JP2005294010A - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP2005294010A
JP2005294010A JP2004106871A JP2004106871A JP2005294010A JP 2005294010 A JP2005294010 A JP 2005294010A JP 2004106871 A JP2004106871 A JP 2004106871A JP 2004106871 A JP2004106871 A JP 2004106871A JP 2005294010 A JP2005294010 A JP 2005294010A
Authority
JP
Japan
Prior art keywords
core
storage battery
holes
alkaline storage
core body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004106871A
Other languages
Japanese (ja)
Inventor
Koji Taguchi
幸治 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004106871A priority Critical patent/JP2005294010A/en
Publication of JP2005294010A publication Critical patent/JP2005294010A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline battery which makes a capacity higher and can surely prevent an electrode core body from rupturing when winding/forming an electrode group. <P>SOLUTION: The alkaline battery has the electrode group composed of a negative electrode, a positive electrode, and a separator. The negative electrode has a core body 16, over which a number of holes 18 are distributed, where an aperture ratio in surface of the core body 16 is 0.4 or more, and an aperture ratio in cross-section is reduced to 1.2 or less times the aperture ratio in surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ニッケル−カドニウム電池やニッケル−水素電池等のアルカリ蓄電池、より詳しくは円筒形状のアルカリ蓄電池に関する。   The present invention relates to an alkaline storage battery such as a nickel-cadmium battery or a nickel-hydrogen battery, and more particularly to a cylindrical alkaline storage battery.

この種のアルカリ蓄電池はその外装缶内に収容された電極群を備え、この電極群は負極及び正極をセパレータを介して渦巻き状に捲回して構成されている。このようなアルカリ蓄電池の高容量化を図るには正極及び負極の活物質量をそれぞれ増大させればよいが、外装缶はそのサイズに制約を受けているため、電極群の径寸法、つまり、正極及び負極全体の体積を増加させることは困難である。   This type of alkaline storage battery includes an electrode group housed in its outer can, and this electrode group is formed by winding a negative electrode and a positive electrode in a spiral shape with a separator interposed therebetween. In order to increase the capacity of such an alkaline storage battery, the amount of the active material of the positive electrode and the negative electrode may be increased, but the outer can is limited by its size, so the diameter of the electrode group, that is, It is difficult to increase the volume of the whole positive electrode and negative electrode.

それ故、負極の芯体の体積を可能な限り少なくし、芯体に担持可能な活物質量を増加させることが考えられ、負極の芯体を薄いシート状のパンチングメタルから形成したアルカリ蓄電池が知られている(例えば、特許文献1,2)。
また、特許文献1,2のパンチングメタルは、隣接する3つの孔の中心が正三角形又は二等辺三角形の頂点となる孔の配列パターンを有し、このような孔の配列パターンによれば負極が真円に近い状態で捲回され、その捲回性を担保できるものと考えられる。
特開平3-141554号公報 特開平7-73874号公報
Therefore, it is conceivable to reduce the volume of the negative electrode core as much as possible and increase the amount of the active material that can be supported on the core, and an alkaline storage battery in which the negative electrode core is formed from a thin sheet of punched metal. Known (for example, Patent Documents 1 and 2).
Moreover, the punching metal of Patent Documents 1 and 2 has an array pattern of holes in which the centers of three adjacent holes are the vertices of an equilateral triangle or an isosceles triangle. It is considered that it is wound in a state close to a perfect circle and can secure the winding property.
Japanese Patent Laid-Open No. 3-141554 JP 7-73874 A

芯体に担持される活物質量を増大させるには、孔の総開口面積を芯体表面積(総開口面積と無孔面積との和)で除した値、即ち、芯体の表面開口率を大きくすればよいが、表面開口率が0.4以上になると、芯体の引っ張り強度が不足し、負極(電極群)の捲回時、芯体の一部、特に、その端部にて破断を招き易くなる。このため、芯体の表面開口率を0.4よりも小さくせざるを得ず、活物質の十分な増量を図ることができない。   In order to increase the amount of active material supported on the core, the value obtained by dividing the total opening area of the holes by the core surface area (the sum of the total opening area and the non-porous area), that is, the surface opening ratio of the core However, if the surface area ratio is 0.4 or more, the tensile strength of the core is insufficient, and when the negative electrode (electrode group) is wound, a part of the core is broken, particularly at the end thereof. It becomes easy to invite. For this reason, the surface area ratio of the core must be made smaller than 0.4, and the active material cannot be sufficiently increased.

本発明は上述の事情に基づいてなされ、その目的は、芯体の表面開口率を十分に大きく確保でき、しかも、電極群の捲回時、芯体に破断を招くことの無い高容量型のアルカリ蓄電池を提供することにある。   The present invention has been made based on the above-mentioned circumstances, and the object thereof is a high capacity type that can ensure a sufficiently large surface opening ratio of the core body and that does not cause breakage of the core body when the electrode group is wound. It is to provide an alkaline storage battery.

上記の目的を達成するため、本発明のアルカリ蓄電池の負極又は正極の芯体は、その捲回方向と交差する横断面でみたとき、芯体の幅方向に沿って孔が間欠的に露出する断面パターンを有し、そして、芯体の断面開口率が前記断面パターンにて芯体の幅方向に沿う孔の露出部位の長さの合計を芯体の幅で除した値の最大値で定義されたとき、芯体は少なくとも一部に前記表面開口率が0.4以上且つ前記断面開口率が表面開口率の1.2倍以下となる断面パターンを含んでいる(請求項1)。   In order to achieve the above object, the core of the negative or positive electrode of the alkaline storage battery of the present invention is exposed intermittently along the width direction of the core when viewed in a cross section intersecting with the winding direction. It has a cross-sectional pattern, and the cross-sectional opening ratio of the core body is defined by the maximum value of the value obtained by dividing the total length of the exposed portions of the holes along the width direction of the core body by the cross-sectional pattern by the width of the core body When this is done, the core body includes at least a cross-sectional pattern in which the surface aperture ratio is 0.4 or more and the cross-section aperture ratio is 1.2 times or less of the surface aperture ratio (Claim 1).

ここで、孔が図5に示されるような1つの配列パターンで分布されている場合、表面開口率は、図5中の孔を有する範囲(B領域)にて、その開口部総面積を芯体表面積(前記開口部総面積と無孔部総面積の合計)で除した値で定義される。
これに対し、孔が図6に示されるように複数の配列パターンで分布されている場合には、連続した同一周期の孔の配列を有する区間(即ち、B,D,F領域)毎に前記芯体の捲回方向と交差する線にて分割し、各区間毎に表面開口率を前記区間内の孔の開口部総面積を前記区間内の芯体表面積(前記開口部総面積と無孔部総面積との和)で除した値で定義すればよい。
Here, when the holes are distributed in one arrangement pattern as shown in FIG. 5, the surface opening ratio is the area (B region) having the holes in FIG. It is defined by a value divided by the body surface area (the total of the total area of the opening and the total area of the non-porous part).
On the other hand, when the holes are distributed in a plurality of arrangement patterns as shown in FIG. 6, the sections are arranged for each section (that is, B, D, F areas) having a continuous arrangement of holes having the same period. Divided by a line intersecting the winding direction of the core body, the surface opening ratio for each section, the total opening area of the holes in the section, the surface area of the core body in the section (the total area of the opening and the non-porous) What is necessary is just to define by the value which remove | divided by the sum total of a part total area.

芯体の一部、つまり、その捲回時に破断し易い個所が上述した表面開口率及び断面開口率の断面パターンを有していれば、表面開口率が0.4以上に大きくても、その横断面には無孔領域が十分に確保されているので、芯体の破断が確実に防止される。なお、表面開口率は0.45以上であるのがより好ましい。
芯体は負極の芯体であり(請求項2)、そして、その厚みは芯体の体積を減少させるうえで15μm〜65μmであるのが好ましい(請求項3)。更に、芯体は、ニッケルメッキされたシート状のパンチングメタル又は有孔ニッケルシートから形成される(請求項4)。
If a part of the core body, that is, a portion that is easily broken at the time of winding has the above-described cross-sectional pattern of the surface opening ratio and the cross-sectional opening ratio, even if the surface opening ratio is larger than 0.4, Since a non-porous region is sufficiently secured in the cross section, the core body is reliably prevented from being broken. The surface aperture ratio is more preferably 0.45 or more.
The core is a negative electrode core (Claim 2), and the thickness thereof is preferably 15 to 65 μm in order to reduce the volume of the core (Claim 3). Further, the core is formed of a nickel-plated sheet-like punching metal or a perforated nickel sheet.

また、孔は略円形若しくは略楕円形状をなすことができ、そして、孔の分布は、芯体の捲回方向に隣接する孔の中心間を二等辺三角形の底辺とし且つこれら孔に対して芯体の幅方向に隣接する孔の中心を前記二等辺三角形の頂点とした配列パターンを有しており、二等辺三角形の頂角は底角よりも大である(請求項5)。このような孔の配列パターンを有していれば、表面開口率の1.2倍以下の断面開口率を得る上で有利となる。   Further, the holes can be substantially circular or substantially elliptical, and the distribution of the holes is such that the center between the holes adjacent to each other in the winding direction of the core body is the base of an isosceles triangle and the cores with respect to these holes. It has an arrangement pattern in which the centers of holes adjacent in the width direction of the body are the vertices of the isosceles triangle, and the apex angle of the isosceles triangle is larger than the base angle. Having such a hole arrangement pattern is advantageous in obtaining a cross-sectional aperture ratio of 1.2 times or less of the surface aperture ratio.

具体的には、上述の配列パターンの場合、二等辺三角形の底辺の長さがd、孔の平均直径がlで表されるとき、次式、
d=31/2×l×σ
0.96≦σ≦1.04
が満たされており(請求項6)、また、二等辺三角形の頂角は75°以上且つ105°以下の範囲にある(請求項7)。
Specifically, in the case of the above arrangement pattern, when the length of the base of the isosceles triangle is represented by d and the average diameter of the holes is represented by l,
d = 3 1/2 × l × σ
0.96 ≦ σ ≦ 1.04
(Claim 6), and the apex angle of the isosceles triangle is in the range of 75 ° to 105 ° (Claim 7).

更に具体的には、孔の平均直径lは、0.5mm≦l≦2.5mmの範囲にあり(請求項8)、そして、捲回方向に沿う芯体の側縁は孔の一部により凹凸形状をなしているのが望ましい。   More specifically, the average diameter l of the hole is in the range of 0.5 mm ≦ l ≦ 2.5 mm (Claim 8), and the side edge of the core body along the winding direction is formed by a part of the hole. It is desirable to have an uneven shape.

請求項1〜9のアルカリ蓄電池によれば、負極又は正極の芯体の少なくとも一部にその表面開口率が0.4以上で且つその断面開口率が表面開口率の1.2倍以下に抑えられた断面パターンが与えられているので、芯体の表面開口率を十分に確保ししつつ、その捲回時の破断を防止でき、芯体はアルカリ蓄電池の高容量化に大きく貢献する。   According to the alkaline storage battery of claims 1 to 9, at least a part of the core of the negative electrode or the positive electrode has a surface opening ratio of 0.4 or more and a cross-sectional opening ratio of 1.2 times or less of the surface opening ratio. Since the given cross-sectional pattern is provided, it is possible to prevent breakage at the time of winding while sufficiently ensuring the surface opening ratio of the core, and the core greatly contributes to the increase in capacity of the alkaline storage battery.

図1は、ニッケル−カドニウム電池やニッケル−水素電池等の密閉型円筒形アルカリ蓄電池を示す。この電池は金属製の外装缶2を備え、この外装缶2の一端は開口している。外装缶2内には電極群4が電解液とともに収容され、電極群4は負極6と正極8との間にセパレータ10を介在させ、これらを渦巻き状に捲回して形成されている。
図1から明らかなように外装缶2の開口端は封口体12により閉塞され、封口体12はその中央部に正極端子14を有し、この正極端子14と組をなす負極端子は外装缶2の底で形成されている。
FIG. 1 shows a sealed cylindrical alkaline storage battery such as a nickel-cadmium battery or a nickel-hydrogen battery. This battery includes a metal outer can 2, and one end of the outer can 2 is open. In the outer can 2, an electrode group 4 is accommodated together with an electrolytic solution, and the electrode group 4 is formed by interposing a separator 10 between a negative electrode 6 and a positive electrode 8 and winding them in a spiral shape.
As is apparent from FIG. 1, the opening end of the outer can 2 is closed by a sealing body 12, and the sealing body 12 has a positive terminal 14 at the center thereof, and the negative terminal forming a pair with the positive terminal 14 is the outer can 2. Is formed at the bottom.

図2は負極6の芯体16を示しており、この芯体16はニッケルメッキされたシート状のパンチングメタル又は有孔ニッケルシートから形成されている。それ故、芯体16は多数の孔18を有し、これら孔18は円形若しくは楕円、又は、これら円形や楕円に近い形状をであるのが望ましい。なお、図示の実施例の場合、孔18は実質的に真円である。
上述の孔18は芯体16の全域又はその一部に、所定の配列パターンにて分布されている。具体的には、配列パターンは、負極6の捲回方向に互いに平行に延びる複数の孔列から形成され、隣接する孔列の孔18は捲回方向に互いにずれた状態にある。従って、図2中の芯体16のa−a断面、b−b断面及びc−c断面でみたとき、これら芯体16の横断面には、図3から明らかなように、孔18が芯体16の幅方向に間欠的に露出し、孔18の露出パターン、即ち、断面パターンは芯体16の横断面の位置にて異なる。
FIG. 2 shows a core 16 of the negative electrode 6, and the core 16 is made of a nickel-plated sheet-like punching metal or a perforated nickel sheet. Therefore, the core body 16 has a large number of holes 18, and these holes 18 are preferably circular or oval, or have a shape close to these circles and ellipses. In the illustrated embodiment, the hole 18 is substantially a perfect circle.
The holes 18 described above are distributed in a predetermined arrangement pattern over the entire area of the core body 16 or a part thereof. Specifically, the arrangement pattern is formed from a plurality of hole rows extending in parallel with each other in the winding direction of the negative electrode 6, and the holes 18 of the adjacent hole rows are shifted from each other in the winding direction. Accordingly, as seen from the aa, bb, and cc cross sections of the core body 16 in FIG. The body 16 is exposed intermittently in the width direction, and the exposed pattern of the holes 18, that is, the cross-sectional pattern, differs depending on the position of the cross section of the core body 16.

図3中、参照符号Tは芯体16の厚さを示し、この厚さTは15μm〜65μmである。
ここで、芯体16の表面開口率R1が孔18の開口部総面積を芯体表面積(開口部総面積と無孔部総面積の和)で除した値で定義され、そして、芯体16の断面開口率R2が断面パターン中、芯体16の幅方向に沿う孔18の露出部位の長さの合計を芯体16の幅で除した値の最大値で定義されるとき、表面開口率R1は0.4以上、好ましくは0.45以上であり、そして、任意の横断面の位置にて断面開口率R2は表面開口率R1の1.2倍以下に抑えられている。
In FIG. 3, reference symbol T indicates the thickness of the core body 16, and the thickness T is 15 μm to 65 μm.
Here, the surface opening ratio R 1 of the core body 16 is defined by a value obtained by dividing the total opening area of the hole 18 by the core body surface area (the sum of the total opening area and the total non-hole area), and the core body. When the sectional opening ratio R 2 of 16 is defined by the maximum value of the value obtained by dividing the total length of the exposed portions of the holes 18 along the width direction of the core body 16 by the width of the core body 16 in the cross-sectional pattern, The aperture ratio R 1 is 0.4 or more, preferably 0.45 or more, and the cross-section aperture ratio R 2 is suppressed to 1.2 times or less of the surface aperture ratio R1 at any cross-sectional position. .

具体的には、図4に示されるように孔18の分布は、芯体16の捲回方向に隣接する2つの孔18の中心間を結ぶ線分を二等辺三角形Aの底辺とし、そして、これら孔18に対して芯体16の幅方向に隣接する1つの孔18の中心が二等辺三角形Aの頂点となる配列パターンを有する。そして、二等辺三角形Aの頂角αはその底角βによりも大であって、75°〜105°の範囲にある。   Specifically, as shown in FIG. 4, the distribution of the holes 18 is such that a line segment connecting the centers of two holes 18 adjacent to each other in the winding direction of the core body 16 is the base of the isosceles triangle A, and These holes 18 have an array pattern in which the center of one hole 18 adjacent in the width direction of the core body 16 is an apex of an isosceles triangle A. The apex angle α of the isosceles triangle A is larger than the base angle β, and is in the range of 75 ° to 105 °.

更に、孔18の直径(平均直径)及び二等辺三角形Aの底辺の長さがそれぞれl,dで表されるとき、底辺長さdは次式の関係を満たしている。
d=31/2×l×σ
0.69≦σ≦1.04
孔18の直径lは0.5mm〜2.5mmの範囲にある。ここで、直径lが0.5mmよりも小さい場合、二等辺三角形Aの斜辺を規定する孔18間の間隔が狭くなり過ぎ、これら孔18が芯体16の穿孔時に繋がってしまう虞がある。一方、直径lが2.5mmを超えて大きいと、孔18内への活物質の保持が困難になり、負極6の捲回時に活物質の脱落を招く。
Furthermore, when the diameter (average diameter) of the hole 18 and the length of the base of the isosceles triangle A are respectively represented by l and d, the base length d satisfies the relationship of the following equation.
d = 3 1/2 × l × σ
0.69 ≦ σ ≦ 1.04
The diameter l of the hole 18 is in the range of 0.5 mm to 2.5 mm. Here, when the diameter l is smaller than 0.5 mm, the interval between the holes 18 defining the hypotenuse of the isosceles triangle A becomes too narrow, and these holes 18 may be connected when the core body 16 is drilled. On the other hand, when the diameter l is larger than 2.5 mm, it becomes difficult to hold the active material in the hole 18, and the active material is dropped when the negative electrode 6 is wound.

以下の表1は、実施例E1〜E10の芯体16及び比較例C1〜C10の芯体をそれぞれ作製し、そして、これら芯体を使用した負極(電極群)の捲回時、電極群100個当たりにおける芯体の破断個数Nを計測した結果を示す。   Table 1 below shows the core group 16 of Examples E1 to E10 and the core bodies of Comparative Examples C1 to C10, respectively, and the electrode group 100 when winding the negative electrode (electrode group) using these core bodies. The result of having measured the fracture | rupture number N of the core body per piece is shown.

Figure 2005294010
Figure 2005294010

表1中、Hは二等辺三角形Aの高さを示し(図4参照)、Mは捲回した電極群を用い電池を組み立てた際の活性化前後の質量減少量を示し、数値が大きい程、電池の寿命が短くなる。
表1から明らかなように、実施例E1〜E10の芯体16はその断面開口率R2が表面開口率R1の1.2倍以下に抑えられているので、負極6の捲回時、芯体16の破断をほぼ確実に防止することができる。これに対し、比較例C1,C2,C5〜C7の芯体はその断面開口率R2が表面開口率R1の1.2倍を超えているので、その捲回時に芯体が破断し易いことが分かる。
In Table 1, H indicates the height of the isosceles triangle A (see FIG. 4), M indicates the amount of mass loss before and after activation when the battery is assembled using the wound electrode group, and the larger the value, Battery life is shortened.
As is clear from Table 1, the core body 16 of Examples E1 to E10 has a cross-sectional aperture ratio R 2 that is suppressed to 1.2 times or less of the surface aperture ratio R 1 , so when the negative electrode 6 is wound, Breakage of the core body 16 can be prevented almost certainly. On the other hand, the cores of Comparative Examples C1, C2, C5 to C7 have a cross-sectional opening ratio R 2 exceeding 1.2 times the surface opening ratio R 1 , so that the core body is easily broken during winding. I understand that.

比較例C3,4,8〜10の芯体はその捲回時、破断を受けることがないが、これら比較例の表面開口率R1は全て0.4よりも小さく、アルカリ蓄電池の高容量を図ることができない。
一方、実施例E8の芯体16には他の実施例とは異なり、その破断が僅かに見らるが、これはその表面開口率R1が大き過ぎることに起因するものと思われる。よって、アルカリ蓄電池の高容量化を図り且つ芯体16の破断を確実に防止するには、表面開口率R1は約0.45か〜約0.60の範囲が好適する。
When the core is its winding of Comparative Example C3,4,8~10, although not subject to breakage, less than all the surface open area ratio R 1 of the Comparative Examples 0.4, a high-capacity alkaline storage batteries I can't plan.
On the other hand, unlike the other examples, the core body 16 of Example E8 shows a slight breakage, which seems to be caused by the surface opening ratio R 1 being too large. Therefore, in order to increase the capacity of the alkaline storage battery and reliably prevent the core body 16 from being broken, the surface opening ratio R 1 is preferably in the range of about 0.45 to about 0.60.

本発明は上述の実施例に制約されるものではなく、種々の変形が可能である。
図2に示した芯体16の場合、その捲回方向に沿う両側縁には孔18の一部が存在していないが、しかしながら、両側縁が図2中の1点鎖線で示す位置にあれば、芯体16が担持する活物質の量を更に増加させることができ、アルカリ蓄電池の高容量化により好適する。
The present invention is not limited to the above-described embodiments, and various modifications can be made.
In the case of the core body 16 shown in FIG. 2, a part of the hole 18 does not exist on both side edges along the winding direction. However, the both side edges are located at the positions indicated by the one-dot chain line in FIG. For example, the amount of the active material carried by the core body 16 can be further increased, which is preferable for increasing the capacity of the alkaline storage battery.

実施例の芯体16は、0.4以上の表面開口率R1及び表面開口率R1の1.2倍以下の断面開口率R2を有する部位をその捲回方向全域に亘って有しているが、前記部位は捲回時に破断し易い芯体16の領域、具体的には芯体16の両端部のみに設けられていてもよい。
更に、本発明は、アルカリ蓄電池の正極の芯体にも同様に適用することができる。
The core body 16 of the example has a portion having a surface opening ratio R 1 of 0.4 or more and a cross-sectional opening ratio R 2 of 1.2 times or less of the surface opening ratio R 1 over the entire winding direction. However, the said part may be provided only in the area | region of the core 16 which is easy to fracture | rupture at the time of winding, specifically, the both ends of the core 16.
Furthermore, the present invention can be similarly applied to a positive electrode core of an alkaline storage battery.

アルカリ蓄電池の一部を破断して示した斜視図である。It is the perspective view which fractured | ruptured and showed a part of alkaline storage battery. 図1の負極における芯体の一部を示した図である。It is the figure which showed a part of core in the negative electrode of FIG. 図2の芯体の横断面を示し、(a)は図2中のa−a線に沿う断面図、(b)は図2中のb−b線に沿う断面図、(c)は図2中のc−c線に沿う断面図である。2A and 2B are cross-sectional views taken along line aa in FIG. 2, FIG. 2B is a cross-sectional view taken along line bb in FIG. 2, and FIG. It is sectional drawing which follows the cc line in 2. FIG. 図2の芯体が有する孔の配列パターンを説明するための図である。It is a figure for demonstrating the arrangement pattern of the hole which the core of FIG. 2 has. 表面開口率の定義を説明するための図である。It is a figure for demonstrating the definition of a surface aperture ratio. 表面開口率の定義を説明するための図である。It is a figure for demonstrating the definition of a surface aperture ratio.

符号の説明Explanation of symbols

2 外装缶
4 電極群
6 負極
8 正極
10 セパレータ
16 芯体
18 孔
A 二等辺三角形
T 厚さ
α 頂角
β 底角
l 直径(平均直径)
d 底辺の長さ
H 二等辺三角形Aの高さ
2 exterior can 4 electrode group 6 negative electrode 8 positive electrode 10 separator 16 core 18 hole A isosceles triangle T thickness α apex angle β base angle l diameter (average diameter)
d Base length H Height of isosceles triangle A

Claims (9)

外装缶内に電極群を収容し、この電極群が負極及び正極間にセパレータを介在させた状態で、これらを渦巻き状に捲回して構成され、前記負極及び正極のうち少なくとも一方がその活物質を担持するために多数の孔が形成された有孔シートからなる芯体を有する、アルカリ蓄電池において、
前記芯体は、その捲回方向と交差する横断面でみたとき、前記芯体の幅方向に沿って孔が間欠的に露出する断面パターンを有し、
前記芯体の断面開口率が前記断面パターンにて前記芯体の幅方向に沿う前記孔の露出部位の長さの合計を前記芯体の幅で除した値の最大値で定義されたとき、前記芯体は少なくとも一部に表面開口率が0.4以上且つ前記断面開口率が前記表面開口率の1.2倍以下となる断面パターンを含む
ことを特徴とするアルカリ蓄電池。
An electrode group is housed in an outer can, and the electrode group is formed by winding them in a spiral shape with a separator interposed between the negative electrode and the positive electrode, and at least one of the negative electrode and the positive electrode is an active material thereof In an alkaline storage battery having a core made of a perforated sheet in which a large number of holes are formed to support
The core body has a cross-sectional pattern in which holes are intermittently exposed along the width direction of the core body when viewed in a cross section intersecting with the winding direction;
When the cross-sectional opening ratio of the core body is defined by the maximum value of the value obtained by dividing the total length of the exposed portions of the holes along the width direction of the core body by the cross-sectional pattern by the width of the core body, The alkaline storage battery according to claim 1, wherein the core includes at least a cross-sectional pattern having a surface aperture ratio of 0.4 or more and a cross-section aperture ratio of 1.2 times or less of the surface aperture ratio.
前記芯体は、前記負極の芯体であることを特徴とする請求項1に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 1, wherein the core is a core of the negative electrode. 前記芯体は、15μm〜65μmの厚さを有することを特徴とする請求項2に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 2, wherein the core has a thickness of 15 μm to 65 μm. 前記芯体は、ニッケルメッキされたシート状のパンチングメタル及び有孔ニッケルシートの一方からなることを特徴とする請求項2又は3に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 2, wherein the core is made of one of a nickel-plated sheet-like punching metal and a perforated nickel sheet. 前記孔は、略円形若しくは略楕円形状を有し、
前記孔の分布は、前記芯体の捲回方向に隣接する孔の中心間を二等辺三角形の底辺とし且つこれら孔に対して前記芯体の幅方向に隣接する孔の中心を前記二等辺三角形の頂点とした配列パターンを有し、
前記二等辺三角形の頂角は底角よりも大である
ことを特徴とする請求項2〜4の何れかに記載のアルカリ蓄電池。
The hole has a substantially circular or substantially elliptical shape,
The distribution of the holes is such that the interval between the centers of the holes adjacent to each other in the winding direction of the core is an isosceles triangle base, and the center of the hole adjacent to the holes in the width direction of the core is the isosceles triangle. Has an array pattern as the vertex of
The alkaline storage battery according to any one of claims 2 to 4, wherein an apex angle of the isosceles triangle is larger than a base angle.
前記二等辺三角形の底辺の長さがd、前記孔の平均直径がlで表されるとき、次式
d=31/2×l×σ
0.96≦σ≦1.04
を満たすことを特徴とする請求項5に記載のアルカリ蓄電池。
When the length of the base of the isosceles triangle is d and the average diameter of the holes is l, the following formula is given: d = 3 1/2 × l × σ
0.96 ≦ σ ≦ 1.04
The alkaline storage battery according to claim 5, wherein:
前記二等辺三角形の頂角は75°以上且つ105°以下であること特徴とする請求項5又は6に記載のアルカリ蓄電池。   The alkaline storage battery according to claim 5 or 6, wherein an apex angle of the isosceles triangle is not less than 75 ° and not more than 105 °. 前記孔の平均直径lは、0.5mm≦l≦2.5mmの範囲にあることを特徴とする請求項5〜7の何れかに記載のアルカリ蓄電池。   The alkaline storage battery according to claim 5, wherein an average diameter l of the holes is in a range of 0.5 mm ≦ l ≦ 2.5 mm. 捲回方向に沿う前記芯体の側縁は前記孔の一部により凹凸形状をなしていることを特徴とする請求項1〜8の何れかに記載のアルカリ蓄電池。   The alkaline storage battery according to any one of claims 1 to 8, wherein a side edge of the core body along the winding direction has an uneven shape due to a part of the hole.
JP2004106871A 2004-03-31 2004-03-31 Alkaline battery Withdrawn JP2005294010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106871A JP2005294010A (en) 2004-03-31 2004-03-31 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106871A JP2005294010A (en) 2004-03-31 2004-03-31 Alkaline battery

Publications (1)

Publication Number Publication Date
JP2005294010A true JP2005294010A (en) 2005-10-20

Family

ID=35326718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106871A Withdrawn JP2005294010A (en) 2004-03-31 2004-03-31 Alkaline battery

Country Status (1)

Country Link
JP (1) JP2005294010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531011B2 (en) 2012-02-24 2016-12-27 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531011B2 (en) 2012-02-24 2016-12-27 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery

Similar Documents

Publication Publication Date Title
US9577266B2 (en) Negative grid for battery
US20050170246A1 (en) Battery with high electrode interfacial surface area
US5849430A (en) Structure of an electrode of a secondary battery
JP2006093100A (en) Secondary battery
JP2005011817A (en) Secondary battery
JP2010537379A (en) Lithium ion prismatic cell
JP4179943B2 (en) Cylindrical alkaline storage battery
BRPI0615713A2 (en) zinc / air cell
US20130143098A1 (en) Lithium ion battery and casing for the same
JP6965492B2 (en) Cap assembly with guide members to prevent safety vents from coming off
JP2005294010A (en) Alkaline battery
JP4393932B2 (en) Non-aqueous secondary battery
JP2005056676A (en) Cylindrical alkaline storage battery
KR20150036911A (en) Battery Cell with Curved Surface
CN215070050U (en) Prevent pole piece and lamination formula lithium cell of corner rupture
JP2014078316A (en) Squared sealed battery
JP2003142066A (en) Storage battery
JP2003077528A5 (en)
JP4783977B2 (en) Lead acid battery
CN107646148B (en) Non-prismatic electrochemical cell
JP5569971B2 (en) Method for manufacturing negative electrode plate, negative electrode plate, and cylindrical battery provided with the negative electrode plate
JP2004031144A5 (en)
JP2015069897A (en) Battery
JP4359099B2 (en) Cylindrical alkaline storage battery
WO2023141776A1 (en) Battery and electronic device comprising same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081112