JP2005290203A - Material with variable viscoelasticity and method for controlling viscoelasticity of the same - Google Patents

Material with variable viscoelasticity and method for controlling viscoelasticity of the same Download PDF

Info

Publication number
JP2005290203A
JP2005290203A JP2004107145A JP2004107145A JP2005290203A JP 2005290203 A JP2005290203 A JP 2005290203A JP 2004107145 A JP2004107145 A JP 2004107145A JP 2004107145 A JP2004107145 A JP 2004107145A JP 2005290203 A JP2005290203 A JP 2005290203A
Authority
JP
Japan
Prior art keywords
viscoelasticity
state
viscoelastic
variable material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004107145A
Other languages
Japanese (ja)
Other versions
JP4606051B2 (en
Inventor
Masahiko Abe
正彦 阿部
Hideki Sakai
秀樹 酒井
Takahiro Okubo
貴広 大久保
Koji Tsuchiya
好司 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004107145A priority Critical patent/JP4606051B2/en
Publication of JP2005290203A publication Critical patent/JP2005290203A/en
Application granted granted Critical
Publication of JP4606051B2 publication Critical patent/JP4606051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material with variable viscoelasticity excellent in stability of dispersion, capable of carrying out large reversible increase and reduction of viscoelasticity, exhibiting Maxwll type viscoelastic behavior and stably controlling with excellent response, the viscoelasticity of the material with variable viscoelasticity by oxidation/reduction and to provide a method for controlling viscoelasticity of the variable viscoelasticity material. <P>SOLUTION: A material with variable viscoelasticity comprising a solution obtained by adding an organic salt to a cationic surfactant, which changes its viscoelasticity between high state and low state by oxidation/reduction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粘弾性可変素材および粘弾性可変素材の粘弾性制御方法に係り、特に酸化・還元によって粘弾性を可変制御することのできる粘弾性可変素材および粘弾性可変素材の粘弾性制御方法に関する。   The present invention relates to a viscoelastic variable material and a viscoelastic control method for a viscoelastic variable material, and more particularly to a viscoelastic variable material capable of variably controlling viscoelasticity by oxidation / reduction and a viscoelastic control method for a viscoelastic variable material. .

近年、溶液分散系が有する粘性の能動的な制御が大きく注目されている。例えば、粘性を任意に制御することができれば、自動車のクラッチやダンパー、バルブ、香料・染料などにおける放出制御への応用が期待される。   In recent years, active control of the viscosity of a solution dispersion system has received much attention. For example, if the viscosity can be controlled arbitrarily, it can be expected to be applied to release control in automobile clutches, dampers, valves, fragrances and dyes.

このような性質を有する素材としては、電場により粘性が変化する流体、電気粘性流体(以下、「ER流体」という)が挙げられる。従来から研究されてきたER流体は固体微粒子や液晶の分散系が用いられている(例えば、特許文献1参照)。これらの分散系に交流電圧を印加すると、分散質は誘電分極により電場に対して水平方向に数珠つなぎに配列するため、電場に対して垂直方向に高い粘性を示します。   Examples of the material having such properties include a fluid whose viscosity is changed by an electric field and an electrorheological fluid (hereinafter referred to as “ER fluid”). Conventionally studied ER fluids use a dispersion of solid fine particles or liquid crystals (see, for example, Patent Document 1). When an alternating voltage is applied to these dispersions, the dispersoids are arranged in a daisy chain in the horizontal direction with respect to the electric field due to dielectric polarization, and thus show high viscosity in the vertical direction with respect to the electric field.

特開平06−145682号公報Japanese Patent Laid-Open No. 06-145682

しかしながら、従来型のER流体においては分散安定性が悪く、粘度増大が電場に対して垂直方向のみであり、数kV/mmという高電圧を印加する必要があり、数10vol%という高濃度の分散質が必要という問題点を有している。   However, in the conventional ER fluid, the dispersion stability is poor, the increase in viscosity is only in the direction perpendicular to the electric field, and it is necessary to apply a high voltage of several kV / mm. There is a problem that quality is necessary.

本発明はこれらの点に鑑みてなされたものであり、分散安定性に優れており、粘弾性の大きな増加と減少を可逆的に行うことができ、マクスウエル(Maxwell)型の粘弾性挙動を示し、しかも酸化・還元によって粘弾性の可変制御を安定的に応答性よく行うことができる粘弾性可変素材および粘弾性可変素材の粘弾性制御方法を提供することを目的とするものである。   The present invention has been made in view of these points, is excellent in dispersion stability, can reversibly increase and decrease viscoelasticity reversibly, and exhibits Maxwell type viscoelastic behavior. In addition, it is an object of the present invention to provide a viscoelastic variable material and a viscoelastic control method for the viscoelastic variable material that can stably perform variable control of viscoelasticity by oxidation / reduction with high responsiveness.

本発明者等は鋭意研究し、カチオン界面活性剤に有機塩を添加した溶液に対して酸化・還元反応を施すことにより、溶液の粘弾性が変化することを発見して本発明を完成させた。   The present inventors have intensively studied and found that the viscoelasticity of the solution is changed by subjecting the solution obtained by adding an organic salt to a cationic surfactant to complete the present invention. .

従って、本発明の粘弾性可変素材は、カチオン界面活性剤に有機塩を添加した溶液であって、酸化・還元反応により粘弾性が高い状態と、低い状態とに変化する素材であることを特徴とする。   Accordingly, the viscoelastic variable material of the present invention is a solution in which an organic salt is added to a cationic surfactant, and is a material that changes between a high viscoelasticity state and a low state due to an oxidation / reduction reaction. And

また、前記溶液は、還元体においてひも状ミセルを含有することにより高い粘弾性状態となり、酸化体において前記ひも状ミセルが小さい分子集合体となって低い粘弾性状態となることを特徴とする。   Further, the solution is characterized by having a stringent micelle in the reductant and having a high viscoelastic state, and in the oxidant, the stringlike micelle becomes a small molecular aggregate and has a low viscoelastic state.

また、前記カチオン界面活性剤がフェロセン修飾カチオン界面活性剤であり、有機塩がサリチル酸ナトリウムであることを特徴とする。   The cationic surfactant is a ferrocene-modified cationic surfactant, and the organic salt is sodium salicylate.

また、粘弾性可変素材の粘弾性制御方法は前記の各粘弾性可変素材に対して電解を行うことにより粘弾性を変化させることを特徴とする。これにより本発明によれば、溶液に対して酸化・還元反応を施すことにより容易にかつ確実に粘弾性を変化させることができ、全く新たなER流体となる。   The viscoelasticity control method of the viscoelastic variable material is characterized in that the viscoelasticity is changed by performing electrolysis on each of the viscoelastic variable materials. As a result, according to the present invention, the viscoelasticity can be easily and reliably changed by subjecting the solution to an oxidation / reduction reaction, resulting in a completely new ER fluid.

また、前記粘弾性可変素材に対して電解酸化を行うことにより高い粘弾性状態を低い粘弾性状態に変更させたり、電解還元を行うことにより低い粘弾性状態を高い粘弾性状態に変更させたりするとよい。   In addition, when the viscoelastic variable material is subjected to electrolytic oxidation, the high viscoelastic state is changed to a low viscoelastic state, or the low viscoelastic state is changed to a high viscoelastic state by performing electrolytic reduction. Good.

このように本発明は構成され作用するものであるので、粘弾性可変素材は分散安定性に優れており、粘弾性の大きな増加と減少を可逆的に行うことができ、マクスウエル型の粘弾性挙動を示し、しかも酸化・還元によって粘弾性の可変制御を安定的に応答性よく行うことができるものとなる等の優れた効果を奏するものである。   Thus, since the present invention is constructed and works, the viscoelastic variable material is excellent in dispersion stability, can greatly increase and decrease viscoelasticity, and can perform Maxwell's viscoelastic behavior. In addition, there are excellent effects such that the variable control of viscoelasticity can be stably performed with good responsiveness by oxidation / reduction.

以下、本発明の実施の形態を図面により説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1および図2は本発明による粘弾性を制御する概念を図示している。   1 and 2 illustrate the concept of controlling viscoelasticity according to the present invention.

図1に示すように、本発明におけるカチオン界面活性剤(cetyltrimethylammonium bromide(CTAB))に有機塩(例えば、サリチル酸ナトリウム(sodium salicylate (NaSal))を添加した溶液においては、ひも状ミセルが形成されて、それらの絡み合いにより著しい粘弾性を示し、そして、このひも状ミセルを含有する溶液は分散安定性が極めて高く、また低濃度から高い粘弾性を発現するものである。   As shown in FIG. 1, in a solution obtained by adding an organic salt (for example, sodium salicylate (NaSal)) to the cationic surfactant (cetyltrimethylammonium bromide (CTAB)) in the present invention, string-like micelles are formed. These solutions have remarkable viscoelasticity due to their entanglement, and the solution containing the cord-like micelle has extremely high dispersion stability and also exhibits high viscoelasticity from a low concentration.

更に、図2に示すように、例えば、カチオン界面活性剤としてのフェロセン修飾カチオン界面活性剤(FTMA)は、還元体においてはそのフェロセニル基は疎水性であり、酸化体においては親水性であるため、分子集合体の形成・崩壊を電気化学反応による酸化・還元反応を施すことにより制御することができる。   Furthermore, as shown in FIG. 2, for example, ferrocene-modified cationic surfactant (FTMA) as a cationic surfactant has a ferrocenyl group that is hydrophobic in a reduced form and hydrophilic in an oxidized form. The formation and decay of molecular assemblies can be controlled by subjecting them to oxidation / reduction reactions by electrochemical reactions.

従って、本発明の粘弾性可変素材として、カチオン界面活性剤に有機塩を添加した溶液を用いることにより、酸化・還元反応により粘弾性の高い状態と、低い状態とに変化させることができる。   Therefore, by using a solution obtained by adding an organic salt to a cationic surfactant as the viscoelastic variable material of the present invention, it can be changed between a high viscoelastic state and a low state by an oxidation / reduction reaction.

本発明におけるカチオン界面活性剤としては有機塩との混合によりひも状ミセルを形成することができ、酸化・還元反応により海面物性が変化するものであればよく、例えば、フェロセン修飾カチオン界面活性剤、アゾベンセン修飾カチオン界面活性剤等を挙げることができる。   Any cationic surfactant in the present invention may be used as long as it can form a corded micelle by mixing with an organic salt and the sea surface properties are changed by an oxidation / reduction reaction. For example, a ferrocene-modified cationic surfactant, An azobencene-modified cationic surfactant can be exemplified.

本発明における有機塩としてはカチオン界面活性剤との混合によりひも状ミセルを形成することができるものであればよく、例えば、サリチル酸ナトリウム、臭化ナトリウム等の電解質等を挙げることができる。   The organic salt in the present invention is not particularly limited as long as it can form a cord-like micelle by mixing with a cationic surfactant, and examples thereof include electrolytes such as sodium salicylate and sodium bromide.

次に、本発明の実施例を図3から図13について説明する。   Next, an embodiment of the present invention will be described with reference to FIGS.

本実施例においては、カチオン界面活性剤としてフェロセン修飾カチオン界面活性剤((11-ferrocenylundecyl)trimethylammonium bromide(FTMA))を、アニオン性の有機塩としてサリチル酸ナトリウムを用いた(図3参照)。   In this example, ferrocene-modified cationic surfactant ((11-ferrocenylundecyl) trimethylammonium bromide (FTMA)) was used as the cationic surfactant, and sodium salicylate was used as the anionic organic salt (see FIG. 3).

ここで、フェロセン修飾カチオン界面活性剤とサリチル酸ナトリウムとの混合水溶液のレオロジーの測定を、レオメーターCSL100を用いて25℃で行い、動的粘弾性の測定を、コーンプレート型ジオメトリーを用いて行い、流動曲線の測定を、共軸二重円筒型セルを用いて行った。   Here, the rheology of a mixed aqueous solution of a ferrocene-modified cationic surfactant and sodium salicylate is measured at 25 ° C. using a rheometer CSL100, and the dynamic viscoelasticity is measured using a cone plate geometry. The flow curve was measured using a coaxial double cylindrical cell.

<成分>
本実施例においては、濃度を50mMに固定したフェロセン修飾カチオン界面活性剤に対するサリチル酸ナトリウムのモル比を種々に変化させて、モル比が0(比較例1)、0.2(比較例2)および0.4(実施例)のサンプルを用意した。
<Ingredients>
In this example, the molar ratio of sodium salicylate to the ferrocene-modified cationic surfactant with the concentration fixed at 50 mM was varied so that the molar ratio was 0 (Comparative Example 1), 0.2 (Comparative Example 2) and A sample of 0.4 (Example) was prepared.

<相状態の観察>
試験管内の比較例1、比較例2および実施例の相状態を目視により観察すると、比較例1および比較例2においては試験管を鉛直状態から水平状態に倒すと液面は水平のままであり(図4b、c参照)粘弾性が低いことがわかった。実施例においては試験管を鉛直状態から水平状態に倒すと、液面は試験管の長手方向に直角状態を維持したままで傾斜して行き、試験管を水平としてもわずかに液面が流動性を示した程度でほとんど流動せず(図4a参照)、粘弾性が高いことが判明した。これより、フェロセン修飾カチオン界面活性剤に対するサリチル酸ナトリウムのモル比は0.4とすることがよいことがわかった。
<Observation of phase state>
When the phase states of Comparative Example 1, Comparative Example 2 and Example in the test tube are observed visually, in Comparative Example 1 and Comparative Example 2, the liquid level remains horizontal when the test tube is tilted from the vertical state to the horizontal state. (See FIGS. 4b and c) It was found that the viscoelasticity was low. In the examples, when the test tube is tilted from the vertical state to the horizontal state, the liquid level is inclined while maintaining a state perpendicular to the longitudinal direction of the test tube, and the liquid level is slightly fluid even when the test tube is horizontal. As shown in FIG. 4a, it was found that the material had almost no fluidity (see FIG. 4a) and had high viscoelasticity. From this, it was found that the molar ratio of sodium salicylate to ferrocene-modified cationic surfactant should be 0.4.

<実施例の粘弾性の評価>
実施例の溶液、即ちフェロセン修飾カチオン界面活性剤に対するサリチル酸ナトリウムのモル比が0.4の溶液に対して動的粘弾性測定を行って評価した。
<Evaluation of Viscoelasticity of Examples>
Dynamic viscoelasticity measurement was performed on the solutions of the examples, that is, solutions having a molar ratio of sodium salicylate to ferrocene-modified cationic surfactant of 0.4, and evaluated.

図5は貯蔵弾性率G’および損失弾性率G’’の角周波数依存性を示している。なお、G’は溶液の弾性に関するパラメータであり、G’’は粘性に関するパラメーターである。この図5より、高周波数領域においてG’はG’’よりも大きく、低周波数領域では逆にG’はG’’よりも小さい。また、高周波数領域においてはG’に平坦領域が認められる。更に、図6に示すように、G’’をG’に対してプロットしたいわゆるCole-Coleプロットにおいては、きれいな半円を示した。これらの結果はマクスウエル型流体に特徴的な挙動であり、本実施例の組成の混合溶液は高い粘弾性を示すことがわかった。   FIG. 5 shows the angular frequency dependence of the storage elastic modulus G ′ and the loss elastic modulus G ″. G ′ is a parameter relating to the elasticity of the solution, and G ″ is a parameter relating to the viscosity. According to FIG. 5, G ′ is larger than G ″ in the high frequency region, and G ′ is smaller than G ″ in the low frequency region. In the high frequency region, a flat region is recognized in G ′. Further, as shown in FIG. 6, a so-called Cole-Cole plot in which G ″ is plotted against G ′ shows a beautiful semicircle. These results are behaviors characteristic of the Maxwell type fluid, and it was found that the mixed solution having the composition of this example shows high viscoelasticity.

次に、本実施例の溶液の粘性をゼロシアー粘度より評価した。ゼロシアー粘度は、図7の上部に示す式よって表される動的粘性率の周波数0の極限値である。図7より、本実施例の溶液のゼロシアー粘度を算出したところ、15Pa・sであった。   Next, the viscosity of the solution of this example was evaluated from the zero shear viscosity. Zero shear viscosity is the limit value of frequency 0 of the dynamic viscosity expressed by the equation shown in the upper part of FIG. From FIG. 7, the zero shear viscosity of the solution of this example was calculated and found to be 15 Pa · s.

図8は本実施例の溶液の相状態をフリーズフラクチャー法によりTEM観察した像を示している。その結果、直径が約10nmで、長さがマイクロメートルオーダーのひも状ミセルが、互いに絡み合っている様子が観察された。このことから、本実施例の組成の混合水溶液においては、非常に高い粘弾性を有しており、その理由はひも状ミセルの絡み合いによることがわかった。   FIG. 8 shows an image obtained by TEM observation of the phase state of the solution of this example by the freeze fracture method. As a result, it was observed that string micelles having a diameter of about 10 nm and a length of the order of micrometers were intertwined with each other. From this, it was found that the mixed aqueous solution having the composition of this example had very high viscoelasticity, and the reason was due to the entanglement of the string-like micelles.

<粘弾性の可変制御>
本実施例の組成の溶液に対する酸化・還元反応を施すために、図9に示す電解装置を用いた。この電解装置は、電解を行うサンプル容器1とサンプル容器1内の溶液の相状態の変化を抑えるための電解質容器2とを塩橋路3を通して連絡してある。一方のサンプル容器1には上端部の栓4から中央に作用極5を挿入している。作用極5として電極面積8.6cmのプラチナ板を用いている。栓4の端には参照極6と窒素ガス供給パイプ7とが挿入されており、容器1の底部には撹拌子8が設置されている。他方の電解質容器2には上端部の栓9から対極10としてプラチナ線を挿入している。
<Variable control of viscoelasticity>
In order to perform the oxidation / reduction reaction on the solution having the composition of this example, the electrolytic apparatus shown in FIG. 9 was used. In this electrolysis apparatus, a sample container 1 for electrolysis and an electrolyte container 2 for suppressing a change in the phase state of the solution in the sample container 1 are connected through a salt bridge 3. In one sample container 1, a working electrode 5 is inserted in the center from the stopper 4 at the upper end. A platinum plate having an electrode area of 8.6 cm is used as the working electrode 5. A reference electrode 6 and a nitrogen gas supply pipe 7 are inserted at the end of the stopper 4, and a stirring bar 8 is installed at the bottom of the container 1. The other electrolyte container 2 is inserted with a platinum wire as a counter electrode 10 from the stopper 9 at the upper end.

このように形成されている電解装置のサンプル容器1内に本実施例の溶液を50ml入れ、電解質容器2内にサンプルのサリチル酸ナトリウム濃度と等しい濃度に調製した50mMのフェロセン修飾カチオン界面活性剤とサリチル酸ナトリウムとの混合水溶液を入れて、フェロセン修飾カチオン界面活性剤の電解時における平衡電位である+0.15V(作用極5参照極6との間の電位差)よりも充分高い+0.5Vの電圧を印加して、24時間定電位酸化を施した。   50 ml of the solution of this example is put in the sample container 1 of the electrolytic apparatus formed in this way, and 50 mM ferrocene-modified cationic surfactant and salicylic acid prepared in the electrolyte container 2 to a concentration equal to the sodium salicylate concentration of the sample. Put a mixed aqueous solution with sodium and apply a voltage of + 0.5V, which is sufficiently higher than + 0.15V (potential difference between working electrode 5 and reference electrode 6), which is the equilibrium potential during electrolysis of the ferrocene-modified cationic surfactant. Then, constant potential oxidation was performed for 24 hours.

電解酸化前の本実施例の溶液は図4aに示すようにほとんど流動性を示さなかったが、電解酸化後の溶液は、試験管を傾けると、傾けた瞬間に流動し粘性が著しく低いことがわかった。   The solution of this example before electrolytic oxidation showed almost no fluidity as shown in FIG. 4a. However, when the test tube is tilted, the solution after electrolytic oxidation flows when the test tube is tilted and has a very low viscosity. all right.

電解前後における本実施例の溶液のUV-Vis吸収スペクトルを図10に示す。図10より、電解前の溶液においては、波長が440nm付近にフェロセン修飾カチオン界面活性剤の還元体のフェロセニル基に帰属される吸収ピークが認められた。そして、本実施例の溶液を電解酸化すると、波長が440nm付近のピークは減少し、酸化体のフェリシニウムカチオンに帰属される625nm付近のピークが認められた。このことから電解によりフェロセン修飾カチオン界面活性剤は酸化されたことがわかった。   FIG. 10 shows UV-Vis absorption spectra of the solution of this example before and after electrolysis. From FIG. 10, in the solution before electrolysis, an absorption peak attributed to the ferrocenyl group of the reduced form of the ferrocene-modified cationic surfactant was observed at a wavelength of around 440 nm. When the solution of this example was electrolytically oxidized, the peak around the wavelength of 440 nm decreased, and a peak around 625 nm attributed to the ferricinium cation of the oxidant was observed. This shows that the ferrocene-modified cationic surfactant was oxidized by electrolysis.

電解後の溶液の流動曲線および粘度曲線の測定を行い図11および図12にしめした。図11に示す流動曲線より、ずり応力はずり速度に対して、原点を通る一次関数であることがわかった。更に、アップカーブとダウンカーブでヒステリシスは認められなかった。このことから、電解酸化後の溶液は理想的な粘性挙動を示すニュートン流体であることがわかった。図12に示す粘度曲線より、この溶液の粘度を算出すると2.5×10−3Pa・sであることがわかった。この粘度は水の粘度(1×10−3Pa・s)に匹敵するほどの低い粘度である。電解前後の粘度を比較すると、電解酸化によりおよそ1/6000に粘度が減少することがわかった。 The flow curve and viscosity curve of the solution after electrolysis were measured and shown in FIG. 11 and FIG. From the flow curve shown in FIG. 11, it was found that it is a linear function passing through the origin with respect to the shear stress shear rate. Furthermore, no hysteresis was observed on the up curve and the down curve. From this, it was found that the solution after electrolytic oxidation is a Newtonian fluid exhibiting an ideal viscous behavior. From the viscosity curve shown in FIG. 12, it was found that when the viscosity of this solution was calculated, it was 2.5 × 10 −3 Pa · s. This viscosity is low viscosity enough comparable to the viscosity of water (1 × 10 -3 Pa · s ). Comparing the viscosities before and after electrolysis, it was found that the viscosities were reduced to about 1/6000 by electrolytic oxidation.

また、このように粘度が大きく低減した溶液に対して、図9に示す電解装置において、前記電解酸化の場合と逆に作用極5と参照極6との間の電位をフェロセン修飾界面活性剤の平衡電位以下の電位、例えば±0.0V vs SCEを
24時間に亘って継続的に引荷させて電解還元を施すと、粘度が再び上昇した。
Further, in the electrolysis apparatus shown in FIG. 9, the potential between the working electrode 5 and the reference electrode 6 is set to be different from that of the ferrocene-modified surfactant in the electrolysis apparatus shown in FIG. When a potential below the equilibrium potential, for example ± 0.0 V vs. SCE, was continuously loaded over 24 hours and subjected to electrolytic reduction, the viscosity increased again.

フェロセン修飾カチオン界面活性剤の酸化・還元による粘弾性の変化は次のようにして発生するものであると考えられる。即ち、両親媒性分子が形成する分子集合体の形状に及ぼす因子として、両親媒性分子の親水性−疎水性バランスが挙げられる。図13に示すように、還元体のフェロセン修飾カチオン界面活性剤分子を酸化すると、疎水性のフェロセニル基が一価の正電荷を帯びた親水性のフェリシニウムカチオンになるため、分子全体の親水性は大きく向上する。従って、還元体においてはひも状ミセル形成により高い粘弾性を有していたのが、酸化体ではより小さな分子集合体(ミセル)やモノマーへと会合状態が変化したために、電解酸化により粘弾性が著しく減少したものと考えられる。逆に、酸化体を電解還元することにより、再びひも状ミセルが形成されて粘弾性が元の高い状態に復活するものであると考えられる。   The change in viscoelasticity due to oxidation / reduction of the ferrocene-modified cationic surfactant is considered to occur as follows. That is, the hydrophilicity-hydrophobicity balance of the amphiphilic molecule can be cited as a factor affecting the shape of the molecular assembly formed by the amphiphilic molecule. As shown in FIG. 13, when the reduced ferrocene-modified cationic surfactant molecule is oxidized, the hydrophobic ferrocenyl group becomes a monovalent positively charged hydrophilic ferricinium cation. The characteristics are greatly improved. Therefore, the reductant had higher viscoelasticity due to the formation of string micelles, but the oxidized state changed viscoelasticity due to electrolytic oxidation because the association state changed to smaller molecular aggregates (micelles) and monomers. It is thought that it decreased significantly. On the contrary, it is considered that string-like micelles are formed again by electrolytic reduction of the oxidant, and the viscoelasticity is restored to the original high state.

このように本発明による粘弾性可変素材としてのフェロセン修飾カチオン界面活性剤は、分散安定性に優れており、粘弾性の大きな増加と減少を可逆的に行うことができ、マクスウエル(Maxwell)型の粘弾性挙動を示し、しかも酸化・還元によって粘弾性の可変制御を安定的に応答性よく行うことができるものである。   Thus, the ferrocene-modified cationic surfactant as a viscoelastic variable material according to the present invention is excellent in dispersion stability, can reversibly increase and decrease viscoelasticity reversibly, and is a Maxwell type. It exhibits viscoelastic behavior and can perform variable control of viscoelasticity stably and with good responsiveness by oxidation / reduction.

なお、本発明は、前述した実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。   In addition, this invention is not limited to embodiment mentioned above, A various change is possible as needed.

本発明に基づいて粘弾性を制御する概念を示す説明図Explanatory drawing which shows the concept which controls viscoelasticity based on this invention 本発明に基づいて粘弾性を制御する概念を示す説明図Explanatory drawing which shows the concept which controls viscoelasticity based on this invention フェロセン修飾カチオン界面活性剤とサリチル酸ナトリウムとの化学式Chemical formula of ferrocene modified cationic surfactant and sodium salicylate a、bおよびcは比較例1、比較例2および実施例について試験管を鉛直状態から水平状態に倒した状態の粘弾性を示す図a, b, and c are diagrams showing viscoelasticity of the comparative example 1, the comparative example 2, and the example in a state where the test tube is brought down from the vertical state to the horizontal state 実施例の溶液の貯蔵弾性率G’および損失弾性率G’’の角周波数依存性を示す特性図Characteristic chart showing angular frequency dependence of storage elastic modulus G 'and loss elastic modulus G "of the solution of the example 実施例の溶液の貯蔵弾性率G’および損失弾性率G’’に対してプロットしたCole-Coleプロット図Cole-Cole plots plotted against storage modulus G 'and loss modulus G "of the example solutions 実施例の溶液のゼロシアー粘度を示す特性図Characteristic diagram showing zero shear viscosity of the solution of the example 実施例の溶液の相状態を示すTEM観察図TEM observation figure which shows the phase state of the solution of an Example 本発明の電解酸化および電解還元を行う電解装置を示す断面図Sectional drawing which shows the electrolysis apparatus which performs the electrolytic oxidation and electrolytic reduction of this invention 本実施例の溶液のUV-Vis吸収スペクトル図UV-Vis absorption spectrum of the solution of this example 本実施例の電解後の溶液の流動曲線を示す線図Diagram showing the flow curve of the solution after electrolysis of this example 本実施例の電解後の溶液の粘度曲線を示す線図Diagram showing viscosity curve of solution after electrolysis of this example 本発明の実施例に基づいて粘弾性を制御する概念を示す説明図Explanatory drawing which shows the concept which controls viscoelasticity based on the Example of this invention

符号の説明Explanation of symbols

1 サンプル容器
5 作用極
6 対極
1 Sample container 5 Working electrode 6 Counter electrode

Claims (6)

カチオン界面活性剤に有機塩を添加した溶液であって、酸化・還元反応により粘弾性が高い状態と、低い状態とに変化する素材であることを特徴とする粘弾性可変素材。   A viscoelastic variable material characterized in that it is a solution in which an organic salt is added to a cationic surfactant, and is a material that changes between a high state and a low state due to oxidation / reduction reactions. 前記溶液は、還元体においてひも状ミセルを含有することにより高い粘弾性状態となり、酸化体において前記ひも状ミセルが小さい分子集合体となって低い粘弾性状態となることを特徴とする請求項1に記載の粘弾性可変素材。   2. The solution has a high viscoelastic state by containing a string-like micelle in a reductant, and becomes a low viscoelastic state in the form of a small molecular aggregate of the string-like micelle in an oxidant. The viscoelastic variable material described in 1. カチオン界面活性剤がフェロセン修飾カチオン界面活性剤であり、有機塩がサリチル酸ナトリウムであることを特徴とする請求項1または請求項2に記載の粘弾性可変素材。   The viscoelastic variable material according to claim 1 or 2, wherein the cationic surfactant is a ferrocene-modified cationic surfactant and the organic salt is sodium salicylate. 請求項1から請求項3のいずれか1項に記載の粘弾性可変素材に対して電解を行うことにより粘弾性を変化させることを特徴とする粘弾性可変素材の粘弾性制御方法。   A viscoelasticity control method for a viscoelastic variable material, wherein the viscoelasticity is changed by performing electrolysis on the viscoelastic variable material according to any one of claims 1 to 3. 前記粘弾性可変素材に対して電解酸化を行うことにより高い粘弾性状態を低い粘弾性状態に変更させることを特徴とする請求項4に記載の粘弾性可変素材の粘弾性制御方法。   5. The viscoelasticity control method for a viscoelasticity variable material according to claim 4, wherein a high viscoelasticity state is changed to a low viscoelasticity state by performing electrolytic oxidation on the viscoelasticity variable material. 粘弾性可変素材に対して電解還元を行うことにより低い粘弾性状態を高い粘弾性状態に変更させることを特徴とする請求項4に記載の粘弾性可変素材の粘弾性制御方法。
5. The viscoelasticity control method for a viscoelasticity variable material according to claim 4, wherein the viscoelasticity variable material is subjected to electrolytic reduction to change a low viscoelasticity state to a high viscoelasticity state.
JP2004107145A 2004-03-31 2004-03-31 Viscoelastic variable material and viscoelastic control method of viscoelastic variable material Expired - Fee Related JP4606051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004107145A JP4606051B2 (en) 2004-03-31 2004-03-31 Viscoelastic variable material and viscoelastic control method of viscoelastic variable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004107145A JP4606051B2 (en) 2004-03-31 2004-03-31 Viscoelastic variable material and viscoelastic control method of viscoelastic variable material

Publications (2)

Publication Number Publication Date
JP2005290203A true JP2005290203A (en) 2005-10-20
JP4606051B2 JP4606051B2 (en) 2011-01-05

Family

ID=35323506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004107145A Expired - Fee Related JP4606051B2 (en) 2004-03-31 2004-03-31 Viscoelastic variable material and viscoelastic control method of viscoelastic variable material

Country Status (1)

Country Link
JP (1) JP4606051B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073385A1 (en) * 2010-12-01 2012-06-07 Empire Technology Development Llc Compositions comprising reverse micelles and methods for their use

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
JPN6010034249, 構造規制機能界面の構築と電極反応, 1999, p.101−102 *
JPN6010034253, 2000年度色材研究発表会 講演要旨集, 2000, p.146−147 *
JPN6010034256, 第38回色材工学夏季ゼミナール, 1999, p.1−7 *
JPN6010034258, 第25回顔料物性講座, 2000, p.1−8 *
JPN6010034261, 第41回日本油化学会年会講演要旨集, 2002, p.168 *
JPN6010034263, 色材協会誌, 2000, 73(3), p.31−36 *
JPN6010034266, 日本油化学会誌, 2000, 49(10), p.1279−1288 *
JPN6010034268, 日本化学会第67春季年会, 1993, p.415 *
JPN6010034269, 日本油化学会平成11年度年会講演要旨集, 1999, p.103 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073385A1 (en) * 2010-12-01 2012-06-07 Empire Technology Development Llc Compositions comprising reverse micelles and methods for their use
US20120141681A1 (en) * 2010-12-01 2012-06-07 Empire Technology Development Llc Compositions comprising reverse micelles and methods for their use
US8993494B2 (en) 2010-12-01 2015-03-31 Empire Technology Development Llc Compositions comprising reverse micelles and methods for their use

Also Published As

Publication number Publication date
JP4606051B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
Binks et al. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant
Zhang et al. CO2-switchable viscoelastic fluids based on a pseudogemini surfactant
Jiang et al. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature
Binks et al. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant
Tsuchiya et al. Control of viscoelasticity using redox reaction
Safavi et al. Phase behavior and characterization of ionic liquids based microemulsions
Cui et al. Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant
Binks et al. Effects of pH and salt concentration on oil-in-water emulsions stabilized solely by nanocomposite microgel particles
Shiloach et al. Measurement and prediction of ionic/nonionic mixed micelle formation and growth
Verma et al. Morphology, rheology, and kinetics of nanosilica stabilized gelled foam fluid for hydraulic fracturing application
Rabe et al. CTAB-based microemulsions with ionic liquids
Wang et al. Salt effect on the complex formation between cationic gemini surfactant and anionic polyelectrolyte in aqueous solution
Rojas et al. A new type of microemulsion consisting of two halogen-free ionic liquids and one oil component
CN103788402B (en) A kind of carbon quantum dot/hectorite emulsion-stabilizing system and prepare the method for paraffin wax emulsions
Zhang et al. Smart use of tertiary amine to design CO 2-triggered viscoelastic fluids
Aslanzadeh et al. The effect of ethanol on nanostructures of mixed cationic and anionic surfactants
Sharma et al. Effects of electrolytes on the stability and dynamic rheological properties of an oil-in-water pickering emulsion stabilized by a nanoparticle–surfactant–polymer system
Zhao et al. CO2-controllable smart nanostructured fluids in a pseudo Gemini surfactant system
Ito et al. The thermal signature of wormlike micelles
Piekart et al. Transport properties of aqueous ionic liquid microemulsions: influence of the anion type and presence of the cosurfactant
Weston et al. Rheological characterization of yield stress gels formed via electrostatic heteroaggregation of metal oxide nanoparticles
Xiong et al. A CO 2-responsive smart fluid based on supramolecular assembly structures varying reversibly from vesicles to wormlike micelles
Zhu et al. Redox and pH Dual-Responsive Emulsion Using Ferrocenecarboxylic Acid and N, N-Dimethyldodecylamine
Bhagavathi Kandy et al. Effect of incorporation of multiwalled carbon nanotubes on the microstructure and flow behavior of highly concentrated emulsions
Miki et al. Glucose responsive rheological change and drug release from a novel worm-like micelle gel formed in cetyltrimethylammonium bromide/phenylboronic acid/water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4606051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees