JP2005290172A - Self-collapse type solidified product and its use - Google Patents

Self-collapse type solidified product and its use Download PDF

Info

Publication number
JP2005290172A
JP2005290172A JP2004106296A JP2004106296A JP2005290172A JP 2005290172 A JP2005290172 A JP 2005290172A JP 2004106296 A JP2004106296 A JP 2004106296A JP 2004106296 A JP2004106296 A JP 2004106296A JP 2005290172 A JP2005290172 A JP 2005290172A
Authority
JP
Japan
Prior art keywords
self
expansion
solid material
magnesia
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004106296A
Other languages
Japanese (ja)
Inventor
Shisho Hayashi
志翔 林
Takashi Tochigi
隆 栩木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004106296A priority Critical patent/JP2005290172A/en
Publication of JP2005290172A publication Critical patent/JP2005290172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-collapse type solidified product which is a soil-solidified product, enabling it to self-collapse after being used, and to control the time of being collapsed. <P>SOLUTION: The self-collapse type solidified product is characterized by containing a delay type expandable material having a mildly expanding property in the solidified product obtained by solidifying soil with a solidifying material composed mainly of light burned magnesia. A raw material containing the solidifying material composed mainly of light burned magnesia, soil, the delay type expandable material having the mildly expanding property, and optionally compounded aggregates and an admixture, is mixed with water followed by solidifying the resultant mixture, Wherein calcined magnesia baked at a high temperature of 1,200°C or higher, is contained as the delay type expandable material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、土壌を固化してなる自己崩壊型固形物とその用途に関する。より詳しくは、土壌固形物について、遅延型膨張材を含有させることによって使用期間後に自己崩壊できるようにし、また崩壊時期を制御することができるようにした自己崩壊型固形物とこの固形物によって形成した水中構造体に関する。   The present invention relates to a self-disintegrating solid material obtained by solidifying soil and its use. More specifically, the soil solid material is formed by a self-disintegrating solid material and a self-disintegrating solid material that can be self-disintegrated after the period of use by containing a delayed-type expansive material and the disintegration timing can be controlled. Related to the underwater structure.

最近、コンクリート製品に対するニーズが多様化している。例えば、護岸ブロック等の自然型環境製品においては、植物の根が張るまで強度を保ち、植生が繁茂した後にはコンクリートが強度低下して自然崩壊してもよい製品が求められている。このような自己崩壊型コンクリート製品として、生分解性高分子を用いた自己分解型コンクリート製品、アルカリ骨材反応を利用した自己破壊型コンクリート製品(特許文献1)、鋼材を埋め込んで海水による鋼材の腐食によって生じる内部膨張力を利用した自己崩壊型コンクリート製品(特許文献2)などが提案されている。しかし、これらのコンクリート製品はいずれも崩壊作用が自然の分解や腐食に依存しているために崩壊時期を自由に制御することができないと云う問題があった。   Recently, the needs for concrete products are diversifying. For example, for natural type environmental products such as revetment blocks, there is a demand for a product that maintains strength until the roots of the plants are stretched, and after the vegetation has flourished, the concrete may decrease in strength and naturally collapse. Examples of such self-destructing concrete products include self-degrading concrete products using biodegradable polymers, self-destructing concrete products using an alkali-aggregate reaction (Patent Document 1), A self-destructive concrete product (Patent Document 2) using an internal expansion force generated by corrosion has been proposed. However, all of these concrete products have a problem that the collapse time cannot be controlled freely because the collapse action depends on natural decomposition and corrosion.

一方、軽焼マグネシアを用いて土壌を固化させる技術が知られており、この土壌硬化成形物はプレス成形や押出成形を行うことによって高強度の成形物を製造することができることが知られている(特許文献3)。この成形物は道路舗装材、土留め材、景観材などに広く利用できるとされているが、専ら高強度の土壌硬化体を得ることを目的としており、使用後に自己崩壊することは予定されておらず、その手段も含まれていない。
持開2002−291359号公報 特開昭52−81280号公報 特開2001−200252号公報
On the other hand, a technique for solidifying soil using light-burned magnesia is known, and this soil-hardened molded product is known to be able to produce a high-strength molded product by performing press molding or extrusion molding. (Patent Document 3). This molded product is widely used for road pavement materials, earth retaining materials, landscape materials, etc., but it is exclusively intended to obtain a high-strength hardened soil, and is expected to self-collapse after use. It does not include that means.
Open 2002-291359 JP 52-81280 A Japanese Patent Laid-Open No. 2001-200252

本発明は従来の上記課題を解決したものであり、従来用いられている膨張材よりも反応速度の遅い遅延型膨張材を土壌固形物に使用することによって、使用期間後に自己崩壊できるようにしたものであり、また、その膨張材の反応速度を制御することによって崩壊時期を制御できるようにした自己崩壊型固形物等を提供することも目的とする。   The present invention solves the above-mentioned conventional problems, and by using a delayed expansion material having a slower reaction rate than conventional expansion materials for soil solids, it can self-collapse after a period of use. Another object of the present invention is to provide a self-disintegrating solid that can control the disintegration time by controlling the reaction rate of the expansion material.

本発明によれば以下の自己崩壊型固形物等が提供される。
(1)固化材によって土壌を固化してなる固形物に緩行性膨張作用を有する遅延型膨張材を含有させたことを特徴とする自己崩壊型固形物。
(2)軽焼マグネシアを主成分とする固化材と、土と、緩行性膨張作用を有する遅延型膨張材と、必要に応じて配合される骨材および混和剤を含む原料に、水を混合して固化してなる上記(1)の自己崩壊型固形物。
(3)緩行性膨張作用を有する遅延型膨張材がマグネシア系遅延型膨張材である上記(1)または(2)の自己崩壊型固形物。
(4)緩行性膨張作用を有する遅延型膨張材が1200℃以上の高温で焼成した重焼マグネシアである上記(1)〜(3)の何れかに記載する自己崩壊型固形物。
(5)上記(1)〜(4)の何れかに記載する固形物であって、連続気孔を有し、該連続気孔に培地を充填してなる植栽用の自己崩壊型固形物。
(6)上記(1)〜(4)の何れかに記載する固形物であって、表面に開口するポット状凹所を有し、該ポット状凹所に培地を充填してなる植栽用の自己崩壊型固形物。
(7)上記(1)〜(6)の何れかに記載する固形物によって形成された水中に設置され、または湿潤な地中に埋設されることを特徴とする自己崩壊型水中構造体または地中構造体。
According to the present invention, the following self-disintegrating solids and the like are provided.
(1) A self-disintegrating solid material characterized in that a solid material obtained by solidifying soil with a solidifying material contains a delayed expansion material having a slow expansion effect.
(2) Mixing water with a solidified material mainly composed of light-burned magnesia, soil, a delayed expansion material having a slow expansion effect, and a raw material containing an aggregate and an admixture blended as necessary. The self-disintegrating solid material according to (1), which is solidified as described above.
(3) The self-disintegrating solid material according to the above (1) or (2), wherein the delay-type expansion material having a slow expansion effect is a magnesia-based delay-type expansion material.
(4) The self-disintegrating solid material according to any one of the above (1) to (3), wherein the delayed-type expansion material having a gradual expansion action is heavy-burned magnesia fired at a high temperature of 1200 ° C. or higher.
(5) A solid material according to any one of (1) to (4) above, which has continuous pores and is filled with a medium in the continuous pores, and is a self-disintegrating solid material for planting.
(6) For solid planting according to any one of (1) to (4) above, having a pot-shaped recess that opens on the surface, and filling the pot-shaped recess with a medium. Self-disintegrating solids.
(7) A self-disintegrating submerged structure or ground which is installed in water formed by the solid material described in any one of (1) to (6) above or buried in a wet ground Medium structure.

〔具体的な説明〕
本発明の自己崩壊型固形物は、固化材によって土壌を固化してなる固形物に緩行性膨張作用を有する遅延型膨張材を含有させたことを特徴とする自己崩壊型固形物であり、例えば、軽焼マグネシアを主成分とする固化材と、土と、緩行性膨張作用を有する遅延型膨張材と、必要に応じて配合される骨材および混和剤を含む原料に、水を混合して固化してなる自己崩壊型固形物である。
[Specific description]
The self-disintegrating solid material of the present invention is a self-disintegrating solid material characterized in that a solid material obtained by solidifying soil with a solidifying material contains a delayed-type expansion material having a slow expansion effect, for example, Mixing water into a solidified material mainly composed of light-burned magnesia, soil, a delayed expansion material having a slow expansion action, and a raw material containing an aggregate and an admixture blended as necessary. It is a self-disintegrating solid that is solidified.

コンクリート用膨張材として従来は生石灰を主成分とした石灰系と、カルシウムサルホアルミネート(CSA)を主成分にしたCSA系膨張材が知られている。しかし、従来の石灰系膨張材およびCSA系膨張材は何れも材齢7日程度で膨張がほぼ完了するので、長期間経過後に膨張作用を発揮させる遅延型膨張材としては使用できない。この従来の膨張材の反応時期を遅らせる手法としては、(イ)上記膨張材の焼成温度を上げて焼き締まることによって化学活性を低下させる方法、(ロ)上記膨張材の粒子を大きくし、比表面積を小さくすることによって水和反応を遅らせる方法、(ハ)上記膨張材の表面に水に徐々に溶ける物質をコーディングする方法などが挙げられる。   Conventionally, lime-based materials mainly composed of quick lime and CSA-based expanded materials mainly composed of calcium sulfoaluminate (CSA) are known as concrete expanded materials. However, since both the conventional lime-based expandable material and CSA-based expandable material are almost completely expanded at an age of about 7 days, they cannot be used as delayed-type expandable materials that exert an expansion action after a long period of time. As a method of delaying the reaction time of this conventional expanding material, (a) a method of decreasing the chemical activity by raising the firing temperature of the expanding material and tightening, (b) increasing the particles of the expanding material, Examples thereof include a method of delaying the hydration reaction by reducing the surface area, and (c) a method of coding a substance that gradually dissolves in water on the surface of the expansion material.

本発明に用いる遅延型膨張材は、上記(イ)(ロ)(ハ)の何れの手法によって反応時期を遅くしたものでもよいが、従来の石灰系膨張材およびCSA系膨張材とは異なるマグネシアを主成分とした膨張材(マグネシア系膨張材と云う)を用いることによって顕著な効果を得ることができる。   The delayed expansion material used in the present invention may have a delayed reaction time by any of the methods (a), (b), and (c), but is different from conventional lime-based expansion materials and CSA-based expansion materials. A remarkable effect can be obtained by using an expansion material (referred to as a magnesia-based expansion material) containing as a main component.

一般にマグネシアは主に炭酸マグネシウムを800℃〜900℃で焼成して得られる軽焼マグネシアと、これより高温、例えば1500℃以上の高温で焼成して得られる重焼マグネシア(一般に過焼マグネシアまたは死焼マグネシアとも云う)とがある。軽焼マグネシアは活性が比較的大きいために比較的初期の反応に適し、重焼マグネシアは活性が小さく、従って反応が遅いので本発明の遅延型膨張材に適する。本発明の試験例によれば、マグネシアの焼成温度が1200℃以上であれば十分に遅い膨張性(これを緩行性膨張作用と云う)を得ることができる。なお、焼成温度が1650℃を上回ると緩効性膨張作用は大差なく、むしろ焼成コストが嵩むので、実用上、1200℃以上〜1650℃で焼成した重焼マグネシアが好ましい。   In general, magnesia is mainly light-burned magnesia obtained by baking magnesium carbonate at 800 ° C. to 900 ° C., and heavy-burned magnesia obtained by baking at a higher temperature, for example, 1500 ° C. or higher (generally over-burned magnesia or dead magnesia). It is also called baked magnesia). Light-burned magnesia is suitable for a relatively early reaction because of its relatively high activity, and heavy-burned magnesia is suitable for the delayed expansion material of the present invention because of its low activity and therefore slow reaction. According to the test example of the present invention, if the magnesia firing temperature is 1200 ° C. or higher, a sufficiently slow expansibility (this is referred to as a slow-expanding action) can be obtained. If the firing temperature exceeds 1650 ° C., the slow-acting expansion action is not very different, and rather the firing cost increases. Therefore, heavy firing magnesia fired at 1200 ° C. to 1650 ° C. is preferred in practice.

本発明においては、膨張材の主成分であるマグネシアの焼成温度、あるいは粉砕時の粒度を調整することによって化学活性すなわち膨張時期をコントロールすることができる。また、固形物中の膨張材の含有量を調整することによって膨張量、すなわち自己崩壊カをコントロールすることができる。   In the present invention, the chemical activity, that is, the expansion timing can be controlled by adjusting the firing temperature of magnesia, which is the main component of the expansion material, or the particle size at the time of pulverization. Further, the amount of expansion, that is, the self-disintegration power can be controlled by adjusting the content of the expansion material in the solid.

本発明の自己崩壊型固形物は、固化材、例えば軽焼マグネシアを主成分とする固化材によって土壌を固化してなる固形物に上記遅延型膨張材を含有させたものである。具体的には、例えば、軽焼マグネシアを主成分とする固化材と、土と、必要に応じて配合される骨材および混和剤を含む原料に、上記遅延型膨張材を配合し、水を混合して固化してなる固形物である。   The self-disintegrating solid material of the present invention is a solid material obtained by solidifying a soil with a solidifying material, for example, a solidified material containing light-burned magnesia as a main component, and containing the delayed expansion material. Specifically, for example, the delayed expansion material is mixed with a solidified material mainly composed of light-burned magnesia, soil, and an aggregate and an admixture mixed as necessary, and water is added. It is a solid substance formed by mixing and solidifying.

本発明において用いる固化材としては、普通セメント、高炉セメント、フライアッシュセメント、コロイドセメント、超速硬セメントなどのセメント、セメントを母材としたセメント系固化材、石灰、石灰を母材とした石灰系固化材、セメント系固化材と石灰系固化材の機能を合わせたセメント・石灰複合系固化材、および水ガラスなどがある。   As the solidifying material used in the present invention, ordinary cement, blast furnace cement, fly ash cement, colloidal cement, super fast hardening cement and other cement, cement-based solidified material based on cement, lime, lime based lime based material There are solidification materials, cement-lime composite solidification materials combining the functions of cement-based solidification materials and lime-based solidification materials, and water glass.

また、軽焼マグネシアを主成分とする固化材としては、マグネシアセメント、軽焼マグネシア、軽焼マグネシアに塩化マグネシアおよび/または石膏、その他の助剤を添加したものである。なお、軽焼マグネシアを主成分とする固化材とは軽焼マグネシアを固化材中で20重量%以上含むものを云う。このなかで、軽焼マグネシアを50%以上含有するものが好ましい。固化材の混合量は、土壌の性状等によっても異なるが、概ね固形物1m3に対して100〜800kgであれば良い。骨材は必要に応じて混合される。骨材の種類は細骨材および粗骨材の何れも用いることができる。また、混和剤は土壌固化の際に一般に用いられる混和剤、および一般のコンクリート用混和剤である。これら土壌、固化材、骨材などの配合量は限定されない。 Further, as a solidifying material mainly composed of light-burned magnesia, magnesia cement, light-burned magnesia, light-burned magnesia, and magnesia chloride and / or gypsum and other auxiliary agents are added. The solidified material mainly composed of light-burned magnesia refers to a material containing 20% by weight or more of light-burned magnesia in the solidified material. Among these, those containing 50% or more of light-burned magnesia are preferable. The mixing amount of the solidifying material varies depending on the properties of the soil and the like, but may be about 100 to 800 kg with respect to 1 m 3 of solid matter. Aggregates are mixed as needed. As the type of aggregate, either fine aggregate or coarse aggregate can be used. The admixture is an admixture generally used for solidifying soil and a general admixture for concrete. The amount of these soil, solidified material, aggregate and the like is not limited.

本発明の自己崩壊型固形物であって連続気孔を有するものは、この連続気孔に土壌や肥料などの培地を充填することによって植栽用固形物として用いることができる。また、本発明の自己崩壊型固形物であって、表面に開口するポット状凹所を有するものは、このポット状凹所に土壌や肥料などの培地を充填することによって植栽用固形物として用いることができる。これらの固形物は何れも所定期間を経過すると遅延型膨張材の作用によってひび割れなどを生じて自己崩壊するので、周囲の環境に容易に適合することができる。   The self-disintegrating solid material of the present invention having continuous pores can be used as a solid material for planting by filling the continuous pores with a medium such as soil or fertilizer. Moreover, the self-disintegrating solid material of the present invention, which has a pot-shaped recess opening on the surface, is filled as a solid material for planting by filling the pot-shaped recess with a medium such as soil or fertilizer. Can be used. Any of these solid materials can be easily adapted to the surrounding environment because they are cracked by the action of the delay-type expansion material after a predetermined period of time and self-collapse.

また、本発明の自己崩壊型固形物によって形成した水中構造体は、水中に設置後、所定期間を経過すると遅延型膨張材の作用によってひび割れなどを生じて自己崩壊するので、使用後の水中での撤去作業が不要であり、水中での仮設構造体などに有用である。湿潤な地中に埋設した場合も同様である。   In addition, since the underwater structure formed by the self-disintegrating solid material of the present invention is self-disintegrating due to the action of the delay-type expansion material after a predetermined period of time after being installed in water, This is useful for temporary structures underwater. The same applies when buried in wet ground.

本発明の自己崩壊型固形物において、軽焼マグネシアを主成分とする固化材と土を使用するのは、通常市販されているポルトランドセメント系の固化材よりもアルカリ性が低く、植物や生物に対してやさしく、成分的にも数年経つと土に戻るので、環境に配慮する必要があるコンクリート製品に適用する場合に特に有利である。   In the self-disintegrating solid material of the present invention, the use of a solidified material mainly composed of light-burned magnesia and soil has a lower alkalinity than a commercially available Portland cement-based solidified material, and is suitable for plants and organisms. Since it returns to the soil after several years, it is particularly advantageous when applied to concrete products that require consideration for the environment.

本発明の自己崩壊型固形物は、以上のように緩行性膨張作用を有する遅延型膨張材、好ましくは重焼マグネシアを主成分とする遅延型膨張材を含有することを特徴とするものであり、長期間経過後に緩行性膨張作用によって固形物中にひび割れなどを生じて自己崩壊する。この膨張時期は、鉄材の腐食や高分子化合物の生分解などのように自然環境に依存するもの従来の自己崩壊作用とは異なり、例えば膨張材の主成分であるマグネシアの焼成温度や粉砕時の粒度、膨張材の量などによるので、これらを調整することによって崩壊時期を制御することができる。   The self-disintegrating solid material of the present invention is characterized in that it contains a delay-type expansion material having a gradual expansion action as described above, preferably a delay-type expansion material mainly composed of heavy burned magnesia. After a long period of time, it slowly cracks in the solid substance due to its slow expansion action and self-collapses. This expansion time depends on the natural environment, such as corrosion of iron materials and biodegradation of polymer compounds. Unlike conventional self-destructive action, for example, the firing temperature of magnesia, which is the main component of the expansion material, and during grinding Since it depends on the particle size, the amount of the expanding material, etc., the decay time can be controlled by adjusting these.

以下、本発明を実施例によって具体的に示す。   Hereinafter, the present invention will be specifically described by way of examples.

表1に示す配合のモルタルを用い、JIS R 5201(セメントの物理試験方法)に準拠して試験体(寸法40×40×160mm)を作製し、この試験体について60℃熱水養生試験を行った。各試験体について、JIS A 1129(モルタル及びコンクリートの長さ変化試験方法)に準拠して長さを測定し、外観を観察した。焼成温度の異なる試験体ごとの結果を表2〜表4に示した。表2は各焼成温度のマグネシアを用いて60℃熱水中に14日間浸漬した結果を示し、表3はそのひび割れと崩壊状態を示す。また、表4は1450℃で焼成したマグネシアを用いた試験体(5%粉体、5%顆粒、10%粉体、10%顆粒)について、7日〜28日の浸漬結果を示す。なお、マグネシアの粒度は粉体(ブレーン比表面積2000±200cm2/g)と顆粒(直径0.3〜0.6mm)の2種類を用いた。 Using a mortar with the composition shown in Table 1, a test specimen (dimension 40 × 40 × 160 mm) was prepared in accordance with JIS R 5201 (cement physical test method), and a 60 ° C. hot water curing test was performed on this test specimen. It was. About each test body, length was measured based on JIS A 1129 (the mortar and concrete length change test method), and the external appearance was observed. The results for the test specimens having different firing temperatures are shown in Tables 2 to 4. Table 2 shows the results of immersion in hot water at 60 ° C. for 14 days using magnesia at each firing temperature, and Table 3 shows the cracks and collapsed state. Table 4 shows the results of immersion for 7 to 28 days for test specimens (5% powder, 5% granules, 10% powder, and 10% granules) using magnesia calcined at 1450 ° C. In addition, the particle size of magnesia used two types, powder (brane specific surface area 2000 ± 200 cm 2 / g) and granules (diameter 0.3 to 0.6 mm).

表2に示すように、800〜1000℃で焼成したマグネシアをセメントモルタルに混入した試験体はほとんど膨張が認められなかった。これはセメントモルタルが硬化する前にMgO成分がすべて反応してしまったため、硬化後のモルタルの長さ変化に影響を与えないと考えられる。   As shown in Table 2, almost no expansion was observed in the test body in which magnesia fired at 800 to 1000 ° C. was mixed in cement mortar. It is considered that this does not affect the change in the length of the mortar after curing because all the MgO components have reacted before the cement mortar is cured.

一方、1200〜1500℃で焼成したマグネシアを用いた試験体は、焼成温度が高くなるにつれて膨張量が増加し、1450℃で焼成したものは膨張最大となり、1500℃で焼成したものは膨張量が幾分低下する。従って、表3に示すように、1200℃で焼成したマグネシア粉体を10%混入したものからひび割れが見られ、1400℃で焼成したマグネシア粉体を10%混入したものから崩壊が見られる。   On the other hand, as for the test body using magnesia baked at 1200-1500 ° C., the amount of expansion increases as the calcination temperature increases, the one baked at 1450 ° C. has the maximum expansion, and the one baked at 1500 ° C. has the expansion amount. Somewhat lower. Therefore, as shown in Table 3, cracks are seen from the mixture containing 10% of the magnesia powder baked at 1200 ° C., and collapse is observed from the mixture containing 10% of the magnesia powder baked at 1400 ° C.

焼成温度によって膨張量が異なるのは、1200℃よりも焼成温度が高くなるにつれ、焼き締りが進み、化学活性がだんだん小さくなり、常温の水中で反応できる高活性成分が少なくなる一方で常温の水中で反応しない活性が極めて低い成分が多くなり、促進養生を行うことによりこの未反応の成分がしだいに反応し始めて膨張したものである。なお、焼成温度が1500℃を超えると活性が極めて低い成分が増え始めるので、促進養生しても反応しないものが残り、膨張量が頭打ちとなる。従って、好ましい焼成温度は1200〜1600℃であり、最も望ましい焼成温度は1400〜1500℃である。焼成温度1600℃を超えると、活性が極めて低い成分が多くなり、また焼成炉の耐火材料も高価なものとなり、焼成エネルギーのコストも嵩むので適当ではない。   The amount of expansion differs depending on the firing temperature. As the firing temperature becomes higher than 1200 ° C., the tightening proceeds, the chemical activity gradually decreases, and the amount of highly active components that can react in room temperature water decreases, while the room temperature water The amount of the component that does not react in the reaction is extremely low and the unreacted component gradually reacts and expands as a result of accelerated curing. In addition, since a component with very low activity will start to increase when a calcination temperature exceeds 1500 degreeC, what does not react even if accelerated curing will remain, and the amount of expansion will reach a peak. Therefore, a preferable baking temperature is 1200-1600 degreeC, and the most desirable baking temperature is 1400-1500 degreeC. When the firing temperature exceeds 1600 ° C., the number of components having extremely low activity increases, the refractory material of the firing furnace becomes expensive, and the cost of firing energy increases, which is not suitable.

表2に示すように、マグネシアが粉体(ブレーン比表面積2000±200cm2/g)と顆粒(直径0.3〜0.6mm)とでは、顆粒のほうが粉体よりも膨張量が大きく、1400℃以上で焼成したマグネシアを用いたものは崩壊しやすい。表4でも同様の結果を示している。これは膨張力が集中して破壊力が大きくなるので早期に崩壊し、粒度を小さくすると水との反応は大きくなるが、膨張力が分散されるため破壊力は小さくなるため崩壊時期が遅くなるためである。 As shown in Table 2, when magnesia is powder (brane specific surface area 2000 ± 200 cm 2 / g) and granule (diameter 0.3-0.6 mm), the granule has a larger expansion amount than the powder, and is 1400 ° C. or more. Those using calcined magnesia tend to collapse. Table 4 shows similar results. Since the expansion force concentrates and the destructive force increases, it collapses early, and when the particle size is reduced, the reaction with water increases, but since the expansion force is dispersed, the destructive force becomes smaller and the disintegration time is delayed. Because.

以上のことから、崩壊時期はマグネシアの焼成温度、粒度、および混入量の3要素に基づいて決定され、この3要素を調整することによって崩壊時期を任意に制御できることがわかる。なお、表1〜表4は、セメントを用いた試験例であるが、軽焼マグネシアを固化材として土壌を固化した固形物についても同様の結果が得られる。   From the above, it can be seen that the decay time is determined based on the three factors of magnesia firing temperature, particle size, and mixing amount, and that the decay time can be arbitrarily controlled by adjusting these three factors. In addition, although Table 1-Table 4 are the test examples using cement, the same result is obtained also about the solid substance which solidified soil using light-burned magnesia as a solidification material.

Figure 2005290172
Figure 2005290172

Figure 2005290172
Figure 2005290172

Figure 2005290172
Figure 2005290172

Figure 2005290172
Figure 2005290172

Claims (7)

固化材によって土壌を固化してなる固形物に緩行性膨張作用を有する遅延型膨張材を含有させたことを特徴とする自己崩壊型固形物。
A self-disintegrating solid material, characterized in that a solid material obtained by solidifying soil with a solidifying material contains a delayed expansion material having a slow expansion effect.
軽焼マグネシアを主成分とする固化材と、土と、緩行性膨張作用を有する遅延型膨張材と、必要に応じて配合される骨材および混和剤を含む原料に、水を混合して固化してなる請求項1の自己崩壊型固形物。
Solidified by mixing water with solidified material mainly composed of light-burned magnesia, soil, delayed expansion material with slow expansion, and aggregate and admixture blended as necessary. The self-disintegrating solid material according to claim 1.
緩行性膨張作用を有する遅延型膨張材がマグネシア系遅延型膨張材である請求項1または2の自己崩壊型固形物。
The self-disintegrating solid material according to claim 1 or 2, wherein the delay-type expansion material having a slow expansion effect is a magnesia-based delay-type expansion material.
緩行性膨張作用を有する遅延型膨張材が1200℃以上の高温で焼成した重焼マグネシアである請求項1〜3の何れかに記載する自己崩壊型固形物。
The self-disintegrating solid material according to any one of claims 1 to 3, wherein the delayed-type expansion material having a slow expansion function is heavy-burned magnesia fired at a high temperature of 1200 ° C or higher.
請求項1〜4の何れかに記載する固形物であって、連続気孔を有し、該連続気孔に培地を充填してなる植栽用の自己崩壊型固形物。
The solid material according to any one of claims 1 to 4, wherein the solid material has continuous pores and is filled with a medium in the continuous pores for planting.
請求項1〜4の何れかに記載する固形物であって、表面に開口するポット状凹所を有し、該ポット状凹所に培地を充填してなる植栽用の自己崩壊型固形物。
The solid material according to any one of claims 1 to 4, wherein the solid material has a pot-like recess that opens on the surface, and is filled with a medium in the pot-like recess. .
請求項1〜6の何れかに記載する固形物によって形成された水中に設置され、または湿潤な地中に埋設されることを特徴とする自己崩壊型水中構造体または地中構造体。


A self-disintegrating underwater structure or an underground structure, which is installed in water formed by the solid material according to any one of claims 1 to 6 or embedded in a wet ground.


JP2004106296A 2004-03-31 2004-03-31 Self-collapse type solidified product and its use Pending JP2005290172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106296A JP2005290172A (en) 2004-03-31 2004-03-31 Self-collapse type solidified product and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106296A JP2005290172A (en) 2004-03-31 2004-03-31 Self-collapse type solidified product and its use

Publications (1)

Publication Number Publication Date
JP2005290172A true JP2005290172A (en) 2005-10-20

Family

ID=35323477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106296A Pending JP2005290172A (en) 2004-03-31 2004-03-31 Self-collapse type solidified product and its use

Country Status (1)

Country Link
JP (1) JP2005290172A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043246A (en) * 2006-08-14 2008-02-28 Kajima Corp Planting base, and planting base unit employing the same
JP2012087017A (en) * 2010-10-20 2012-05-10 Atelier Tekuto:Kk Method for constructing soil structure, and soil structure
CN105084800A (en) * 2015-09-02 2015-11-25 南京云越新材料科技有限公司 Cement expansion agent suitable for high temperature environment and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110726A (en) * 1976-01-23 1977-09-17 Chichibu Cement Kk Production method of cement mixing material for concrete product
JPH01115815A (en) * 1987-10-23 1989-05-09 Pumptech Nv Swellable cement composition
JPH06157107A (en) * 1992-11-17 1994-06-03 Taisei Corp Production of collapsible concrete block and treatment of dam deposited sand
JPH11137117A (en) * 1997-09-08 1999-05-25 Hokuetsu:Kk Concrete block for creating seaweed colony and seaweed reef
JP2000290635A (en) * 1999-04-07 2000-10-17 Onoda Co Delayed expansive composition and its expansive material, and crushing material
JP2002291359A (en) * 2001-03-30 2002-10-08 Mie Prefecture Self-collapse type porous concrete block and seaweed bed-constructing structure using the same and method for constructing seaweed bed
JP2004359511A (en) * 2003-06-06 2004-12-24 Masaru Yamada Natural-collapse type block and method for producing the same
JP2005281070A (en) * 2004-03-30 2005-10-13 Taiheiyo Cement Corp Self-degradation type cement composition and its concrete product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52110726A (en) * 1976-01-23 1977-09-17 Chichibu Cement Kk Production method of cement mixing material for concrete product
JPH01115815A (en) * 1987-10-23 1989-05-09 Pumptech Nv Swellable cement composition
JPH06157107A (en) * 1992-11-17 1994-06-03 Taisei Corp Production of collapsible concrete block and treatment of dam deposited sand
JPH11137117A (en) * 1997-09-08 1999-05-25 Hokuetsu:Kk Concrete block for creating seaweed colony and seaweed reef
JP2000290635A (en) * 1999-04-07 2000-10-17 Onoda Co Delayed expansive composition and its expansive material, and crushing material
JP2002291359A (en) * 2001-03-30 2002-10-08 Mie Prefecture Self-collapse type porous concrete block and seaweed bed-constructing structure using the same and method for constructing seaweed bed
JP2004359511A (en) * 2003-06-06 2004-12-24 Masaru Yamada Natural-collapse type block and method for producing the same
JP2005281070A (en) * 2004-03-30 2005-10-13 Taiheiyo Cement Corp Self-degradation type cement composition and its concrete product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043246A (en) * 2006-08-14 2008-02-28 Kajima Corp Planting base, and planting base unit employing the same
JP2012087017A (en) * 2010-10-20 2012-05-10 Atelier Tekuto:Kk Method for constructing soil structure, and soil structure
CN105084800A (en) * 2015-09-02 2015-11-25 南京云越新材料科技有限公司 Cement expansion agent suitable for high temperature environment and preparation method thereof

Similar Documents

Publication Publication Date Title
Khalil et al. Effect of some waste additives on the physical and mechanical properties of gypsum plaster composites
JP6332988B2 (en) Refractory mortar
WO2017171009A1 (en) Rapid-hardening mortar composition
KR100592781B1 (en) Water-permeable concrete composition using bottom ash
BR112019011610B1 (en) PROCESS FOR PREPARING LANDSCAPING PRODUCTS AND LANDSCAPING PRODUCT CURED WITH CARBON DIOXIDE
RU2341624C2 (en) Grouting compound and method of production
AU2012282216B2 (en) Hydraulic binder
JP2007137745A (en) Quick hardening material and high-penetrating grout
KR101473228B1 (en) The composition of solidificant having highstrength and rapid solidification
JP4409328B2 (en) Self-disintegrating cement composition and its concrete products
JP2005290172A (en) Self-collapse type solidified product and its use
JP6985177B2 (en) Hydraulic composition and concrete
RU2358931C2 (en) Composite high-strength gypsum material and method for its production
JP2017031037A (en) Anti-washout underwater concrete composition and cured body thereof
JP2007261933A (en) Concrete setting object and concrete composition
JP4107773B2 (en) Cement admixture and cement composition
KR100804204B1 (en) Yellow soil aggregate and manufacturing method thereof
JP2006016543A (en) Grouting material
JP6837856B2 (en) Expandable admixture for exposed concrete and exposed concrete containing it
Rashwan et al. Improving of lightweight self-curing concrete properties
TW201228994A (en) Thermal insulation material and method for making the same
JP2004210551A (en) Expansive clinker mineral and expansive composition containing the same
JP4999259B2 (en) Solidified material
JP2020093940A (en) Cement admixture, and concrete using the same
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330