JP2005295094A - Mobile communication apparatus - Google Patents

Mobile communication apparatus Download PDF

Info

Publication number
JP2005295094A
JP2005295094A JP2004105678A JP2004105678A JP2005295094A JP 2005295094 A JP2005295094 A JP 2005295094A JP 2004105678 A JP2004105678 A JP 2004105678A JP 2004105678 A JP2004105678 A JP 2004105678A JP 2005295094 A JP2005295094 A JP 2005295094A
Authority
JP
Japan
Prior art keywords
modulation
antenna
unit
satellite
antenna beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004105678A
Other languages
Japanese (ja)
Other versions
JP4222245B2 (en
Inventor
Tomohiko Sakaguchi
朝彦 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004105678A priority Critical patent/JP4222245B2/en
Publication of JP2005295094A publication Critical patent/JP2005295094A/en
Application granted granted Critical
Publication of JP4222245B2 publication Critical patent/JP4222245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mobile communication apparatus capable of attaining efficient and sure communication in response to a change in an antenna scanning gain attended with a change in the position and the attitude of a mobile body such as an aircraft. <P>SOLUTION: The mobile communication apparatus is provided with: a modulation demodulation section mounted on the mobile body and applying modulation processing to a communication signal transmitted to a satellite to output a modulation signal; an antenna section for directing an antenna beam within a range at a prescribed angle from a direction of a normal of a transmission/reception face to transmit a modulation signal outputted from the modulation demodulation section; a beam direction detection section for detecting a direction of directing the antenna beam to the satellite on the basis of positional information and attitude information outputted from a state detection section for detecting the position and the attitude of the mobile body and controlling the directive direction of the antenna beam depending on the directive direction; and a transmission rate control section for switching the transmission rste in the modulation demodulation section in response to the directive direction of the antenna beam detected by the beam direction detection section. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、静止衛星等の通信衛星を介して他の通信装置との通信を行う移動体通信装置に関する。   The present invention relates to a mobile communication device that communicates with another communication device via a communication satellite such as a geostationary satellite.

近年、通信衛星を利用した様々な衛星通信システムが開発されている。例えば、静止軌道上を移動する静止衛星は、地上から眺めると常に上空に静止しているように見えるので、常時通信することができる等のメリットがあり、インマルサット等の衛星移動通信、BS、CS等を用いた衛星放送、さらにVSAT(Very Small Aperture Terminal)等の衛星通信システムに利用されている。このような衛星通信等においては、降雨等の気象条件によって信号が減衰したり、通信装置自体が発生するノイズ等のため、C/N比と呼ばれる信号対雑音比が低下する。   In recent years, various satellite communication systems using communication satellites have been developed. For example, geostationary satellites that move in geostationary orbit appear to be stationary at all times when viewed from the ground, so there is an advantage that they can always communicate, such as satellite mobile communications such as Inmarsat, BS, CS Are used for satellite communication systems such as VSAT (Very Small Aperture Terminal). In such satellite communications, the signal-to-noise ratio, called the C / N ratio, decreases due to the attenuation of signals due to weather conditions such as rain or noise generated by the communication device itself.

例えば、このような回線状況の劣化によって送信信号のC/Nの値が低下した場合に、送信電力をアップしてC/N値を高くするという方法があるが、送信信号の送信電力を上げるためには高出力のハイパワー増幅器を設ける必要があり、信号の受信誤り率を低減することが可能であるものの、設備規模が大きくなり、余分なコストも必要である。   For example, when the C / N value of the transmission signal decreases due to such deterioration of the line condition, there is a method of increasing the transmission power and increasing the C / N value. However, the transmission power of the transmission signal is increased. Therefore, it is necessary to provide a high-power high-power amplifier, and although it is possible to reduce the signal reception error rate, the equipment scale becomes large and an extra cost is also required.

これに対し、受信信号から抽出したビーコン信号のレベルを検出し、このレベル信号と予め設定した閾値とを比較することにより通信衛星との間の回線状況を判断し、回線状況が劣化したと判断した場合は伝送レートを低速に設定してC/N比を大きくするというものが提案されている。この手法によれば、例えば、降雨等の気象条件によって回線状況が劣化するような場合に、高出力のハイパワー増幅器等を設けていなくてもC/Nの値を大きくすることができ、より確実な通信を行うことができる。   On the other hand, the level of the beacon signal extracted from the received signal is detected, and the status of the communication satellite is determined by comparing the level signal with a preset threshold value. In such a case, it has been proposed to increase the C / N ratio by setting the transmission rate to a low speed. According to this method, for example, when the line condition deteriorates due to weather conditions such as rainfall, the C / N value can be increased without providing a high-power high-power amplifier or the like. Reliable communication can be performed.

なお、衛星通信等に用いられるアンテナとしては、パラボナアンテナのような回転型のアンテナやフェーズドアレイアンテナのような電子走査型のアンテナ等があり、用途や目的に応じて使い分けられているが、航空機等や搭載スペースが制限される車両等の移動体において使用される移動体通信装置においては、軽量化、薄型化が図れることから、パラボナアンテナのような回転型のアンテナよりもフェーズドアレイアンテナのような電子走査型のアンテナを用いることが望ましい。   In addition, as antennas used for satellite communication and the like, there are rotating antennas such as parabona antennas and electronic scanning antennas such as phased array antennas. In a mobile communication device used in a mobile body such as a vehicle whose mounting space is limited, it can be reduced in weight and thickness, so that it is more like a phased array antenna than a rotary antenna such as a parabona antenna. It is desirable to use a simple electronic scanning antenna.

特開2000−252902公報(第2頁、従来の技術の欄、発明が解決しようとする課題の欄等)Japanese Patent Laid-Open No. 2000-252902 (page 2, column of conventional technology, column of problems to be solved by the invention, etc.)

しかし、従来の移動体通信装置では、移動体の位置や姿勢が変化するため、電子走査型のアンテナを用いた場合には、衛星に指向するアンテナビームの指向方向が移動体の位置や姿勢の変化に応じて法線方向から大きく傾き、アンテナビームの走査利得ひいては送信信号のC/N比が大幅に低下するという問題点があった。   However, in the conventional mobile communication device, since the position and orientation of the mobile body change, when the electronic scanning antenna is used, the pointing direction of the antenna beam directed to the satellite is the position and orientation of the mobile body. In accordance with the change, there is a problem that the inclination is greatly tilted from the normal direction, and the scanning gain of the antenna beam and thus the C / N ratio of the transmission signal are greatly reduced.

すなわち、電子走査型のアンテナでは、アンテナビームの指向方向が送受信面の法線方向から傾くに従って走査利得が低下するという傾向があり、アンテナビームの走査利得が低下すると送信信号のC/Nの値も低下する。従って、電子走査型のアンテナを用いた場合には、回線状況に応じて伝送速度を変更したとしても、アンテナビームの走査利得が低下している状態では確実な通信を行うことが困難となる。   That is, in an electronic scanning antenna, the scanning gain tends to decrease as the antenna beam directivity direction tilts from the normal direction of the transmission / reception surface. When the antenna beam scanning gain decreases, the C / N value of the transmission signal is reduced. Also decreases. Therefore, when an electronic scanning antenna is used, even if the transmission rate is changed according to the line condition, it is difficult to perform reliable communication in a state where the scanning gain of the antenna beam is reduced.

例えば、静止衛星の場合、衛星は赤道上空の静止軌道上を移動しているので、日本のような高緯度地域においては衛星が低仰角方向に位置することとなり、アンテナビームが法線方向から大幅に傾き、走査利得も大幅に低下する。   For example, in the case of a geostationary satellite, the satellite is moving in a geostationary orbit above the equator, so in high latitude areas such as Japan, the satellite is positioned in a low elevation direction, and the antenna beam is greatly increased from the normal direction. The tilt and scanning gain are also greatly reduced.

また、航空機等の場合には、運用制限、例えば、航空機の移動範囲やバンク(傾き)等が所定の角度以上になると通信継続が不可になるという条件を設定し、その運用制限の範囲内であれば確実に通信を行うことができる伝送速度(固定)を設定することにより、航空機等の位置や姿勢の変化にかかわらず確実な通信を確保しているが、この場合は、伝送速度が固定のため、走査利得が高くなる飛行姿勢であっても伝送速度を上げることができず、通信回線のマージンが増え、効率的な通信を行うことができないという問題点があった。   In the case of an aircraft, etc., set operational restrictions, for example, a condition that communication continuation is not possible if the aircraft movement range or bank (tilt) etc. exceeds a predetermined angle, and within the scope of the operational restrictions. By setting a transmission rate (fixed) that enables reliable communication if there is, reliable communication is ensured regardless of changes in the position or attitude of the aircraft, etc. In this case, the transmission rate is fixed. For this reason, there is a problem that the transmission speed cannot be increased even in a flight posture in which the scanning gain is high, the margin of the communication line is increased, and efficient communication cannot be performed.

この発明は、上記のような課題を解消するためになされたものであり、高出力の増幅器等を設けることなく、アンテナ走査利得の変化に応じて効率的かつ確実な通信を行うことができる新規な移動体通信装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is capable of performing efficient and reliable communication according to a change in antenna scanning gain without providing a high-power amplifier or the like. An object of the present invention is to obtain a simple mobile communication device.

この発明に係る移動体通信装置は、移動体に搭載され、衛星に送信する通信信号に変調処理を施して変調信号を出力する変復調部と、送信面の法線方向から所定角度の範囲にアンテナビームを指向して前記変復調部から出力された変調信号を送信するアンテナ部と、このアンテナ部に位相情報に基づく位相量を与えて前記アンテナビームの指向方向を変化させる位相制御部と、前記移動体の位置及び姿勢を検出する状態検出部から出力された位置情報及び姿勢情報から前記アンテナビームを前記衛星に指向させる方向を検出し、その指向方向に応じた位相情報を前記位相制御部に出力するビーム方向検出部と、このビーム方向検出部より検出された前記アンテナビームの指向方向に応じて前記変復調部における伝送速度を切り換える伝送速度制御部とを備えたものである。   A mobile communication device according to the present invention includes a modem that is mounted on a mobile and outputs a modulated signal by performing a modulation process on a communication signal transmitted to a satellite, and an antenna within a predetermined angle range from the normal direction of the transmission surface. An antenna unit for directing a beam and transmitting a modulated signal output from the modulation / demodulation unit; a phase control unit for changing a direction of the antenna beam by giving a phase amount based on phase information to the antenna unit; A direction in which the antenna beam is directed to the satellite is detected from position information and posture information output from a state detection unit that detects the position and posture of the body, and phase information corresponding to the pointing direction is output to the phase control unit. And a transmission rate for switching the transmission rate in the modulation / demodulation unit according to the directivity direction of the antenna beam detected by the beam direction detection unit. It is obtained by a control unit.

この発明によれば、アンテナビームの走査利得の変化に応じて変復調部における伝送速度を切り換えるので、移動体の位置や姿勢が変化し、アンテナビームの走査利得の変化に応じて送信信号のC/Nが変化したとしても、C/Nの値に応じた最適な伝送速度を選択することができ、通信衛星を介した効率的かつ確実な通信を行うことができる。   According to the present invention, since the transmission speed in the modulation / demodulation unit is switched in accordance with the change in the scanning gain of the antenna beam, the position and orientation of the moving body change, and the C / V of the transmission signal is changed in accordance with the change in the scanning gain of the antenna beam. Even if N changes, it is possible to select an optimum transmission rate according to the value of C / N, and it is possible to perform efficient and reliable communication via a communication satellite.

実施の形態1.
以下、この発明の実施の形態1について図1及び図4を用いて説明する。図1は実施形態1による移動体通信装置の構成等を示すブロック図、図2は図1に示す変復調部5の具体的構成を示す部分ブロック図、図3は図1に示す移動体装置1を搭載した移動体の例を示す移動体概要図である。図1に示すように、この実施の形態1による移動体通信装置は、通信衛星2を介して他の通信装置3a等と通信を行う。図1において、1は航空機、車両等の移動体に搭載する移動体通信装置、2は静止衛星、周回衛星等の通信衛星、3a,3bは他の通信装置であり、図3において、13は移動体装置1を搭載した航空機である。なお、通信衛星2としては、静止軌道上を移動する静止衛星に限らず、低高度の周回軌道上を周回する周回衛星、その他準天頂衛星等を利用することできる。他の通信装置3a,3bとしては、移動体通信装置に限らず、パラボラアンテナ等を用いた固定の通信装置であってもよく、衛星通信が可能に構成された通信装置全般を対象とするものである。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram showing the configuration of the mobile communication device according to the first embodiment, FIG. 2 is a partial block diagram showing a specific configuration of the modem 5 shown in FIG. 1, and FIG. 3 is a mobile device 1 shown in FIG. It is a moving body schematic diagram which shows the example of the moving body which mounts. As shown in FIG. 1, the mobile communication device according to the first embodiment communicates with other communication devices 3 a and the like via a communication satellite 2. In FIG. 1, 1 is a mobile communication device mounted on a mobile body such as an aircraft or a vehicle, 2 is a communication satellite such as a geostationary satellite, orbiting satellite, 3a and 3b are other communication devices, and in FIG. An aircraft equipped with a mobile device 1. Note that the communication satellite 2 is not limited to a geostationary satellite moving on a geostationary orbit, but an orbiting satellite orbiting on a low altitude orbit, other quasi-zenith satellites, and the like can be used. The other communication devices 3a and 3b are not limited to mobile communication devices, but may be fixed communication devices using parabolic antennas or the like, and are intended for all communication devices configured to be capable of satellite communication. It is.

また、図1において、4は音声信号やデータ信号等の衛星に送信する通信信号を出力する通信手段、5は複数の変復調処理部を有する可変レートモデム等の変復調部、6は変復調部5から出力された変調信号を所定の信号レベルまで増幅して出力する増幅部、7はフェーズドアレイアンテナ等の電子走査型のアンテナであって、アンテナビームを指向して増幅部6から出力された変調信号を送信するアンテナ部、8はアンテナ部7のアンテナ素子より構成された送受信面上に形成されたアンテナビーム、9はアンテナ素子の位相量を調節してアンテナビーム8を所定の方向に指向させる位相制御部、10は移動体通信装置1が搭載された移動体の位置、姿勢等の状態を検出する慣性航法装置等の状態検出部、11は状態検出部から出力された移動体の位置情報及び姿勢情報からアンテナビーム8を通信衛星2に指向させる方向を検出し、その指向方向に応じた位相情報を位相制御部9に出力するビーム方向検出部、12はビーム方向検出部11より検出されたアンテナビーム8の指向方向に応じて変復調部5に設けられた変調処理部を切り換える伝送速度制御部である。   In FIG. 1, 4 is a communication means for outputting a communication signal to be transmitted to a satellite such as an audio signal and a data signal, 5 is a modulation / demodulation unit such as a variable rate modem having a plurality of modulation / demodulation processing units, and 6 is a modulation / demodulation unit 5 An amplifying unit for amplifying the output modulation signal to a predetermined signal level and outputting the amplified signal, 7 is an electronic scanning antenna such as a phased array antenna, and the modulation signal output from the amplifying unit 6 is directed to the antenna beam. 8 is an antenna beam formed on a transmission / reception surface constituted by antenna elements of the antenna unit 7, and 9 is a phase for adjusting the phase amount of the antenna element to direct the antenna beam 8 in a predetermined direction. The control unit 10 is a state detection unit such as an inertial navigation device that detects the position, posture, and the like of the mobile body on which the mobile communication device 1 is mounted, and 11 is output from the state detection unit. A beam direction detecting unit that detects a direction in which the antenna beam 8 is directed to the communication satellite 2 from the position information and posture information of the moving object, and outputs phase information corresponding to the pointing direction to the phase control unit 9, and 12 is a beam direction detecting unit. 11 is a transmission rate control unit that switches the modulation processing unit provided in the modulation / demodulation unit 5 in accordance with the directivity direction of the antenna beam 8 detected from the signal 11.

なお、図1においては、移動体の位置、姿勢等を検出する状態検出部10を移動体通信装置1内に設けているが、大型の航空機等の場合は、慣性航法装置等の移動体の位置等を検出する手段を別に設けている場合があり、その場合は、別に設けられた状態検出部から移動体の位置情報及び姿勢情報を取得すればよく、移動体通信装置1内に状態検出部を設ける必要はない。ビーム方向検出部11はそのような別に設けられた状態検出部から出力された移動体の位置情報及び姿勢情報からアンテナビーム8を通信衛星2に指向させる方向を検出することができる。   In FIG. 1, a state detection unit 10 for detecting the position, posture, etc. of the moving body is provided in the mobile communication device 1, but in the case of a large aircraft, the moving body such as an inertial navigation device is provided. In some cases, a means for detecting the position or the like is separately provided. In such a case, the position information and the posture information of the moving body may be acquired from the separately provided state detection unit, and the state detection is performed in the mobile communication apparatus 1. There is no need to provide a section. The beam direction detection unit 11 can detect the direction in which the antenna beam 8 is directed to the communication satellite 2 from the position information and posture information of the moving object output from such a separately provided state detection unit.

また、図2において、5aは高速の伝送速度に設定された変復調処理部、5bは中速の伝送速度に設定された変復調処理部、5cは低速の伝送速度に設定された変復調処理部、5dは変復調部5に設けられた変復調処理部5a乃至5cの中からいずれかの変復調処理部を選択する選択手段である。実施の形態1では3つの変復調処理部を設けるものについて説明するが、2つの場合でも4つの場合でもよく、これに限られるものではない。なお、実施の形態1では選択手段5dを用いて複数の変復調処理部からいずれか1つの変復調処理部を選択する構成としたが、伝送速度を可変にできる1つの変復調処理部を設け、断続的又は連続的に伝送速度を切り換えるように構成してもよい。   In FIG. 2, 5a is a modulation / demodulation processing unit set to a high transmission rate, 5b is a modulation / demodulation processing unit set to a medium transmission rate, 5c is a modulation / demodulation processing unit set to a low transmission rate, and 5d. Is a selection means for selecting any modulation / demodulation processing unit from among the modulation / demodulation processing units 5a to 5c provided in the modulation / demodulation unit 5. In the first embodiment, a case in which three modulation / demodulation processing units are provided will be described. In the first embodiment, the selection unit 5d is used to select any one of the modulation / demodulation processing units from the plurality of modulation / demodulation processing units. However, one modulation / demodulation processing unit that can change the transmission rate is provided and intermittently provided. Or you may comprise so that a transmission rate may be switched continuously.

次に動作について説明する。移動体通信装置1の利用者は、図3に示すような移動体13によって移動しながら他の通信装置3a,3b等との通信を行う。図3において、13aは航空機13のアンテナ搭載位置を示しており、移動体の種類、形等に応じて適宜適当な箇所に移動体通信装置1のアンテナ部7を配置する。なお、図3では移動体装置1を搭載する移動体の例として航空機13を示したが、自動車等の車両に搭載しても同様に通信することができるものである。   Next, the operation will be described. The user of the mobile communication device 1 communicates with other communication devices 3a, 3b, etc. while moving by the mobile body 13 as shown in FIG. In FIG. 3, reference numeral 13 a denotes an antenna mounting position of the aircraft 13, and the antenna unit 7 of the mobile communication device 1 is disposed at an appropriate place according to the type and shape of the mobile body. In FIG. 3, the aircraft 13 is shown as an example of a mobile body on which the mobile body device 1 is mounted. However, even if the aircraft 13 is mounted on a vehicle such as an automobile, communication can be performed in the same manner.

まず、通信手段4は、音声信号やデータ信号等の衛星に送信する通信信号を出力する。変復調部5は、通信手段4から出力された通信信号に所定の変調処理を施して変調信号を出力する。具体的には、予め設けられた複数の変復調処理部のうち伝送速度制御部12によって選択された変復調処理部によって通信信号に変調処理を施して変調信号を出力する。変復調部5に設けられた各変復調処理部はそれぞれ異なる伝送レート、すなわち伝送速度が設定されており、変復調部5は各変調処理部に応じた伝送速度の変調信号を出力する。増幅部6は、変復調部5から出力された変調信号を所定のレベルまで増幅処理してアンテナ部7に出力する。   First, the communication unit 4 outputs a communication signal to be transmitted to the satellite such as an audio signal or a data signal. The modem 5 performs a predetermined modulation process on the communication signal output from the communication unit 4 and outputs a modulated signal. Specifically, the modulation / demodulation processing unit selected by the transmission rate control unit 12 among the plurality of modulation / demodulation processing units provided in advance modulates the communication signal and outputs the modulation signal. Each modulation / demodulation processing unit provided in the modulation / demodulation unit 5 has a different transmission rate, that is, a transmission rate, and the modulation / demodulation unit 5 outputs a modulation signal having a transmission rate corresponding to each modulation processing unit. The amplification unit 6 amplifies the modulation signal output from the modulation / demodulation unit 5 to a predetermined level and outputs the amplified signal to the antenna unit 7.

アンテナ部7は、位相制御部9によりアンテナ素子の位相量が調節され、通信衛星2の方向を指向するようにアンテナビーム8を形成し、増幅部6において増幅した変調信号を送信信号として通信衛星2に送信する。位相制御部9は、ビーム方向検出部11から出力された位相情報に基づいてアンテナ素子の位相量を調節する。ビーム方向検出部11は、状態検出部10において検出された移動体の位置情報及び姿勢情報等から通信衛星2にアンテナビーム8を指向させる方向を算出し、その方向にアンテナビーム8を指向させるための位相情報を位相制御部9に出力する。なお、状態検出部10は、例えば、移動体に搭載された慣性航法装置(Inertial Navigation System:INS)等であり、この状態検出部10により移動体通信装置1が搭載された移動体の位置、姿勢(バンク角度、ピッチ角度)、速度、進行方向等を検出する。   The antenna unit 7 adjusts the phase amount of the antenna element by the phase control unit 9, forms an antenna beam 8 so as to be directed in the direction of the communication satellite 2, and uses the modulated signal amplified by the amplification unit 6 as a transmission signal. 2 to send. The phase control unit 9 adjusts the phase amount of the antenna element based on the phase information output from the beam direction detection unit 11. The beam direction detection unit 11 calculates a direction in which the antenna beam 8 is directed to the communication satellite 2 from the position information and posture information of the moving body detected by the state detection unit 10 and directs the antenna beam 8 in that direction. Is output to the phase controller 9. The state detection unit 10 is, for example, an inertial navigation system (INS) mounted on a mobile body, and the position of the mobile body on which the mobile communication device 1 is mounted by the state detection unit 10. Attitude (bank angle, pitch angle), speed, traveling direction, etc. are detected.

また、アンテナビーム8を通信衛星2に指向させるためには、移動体の位置情報等だけでなく通信衛星2の位置情報も把握しておく必要があるが、通信衛星2が静止衛星の場合は通信衛星2の位置が変化しないので、ビーム方向検出部11は、予め記憶部等に記憶した静止衛星の位置情報と移動体通信装置1が搭載された移動体の位置情報及び姿勢情報からアンテナビーム8を指向させる方向を検出する。なお、通信衛星2が周回衛星等の場合は、通信衛星の位置が常に変化するため、対応する周回衛星の周回情報を予め記憶部に記憶しておき、そのよう周回衛星の現在位置と移動体通信装置1が搭載された移動体の位置情報及び姿勢情報からアンテナビーム8を指向させる方向を検出する。   In addition, in order to direct the antenna beam 8 toward the communication satellite 2, it is necessary to grasp not only the position information of the mobile body but also the position information of the communication satellite 2, but if the communication satellite 2 is a geostationary satellite, Since the position of the communication satellite 2 does not change, the beam direction detection unit 11 determines the antenna beam from the position information of the stationary satellite stored in the storage unit or the like in advance and the position information and attitude information of the moving body on which the mobile communication device 1 is mounted. The direction in which 8 is directed is detected. When the communication satellite 2 is an orbiting satellite or the like, the position of the communication satellite always changes, so the orbit information of the corresponding orbiting satellite is stored in advance in the storage unit, and the current position of the orbiting satellite and the mobile object The direction in which the antenna beam 8 is directed is detected from the position information and posture information of the moving body on which the communication device 1 is mounted.

最後に、伝送速度制御部12の動作について図4を用いて詳細に説明する。図4はアンテナビーム8の指向方向とその走査利得との関係を示すデータテーブルであって、例えば、伝送速度制御部12の記憶手段(図示省略する。)に設けられた変換テーブルの例を示す変換テーブル説明図である。図4において、0°がアンテナ部7の送受信面の法線方向であり、横軸は法線方向からのアンテナビーム8の傾き(ビーム角度)、縦軸はアンテナビーム8のビーム角度、すなわちアンテナビーム8の指向方向に対するアンテナ部7の走査利得を示す。図4に示すように、アンテナビーム8が法線方向から傾くほど走査利得は低下する。なお、Raはアンテナビーム8の指向方向が45°の場合における走査利得、Rbはアンテナビーム8の指向方向が60°付近の場合における走査利得、Rcはアンテナビーム8の指向方向が70°付近の場合における走査利得である。   Finally, the operation of the transmission rate control unit 12 will be described in detail with reference to FIG. FIG. 4 is a data table showing the relationship between the directivity direction of the antenna beam 8 and its scanning gain, and shows an example of a conversion table provided in the storage means (not shown) of the transmission rate control unit 12, for example. It is conversion table explanatory drawing. In FIG. 4, 0 ° is the normal direction of the transmitting / receiving surface of the antenna unit 7, the horizontal axis is the inclination (beam angle) of the antenna beam 8 from the normal direction, and the vertical axis is the beam angle of the antenna beam 8, that is, the antenna. The scanning gain of the antenna unit 7 with respect to the directing direction of the beam 8 is shown. As shown in FIG. 4, the scanning gain decreases as the antenna beam 8 tilts from the normal direction. Note that Ra is a scanning gain when the directivity direction of the antenna beam 8 is 45 °, Rb is a scanning gain when the directivity direction of the antenna beam 8 is around 60 °, and Rc is a directivity direction of the antenna beam 8 near 70 °. The scanning gain in the case.

伝送速度制御部12は、ビーム方向検出部11より検出されたアンテナビーム8の指向方向と図4に示すような変換テーブルとからアンテナ部7の走査利得を求め、その走査利得に応じた選択信号により変復調部5の切換手段5dを切り換える。例えば、走査利得がRa以上の場合は高速の変復調処理部5A、Ra〜Rbの間の場合は中速の変復調処理部5B、Rb〜Rcの間の場合は低速の変復調処理部5Cをそれぞれ選択するように変復調部5の切換手段5dを制御する。このように、伝送速度制御部12によって通信信号に変調処理を施す変復調処理部が切り換えられ、切り換えられた変復調処理部により変調処理を施した通信信号が変調信号として増幅部6に出力される。なお、走査利得がRc以下の場合には、通信継続が困難な状態であり、通信継続が困難であることを表示部(図示省略する。)に表示するようにしてもよい。   The transmission rate control unit 12 obtains the scanning gain of the antenna unit 7 from the directivity direction of the antenna beam 8 detected by the beam direction detection unit 11 and the conversion table as shown in FIG. 4, and a selection signal corresponding to the scanning gain. Thus, the switching means 5d of the modem unit 5 is switched. For example, a high-speed modulation / demodulation processing unit 5A is selected when the scanning gain is Ra or higher, a medium-speed modulation / demodulation processing unit 5B is selected between Ra and Rb, and a low-speed modulation / demodulation processing unit 5C is selected between Rb and Rc. Thus, the switching means 5d of the modem unit 5 is controlled. In this manner, the modulation / demodulation processing unit that performs modulation processing on the communication signal is switched by the transmission rate control unit 12, and the communication signal that is modulated by the switched modulation / demodulation processing unit is output to the amplification unit 6 as the modulation signal. When the scanning gain is Rc or less, it is difficult to continue communication, and it may be displayed on a display unit (not shown) that communication continuation is difficult.

例えば、移動体通信装置1を搭載した移動体の位置又は姿勢が変化し、アンテナビーム8の指向方向を別の方向に変更する場合、ビーム方向検出部11が状態検出部10からの位置情報及び姿勢情報に基づいてアンテナビーム8を通信衛星2に指向させる方向を検出し、そのアンテナビームの指向方向の情報が伝送速度制御部12に出力される。伝送速度制御部12は、ビーム方向検出部11から出力されたアンテナビームの指向方向の情報と記憶部に予め記憶した変換テーブルとから、ビーム方向検出部11により検出された方向にアンテナビーム8を指向させた場合の走査利得を求め、この走査利得に応じた伝送速度の変復調処理部によって通信信号の変復調処理を施すよう変復調部5の切換手段5dを切り換える。変復調部5は切換手段5dにより変復調処理部が切り換えられると、切り換えた後の変復調処理部によって通信手段4から出力された通信信号に変調処理を施して変調信号を出力する。   For example, when the position or posture of the mobile body on which the mobile communication device 1 is mounted changes and the pointing direction of the antenna beam 8 is changed to another direction, the beam direction detection unit 11 receives the position information from the state detection unit 10 and Based on the attitude information, a direction in which the antenna beam 8 is directed toward the communication satellite 2 is detected, and information on the direction of the antenna beam is output to the transmission rate control unit 12. The transmission rate control unit 12 transmits the antenna beam 8 in the direction detected by the beam direction detection unit 11 from the information on the directivity direction of the antenna beam output from the beam direction detection unit 11 and the conversion table stored in advance in the storage unit. The switching gain 5d of the modulation / demodulation unit 5 is switched so as to perform modulation / demodulation processing of the communication signal by the modulation / demodulation processing unit having a transmission rate corresponding to the scanning gain. When the modulation / demodulation processing unit is switched by the switching unit 5d, the modulation / demodulation unit 5 performs modulation processing on the communication signal output from the communication unit 4 by the modulation / demodulation processing unit after switching, and outputs a modulation signal.

以上のように、実施の形態1による移動体通信装置では、移動体通信装置1を搭載した移動体の位置又は姿勢が変化し、アンテナビーム8の指向方向を別の方向に変更する場合に、ビーム方向検出部11においてアンテナビームを通信衛星2に指向させる方向を検出し、その情報と予め記憶した変換テーブルとからビーム方向検出部11により検出された方向にアンテナビーム8を指向させた場合の走査利得を求め、この走査利得に応じた伝送速度の変復調処理部によって通信信号の変復調処理を施すよう変復調部5の変復調処理部を切り換えるので、移動体の位置や姿勢が変化し、アンテナビームの走査利得の変化に応じて送信信号のC/Nが変化したとしても、C/Nの値に応じた最適な伝送速度を選択することができ、通信衛星を介した効率的かつ確実な通信を行うことができる。   As described above, in the mobile communication device according to the first embodiment, when the position or posture of the mobile body on which the mobile communication device 1 is mounted changes and the pointing direction of the antenna beam 8 is changed to another direction, The beam direction detector 11 detects the direction in which the antenna beam is directed to the communication satellite 2, and the antenna beam 8 is directed in the direction detected by the beam direction detector 11 from the information and the conversion table stored in advance. Since the scanning gain is obtained and the modulation / demodulation processing unit of the modulation / demodulation unit 5 is switched so that the modulation / demodulation processing of the communication signal is performed by the modulation / demodulation processing unit of the transmission rate according to the scanning gain, the position and orientation of the moving body changes, and the antenna beam Even if the C / N of the transmission signal changes in accordance with the change in the scanning gain, the optimum transmission rate can be selected in accordance with the value of C / N. It is possible to perform efficient and reliable communication.

実施の形態2.
以下、この発明の実施の形態2について説明する。実施の形態1では、通信衛星2が静止衛星の場合を例に説明したが、日本のような高緯度地域においては静止衛星が低仰角方向に位置するため、アンテナ部7の送受信面を地上と平行に配置した場合にはアンテナビーム8の指向方向がほぼ低仰角方向となる。一般にC/Nが高くなる程、伝送速度を高くできるため、電子走査型のアンテナを用いる場合では、送受信面の法線方向にアンテナビームを指向させて通信衛星に送信信号を送信することが望ましい。そこで、実施の形態2では、アンテナビームの指向方向が送受信面のほぼ法線方向となる移動体通信装置について説明する。
Embodiment 2. FIG.
The second embodiment of the present invention will be described below. In the first embodiment, the case where the communication satellite 2 is a geostationary satellite has been described as an example. However, in a high latitude region such as Japan, the geostationary satellite is located in the low elevation angle direction, so the transmission / reception surface of the antenna unit 7 is parallel to the ground When the antenna beam 8 is disposed at the position, the directivity direction of the antenna beam 8 is substantially the low elevation angle direction. In general, the higher the C / N, the higher the transmission speed. Therefore, when an electronic scanning antenna is used, it is desirable to transmit the transmission signal to the communication satellite by directing the antenna beam in the normal direction of the transmission / reception surface. . In the second embodiment, a mobile communication apparatus in which the antenna beam directing direction is substantially the normal direction of the transmission / reception surface will be described.

具体的には、通信衛星2として日本の天頂方向付近を移動する準天頂衛星を使用するものである。準天頂衛星システムは、複数の通信衛星から構成される通信衛星の少なくとも1機が常時日本の天頂方向付近に位置するように配置する衛星システムであり、送信信号を送信する通信衛星2はほぼ真上に位置することから、地上と平行にアンテナ部7の送受信面を配置することによりアンテナビーム8をほぼアンテナ部8の送受信面の法線方向に指向させることができる。   Specifically, a quasi-zenith satellite that moves near the zenith direction in Japan is used as the communication satellite 2. The quasi-zenith satellite system is a satellite system in which at least one communication satellite composed of a plurality of communication satellites is always located near the zenith direction in Japan, and the communication satellite 2 that transmits a transmission signal is almost true. Since it is located above, the antenna beam 8 can be directed substantially in the normal direction of the transmission / reception surface of the antenna unit 8 by arranging the transmission / reception surface of the antenna unit 7 in parallel with the ground.

図5は、図1に示すような衛星システムにおいて、準天頂衛星を通信衛星2とした場合と静止衛星を通信衛星2とした場合とのそれぞれのアンテナビーム8の指向方向について比較した比較説明図である。図5において、7bはアンテナ部7の送受信面、8aは送受信面7bの法線方向に形成されたアンテナビーム、8jは準天頂衛星を通信衛星2とした場合の最低仰角方向に形成されたアンテナビーム、8sは静止衛星を通信衛星2とした場合の最低仰角方向に形成されたアンテナビームである。   FIG. 5 is a comparative explanatory diagram comparing the directivity directions of the antenna beams 8 when the quasi-zenith satellite is the communication satellite 2 and when the stationary satellite is the communication satellite 2 in the satellite system as shown in FIG. It is. In FIG. 5, 7b is a transmission / reception surface of the antenna unit 7, 8a is an antenna beam formed in the normal direction of the transmission / reception surface 7b, and 8j is an antenna formed in the lowest elevation angle direction when the quasi-zenith satellite is the communication satellite 2. A beam 8s is an antenna beam formed in the lowest elevation direction when the geostationary satellite is the communication satellite 2.

図5に示すように、準天頂衛星を通信衛星2とした場合は、最低仰角の角度が高仰角となるので、変復調部5に設けた複数の変復調処理部のうち、高速の伝送速度に設定された変復調処理部により変調処理を施すことができ、通信信号の高速伝送を実現することができる。また、移動体の姿勢(バンク角度、ピッチ角度)を大きくすることができるので、移動体の運用制限にも余裕を持たせることができる。なお、実施の形態2では、本発明に係る移動体通信装置を国内及びその周辺地域において使用する場合、いわゆる準天頂衛星について説明したが、海外の地域で使用する場合も同様であり、図1に示すような移動体通信装置1を使用する地域の天頂方向付近を移動する準天頂衛星と同様な通信衛星を用いる衛星システムに適用しても同様の効果を得ることができる。   As shown in FIG. 5, when the quasi-zenith satellite is the communication satellite 2, the lowest elevation angle is a high elevation angle, and therefore a high transmission rate is set among the plurality of modulation / demodulation processing units provided in the modulation / demodulation unit 5. Modulation processing can be performed by the modulation / demodulation processing unit, and high-speed transmission of communication signals can be realized. In addition, since the posture (bank angle, pitch angle) of the moving body can be increased, it is possible to provide a margin for operation restrictions of the moving body. In the second embodiment, the so-called quasi-zenith satellite has been described when the mobile communication device according to the present invention is used in the country and its surrounding areas. However, the same applies to the case where the mobile communication apparatus is used in an overseas area. Even when applied to a satellite system using a communication satellite similar to the quasi-zenith satellite moving in the vicinity of the zenith direction of the area where the mobile communication device 1 as shown in FIG.

実施の形態1による移動体通信装置の構成等を示すブロック図である。1 is a block diagram showing a configuration of a mobile communication device according to Embodiment 1. FIG. 図1に示す変復調部6の具体的構成を示す部分ブロック図である。It is a partial block diagram which shows the specific structure of the modem part 6 shown in FIG. 図1に示す移動体装置1を搭載した移動体の例を示す移動体概要図である。It is a mobile body schematic diagram which shows the example of the mobile body which mounts the mobile body apparatus 1 shown in FIG. 図1に示すアンテナビーム8の指向方向と走査利得との関係を示すデータテーブルの例を示す変換テーブル説明図である。It is conversion table explanatory drawing which shows the example of the data table which shows the relationship between the directivity direction of the antenna beam 8 shown in FIG. 1, and a scanning gain. 実施の形態2による移動体通信装置1の説明図であって、準天頂衛星を通信衛星2とした場合と静止衛星を通信衛星2とした場合とのそれぞれのアンテナビーム8の指向方向について比較した比較説明図である。It is explanatory drawing of the mobile communication apparatus 1 by Embodiment 2, Comprising: When the quasi-zenith satellite was used as the communication satellite 2, the directivity direction of each antenna beam 8 with the case where the geostationary satellite was used as the communication satellite 2 was compared It is comparative explanatory drawing.

符号の説明Explanation of symbols

1 移動体通信装置、2 通信衛星、3 他の通信装置、4 通信手段、
5 変復調部、5a 変復調処理部A、5b 変復調処理部B、
5c 変復調処理部C、6 増幅部、7 アンテナ部、7b 送受信面、
8 アンテナビーム、9 位相制御部、10 状態検出部、11 ビーム方向検出部、
12 伝送速度制御部、13 移動体。
1 mobile communication device, 2 communication satellite, 3 other communication device, 4 communication means,
5 modulation / demodulation unit, 5a modulation / demodulation processing unit A, 5b modulation / demodulation processing unit B,
5c modulation / demodulation processing unit C, 6 amplification unit, 7 antenna unit, 7b transmission / reception surface,
8 antenna beam, 9 phase controller, 10 state detector, 11 beam direction detector,
12 Transmission rate control unit, 13 Mobile.

Claims (4)

移動体に搭載され、衛星に送信する通信信号に変調処理を施して変調信号を出力する変復調部と、送信面の法線方向から所定角度の範囲にアンテナビームを指向して前記変復調部から出力された変調信号を送信するアンテナ部と、このアンテナ部に位相情報に基づく位相量を与えて前記アンテナビームの指向方向を変化させる位相制御部と、前記移動体の位置及び姿勢を検出する状態検出部から出力された位置情報及び姿勢情報から前記アンテナビームを前記衛星に指向させる方向を検出し、その指向方向に応じた位相情報を前記位相制御部に出力するビーム方向検出部と、このビーム方向検出部より検出された前記アンテナビームの指向方向に応じて前記変復調部における伝送速度を切り換える伝送速度制御部とを備えたことを特徴とする移動体通信装置。 A modulation / demodulation unit mounted on a mobile unit that modulates a communication signal transmitted to a satellite and outputs the modulation signal; and directs an antenna beam within a predetermined angle range from the normal direction of the transmission surface and outputs from the modulation / demodulation unit An antenna section for transmitting the modulated signal, a phase control section for changing the directivity direction of the antenna beam by giving a phase amount based on the phase information to the antenna section, and a state detection for detecting the position and posture of the moving body A beam direction detection unit that detects a direction in which the antenna beam is directed to the satellite from the position information and attitude information output from the unit, and outputs phase information corresponding to the pointing direction to the phase control unit, and the beam direction A transmission rate control unit that switches a transmission rate in the modulation / demodulation unit according to a directivity direction of the antenna beam detected by the detection unit; Body communication device. 前記変復調部は、複数の変復調処理部を有する可変レートモデムであることを特徴とする請求項1に記載の移動体通信装置。 2. The mobile communication apparatus according to claim 1, wherein the modulation / demodulation unit is a variable rate modem having a plurality of modulation / demodulation processing units. 前記伝送速度制御部は、前記アンテナビームの指向方向を前記アンテナ部の走査利得に変換する変換テーブルに基づいて前記変復調部における伝送速度を切り換えることを特徴とする請求項1に記載の移動体通信装置。 2. The mobile communication according to claim 1, wherein the transmission rate control unit switches the transmission rate in the modulation / demodulation unit based on a conversion table for converting a directivity direction of the antenna beam into a scanning gain of the antenna unit. apparatus. 前記衛星は、日本の天頂方向付近を移動する準天頂衛星であることを特徴とする請求項1に記載の移動体通信装置。
The mobile communication device according to claim 1, wherein the satellite is a quasi-zenith satellite that moves in the vicinity of the zenith direction in Japan.
JP2004105678A 2004-03-31 2004-03-31 Mobile communication device Expired - Fee Related JP4222245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004105678A JP4222245B2 (en) 2004-03-31 2004-03-31 Mobile communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004105678A JP4222245B2 (en) 2004-03-31 2004-03-31 Mobile communication device

Publications (2)

Publication Number Publication Date
JP2005295094A true JP2005295094A (en) 2005-10-20
JP4222245B2 JP4222245B2 (en) 2009-02-12

Family

ID=35327565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004105678A Expired - Fee Related JP4222245B2 (en) 2004-03-31 2004-03-31 Mobile communication device

Country Status (1)

Country Link
JP (1) JP4222245B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2443463A (en) * 2006-11-03 2008-05-07 Vodafone Plc Adjusting the size/shape of a radiation beam in dependence on the position of a user terminal in aerospace
JP2008278004A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Mobile satellite communication system
JP2009071497A (en) * 2007-09-12 2009-04-02 Oki Electric Ind Co Ltd Radio communication apparatus
CN101858747A (en) * 2010-03-26 2010-10-13 航天东方红卫星有限公司 Method for resolving and determining counterglow oriented object posture of satellite sailboard by effectively using earth irradiation energy
JP2011083040A (en) * 2011-01-26 2011-04-21 Mitsubishi Electric Corp Helicopter satellite communication system and helicopter-mounted communication device employed therefor
JP2014187489A (en) * 2013-03-22 2014-10-02 Furuno Electric Co Ltd Diversity receiver, diversity reception method and diversity reception program
JP2018085687A (en) * 2016-11-25 2018-05-31 株式会社東芝 Satellite communication device and communication method thereof
CN112740059A (en) * 2018-09-26 2021-04-30 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
JP7379687B2 (en) 2019-10-11 2023-11-14 大唐移▲動▼通信▲設▼▲備▼有限公司 Terminal network access methods, devices, electronic devices and storage media

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2443463A (en) * 2006-11-03 2008-05-07 Vodafone Plc Adjusting the size/shape of a radiation beam in dependence on the position of a user terminal in aerospace
GB2443463B (en) * 2006-11-03 2010-12-08 Vodafone Plc Mobile telecommunications
JP2008278004A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Mobile satellite communication system
JP2009071497A (en) * 2007-09-12 2009-04-02 Oki Electric Ind Co Ltd Radio communication apparatus
CN101858747A (en) * 2010-03-26 2010-10-13 航天东方红卫星有限公司 Method for resolving and determining counterglow oriented object posture of satellite sailboard by effectively using earth irradiation energy
JP2011083040A (en) * 2011-01-26 2011-04-21 Mitsubishi Electric Corp Helicopter satellite communication system and helicopter-mounted communication device employed therefor
JP2014187489A (en) * 2013-03-22 2014-10-02 Furuno Electric Co Ltd Diversity receiver, diversity reception method and diversity reception program
JP2018085687A (en) * 2016-11-25 2018-05-31 株式会社東芝 Satellite communication device and communication method thereof
CN112740059A (en) * 2018-09-26 2021-04-30 京瓷株式会社 Electronic device, control method for electronic device, and control program for electronic device
JP7379687B2 (en) 2019-10-11 2023-11-14 大唐移▲動▼通信▲設▼▲備▼有限公司 Terminal network access methods, devices, electronic devices and storage media

Also Published As

Publication number Publication date
JP4222245B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
US10483615B2 (en) Device and method for reducing interference with adjacent satellites using a mechanically gimbaled asymmetrical-aperture antenna
CN106954223B (en) Communication method of communication-in-motion end station system and communication-in-motion end station system
JP2019165459A (en) Architecture for simultaneous spectrum usage by air-to-ground and terrestrial networks
US20120068880A1 (en) System and Method for Dual-Band Antenna Pointing, Acquisition, And Tracking
JP2006333069A (en) Antenna controller and control method for mobile
EP1180855A1 (en) Location based adaptive antenna scheme for wireless data applications
JP4222245B2 (en) Mobile communication device
US8144067B2 (en) Combination planar and parabolic reflector antenna to access satellite
US20210266068A1 (en) APT Subsystem and Spacecraft Communications System
JP2006333068A (en) Antenna tracking system and method for mobile terminal
WO2020162817A1 (en) An antenna terminal, a rotatable antenna platform and methods for maritime use
US11677145B1 (en) Selective true-time delay for energy efficient beam squint mitigation in phased array antennas
KR102613223B1 (en) Low earth orbit satellite signal transmitting/receiving system and method containing hemisphere type antenna
KR102243296B1 (en) Antenna operation control apparatus according to link margins in system using of dual antenna and method thereof
KR100392253B1 (en) Mobile Active Antenna System and its Tracking Method for Multi-satellite signal reception
EP4213408A1 (en) Satellite receiver with dynamically selected switched antenna elements
US11728885B1 (en) Dynamic selection of satellite attitude based on utilization or availability of terrestrial wireless communication network
US11838098B2 (en) Satellite communication system with high-ground elevation angle
JP3122579U (en) Antenna tracking device and antenna
US11677144B1 (en) Multiple beam phased array antenna system for mobile satellite communications
EP3934129A1 (en) Pointing unit
JPH0964800A (en) Mobile object sng device
JPH04307803A (en) Antenna automatic tracking device
Ilcev Antenna systems for mobile satellite applications
KR20240046747A (en) System and method for electronically steerable antenna initial positioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees