation temperature of the plurality of types of magnetic particles, and the sample and the magnetic Each time the temperature of the mixture with the beads reaches the compensation temperature of one type of magnetic particles, the magnetic beads having the one type of magnetic particles and the sample that specifically binds to or reacts with the magnetic beads are selectively extracted. When It was in the jar configuration.

フェリ磁性体は、磁性原子が2組以上の結晶の副格子上にあり、図5に示すように、各磁性原子の磁気モーメントA,Bが互いに逆向きになっているとき、外部にはこれらの各磁気モーメントA,Bの差に相当する自発磁化が生じる。この自発磁化は温度依存性を有し、組成によっては、図6に示すように、キュリー温度Tcよりも低温のある温度Tcompで自発磁化を発現しないフェリ磁性体もある。この自発磁化を発現しない温度Tcompは「補償温度」と呼ばれ、補償温度より高い温度又は低い温度では自発磁化を持つ。このため、補償温度が異なる複数種の磁気ビーズを試料中に混合した場合、試料の温度がいずれの磁気ビーズの補償温度でもないときには、外磁場をかけることにより、全ての磁気ビーズを外磁場に凝集させることができ、試料の温度を1の磁気ビーズの補償温度に調整したときには、当該1の磁気ビーズの外磁場による凝集を解除することができる。   Ferrimagnetic materials have magnetic atoms on two or more sets of crystal sublattices, and when the magnetic moments A and B of the magnetic atoms are opposite to each other as shown in FIG. Spontaneous magnetization corresponding to the difference between the magnetic moments A and B occurs. This spontaneous magnetization has temperature dependence, and depending on the composition, as shown in FIG. 6, there is a ferrimagnetic material that does not exhibit spontaneous magnetization at a temperature Tcomp that is lower than the Curie temperature Tc. This temperature Tcomp that does not exhibit spontaneous magnetization is called “compensation temperature”, and has spontaneous magnetization at a temperature higher or lower than the compensation temperature. For this reason, when multiple types of magnetic beads with different compensation temperatures are mixed in the sample, if the sample temperature is not the compensation temperature of any of the magnetic beads, an external magnetic field is applied to make all the magnetic beads an external magnetic field. When the temperature of the sample is adjusted to the compensation temperature of one magnetic bead, the aggregation due to the external magnetic field of the one magnetic bead can be released.

したがって、磁性体の補償温度と非磁性体が特異的に結合又は反応する検体との組合せが異なる複数種の磁気ビーズを複数の検体を含む試料中に投入し、各磁気ビーズに目的とする検体を個別に結合させた後、試料の温度を1の磁気ビーズを構成する磁性体の補償温度に昇温して当該1の磁気ビーズの凝集を解き、凝集が解かれた磁気ビーズをそれに結合されている検体と共に回収するという過程を必要回数だけ繰り返すことにより、キュリー温度が異なる複数種の超常磁性磁気ビーズを用いる場合に比べて低温で1の試料から複数の目的とする検体を個別に分離することができる。よって、検体に変性や破壊等の不都合が生じにくく、目的の検体を高能率に分離できると共に、磁気ビーズの適用範囲を拡張することができる。   Therefore, a plurality of types of magnetic beads having different combinations of the compensation temperature of the magnetic material and the sample to which the non-magnetic material specifically binds or reacts are put into a sample containing a plurality of samples, and the target sample is applied to each magnetic bead. After the individual beads are bonded, the temperature of the sample is raised to the compensation temperature of the magnetic material constituting the magnetic beads of 1 to deaggregate the magnetic beads of 1 and the magnetic beads having been deaggregated are bonded to them. By repeating the process of collecting the sample together with the sample as many times as necessary, a plurality of target samples are individually separated from one sample at a lower temperature than when multiple types of superparamagnetic magnetic beads having different Curie temperatures are used. be able to. Therefore, inconveniences such as denaturation and destruction do not easily occur in the specimen, the target specimen can be separated with high efficiency, and the application range of the magnetic beads can be expanded.

本発明によると、磁性粒子が補償温度をもつフェリ磁性体からなるので、1の試料中から複数の目的とする検体を個別に分離する際に、補償温度と特異的に結合又は反応する検体との組合せが異なる複数種の磁気ビーズを複数の検体を含む試料中に投入することにより、キュリー温度が異なる複数種の超常磁性磁気ビーズを用いる場合に比べて低温で1の試料から複数の目的とする検体を個別に分離することができ、検体分離の高能率化と磁気ビーズの適用範囲の拡張とを図ることができる。   According to the present invention, since the magnetic particles are made of a ferrimagnetic material having a compensation temperature, a specimen that specifically binds or reacts with the compensation temperature when separately separating a plurality of target specimens from one sample, By putting a plurality of types of magnetic beads having different combinations into a sample containing a plurality of specimens, a plurality of types of superparamagnetic magnetic beads having different Curie temperatures can be used at a lower temperature than a plurality of purposes. The specimens to be separated can be individually separated, so that the efficiency of specimen separation can be improved and the application range of magnetic beads can be expanded.

以下、本発明に係る磁気ビーズの実施形態を図1及び図2に基づいて説明する。図1は本発明に係る磁気ビーズの第1例を示す断面図、図2は本発明に係る磁気ビーズの第2例を示す断面図、図3は本発明に係る磁気ビーズに適用可能な各種のフェリ磁性体とその補償温度とを示す表図である。   Hereinafter, an embodiment of a magnetic bead according to the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a first example of a magnetic bead according to the present invention, FIG. 2 is a cross-sectional view showing a second example of the magnetic bead according to the present invention, and FIG. 3 is various figures applicable to the magnetic bead according to the present invention. It is a table | surface figure which shows this ferrimagnet, and its compensation temperature.

第1例に係る磁気ビーズ1Aは、図1に示すように、磁性粒子2と当該磁性粒子2の表面に被覆された非磁性の被覆層3とからなる。   As shown in FIG. 1, the magnetic bead 1 </ b> A according to the first example includes a magnetic particle 2 and a nonmagnetic coating layer 3 coated on the surface of the magnetic particle 2.

前記磁性粒子2は、補償温度をもつフェリ磁性体をもって形成される。フェリ磁性体としては、補償温度をもつものであれば公知に属する任意のものを用いることができるが、補償温度が比較的室温に近いことから、希土類元素−遷移金属元素系の合金を用いることが特に好ましい。図3に磁性粒子2として適用可能な各種のフェリ磁性体とその補償温度とを示す。この図から明らかなように、3Dy・5Feの補償温度は−40℃、3Tb・5Feの補償温度は−30℃、3Gd・5Feの補償温度は0℃、YGaFe12の補償温度は−130℃、LiCrフェライトの補償温度は室温〜+100℃、GdFe,GdTbFe,GdDyFeの補償温度はそれぞれ−100℃〜+100℃である。 The magnetic particle 2 is formed of a ferrimagnetic material having a compensation temperature. Any ferrimagnetic material having a compensation temperature can be used as long as it has a compensation temperature. However, since the compensation temperature is relatively close to room temperature, a rare earth element-transition metal element based alloy should be used. Is particularly preferred. FIG. 3 shows various ferrimagnetic materials applicable as the magnetic particles 2 and their compensation temperatures. As is apparent from this figure, the compensation temperature of 3Dy 2 O 3 · 5Fe 2 O 3 is -40 ° C., the compensation temperature of 3Tb 2 O 3 · 5Fe 2 O 3 is -30 ℃, 3Gd 2 O 3 · 5Fe 2 O 3 is 0 ° C., Y 3 Ga 2 Fe 3 O 12 is −130 ° C., LiCr ferrite is room temperature to + 100 ° C., GdFe, GdTbFe, and GdDyFe are compensation temperatures of −100 ° C. to + 100 ° C., respectively. ° C.

前記被覆層3は、特定の検体を特異的に結合又は反応する非磁性体や、リンカー端にあるエポキシ基が特定の官能基、例えばアミノ基やチオール基を有する化学物質を固定するトシル基、水酸基を有する化学物質を固定する活性化カルボキシル基、カルボキシル基を有する化学物質を固定するアミノ基、プロモアセトアミド基を有する化学物質を固定するチオール基に置換された非磁性体をもって形成される。前記特定の検体を特異的に結合又は反応する非磁性体としては、磁性体の凝集を防止する機能が高く、かつプローブの選択的な結合が可能であることから、シリカ、アルミナ、アパタイト又はキトサンなどを用いることができる。   The coating layer 3 is a non-magnetic material that specifically binds or reacts with a specific specimen, a tosyl group that fixes a chemical substance having an epoxy group at a linker end having a specific functional group, such as an amino group or a thiol group, It is formed with an activated carboxyl group that fixes a chemical substance having a hydroxyl group, an amino group that fixes a chemical substance having a carboxyl group, and a nonmagnetic substance substituted with a thiol group that fixes a chemical substance having a promoacetamide group. As the non-magnetic substance that specifically binds or reacts with the specific analyte, it has a high function of preventing aggregation of the magnetic substance and allows selective binding of the probe, so silica, alumina, apatite, or chitosan. Etc. can be used.

一方、第2例に係る磁気ビーズ1Bは、図2に示すように、磁性粒子2と当該磁性粒子2の表面に被覆された非磁性の被覆層3と、当該非磁性の被覆層3に結合されたプローブ4とからなる。プローブ4としては、例えば特定の抗原と特異的に結合又は反応する特異的抗原、特定のホルモンと特異的に結合又は反応するホルモン受容体、特定のハプテンと特異的に結合又は反応する抗ハプテン、特定のポリヌクレオチドと特異的に結合又は反応する相補的ポリヌクレオリド、特定のポリヌクレオチドと特異的に結合又は反応するポリヌクレオリド結合蛋白、特定のビオチンと特異的に結合又は反応するアビジン又はストレプトアビジン、特定の酵素と特異的に結合又は反応する酵素補因子、及び特定のレクチンと特異的に結合又は反応する特異的炭化水素などを挙げることができる。その他については、第1例に係る磁気ビーズ1Aと同じであるので、説明を省略する。   On the other hand, the magnetic beads 1B according to the second example are bonded to the magnetic particles 2, the nonmagnetic coating layer 3 coated on the surface of the magnetic particles 2, and the nonmagnetic coating layer 3 as shown in FIG. The probe 4 is made up of. Examples of the probe 4 include a specific antigen that specifically binds or reacts with a specific antigen, a hormone receptor that specifically binds or reacts with a specific hormone, an anti-hapten that specifically binds or reacts with a specific hapten, A complementary polynucleotide that specifically binds or reacts with a specific polynucleotide, a polynucleotide-binding protein that specifically binds or reacts with a specific polynucleotide, an avidin or strept that specifically binds or reacts with a specific biotin Examples include avidin, an enzyme cofactor that specifically binds or reacts with a specific enzyme, and a specific hydrocarbon that specifically binds or reacts with a specific lectin. Since others are the same as the magnetic bead 1A according to the first example, description thereof is omitted.

次に、第2例に係る磁気ビーズ1Bを用いる場合を例にとり、1の試料中から複数の目的とする検体を個別に分離する方法を図4に基づいて説明する。図4は本発明に係る検体の分離方法の一例を示す説明図である。   Next, taking as an example the case of using the magnetic beads 1B according to the second example, a method for individually separating a plurality of target specimens from one sample will be described based on FIG. FIG. 4 is an explanatory diagram showing an example of a specimen separation method according to the present invention.

まず、図4(a)に示すように、補償温度がT1の磁性粒子2aと第1のプローブ4aとを有する磁気ビーズ1B1と、補償温度がT2の磁性粒子2bと第2のプローブ4bとを有する磁気ビーズ1B2と、補償温度がT3の磁性粒子2cと第3のプローブ4cとを有する磁気ビーズ1B3とを用意する。   First, as shown in FIG. 4A, a magnetic bead 1B1 having a magnetic particle 2a having a compensation temperature T1 and a first probe 4a, a magnetic particle 2b having a compensation temperature T2 and a second probe 4b are provided. And magnetic beads 1B3 having magnetic particles 2c having a compensation temperature of T3 and third probes 4c.

次に、図4(b)に示すように、これらの磁気ビーズ1B1,1B2,1B3を、少なくとも3種の検体11,12,13が含まれる試料14中に投入し、良く攪拌して第1乃至第3のプローブ4a,4b,4cのそれぞれに各検体11,12,13を個別に結合させる。検体11,12,13としては、細胞、蛋白質、核酸その他の化学物質を当てることができる。また、試料14は、液相、気相及び気相流体のいずれでも良い。   Next, as shown in FIG. 4 (b), these magnetic beads 1B1, 1B2, and 1B3 are put into a sample 14 containing at least three types of specimens 11, 12, and 13, and stirred first. The specimens 11, 12, and 13 are individually coupled to the third to fourth probes 4a, 4b, and 4c, respectively. Samples 11, 12, and 13 can be cells, proteins, nucleic acids, or other chemical substances. The sample 14 may be any of a liquid phase, a gas phase, and a gas phase fluid.

次に、図4(c)に示すように、磁石15を用いて試料14に外磁場をかけつつ、調温器16を用いて試料14の温度を磁性粒子2aの補償温度であるT1に調整する。これにより、自発磁化が発現しない磁気ビーズ1B1のみが選択的に試料14の底に沈殿し、自発磁化が発現している磁気ビーズ1B2,1B3は磁石15に凝集される。なお、前記磁石15としては、電磁石を用いることもできるし、永久磁石を用いることもできる。また、前記調温器16としては、ペルチェ素子などを用いることができる。   Next, as shown in FIG. 4C, while applying an external magnetic field to the sample 14 using the magnet 15, the temperature of the sample 14 is adjusted to T1 which is the compensation temperature of the magnetic particles 2a using the temperature controller 16. To do. As a result, only the magnetic beads 1B1 that do not exhibit spontaneous magnetization are selectively precipitated on the bottom of the sample 14, and the magnetic beads 1B2 and 1B3 that exhibit spontaneous magnetization are aggregated in the magnet 15. As the magnet 15, an electromagnet can be used, or a permanent magnet can be used. Further, as the temperature controller 16, a Peltier element or the like can be used.

したがって、図4(d)に示すように、試料14を入れた容器の底より磁気ビーズ1B1を抜き取り、別の容器に収納することによって、磁気ビーズ1B1とこれに結合された検体11とを単独で取り出すことができる。   Therefore, as shown in FIG. 4 (d), the magnetic beads 1B1 and the specimen 11 bound to the magnetic beads 1B1 are isolated by removing the magnetic beads 1B1 from the bottom of the container containing the sample 14 and storing them in another container. Can be taken out with.

次いで、図4(e)に示すように、磁石15を用いて試料14に外磁場をかけつつ、調温器16を用いて試料14の温度を磁性粒子2bの補償温度であるT2に調整する。これにより、自発磁化が発現しない磁気ビーズ1B2のみが選択的に試料14の底に沈殿し、自発磁化が発現している磁気ビーズ1B3は磁石15に凝集される。   Next, as shown in FIG. 4E, while applying an external magnetic field to the sample 14 using the magnet 15, the temperature of the sample 14 is adjusted to T2 which is the compensation temperature of the magnetic particles 2b using the temperature controller 16. . As a result, only the magnetic beads 1B2 that do not exhibit spontaneous magnetization selectively precipitate on the bottom of the sample 14, and the magnetic beads 1B3 that exhibit spontaneous magnetization are aggregated in the magnet 15.

したがって、図4(f)に示すように、試料14を入れた容器の底より磁気ビーズ1B2を抜き取り、別の容器に収納することによって、磁気ビーズ1B2とこれに結合された検体12とを単独で取り出すことができる。   Therefore, as shown in FIG. 4 (f), the magnetic beads 1B2 are extracted from the bottom of the container containing the sample 14 and stored in another container, so that the magnetic beads 1B2 and the specimen 12 bound to the magnetic beads 1B2 are separated. Can be taken out with.

最後に、図4(g)に示すように、調温器16を用いて試料14の温度を磁性粒子2cの補償温度であるT3に調整する。これにより、自発磁化が発現しない磁気ビーズ1B3が試料14の底に沈殿する。   Finally, as shown in FIG. 4G, the temperature of the sample 14 is adjusted to T3, which is the compensation temperature of the magnetic particles 2c, using the temperature controller 16. As a result, the magnetic beads 1B3 that do not exhibit spontaneous magnetization are deposited on the bottom of the sample 14.

したがって、図4(h)に示すように、試料14を入れた容器の底より磁気ビーズ1B3を抜き取り、別の容器に収納することによって、磁気ビーズ1B3とこれに結合された検体13とを単独で取り出すことができる。   Therefore, as shown in FIG. 4 (h), the magnetic beads 1B3 and the specimen 13 bound to the magnetic beads 1B3 are isolated by removing the magnetic beads 1B3 from the bottom of the container containing the sample 14 and storing them in another container. Can be taken out with.

前記したように、フェリ磁性体の補償温度は、キュリー温度に比べて格段に低温であるので、本発明に係る磁気ビーズ1Bを用い、上記の方法で1の試料から複数の検体を個別に分離すると、検体に変性や破壊等の不都合が生じにくく、目的の検体を高能率に分離できると共に、磁気ビーズの適用範囲を拡張することができる。   As described above, since the compensation temperature of the ferrimagnetic material is much lower than the Curie temperature, the magnetic beads 1B according to the present invention are used to individually separate a plurality of specimens from one sample by the above method. Then, inconveniences such as denaturation and destruction do not easily occur in the specimen, the target specimen can be separated with high efficiency, and the application range of the magnetic beads can be expanded.

なお、前記においては、プローブ4a,4b,4cを有する磁気ビーズ1B1,1B2,1B3を用いたが、プローブ4a,4b,4cを有しない磁気ビーズ1Aを用いた場合にも、同様の方法で検体の分離を行うことができる。シリカが表面に被覆された磁気ビーズを用いてDNA又はRNAの分離を行う場合には、シリカの表面にある特異なDNAプローブ或いはRNAプローブを修飾し、ハイブリダイゼーションに用いても良い。また、mRNAを単離、精製する場合には、20個から30個のデオキシチミジル酸を5′リンカーを介して磁気ビーズの表面に共有結合させたものを用いることができる。   In the above description, the magnetic beads 1B1, 1B2, and 1B3 having the probes 4a, 4b, and 4c are used. However, when the magnetic beads 1A that do not have the probes 4a, 4b, and 4c are used, the sample is used in the same manner. Separation can be performed. When the separation of DNA or RNA is performed using magnetic beads whose surface is coated with silica, a specific DNA probe or RNA probe on the surface of silica may be modified and used for hybridization. In addition, when mRNA is isolated and purified, 20 to 30 deoxythymidylic acid covalently bound to the surface of the magnetic beads via a 5 ′ linker can be used.

また、前記においては、磁気ビーズ1B1,1B2,1B3を検体の分離に用いたが、プライマーを磁気ビーズ1B1,1B2,1B3と結合させることで、効果的かつ効率的にPCRを行い分離することも可能である。   In the above description, the magnetic beads 1B1, 1B2, and 1B3 are used for the separation of the specimen. However, by combining the primers with the magnetic beads 1B1, 1B2, and 1B3, PCR can be effectively and efficiently separated. Is possible.

以下、本発明に係る磁気ビーズの他の例を列挙する。   Hereinafter, other examples of the magnetic beads according to the present invention will be listed.

(1)検体である抗原の結合パートナーをモノクロラール抗体とする。 (1) A monoclonal antibody is used as a binding partner of an antigen as a specimen.

(2)検体である抗原の結合パートナーをオリゴヌクレオチド分子が1個以上のものとする。 (2) One or more oligonucleotide molecules are used as the binding partner of the antigen as the specimen.

(3)検体である抗原の結合パートナーをオリゴヌクレオチドが5′−アミノ基を介して磁性ビーズに共有結合しているものとする。 (3) It is assumed that an oligonucleotide is covalently bound to a magnetic bead via a 5′-amino group as a binding partner of an antigen as a specimen.

(4)検体である抗原の結合パートナーをオリゴヌクレオチドが12〜200塩基の範囲の鎖長を有しているものとする。 (4) It is assumed that the oligonucleotide has a chain length in the range of 12 to 200 bases as a binding partner of an antigen as a specimen.

(5)検体である抗原の結合パートナーをオリゴヌクレオチドがぽりdTであるものとする。 (5) Assume that the binding partner of the antigen as the specimen is the oligonucleotide dT.

(6)検体である抗原の結合パートナーをオリゴヌクレオチドが標的核酸のDNA又はRNA配列に特異的に結合するものとする。 (6) The binding partner of the antigen as the specimen is specifically bound by the oligonucleotide to the DNA or RNA sequence of the target nucleic acid.

(7)検体である抗原の結合パートナーを表面にアミノ結合を行えるアミノ基を有するものとする。 (7) A binding partner of an antigen as a specimen has an amino group capable of performing amino binding on the surface.

(8)検体である抗原の結合パートナーを表面にアミノ基を与えるためにアミノアルキル化ポリマーよりなるものとする。 (8) A binding partner of an antigen as a specimen is made of an aminoalkylated polymer in order to give an amino group to the surface.

(9)検体である抗原の結合パートナーを表面にアミノ結合を行えるカルボキシル基を有するものとする。 (9) A binding partner of an antigen as a specimen has a carboxyl group capable of amino bonding on the surface.

(10)検体である抗原の結合パートナーを表面にカルボキシル基を与えるためにアクリル酸のポリマー或いはコポリマーよりなるものとする。 (10) A binding partner of an antigen as a specimen is made of an acrylic acid polymer or copolymer in order to give a carboxyl group to the surface.

(11)検体である抗原の結合パートナーを表面にカルボキシル基を与えるためにメタクリル酸のポリマー或いはコポリマーよりなるものとする。 (11) A binding partner of an antigen as a specimen is made of a polymer or copolymer of methacrylic acid in order to give a carboxyl group to the surface.

(12)検体である抗原の結合パートナーをアミノ結合を行えるアルデヒド基を有するものとする。 (12) A binding partner of an antigen as a specimen has an aldehyde group capable of amino binding.

(13)検体である抗原の結合パートナーを表面に共有結合を行えるヒドロキシル基を有するものとする。 (13) A binding partner of an antigen as a specimen has a hydroxyl group capable of covalently binding to the surface.

(14)検体である抗原の結合パートナーを表面にヒドロキシル基を与えるためにポリグリコールを伴うポリウレタンよりなるものとする。 (14) The binding partner of the antigen as the specimen is made of polyurethane with polyglycol to give a hydroxyl group on the surface.

(15)検体である抗原の結合パートナーを表面にヒドロキシル基を与えるためにセルロース誘導体よりなるものとする。 (15) A binding partner of an antigen as a specimen is made of a cellulose derivative in order to give a hydroxyl group to the surface.

(16)検体である抗原の結合パートナーを表面にシラン結合を行えるシラン基を有するものとする。 (16) A binding partner of an antigen as a specimen has a silane group capable of silane bonding on the surface.

その他、前記検体の分離方法においては、複数種の磁気ビーズを試料中に投入する方法について説明したが、本発明に係る磁気ビーズは、かかる使用方法に限定されるものではなく、従来の超常磁性磁気ビーズと同様に、単独で検体の分離に適用することもできる。   In addition, in the sample separation method, a method of putting a plurality of types of magnetic beads into a sample has been described. However, the magnetic beads according to the present invention are not limited to such a method of use, and are conventional superparamagnetic. As with the magnetic beads, it can be applied to the separation of the specimen alone.

本発明に係る磁気ビーズの第1例を示す断面図である。It is sectional drawing which shows the 1st example of the magnetic bead which concerns on this invention. 本発明に係る磁気ビーズの第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the magnetic bead which concerns on this invention. 本発明に係る磁気ビーズに適用可能な各種のフェリ磁性体とその補償温度とを示す表図である。It is a table | surface figure which shows the various ferrimagnetic bodies applicable to the magnetic bead which concerns on this invention, and its compensation temperature. 本発明に係る検体の分離方法の一例を示す説明図である。It is explanatory drawing which shows an example of the separation method of the sample which concerns on this invention. フェリ磁性体の磁気モーメントを示す説明図である。It is explanatory drawing which shows the magnetic moment of a ferrimagnetic body. フェリ磁性体の自発磁化の温度依存性を示すグラフ図である。It is a graph which shows the temperature dependence of the spontaneous magnetization of a ferrimagnetic material.

符号の説明Explanation of symbols

1A,1B 磁気ビーズ
2 磁性粒子
3 被覆層
4 プローブ
11,12,13 検体
14 試料
15 磁石(外磁場)
16 調温器
1A, 1B Magnetic beads 2 Magnetic particles 3 Coating layer 4 Probe 11, 12, 13 Specimen 14 Sample 15 Magnet (external magnetic field)
16 Temperature controller

Claims (7)

磁性粒子と当該磁性粒子の表面に被覆された非磁性の被覆層とからなる磁気ビーズであって、前記磁性粒子が補償温度をもつフェリ磁性体からなることを特徴とする磁気ビーズ。   A magnetic bead comprising magnetic particles and a nonmagnetic coating layer coated on the surface of the magnetic particles, wherein the magnetic particles are made of a ferrimagnetic material having a compensation temperature. 前記フェリ磁性体が、少なくとも希土類元素と遷移金属元素とを含む合金からなることを特徴とする請求項1に記載の磁気ビーズ。   The magnetic bead according to claim 1, wherein the ferrimagnetic material is made of an alloy containing at least a rare earth element and a transition metal element. 前記被覆層が、シリカ、アルミナ、アパタイト及びキトサンより選択されるいずれか1種の物質からなることを特徴とする請求項1に記載の磁気ビーズ。   The magnetic bead according to claim 1, wherein the coating layer is made of any one material selected from silica, alumina, apatite, and chitosan. 前記被覆層の表面に、特定の検体と特異的に結合又は反応するプローブを備えていることを特徴とする請求項1に記載の磁気ビーズ。   The magnetic bead according to claim 1, further comprising a probe that specifically binds or reacts with a specific specimen on the surface of the coating layer. 前記プローブが、特定の抗原と特異的に結合又は反応する特異的抗原、特定のホルモンと特異的に結合又は反応するホルモン受容体、特定のハプテンと特異的に結合又は反応する抗ハプテン、特定のポリヌクレオチドと特異的に結合又は反応する相補的ポリヌクレオリド、特定のポリヌクレオチドと特異的に結合又は反応するポリヌクレオリド結合蛋白、特定のビオチンと特異的に結合又は反応するアビジン又はストレプトアビジン、特定の酵素と特異的に結合又は反応する酵素補因子、及び特定のレクチンと特異的に結合又は反応する特異的炭化水素より選択されるいずれか1種の物質からなることを特徴とする請求項4に記載の磁気ビーズ。   A specific antigen that specifically binds or reacts with a specific antigen, a hormone receptor that specifically binds or reacts with a specific hormone, an anti-hapten that specifically binds or reacts with a specific hapten, a specific A complementary polynucleotide that specifically binds or reacts with a polynucleotide, a polynucleotide-binding protein that specifically binds or reacts with a specific polynucleotide, avidin or streptavidin that specifically binds or reacts with a specific biotin, The enzyme cofactor that specifically binds or reacts with a specific enzyme, and a specific hydrocarbon that specifically binds or reacts with a specific lectin. 4. Magnetic beads according to 4. 複数種の検体を含む試料中に、それぞれ異なる補償温度をもつフェリ磁性体からなる磁性粒子の表面にそれぞれ前記複数種の検体の1つと特異的に結合又は反応する非磁性の被覆層を被覆してなる複数種の磁気ビーズを混合し、前記複数種の検体と前記複数種の磁気ビーズの被覆層とをそれぞれ特異的に結合又は反応させた後、外磁場をかけて全ての前記磁気ビーズを外磁場に凝集させ、次いで、前記試料と前記磁気ビーズとの混合体の温度を前記複数種の磁性粒子の補償温度に段階的に調整し、前記試料と前記磁気ビーズとの混合体の温度が1種類の磁性粒子の補償温度に達するごとに、当該1種類の磁性粒子を有する前記磁気ビーズとこれに特異的に結合又は反応した前記検体とを選択的に取り出すことを特徴とする検体の分離方法。   A sample containing a plurality of types of specimens is coated with a nonmagnetic coating layer that specifically binds or reacts with one of the plurality of kinds of specimens on the surface of a magnetic particle made of a ferrimagnetic material having different compensation temperatures. A plurality of kinds of magnetic beads are mixed, and the plurality of kinds of specimens and the coating layers of the plurality of kinds of magnetic beads are respectively specifically bound or reacted, and then an external magnetic field is applied to all the magnetic beads. The temperature of the mixture of the sample and the magnetic beads is adjusted stepwise to the compensation temperature of the magnetic particles, and the temperature of the mixture of the sample and the magnetic beads is increased. Separation of specimen characterized by selectively taking out the magnetic beads having the one kind of magnetic particles and the specimen specifically bound or reacted with the magnetic beads each time the compensation temperature of one kind of magnetic particles is reached. Method. 複数種の検体を含む試料中に、それぞれ異なる補償温度をもつフェリ磁性体からなる磁性粒子の表面にそれぞれ前記複数種の検体の1つと特異的に結合又は反応するプローブを有する非磁性の被覆層を被覆してなる複数種の磁気ビーズを混合し、前記複数種の検体と前記複数種の磁気ビーズのプローブとをそれぞれ特異的に結合又は反応させた後、外磁場をかけて全ての前記磁気ビーズを外磁場に凝集させ、次いで、前記試料と前記磁気ビーズとの混合体の温度を前記複数種の磁性粒子の補償温度に段階的に調整し、前記試料と前記磁気ビーズとの混合体の温度が1種類の磁性粒子の補償温度に達するごとに、当該1種類の磁性粒子を有する前記磁気ビーズとこれに特異的に結合又は反応した前記検体とを選択的に取り出すことを特徴とする検体の分離方法。   A nonmagnetic coating layer having a probe that specifically binds or reacts with one of the plurality of analytes on the surface of a magnetic particle made of a ferrimagnetic material having different compensation temperatures in a sample including the plurality of analytes A plurality of types of magnetic beads coated with a plurality of types of magnetic beads are mixed, and the plurality of types of specimens and the probes of the plurality of types of magnetic beads are respectively specifically bound or reacted, and then an external magnetic field is applied to all the magnetic fields. The beads are aggregated in an external magnetic field, and then the temperature of the mixture of the sample and the magnetic beads is adjusted stepwise to the compensation temperature of the plurality of types of magnetic particles, and the mixture of the sample and the magnetic beads is adjusted. Each time the temperature reaches the compensation temperature of one kind of magnetic particles, the magnetic beads having the one kind of magnetic particles and the specimen that specifically binds or reacts to the magnetic beads are selectively taken out. Body method of separation.
JP2004115683A 2004-04-09 2004-04-09 Magnetic bead and isolation method of specimen using the same Pending JP2005295868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115683A JP2005295868A (en) 2004-04-09 2004-04-09 Magnetic bead and isolation method of specimen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115683A JP2005295868A (en) 2004-04-09 2004-04-09 Magnetic bead and isolation method of specimen using the same

Publications (1)

Publication Number Publication Date
JP2005295868A true JP2005295868A (en) 2005-10-27

Family

ID=35328165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115683A Pending JP2005295868A (en) 2004-04-09 2004-04-09 Magnetic bead and isolation method of specimen using the same

Country Status (1)

Country Link
JP (1) JP2005295868A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974979B1 (en) * 2019-01-14 2019-05-07 부경대학교 산학협력단 Automatic purifying apparatus for ice-binding protein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974979B1 (en) * 2019-01-14 2019-05-07 부경대학교 산학협력단 Automatic purifying apparatus for ice-binding protein

Similar Documents

Publication Publication Date Title
US10724031B2 (en) Highly active silica magnetic nanoparticles for purifying biomaterial and preparation method thereof
Adams et al. Multitarget magnetic activated cell sorter
US8110351B2 (en) Method for isolating nucleic acids and protein from a single sample
Johnson et al. Proteomics, nanotechnology and molecular diagnostics
US20040018611A1 (en) Microfluidic devices for high gradient magnetic separation
US20100048410A1 (en) Bead Sorting on a Droplet Actuator
US20090053799A1 (en) Trapping magnetic sorting system for target species
EP1662256A1 (en) Tailored magnetic particles and method to produce same
AU2000263456B2 (en) Increased separation efficiency via controlled aggregation of magnetic nanoparticles
JP2010261963A (en) Methods for enhancing binding interactions between members of specific binding pairs
CN103930210A (en) Microfluidic system
JP6684868B2 (en) One-step method for purification of nucleic acids
JP2009544033A (en) Attraction and separation of magnetic or magnetizable objects from the sensor surface
JP2021531461A (en) Magnetic particles
JP2005532799A5 (en)
JP2018198599A5 (en)
US9354148B2 (en) Magnetic particles based separation and assaying method
Doonan et al. Droplet CAR-Wash: continuous picoliter-scale immunocapture and washing
WO2006047840A1 (en) Method for transport of magnetic particles and devices therefor
US20200231961A1 (en) Device For Facilitating The Isolation Of Targets From A Biological Sample
JP2005295868A (en) Magnetic bead and isolation method of specimen using the same
JP2005312353A (en) Magnetic bead and method for separating specimen by using the same
CA2686842A1 (en) Methods and systems for differential extraction
JPH06300754A (en) Coagulating or fractioning method and apparatus
RU2777899C1 (en) Magnetic particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A02 Decision of refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A02