JP2005294756A - Soft magnetic thin film, method of manufacturing the same, and magnetic head - Google Patents

Soft magnetic thin film, method of manufacturing the same, and magnetic head Download PDF

Info

Publication number
JP2005294756A
JP2005294756A JP2004111299A JP2004111299A JP2005294756A JP 2005294756 A JP2005294756 A JP 2005294756A JP 2004111299 A JP2004111299 A JP 2004111299A JP 2004111299 A JP2004111299 A JP 2004111299A JP 2005294756 A JP2005294756 A JP 2005294756A
Authority
JP
Japan
Prior art keywords
film
magnetic
thin film
soft magnetic
soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004111299A
Other languages
Japanese (ja)
Other versions
JP4490720B2 (en
Inventor
Naoto Hayashi
直人 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2004111299A priority Critical patent/JP4490720B2/en
Publication of JP2005294756A publication Critical patent/JP2005294756A/en
Application granted granted Critical
Publication of JP4490720B2 publication Critical patent/JP4490720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic thin film capable of implementing a property in which resonant frequency fr is 1GHz or more and saturation magnetic flux density Bs is 23kG or more even in the case where a non-magnetic base film is used, the method of manufacturing the same, and a magnetic head. <P>SOLUTION: A structure in which a base film 120 and a magnetic film 130 are formed on a substrate 110 is used as a basic structure. One of an Au film, an Ag film, an Al film, and an Ru film is used as the base film 120. An Fe-Co-Al-O magnetic film is used as the magnetic film 130. This make it possible to implement even by a structure having a non-magnetic base layer a soft magnetic property comparable to one implemented by a structure having a magnetic base layer. A multilayer film structure, in which the Fe-Co-aluminum-O magnetic film is stacked such that one of the Au film, the Ag film, the Al film, and the Ru film is sandwiched as an interlayer between layers, is made. This allows the invention to have a structure capable of alleviating the influence of a demagnetizing field. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、VCR(Video Cassette Recorder)、磁気ディスク記録装置などに用いる磁気ヘッド用の軟磁性薄膜、その製造方法及び磁気ヘッドに関するものである。   The present invention relates to a soft magnetic thin film for a magnetic head used in a VCR (Video Cassette Recorder), a magnetic disk recording apparatus, etc., a manufacturing method thereof, and a magnetic head.

近年、記録装置の小型化、大容量化への要請から磁気記録の高密度化を図るために、記録媒体の高保磁力化と磁気ヘッドの狭トラック化が推し進められ、それに伴う高転送レート化のために、磁気ヘッドの動作周波数の広帯域化が進められている。高保磁力媒体を飽和記録するためには高飽和磁束密度を持つ記録ヘッド磁極用の軟磁性薄膜が必要である。実際に、HDD(Hard Disk Drive)等の固定ディスク装置においては、記録密度の向上とともに、記録ヘッド磁極材料は、飽和磁束密度Bsが5kGのフェライトから10kGのNi81Fe19、16kGのNi50Fe50へと変遷してきた。 In recent years, in order to increase the density of magnetic recording in response to the demand for smaller and larger capacity recording devices, higher coercivity of recording media and narrower tracks of magnetic heads have been promoted, resulting in higher transfer rates. For this reason, the operation frequency of the magnetic head is being widened. In order to perform saturation recording on a high coercive force medium, a soft magnetic thin film for a recording head magnetic pole having a high saturation magnetic flux density is required. Actually, in a fixed disk device such as an HDD (Hard Disk Drive), as the recording density is improved, the recording head magnetic pole material is changed from a ferrite having a saturation magnetic flux density Bs of 5 kG to 10 kG Ni 81 Fe 19 , 16 kG Ni 50 Fe. It has changed to 50 .

今後、記録密度の向上を図るためには、より大きな飽和磁束密度Bsをもつ軟磁性薄膜が必要である。Fe−Co薄膜は25〜35at%Co組成において24.5kGという高い飽和磁束密度Bsを持つが、磁歪が3〜8x10−5と大きく軟磁気特性の導出が容易ではない。スタンフォード大学のS.X.Wangらは、Ni−Fe薄膜を下地膜とし、かつFe−Co成膜中に窒素を添加することによって、飽和磁束密度Bs=24.5kG、強磁性共鳴周波数fr=1.5GHzが実現できることを報告している(例えば、非特許文献1参照。)。 In the future, in order to improve the recording density, a soft magnetic thin film having a larger saturation magnetic flux density Bs is required. The Fe—Co thin film has a high saturation magnetic flux density Bs of 24.5 kG in a composition of 25 to 35 at% Co, but its magnetostriction is as large as 3 to 8 × 10 −5 and it is not easy to derive soft magnetic properties. Stanford University X. Wang et al. Can realize a saturation magnetic flux density Bs = 24.5 kG and a ferromagnetic resonance frequency fr = 1.5 GHz by using a Ni—Fe thin film as a base film and adding nitrogen during the Fe—Co film formation. (For example, refer nonpatent literature 1.).

この報告を契機として、Ni−Fe薄膜を下地膜とすることによって高い飽和磁束密度Bsを持つFe−Co軟磁性薄膜材料の研究が精力的に行われてきた。富士通の池田らは、Fe80Co20とAlとで構成されるターゲットを用い飽和磁束密度Bs=22kG、保持力Hc=1Oeの磁気特性を持つ軟磁性薄膜を開発した(例えば、非特許文献2参照。)。秋田県高度技術研究所の新宅らは、Fe−Co材料に微量のAlを添加し、さらに下地膜としてNi−Fe薄膜あるいはCo−Zr−Nb薄膜からなる軟磁性下地膜を用いることによって、飽和磁束密度Bsが24kGと大きく保持力Hcが1Oe以下の軟磁性薄膜を開発することに成功している(例えば、非特許文献3参照。)。 With this report as an opportunity, research on Fe—Co soft magnetic thin film materials having a high saturation magnetic flux density Bs by using a Ni—Fe thin film as an underlayer has been vigorously conducted. Fujitsu's Ikeda et al. Developed a soft magnetic thin film having a magnetic property of saturation magnetic flux density Bs = 22 kG and coercive force Hc = 1 Oe using a target composed of Fe 80 Co 20 and Al 2 O 3 (for example, (See Patent Document 2). Shinta et al., Akita Prefectural Advanced Technology Research Institute, add a small amount of Al 2 O 3 to the Fe—Co material, and use a soft magnetic underlayer made of Ni—Fe thin film or Co—Zr—Nb thin film as the underlayer. Has succeeded in developing a soft magnetic thin film having a saturation magnetic flux density Bs of 24 kG and a coercive force Hc of 1 Oe or less (see, for example, Non-Patent Document 3).

磁気ヘッドの動作周波数の広帯域化に関しては、磁気ヘッド材料の有効透磁率μ'の周波数特性を改善することが必要である。理論的には、飽和磁束密度Bsと異方性磁界Hkとを大きくすることによって、共鳴周波数frを大きくし共鳴損失を小さくでき、優れたμ'の周波数特性を実現できる。電気磁気材料研究所の大沼らは、Co−Al−Oグラニュラー構造膜が、1GHz以上の共鳴周波数frを示し、500MHzにおけるμ'が100という特性を有することを報告しているが、飽和磁束密度Bsが10kG程度と小さい(例えば、非特許文献4参照。)。
エス.エックス.ワン、エヌ.エックス.サン、エム.やまぐち、エス.やぶかみ著:ネイチャー、第407巻、頁150−151、2000(S.X.Wang,N.X.Sun,M.Yamaguchi and S.Yabukami:Nature,Vol.407,pp.150−151,2000) エス.いけだ、アイ.たがわ、ワイ.うえはら、ティー.くぼみや、ジェイ.かね、エム.かけい、エイ.ちかざわ著:アイイーイーイー、トランザクションズ オン マグネティックス、第38巻、5号、頁2219-2221,2002(S.Ikeda,I.Tagawa,Y.Uehara,T.Kubomiya,J.Kane,M.Kakei,A.Chikazawa:IEEE Tran Magn.,Vol.38,No.5,pp.2219-2221,2002) 新宅、山川、大内著:電子情報通信学会技術研究報告,MR2002−20,2002 大沼、三谷、藤森、増本著:日本応用磁気学会誌,第20巻,2号,頁489−492,1996
In order to broaden the operating frequency of the magnetic head, it is necessary to improve the frequency characteristics of the effective permeability μ ′ of the magnetic head material. Theoretically, by increasing the saturation magnetic flux density Bs and the anisotropic magnetic field Hk, the resonance frequency fr can be increased and the resonance loss can be decreased, and excellent frequency characteristics of μ ′ can be realized. Onuma et al. Of the Institute for Electromagnetic Materials have reported that the Co—Al—O granular structure film exhibits a resonance frequency fr of 1 GHz or higher and μ ′ at 500 MHz is 100. Bs is as small as about 10 kG (see Non-Patent Document 4, for example).
S. X. One, N. X. Sun, M. Yamaguchi, S. Yabukami: Nature, Vol. 407, pp. 150-151, 2000 (SX Wang, NX Sun, M. Yamaguchi and S. Yabukami: Nature, Vol. 407, pp. 150-151, 2000. ) S. Ikeda, Ai. Tagawa, Wai. Uehara, tea. Indentation, Jay. Kane, M. Kakei, A. Chikazawa: IEE, Transactions on Magnetics, Vol. 38, No. 5, pp. 2219-2221, 2002 (S. Ikeda, I. Tagawa, Y. Uehara, T. Kubomiya, J. Kane, M. et al. Kakei, A. Chikazawa: IEEE Tran Magn., Vol. 38, No. 5, pp. 2219-2221, 2002) Shintaku, Yamakawa, Ouchi: IEICE technical report, MR2002-20, 2002 Onuma, Mitani, Fujimori, Masumoto: Journal of Applied Magnetics Society of Japan, Vol. 20, No. 2, pp. 489-492, 1996

しかしながら、このような従来の軟磁性薄膜の製造技術では、記録ヘッド用の軟磁性薄膜として高い飽和磁束密度Bsと高い共鳴周波数frを有するものが必要であるが、非磁性下地膜上にFe−Co−Al−O磁性膜を成膜しても高い飽和磁束密度Bsと高い共鳴周波数frを有する軟磁性薄膜を製造することは困難であるという問題があった。   However, such a conventional soft magnetic thin film manufacturing technique requires a soft magnetic thin film for a recording head having a high saturation magnetic flux density Bs and a high resonance frequency fr. Even when a Co—Al—O magnetic film is formed, it is difficult to produce a soft magnetic thin film having a high saturation magnetic flux density Bs and a high resonance frequency fr.

本発明はこのような問題を解決するためになされたもので、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を実現することが可能な軟磁性薄膜、その製造方法及び磁気ヘッドを提供するものである。   The present invention has been made to solve such a problem. Even when a nonmagnetic underlayer is used, the present invention is a software that can realize the characteristics that the saturation magnetic flux density Bs is 23 kG or more and the resonance frequency fr is 1 GHz or more. A magnetic thin film, a manufacturing method thereof, and a magnetic head are provided.

以上の点を考慮して、請求項1に係る発明は、基板上に下地膜としてAu膜を形成し、前記Au膜上にFe−Co−Al−O磁性膜が形成されている構成を有している。   In view of the above points, the invention according to claim 1 has a configuration in which an Au film is formed as a base film on a substrate, and an Fe—Co—Al—O magnetic film is formed on the Au film. doing.

この構成により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有することが可能な軟磁性薄膜を実現することができる。   With this configuration, it is possible to realize a soft magnetic thin film capable of having characteristics of a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more even when a nonmagnetic underlayer is used.

また、請求項2に係る発明は、基板上に下地膜としてAg膜を形成し、前記Ag膜上にFe−Co−Al−O磁性膜が形成されている構成を有している。   According to a second aspect of the present invention, an Ag film is formed as a base film on a substrate, and an Fe—Co—Al—O magnetic film is formed on the Ag film.

この構成により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有することが可能な軟磁性薄膜を実現することができる。   With this configuration, it is possible to realize a soft magnetic thin film capable of having characteristics of a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more even when a nonmagnetic underlayer is used.

また、請求項3に係る発明は、基板上に下地膜としてAl膜を形成し、前記Al膜上にFe−Co−Al−O磁性膜が形成されている構成を有している。   According to a third aspect of the present invention, an Al film is formed as a base film on a substrate, and a Fe—Co—Al—O magnetic film is formed on the Al film.

この構成により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有することが可能な軟磁性薄膜を実現することができる。   With this configuration, it is possible to realize a soft magnetic thin film capable of having characteristics of a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more even when a nonmagnetic underlayer is used.

また、請求項4に係る発明は、基板上に下地膜としてRu膜を形成し、前記Ru膜上にFe−Co−Al−O磁性膜が形成されている構成を有している。   According to a fourth aspect of the present invention, a Ru film is formed as a base film on a substrate, and an Fe—Co—Al—O magnetic film is formed on the Ru film.

この構成により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有することが可能な軟磁性薄膜を実現することができる。   With this configuration, it is possible to realize a soft magnetic thin film capable of having characteristics of a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more even when a nonmagnetic underlayer is used.

また、請求項5に係る発明は、請求項1ないし請求項4のいずれか1項において、前記下地膜の膜厚が、0.5nm以上5nm以下の範囲のいずれかの厚さである構成を有している。
この構成により、請求項1ないし請求項4のいずれか1項の効果に加え、軟磁性特性を好適にすることが可能な軟磁性薄膜を実現することができる。
The invention according to claim 5 is the structure according to any one of claims 1 to 4, wherein the undercoat film has a thickness in the range of not less than 0.5 nm and not more than 5 nm. Have.
With this configuration, in addition to the effect of any one of claims 1 to 4, it is possible to realize a soft magnetic thin film capable of making soft magnetic characteristics suitable.

また、請求項6に係る発明は、請求項1ないし請求項5のいずれか1項において、前記Fe−Co−Al−O磁性膜が、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを中間層として複数層分離されて積層されている構成を有している。
この構成により、請求項1ないし請求項5のいずれか1項の効果に加え、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを中間層とすることによって、Ni−Fe膜では不可能な磁区制御ができると共に、中間層を構成する元素Au、Ag、Al又はRuが非磁性体であるため、隣り合う磁性膜の端部の漏れ磁束を減らすことができ、透磁率の低下、ノイズの発生といった磁区構造に起因する課題を回避することが可能な軟磁性薄膜を実現することができる。
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the Fe—Co—Al—O magnetic film is an Au film, an Ag film, an Al film, or a Ru film. It has a configuration in which any one of the intermediate layers is separated and stacked.
With this configuration, in addition to the effect of any one of claims 1 to 5, any one of an Au film, an Ag film, an Al film, and a Ru film is used as an intermediate layer, so that the Ni-Fe film In addition to the impossible magnetic domain control, the element Au, Ag, Al or Ru constituting the intermediate layer is a non-magnetic material, so that the leakage magnetic flux at the end of the adjacent magnetic film can be reduced and the magnetic permeability is lowered. Thus, it is possible to realize a soft magnetic thin film capable of avoiding problems caused by the magnetic domain structure such as generation of noise.

また、請求項7に係る発明は、請求項1ないし請求項6のいずれか1項において、前記軟磁性薄膜が、250℃から420℃までの温度範囲内で磁場中熱処理して製造された構成を有している。   The invention according to claim 7 is the structure according to any one of claims 1 to 6, wherein the soft magnetic thin film is manufactured by heat treatment in a magnetic field within a temperature range of 250 ° C. to 420 ° C. have.

この構成により、請求項1ないし請求項6のいずれか1項の効果に加え、成膜時又は熱処理時に印加する磁界方向によって、その磁化容易軸方向を所望の方向に設定することが可能な軟磁性薄膜を実現することができる。   With this configuration, in addition to the effect of any one of claims 1 to 6, the easy axis of magnetization can be set to a desired direction by the direction of the magnetic field applied during film formation or heat treatment. A magnetic thin film can be realized.

また、請求項8に係る発明は、磁気ヘッドの軟磁性薄膜として、請求項1ないし請求項7のいずれか1項に記載の軟磁性薄膜を用いた構成を有している。   The invention according to claim 8 has a configuration using the soft magnetic thin film according to any one of claims 1 to 7 as the soft magnetic thin film of the magnetic head.

この構成により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有する高性能の軟磁性体を有する磁気ヘッドを実現することができる。   With this configuration, it is possible to realize a magnetic head having a high-performance soft magnetic material having a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more even when a nonmagnetic underlayer is used.

また、請求項9に係る発明は、請求項1ないし請求項6のいずれか1項に記載の軟磁性膜を、250℃から420℃までの温度範囲内で磁場中熱処理する方法である。   The invention according to claim 9 is a method of heat-treating the soft magnetic film according to any one of claims 1 to 6 in a magnetic field within a temperature range of 250 ° C. to 420 ° C.

この方法により、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を有する軟磁性薄膜を生成することができると共に、成膜時又は熱処理時に印加する磁界方向によって、その磁化容易軸方向を所望の方向に設定することができる。   By this method, even when a nonmagnetic underlayer film is used, a soft magnetic thin film having characteristics of a saturation magnetic flux density Bs of 23 kG or more and a resonance frequency fr of 1 GHz or more can be generated and applied during film formation or heat treatment. The easy axis direction of magnetization can be set to a desired direction depending on the magnetic field direction.

本発明は、非磁性下地膜を用いた場合でも飽和磁束密度が23kG以上、共鳴周波数が1GHz以上の特性を実現することができるという効果を有する軟磁性薄膜、その製造方法及び磁気ヘッドを提供することができるものである。   The present invention provides a soft magnetic thin film having an effect that a saturation magnetic flux density of 23 kG or more and a resonance frequency of 1 GHz or more can be realized even when a nonmagnetic underlayer is used, a manufacturing method thereof, and a magnetic head. It is something that can be done.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る軟磁性薄膜の断面構造を概念的に示す図である。図1において、軟磁性薄膜は、基板110上に成膜された、下地膜120及び磁性膜130によって構成される。ここで、下地膜120としては、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを用い、磁性膜130としては、Fe−Co−Al−O磁性膜を用いるものとする。基板110としては、表面酸化膜付のシリコンウェハー、コーニング7059(商標)又はアルミナチタンカーバイトなどを用いることができる。なお、下地膜120として、前述のもの以外にNi−Fe膜、Ta膜、W膜、Mg膜、Cr膜、Ti膜、Zr膜、V膜、Hf膜等を用いてもよい。
(First embodiment)
FIG. 1 is a diagram conceptually showing a cross-sectional structure of a soft magnetic thin film according to a first embodiment of the present invention. In FIG. 1, the soft magnetic thin film is composed of a base film 120 and a magnetic film 130 formed on a substrate 110. Here, any one of an Au film, an Ag film, an Al film, and a Ru film is used as the base film 120, and an Fe—Co—Al—O magnetic film is used as the magnetic film 130. As the substrate 110, a silicon wafer with a surface oxide film, Corning 7059 (trademark), alumina titanium carbide, or the like can be used. Note that a Ni—Fe film, a Ta film, a W film, an Mg film, a Cr film, a Ti film, a Zr film, a V film, an Hf film, or the like may be used as the base film 120 in addition to the above.

以下に、本発明の第1の実施の形態に係る軟磁性薄膜の製造方法について説明する。   Below, the manufacturing method of the soft-magnetic thin film which concerns on the 1st Embodiment of this invention is demonstrated.

成膜には、米国IonTech.社製、ホローカソード型イオンソースを用いた。ターゲットには純度99.99%の(Fe75Co2599(Al[at.%]を使用し、装置内を2x10−8Torr以下まで真空排気した後、ビーム電圧を1200V、ビーム電流を120mAに設定し、クリプトンガス圧を0.8x10−4Torrとなるように導入して成膜した。また、成膜に用いる基板をターゲットと平行に設置し、毎分5回転で自転させた。また、マグネットを基板上に設置し150Oeの磁界を基板に印加しながら成膜した。堆積した膜の膜厚は10〜600nmとし、成膜後、5x10−7Torr以下の真空中において1kOeの磁界を印加しながら250〜500℃で1時間熱処理した。 For film formation, US IonTech. A hollow cathode type ion source manufactured by KK was used. The target was (Fe 75 Co 25 ) 99 (Al 2 O 3 ) 1 [at. %] Was used, and the inside of the apparatus was evacuated to 2 × 10 −8 Torr or less, then the beam voltage was set to 1200 V, the beam current was set to 120 mA, and the krypton gas pressure was introduced to 0.8 × 10 −4 Torr. A film was formed. A substrate used for film formation was set in parallel with the target and rotated at 5 revolutions per minute. A film was formed while a magnet was placed on the substrate and a magnetic field of 150 Oe was applied to the substrate. The thickness of the deposited film was 10 to 600 nm, and after the film formation, heat treatment was performed at 250 to 500 ° C. for 1 hour while applying a magnetic field of 1 kOe in a vacuum of 5 × 10 −7 Torr or less.

作製した軟磁性薄膜の飽和磁束密度Bsと保磁力Hcとを、振動試料型磁力計を使用して測定した。なお、本実施の形態では飽和磁束密度Bsを磁界250Oeにおける磁束密度B250で評価した。また、高周波透磁率は、パーミアンスメータを使用して10MHzから2GHzにおける複素透磁率μ'−jμ"(μ'実部、μ"虚部)として測定した。また、以上の磁気特性は、いずれも磁化容易軸方向と直交する方向すなわち磁化困難軸方向について測定した。 The saturation magnetic flux density Bs and coercive force Hc of the produced soft magnetic thin film were measured using a vibrating sample magnetometer. In the present embodiment, the saturation magnetic flux density Bs is evaluated by the magnetic flux density B 250 in the magnetic field 250 Oe. The high-frequency magnetic permeability was measured as a complex magnetic permeability μ′−jμ ″ (μ ′ real part, μ ″ imaginary part) at 10 MHz to 2 GHz using a permeance meter. The above magnetic characteristics were measured in the direction perpendicular to the easy axis direction, that is, the hard axis direction.

図2は、本発明の第1の実施の形態に係る軟磁性薄膜の実施例1〜26の製造情報及びその諸特性を示す図である。図3は、軟磁性薄膜の実施例に対する比較例27〜46の諸特性を示す図である。ここで、軟磁性薄膜におけるFe−Co−Al−O薄膜の膜厚は、100nmである。なお、図2及び図3中の「下地膜」の欄内の右側の欄に示す数字は、下地膜の膜厚であり、その単位はnmである。また、μ'300MHzとして示された数値は、300MHzにおける複素透磁率の実部μ'の値である。さらに、図2及び図3中の記号「−」は測定不能を示し、「熱処理温度」の欄における「なし」という記載は、熱処理がないことを示す。   FIG. 2 is a diagram showing manufacturing information and various characteristics of Examples 1 to 26 of the soft magnetic thin film according to the first embodiment of the present invention. FIG. 3 is a diagram showing various characteristics of Comparative Examples 27 to 46 with respect to the example of the soft magnetic thin film. Here, the film thickness of the Fe—Co—Al—O thin film in the soft magnetic thin film is 100 nm. 2 and 3, the number shown in the right column in the “undercoat film” column is the film thickness of the undercoat film, and its unit is nm. The numerical value shown as μ′300 MHz is the value of the real part μ ′ of the complex permeability at 300 MHz. Further, the symbol “-” in FIGS. 2 and 3 indicates that measurement is impossible, and the description “none” in the column “heat treatment temperature” indicates that there is no heat treatment.

図2及び図3に示す結果に基づいて、概ね以下の事実が示される。
(1)Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを膜厚0.5nmから5nmの下地膜とすることによって、Fe−Co−Al−O薄膜はB250>22kG、Hc<6.0Oe、fr>1.6GHzの特性が熱処理なしで得られる(実施例1〜15参照)。
(2)Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを膜厚0.5nmから5nmの下地膜とするFe−Co−Al−O薄膜に対して、250℃から420℃の熱処理を施すことによって、Hcは3.5Oe以下に低下し、μ'300MHzは1000以上に増大する(実施例16〜20、22〜26参照)。
(3)膜厚2nmのNi−Fe膜を下地膜とすることによって、Fe−Co−Al−O薄膜はB250=22kG、Hc=4.6Oe、fr=1.7GHzの特性が熱処理なしで得られる(比較例29参照)。
(4)膜厚2nmのNi−Fe膜を下地膜とするFe−Co−Al−O薄膜に対して、250℃から420℃の熱処理を施すことによって、Hcは2.5Oe以下に低下し、μ'300MHzは850以上に増大する(比較例30〜34参照)。
(5)Ta、Mg、W、Cr、Ti、Zr、V及びHfのうちのいずれかを下地膜とするFe−Co−Al−O薄膜は、熱処理によってHcが低下するが25Oe以上と大きい(比較例27、28、35〜48参照)。
Based on the results shown in FIGS. 2 and 3, the following facts are generally shown.
(1) By using any one of an Au film, an Ag film, an Al film, and a Ru film as a base film having a film thickness of 0.5 nm to 5 nm, the Fe—Co—Al—O thin film has a B 250 > 22 kG, Hc Properties of <6.0 Oe, fr> 1.6 GHz are obtained without heat treatment (see Examples 1-15).
(2) For an Fe—Co—Al—O thin film in which any one of an Au film, an Ag film, an Al film, and a Ru film is used as a base film having a film thickness of 0.5 nm to 5 nm, a temperature of 250 ° C. to 420 ° C. By performing the heat treatment, Hc decreases to 3.5 Oe or less, and μ′300 MHz increases to 1000 or more (see Examples 16 to 20, 22 to 26).
(3) By using a Ni—Fe film with a thickness of 2 nm as a base film, the Fe—Co—Al—O thin film has characteristics of B 250 = 22 kG, Hc = 4.6 Oe, fr = 1.7 GHz without heat treatment. Is obtained (see Comparative Example 29).
(4) By performing a heat treatment at 250 ° C. to 420 ° C. on an Fe—Co—Al—O thin film having a Ni—Fe film with a thickness of 2 nm as a base film, Hc is reduced to 2.5 Oe or less, μ′300 MHz increases to 850 or more (see Comparative Examples 30 to 34).
(5) The Fe—Co—Al—O thin film using any one of Ta, Mg, W, Cr, Ti, Zr, V, and Hf as a base film has a large Hc of 25 Oe or more although Hc is reduced by heat treatment ( Comparative Examples 27, 28, 35-48).

以上のことから、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを下地膜とする場合に、Ni−Fe薄膜と同様、軟磁気特性が改善されることが明らかである。   From the above, it is clear that when any one of the Au film, the Ag film, the Al film, and the Ru film is used as the base film, the soft magnetic characteristics are improved like the Ni—Fe thin film.

図4は、本発明の第1の実施の形態に係る軟磁性薄膜の特性のAg膜の膜厚依存性を示す図である。図4に示すAg膜厚依存性は、軟磁性薄膜を構成するFe−Co−Al−O薄膜の膜厚が100nmのものである。図4に示すように、0.5nm以上のAg薄膜を堆積することによってFe−Co−Al−O薄膜の磁気特性が大幅に改善され、Hc<6Oe、μ'300MHz>430といった軟磁気特性が得られることがわかる。なお、これらAg薄膜を下地膜とするFe−Co−Al−O薄膜の飽和磁束密度Bsは、23kG以上であり、共鳴周波数frは1.6GHz以上であった。   FIG. 4 is a diagram showing the film thickness dependence of the Ag film of the characteristics of the soft magnetic thin film according to the first embodiment of the present invention. The Ag film thickness dependence shown in FIG. 4 is that the film thickness of the Fe—Co—Al—O thin film constituting the soft magnetic thin film is 100 nm. As shown in FIG. 4, by depositing an Ag thin film of 0.5 nm or more, the magnetic characteristics of the Fe—Co—Al—O thin film are greatly improved, and soft magnetic characteristics such as Hc <6 Oe, μ′300 MHz> 430 are obtained. It turns out that it is obtained. Note that the saturation magnetic flux density Bs of the Fe—Co—Al—O thin film using the Ag thin film as a base film was 23 kG or more, and the resonance frequency fr was 1.6 GHz or more.

図5は、図4に示す特性を有する上記の試料を350℃で1時間熱処理した後の特性を示す図である。図4及び図5から、350℃で1時間熱処理することによって軟磁気特性は改善され、膜厚0.5nmから5nmのAg下地膜を用いたときにHc<2.2Oe、μ'300MHz>1170といった特性が得られることがわかる。なお、これらAg薄膜を下地膜とするFe−Co−Al−O薄膜の熱処理後の飽和磁束密度Bsは、23kG以上であり、共鳴周波数frは1.8GHz以上であった。   FIG. 5 is a diagram showing the characteristics after the sample having the characteristics shown in FIG. 4 is heat-treated at 350 ° C. for 1 hour. 4 and 5, the soft magnetic characteristics are improved by heat treatment at 350 ° C. for 1 hour, and Hc <2.2 Oe, μ′300 MHz> 1170 when an Ag underlayer having a thickness of 0.5 nm to 5 nm is used. It can be seen that the following characteristics can be obtained. Note that the saturation magnetic flux density Bs after heat treatment of the Fe—Co—Al—O thin film using the Ag thin film as a base film was 23 kG or more, and the resonance frequency fr was 1.8 GHz or more.

図6は、図2に示す本発明の実施例20の複素透磁率μ'−jμ"の周波数特性を示す図である。図6に示す複素透磁率は、1mOe0−pの磁場を印加して計測されたものである。複素透磁率の実部μ'は、10MHzから1.5GHzの周波数において1000〜1500の範囲内にあり、虚部μ"が極大となる周波数すなわち強磁性共鳴周波数は、1.7GHz程度であることがわかる。 6 is a diagram showing the frequency characteristics of the complex permeability μ′−jμ ″ of the embodiment 20 of the present invention shown in FIG. 2. The complex permeability shown in FIG. 6 applies a magnetic field of 1 mOe 0-p. The real part μ ′ of the complex permeability is in the range of 1000 to 1500 at a frequency of 10 MHz to 1.5 GHz, and the frequency at which the imaginary part μ ″ is a maximum, that is, the ferromagnetic resonance frequency is It can be seen that the frequency is about 1.7 GHz.

以上説明したように、本発明の第1の実施の形態に係る軟磁性薄膜及びその製造方法は、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを下地膜として用いることとしたため、非磁性下地膜を用いた場合でも飽和磁束密度Bsが23kG以上、共鳴周波数frが1GHz以上の特性を実現することができる。   As described above, the soft magnetic thin film and the manufacturing method thereof according to the first embodiment of the present invention use any one of an Au film, an Ag film, an Al film, and a Ru film as a base film. Even when a nonmagnetic underlayer film is used, it is possible to realize the characteristics that the saturation magnetic flux density Bs is 23 kG or more and the resonance frequency fr is 1 GHz or more.

また、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかの下地膜の膜厚を0.5nmから5nmとすることによって、軟磁性薄膜の軟磁性特性を好適にすることができる。   Further, by setting the thickness of the base film of any one of the Au film, the Ag film, the Al film, and the Ru film to 0.5 nm to 5 nm, the soft magnetic characteristics of the soft magnetic thin film can be improved.

さらに、本発明の軟磁性薄膜は、250℃から420℃までの温度範囲内で熱処理を施すことによって軟磁気特性が改善され、ヘッド作製プロセス時の処理温度、例えば約280℃に対する耐熱性を有する。   Furthermore, the soft magnetic thin film of the present invention is improved in soft magnetic properties by performing heat treatment within a temperature range from 250 ° C. to 420 ° C., and has heat resistance to a processing temperature during the head manufacturing process, for example, about 280 ° C. .

(第2の実施の形態)
図7(a)に示すように、磁性膜130が単層の磁性膜によって形成される場合、磁束の漏れが最小となるように磁性膜130の面内で磁束のループが形成され、磁性膜の端部で磁化の向き701の異なる磁区が形成される。特に、磁性膜のサイズが小さくなって、磁性膜の幅と膜厚が同じオーダーになると、反磁場すなわち形状磁気異方性は磁気特性を決める支配的な要因となる。
(Second Embodiment)
As shown in FIG. 7A, when the magnetic film 130 is formed of a single-layer magnetic film, a magnetic flux loop is formed in the plane of the magnetic film 130 so as to minimize magnetic flux leakage, and the magnetic film Magnetic domains having different magnetization directions 701 are formed at the ends of the first and second electrodes. In particular, when the size of the magnetic film is reduced and the width and thickness of the magnetic film are in the same order, the demagnetizing field, that is, the shape magnetic anisotropy, becomes a dominant factor that determines the magnetic characteristics.

このような場合に、磁性膜130を非磁性体、例えばAu膜、Ag膜、Al膜及びRu膜のうちのいずれかを中間層702とする多層構造とすることによって、非磁性の中間層702を介して隣り合う2層のFe−Co−Al−O磁性膜703a、703bの端部では、お互いの磁化方向を反対にして静磁的に結合し、漏れ磁束すなわち反磁場エネルギーを減らすことが可能となる(図7(b))。このように、多層膜では磁区構造が簡単になり、容易軸に平行な磁化を持つ領域が大幅に増える。一般に、単層膜に対して多層膜の方が高い透磁率を持ち、周波数特性も優れている。   In such a case, the non-magnetic intermediate layer 702 is formed by making the magnetic film 130 a multi-layer structure in which any one of an Au film, an Ag film, an Al film, and a Ru film is the intermediate layer 702. At the ends of the two layers of the Fe—Co—Al—O magnetic films 703a and 703b adjacent to each other, the magnetization directions are opposite to each other and magnetostatically coupled, thereby reducing leakage magnetic flux, that is, demagnetizing field energy. This is possible (FIG. 7B). As described above, in the multilayer film, the magnetic domain structure is simplified, and the region having magnetization parallel to the easy axis is greatly increased. In general, a multilayer film has higher magnetic permeability than a single layer film, and has excellent frequency characteristics.

本発明の軟磁性薄膜の磁化容易軸方向は、成膜時の磁場印加方向あるいは熱処理時の磁場印加方向に対して平行である。したがって、磁化容易軸方向を所望の方向に設定可能である。実施例26の試料は、成膜時の磁化容易軸方向に対して直交する方向に磁界を設定して熱処理を施して、磁化容易軸方向を90度回転させたものである。なお、磁場印加における熱処理の温度としては、本発明の第1の実施の形態において示した熱処理温度、すなわち250℃から420℃までの温度範囲内の温度とすることができる。   The easy axis direction of magnetization of the soft magnetic thin film of the present invention is parallel to the magnetic field application direction during film formation or the magnetic field application direction during heat treatment. Therefore, the easy magnetization axis direction can be set to a desired direction. In the sample of Example 26, a magnetic field was set in a direction orthogonal to the easy magnetization axis direction during film formation and heat treatment was performed, and the easy magnetization axis direction was rotated 90 degrees. In addition, as the temperature of the heat treatment in the magnetic field application, the heat treatment temperature shown in the first embodiment of the present invention, that is, a temperature within a temperature range from 250 ° C. to 420 ° C. can be used.

前述の実施例26の試料においてもB250=23.5kG、Hc=2.8Oe、fr=1.7GHzの特性が得られている。この様な特性を有することは、本発明を磁気ヘッドに適用する場合に非常に有用なものである。以下では、図8に概念的に示す垂直磁気記録ヘッドを例にとり説明する。図8に示す垂直磁気記録ヘッドでは、垂直記録媒体801、リターンヨーク803及び記録磁極804から磁気回路が構成され、垂直記録媒体801に磁化802が記録されるようになっている。ここで、図8においてWで示されたトラック幅方向を磁化容易軸に平行とすることによって、記録磁極804からの磁界強度を大きくでき、垂直記録媒体801への記録感度を向上することが可能となる。 Also in the sample of Example 26 described above, characteristics of B 250 = 23.5 kG, Hc = 2.8 Oe, fr = 1.7 GHz are obtained. Having such characteristics is very useful when the present invention is applied to a magnetic head. Hereinafter, the perpendicular magnetic recording head conceptually shown in FIG. 8 will be described as an example. In the perpendicular magnetic recording head shown in FIG. 8, a magnetic circuit is composed of the perpendicular recording medium 801, the return yoke 803, and the recording magnetic pole 804, and the magnetization 802 is recorded on the perpendicular recording medium 801. Here, by making the track width direction indicated by W in FIG. 8 parallel to the easy axis of magnetization, the magnetic field intensity from the recording magnetic pole 804 can be increased, and the recording sensitivity to the perpendicular recording medium 801 can be improved. It becomes.

以上説明したように、本発明の第2の実施の形態に係る軟磁性薄膜、その製造方法及び軟磁性薄膜を用いた磁気ヘッドは、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかの非磁性体膜を中間層とすることによって、Ni−Fe膜では不可能な磁区制御が可能となる。   As described above, the soft magnetic thin film, the manufacturing method thereof, and the magnetic head using the soft magnetic thin film according to the second embodiment of the present invention include any one of an Au film, an Ag film, an Al film, and a Ru film. By using such a non-magnetic film as an intermediate layer, it becomes possible to control the magnetic domain, which is impossible with a Ni-Fe film.

また、本発明の多層膜は、中間層を構成する元素であるAu、Ag、Al及びRuのうちのいずれかが非磁性体であるため、隣り合う磁性膜の端部の漏れ磁束を減らすことができ、透磁率の低下、ノイズの発生といった磁区構造に起因する課題を回避することができる。   In addition, the multilayer film of the present invention reduces leakage magnetic flux at the end of adjacent magnetic films because any of Au, Ag, Al, and Ru, which are elements constituting the intermediate layer, is a non-magnetic material. And problems due to the magnetic domain structure such as a decrease in magnetic permeability and generation of noise can be avoided.

また、本発明の軟磁性薄膜は、成膜時又は熱処理時に印加する磁界方向によって、その磁化容易軸方向を所望の方向に設定できる。これによって、軟磁性薄膜を垂直磁気ヘッドの磁極に使用する場合、その磁化容易軸方向をトラック幅方向と平行とすることによって、記録磁極からの磁界強度を向上でき、垂直媒体への記録感度を高めることが可能となる。   In addition, the soft magnetic thin film of the present invention can have its easy axis direction set to a desired direction depending on the direction of the magnetic field applied during film formation or heat treatment. As a result, when a soft magnetic thin film is used for the magnetic pole of a perpendicular magnetic head, the magnetic field intensity from the recording magnetic pole can be improved by making the easy axis direction parallel to the track width direction, and the recording sensitivity to the perpendicular medium can be improved. It becomes possible to raise.

本発明の第1の実施の形態に係る軟磁性薄膜の断面構造を概念的に示す図である。It is a figure which shows notionally the cross-section of the soft-magnetic thin film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る軟磁性薄膜の実施例等の製造情報及びその諸特性を示す図である。It is a figure which shows the manufacture information and the various characteristics of the Example etc. of the soft-magnetic thin film based on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る軟磁性薄膜の比較例等の製造情報及びその諸特性を示す図である。It is a figure which shows the manufacture information and its various characteristics, such as a comparative example of the soft-magnetic thin film which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る軟磁性薄膜の特性の、Ag膜の膜厚依存性を示す図である。It is a figure which shows the film thickness dependency of the Ag film | membrane of the characteristic of the soft-magnetic thin film which concerns on the 1st Embodiment of this invention. 図4に示す特性を有する試料を350℃で1時間熱処理した後の特性を示す図である。It is a figure which shows the characteristic after heat-processing the sample which has the characteristic shown in FIG. 4 at 350 degreeC for 1 hour. 図2に示す本発明の実施例20の複素透磁率μ'−jμ"の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the complex magnetic permeability (micro | micron | mu) '-jmicro "of Example 20 of this invention shown in FIG. 本発明の第2の実施の形態に係る磁性膜130の概念的な構造及びその効果を説明するための図である。It is a figure for demonstrating the conceptual structure of the magnetic film 130 which concerns on the 2nd Embodiment of this invention, and its effect. 垂直磁気記録ヘッドの概念的な構造を示す図である。It is a figure which shows the notional structure of a perpendicular magnetic recording head.

符号の説明Explanation of symbols

110 基板
120 下地膜
130 磁性膜
701 磁化の向き
702 中間層
703a、703b Fe−Co−Al−O磁性膜
801 垂直記録媒体
802 磁化
803 リターンヨーク
804 記録磁極
DESCRIPTION OF SYMBOLS 110 Substrate 120 Base film 130 Magnetic film 701 Direction of magnetization 702 Intermediate layer 703a, 703b Fe-Co-Al-O magnetic film 801 Perpendicular recording medium 802 Magnetization 803 Return yoke 804 Recording magnetic pole

Claims (9)

基板上に下地膜としてAu膜を形成し、前記Au膜上にFe−Co−Al−O磁性膜が形成されていることを特徴とする軟磁性薄膜。 A soft magnetic thin film characterized in that an Au film is formed as a base film on a substrate, and an Fe-Co-Al-O magnetic film is formed on the Au film. 基板上に下地膜としてAg膜を形成し、前記Ag膜上にFe−Co−Al−O磁性膜が形成されていることを特徴とする軟磁性薄膜。 A soft magnetic thin film characterized in that an Ag film is formed as a base film on a substrate, and an Fe-Co-Al-O magnetic film is formed on the Ag film. 基板上に下地膜としてAl膜を形成し、前記Al膜上にFe−Co−Al−O磁性膜が形成されていることを特徴とする軟磁性薄膜。 A soft magnetic thin film characterized in that an Al film is formed as a base film on a substrate, and an Fe-Co-Al-O magnetic film is formed on the Al film. 基板上に下地膜としてRu膜を形成し、前記Ru膜上にFe−Co−Al−O磁性膜が形成されていることを特徴とする軟磁性薄膜。 A soft magnetic thin film characterized in that a Ru film is formed as a base film on a substrate, and an Fe-Co-Al-O magnetic film is formed on the Ru film. 前記下地膜の膜厚は、0.5nm以上5nm以下の範囲のいずれかの厚さであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の軟磁性薄膜。 5. The soft magnetic thin film according to claim 1, wherein the base film has a thickness in a range of not less than 0.5 nm and not more than 5 nm. 前記Fe−Co−Al−O磁性膜は、Au膜、Ag膜、Al膜及びRu膜のうちのいずれかを中間層として複数層分離されて積層されていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の軟磁性薄膜。 2. The Fe—Co—Al—O magnetic film, wherein a plurality of layers are separated and stacked with any one of an Au film, an Ag film, an Al film, and a Ru film as an intermediate layer. The soft magnetic thin film according to claim 5. 250℃から420℃までの温度範囲内で磁場中熱処理して製造されたことを特徴とする請求項1ないし請求項6のいずれか1項に記載の軟磁性薄膜。 The soft magnetic thin film according to any one of claims 1 to 6, wherein the soft magnetic thin film is manufactured by heat treatment in a magnetic field within a temperature range of 250 ° C to 420 ° C. 軟磁性薄膜として、請求項1ないし請求項7のいずれか1項に記載の軟磁性薄膜を用いたことを特徴とする磁気ヘッド。 8. A magnetic head using the soft magnetic thin film according to claim 1 as the soft magnetic thin film. 請求項1ないし請求項6のいずれか1項に記載の軟磁性膜を、250℃から420℃までの温度範囲内で磁場中熱処理することを特徴とする軟磁性薄膜の製造方法。 A method for producing a soft magnetic thin film, comprising subjecting the soft magnetic film according to any one of claims 1 to 6 to heat treatment in a magnetic field within a temperature range of 250 ° C to 420 ° C.
JP2004111299A 2004-04-05 2004-04-05 Soft magnetic thin film, manufacturing method thereof, and magnetic head Expired - Fee Related JP4490720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004111299A JP4490720B2 (en) 2004-04-05 2004-04-05 Soft magnetic thin film, manufacturing method thereof, and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004111299A JP4490720B2 (en) 2004-04-05 2004-04-05 Soft magnetic thin film, manufacturing method thereof, and magnetic head

Publications (2)

Publication Number Publication Date
JP2005294756A true JP2005294756A (en) 2005-10-20
JP4490720B2 JP4490720B2 (en) 2010-06-30

Family

ID=35327310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004111299A Expired - Fee Related JP4490720B2 (en) 2004-04-05 2004-04-05 Soft magnetic thin film, manufacturing method thereof, and magnetic head

Country Status (1)

Country Link
JP (1) JP4490720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208156A (en) * 2006-02-06 2007-08-16 Nagoya Institute Of Technology High frequency soft magnetic film and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208156A (en) * 2006-02-06 2007-08-16 Nagoya Institute Of Technology High frequency soft magnetic film and manufacturing method thereof

Also Published As

Publication number Publication date
JP4490720B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP3653007B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP5059924B2 (en) Spin torque oscillator, and magnetic recording head and magnetic recording apparatus equipped with the same
US7221538B2 (en) Thin film perpendicular magnetic recording head, their fabrication process and magnetic disk drive using it
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
JP5509208B2 (en) Three-dimensional magnetic recording / reproducing device
JP4222965B2 (en) Perpendicular magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus
JP2014103172A (en) Magnetic thin film, manufacturing method therefor, high frequency oscillation device using magnetic thin film, magnetic head, magnetic recording medium, and magnetic recorder/reproducer
JP2008084413A (en) Magnetic recording medium, manufacturing method of magnetic recording medium and magnetic recording device
US20140247520A1 (en) Magnetic storage medium and magnetic recording apparatus
JP2004079043A (en) Perpendicular magnetic recording medium
JP2014123413A (en) Magnetic head, and magnetic recording/reproducing apparatus
KR101114281B1 (en) a device for generating high frequency microwave and high frequency magnetic field using spin transfer torque
JP2550893B2 (en) Magnetic multilayer film
JP2001167420A (en) Magnetic recording medium and its manufacturing method
JP2009238287A (en) Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JPH07254116A (en) Method of heat treatment for thin film magnetic head
JP4490720B2 (en) Soft magnetic thin film, manufacturing method thereof, and magnetic head
JP2003045015A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2009238273A (en) Manufacturing method of magnetic recording medium, magnetic recording medium and magnetic recording and reproducing device
US7144641B2 (en) Magnetic backlayer
JP3999677B2 (en) Method for manufacturing magnetic recording medium
JP2005026451A (en) Soft magnetism thin film, method of manufacturing the same, and magnetic head
JP2004272957A (en) Perpendicular magnetic recording medium and its manufacturing method
JP3130407B2 (en) Manufacturing method of magnetic film and thin film magnetic head
JP3964844B2 (en) Exchange coupling film having antiferromagnetic Mn—Ir alloy film and method for manufacturing the same, and perpendicular magnetic recording medium and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees