JP2005288309A - Water treatment method and water treatment system - Google Patents

Water treatment method and water treatment system Download PDF

Info

Publication number
JP2005288309A
JP2005288309A JP2004106773A JP2004106773A JP2005288309A JP 2005288309 A JP2005288309 A JP 2005288309A JP 2004106773 A JP2004106773 A JP 2004106773A JP 2004106773 A JP2004106773 A JP 2004106773A JP 2005288309 A JP2005288309 A JP 2005288309A
Authority
JP
Japan
Prior art keywords
concentration
activated carbon
water
treated
powdered activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004106773A
Other languages
Japanese (ja)
Other versions
JP4153893B2 (en
Inventor
Norimitsu Abe
法光 阿部
Tadanori Maoka
忠則 真岡
Hiroyuki Suzuki
浩之 鈴木
Seiichi Murayama
清一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004106773A priority Critical patent/JP4153893B2/en
Publication of JP2005288309A publication Critical patent/JP2005288309A/en
Application granted granted Critical
Publication of JP4153893B2 publication Critical patent/JP4153893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment method and a water treatment system capable of performing injection of powdery activated carbon in proper quantities by measuring the concentration of a malodorous material in raw water and the concentration of coexisting soluble organic substances and determining the injection rate of powdery activated carbon necessary for removal of the malodorous material in consideration of influences of the coexisting soluble organic substances. <P>SOLUTION: The concentration of the malodorous material in the water to be treated and the concentration of the coexisting soluble organic substances are respectively measured by measuring devices 11, 13. In an arithmetic unit 7 for the injection of powdery activated carbon, coefficients which affect the residual rate of the malodorous material and the organic substances upon the injection of powdery activated carbon are respectively determined and, because the necessary injection rate of the powdery activated carbon is determined, the odor substances are effectively removed without being affected by the coexisting organic substances. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理方法および水処理システムに関する。   The present invention relates to a water treatment method and a water treatment system for injecting powdered activated carbon into water to be treated to remove soluble organic substances in the water to be treated.

近年、水道水源であるダム、湖沼、貯水池など停滞水域の富栄養化による藻類や放線菌の発生、増殖による異臭味の発生が問題となっている。水道水の臭気としてはカビ臭 が多く、その原因となる物質は、藍藻類や放線菌から出るジメチルイソボルネオール(以下、2−MIBと略記)、ジェオスミン等である、現在の水質基準では、快適水質項目で2−MIB、ジェオスミン共に、粉末活性炭処理の場合20ng/L、粒状活性炭等恒久施設の場合10ng/Lと定められている。しかし、平成16年度に予定されている水道水質基準の改定では、粉末活性炭処理でもより厳しい規制値として10ng/Lが採用される予定である。   In recent years, the generation of algae and actinomycetes due to eutrophication of stagnant water areas such as dams, lakes, and reservoirs, which are tap water sources, and the generation of off-flavors due to proliferation have become a problem. There are many musty odors in tap water, and the causative substances are cyanobacteria, dimethylisoborneol derived from actinomycetes (hereinafter abbreviated as 2-MIB), geosmin, etc. In terms of water quality, both 2-MIB and geosmin are defined as 20 ng / L for powdered activated carbon treatment and 10 ng / L for permanent facilities such as granular activated carbon. However, in the revision of the tap water quality standard scheduled in 2004, 10 ng / L is scheduled to be adopted as a stricter regulation value even with the powdered activated carbon treatment.

浄水場においては異臭味除去のために、オゾン処理等の高度処理を導入している所も増えてきているが、中規模以下の浄水場では粉末活性炭による吸着除去が主流である。   In water treatment plants, there are an increasing number of places where advanced treatment such as ozone treatment is introduced to remove off-flavors, but adsorption removal by powdered activated carbon is the mainstream in water treatment plants of medium scale or smaller.

粉末活性炭によりカビ臭物質を吸着除去する場合、共存する溶解性有機物質の影響を受けることがあり、その影響は有機物質の濃度と性質に依存することが知られている(例えば、非特許文献1参照)。   It is known that when mold odor substances are adsorbed and removed by powdered activated carbon, they may be affected by coexisting soluble organic substances, and the influence depends on the concentration and properties of the organic substances (for example, non-patent literature) 1).

この溶解性有機物質は、浄水処理過程で消毒処理や鉄・マンガン除去等のため注入される塩素剤と反応してトリハロメタンを生成する。トリハロメタンは発ガン性物質であるため、生成を抑制する必要がある。   This soluble organic substance reacts with a chlorine agent that is injected for disinfection treatment, iron / manganese removal, and the like during the water purification process to produce trihalomethane. Since trihalomethane is a carcinogen, it is necessary to suppress its production.

粉末活性炭は、トリハロメタンの前駆物質である溶解性有機物質除去のためにも注入される。このことから、カビ臭物質と溶解性有機物質を同時に除去するのに最適な粉末活性炭注入率を推定するためには、原水のカビ臭物質濃度と溶解性有機物質濃度を同時に測定し、特にカビ臭除去に対する溶解性有機物質の影響を考慮して粉末活性炭注入率を決定する必要がある。   Powdered activated carbon is also injected to remove soluble organic substances that are precursors of trihalomethanes. Therefore, in order to estimate the optimum powder activated carbon injection rate for removing mold odor substances and soluble organic substances at the same time, the concentration of mold odor substances and soluble organic substances in raw water are measured at the same time. It is necessary to determine the powder activated carbon injection rate in consideration of the effect of soluble organic substances on odor removal.

粉末活性炭注入率を制御する方法としては、例えば、除去対象物質である臭気物質、トリハロメタンや農薬を特殊センサで検知してフイードバック制御する方法(例えば、特許文献1参照)や、臭気物質、陰イオン活性剤、トリハロメタン、色度および金属イオン濃度の計測結果に基づいて粉末活性炭および凝集剤の注入率を制御する方法(例えば、特許文献2参照)がある。   As a method for controlling the powder activated carbon injection rate, for example, a odorous substance to be removed, trihalomethane or a pesticide is detected by a special sensor and feedback control is performed (for example, see Patent Document 1), an odorous substance, an anion. There is a method of controlling the injection rate of powdered activated carbon and a flocculant based on the measurement results of the activator, trihalomethane, chromaticity and metal ion concentration (for example, see Patent Document 2).

このような従来の粉末活性炭注入制御システムを説明する。一般に、浄水施設では、取水口から汲み上げられた原水は、導水管を介して沈砂池に導かれ、ここで大きな夾雑物が取り除かれる。その後、原水は、着水井から凝集・沈殿池に入る。凝集・沈殿池では、入口で凝集剤が注入され、原水中の粘土質、細菌、藻類等の懸濁物質が凝集しフロックとして分離される。さらに、ろ過池で残った懸濁物質が除去される。   Such a conventional powder activated carbon injection control system will be described. In general, in a water purification facility, raw water pumped up from a water intake is led to a sand basin through a water conduit, where large impurities are removed. The raw water then enters the coagulation / sedimentation basin from the landing well. In the coagulation / sedimentation basin, the coagulant is injected at the inlet, and suspended substances such as clay, bacteria, and algae in the raw water are aggregated and separated as floc. Furthermore, the suspended matter remaining in the filter basin is removed.

前記導水管には水質計測器が接続され、臭気物質濃度が計測される。その計測値は粉末活性炭注入演算装置に入り、臭気物質濃度から粉末活性炭注入率が演算される。また、導水管には流量計測器も設けられており、原水流量が計測される。この計測値は前記粉末活性炭注入演算値と共に粉末活性炭注入装置に入り、ここで、原水流量に応じた粉末活性炭注入量が演算され、粉末活性炭が沈砂池に注入される。   A water quality measuring instrument is connected to the water conduit, and the odor substance concentration is measured. The measured value enters the powdered activated carbon injection calculation device, and the powdered activated carbon injection rate is calculated from the odor substance concentration. In addition, a flow rate measuring device is also provided in the water conduit, and the raw water flow rate is measured. This measured value enters the powdered activated carbon injection device together with the powdered activated carbon injection calculation value, where the powdered activated carbon injection amount corresponding to the raw water flow rate is calculated, and the powdered activated carbon is injected into the sand basin.

この例では、水質計測器により計測される物質として、臭気物質を例として記載したが、これ以外にも、陰イオン界面活性剤、トリハロメタン、色度、および金属イオン濃度がある。また、水質計測器を後段の凝集・沈殿池の入口配管部に取り付け、処理対象物質の残留濃度を計測し、粉末活性炭注入率をフィードバック制御している場合もある。
特開平5−10941号公報 特開平8−309109号公報 D.Cook,G.Newcombe and P.Sztajnbox,"The Application of Powdered Activated Carbon for MIB and Geosmin Removal:Predicting PAC Dose in Four Raw Waters,",Water Research,vol.35,No.5,pp.1325-1333(2001)
In this example, an odor substance is described as an example of the substance measured by the water quality measuring instrument, but there are an anionic surfactant, trihalomethane, chromaticity, and metal ion concentration. In some cases, a water quality measuring instrument is attached to the inlet piping section of the subsequent agglomeration / sedimentation basin, the residual concentration of the substance to be treated is measured, and the powder activated carbon injection rate is feedback controlled.
Japanese Patent Laid-Open No. 5-10941 JP-A-8-309109 D.Cook, G. Newcombe and P. Sztajnbox, "The Application of Powdered Activated Carbon for MIB and Geosmin Removal: Predicting PAC Dose in Four Raw Waters,", Water Research, vol. 35, No. 5, pp. 1325- 1333 (2001)

上述した従来の粉末活性炭注入制御システムにおいては、以下に示す課題があった。   The conventional powder activated carbon injection control system described above has the following problems.

従来システムでは、粉末活性炭による処理対象物質単体の濃度に基づいて、注入率を決定しているため、複数の処理対象物質が共存する場合、相互の影響を受ける場合がある。特に、臭気物質の除去性能は、共存する溶解性有機物質の影響を大きく受けるため、臭気物質単体の処理を基準として粉末活性炭注入率を決定していたのでは、注入率が不足するという問題点があった。   In the conventional system, since the injection rate is determined based on the concentration of the substance to be treated by the powdered activated carbon, there may be a mutual influence when a plurality of substances to be treated coexist. In particular, the removal performance of odorous substances is greatly affected by the coexisting soluble organic substances, so if the powdered activated carbon injection rate is determined based on the treatment of odorous substances alone, the injection rate is insufficient. was there.

また、粉末活性炭処理後の処理対象物質を測定してフィードバック制御を行なう場合、粉末活性炭注入点から凝集・沈殿池までの滞留時間が通常15分から60分程度かかるため、降雨や複数水源からの流入による急激な水質変動に対応できず、粉末活性炭注入率に過不足が生じていた。   In addition, when measuring the target substance after powdered activated carbon treatment and performing feedback control, the residence time from the powdered activated carbon injection point to the agglomeration / sedimentation basin usually takes about 15 to 60 minutes. It was not possible to cope with the sudden water quality change due to the above, and the powder activated carbon injection rate was excessive or insufficient.

粉末活性炭注入率が過剰になると粉末活性炭が無駄に注入されることによる処理コストの増加のみならず、凝集・沈殿池で注入される凝集剤の注入率増加、汚泥処理費用の増加による処理コストが増加する。また、粉末活性炭注入率が不足した場合、水質の処理目標が達成できない。   If the activated carbon powder injection rate is excessive, not only will the treatment cost increase due to the waste activated carbon powder being injected, but the increase in the injection rate of the flocculant injected in the coagulation / sedimentation basin and the processing cost due to the increased sludge treatment cost To increase. Moreover, when the powder activated carbon injection rate is insufficient, the water quality treatment target cannot be achieved.

本発明の目的は、原水中の臭気物質濃度と共存する溶解性有機物質濃度とを測定し、臭気物質の除去に必要な粉末活性炭注入率を、共存する溶解性有機物の影響を考慮して決定することにより、過不足無く粉末活性炭注入を行なうことができる水処理方法および水処理システムを提供することにある。   The object of the present invention is to measure the concentration of odorous substances in the raw water and the concentration of soluble organic substances that coexist, and determine the powder activated carbon injection rate necessary for the removal of odorous substances in consideration of the influence of coexisting soluble organic substances. Accordingly, an object of the present invention is to provide a water treatment method and a water treatment system that can perform powdered activated carbon injection without excess or deficiency.

本発明の水処理方法は、被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理方法であって、被処理水中の臭気物質の濃度と共存する有機物質の濃度をそれぞれ測定し、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求め、予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の注入率を、前記各係数及び滞留時間の関数として求めることを特徴とする。   The water treatment method of the present invention is a water treatment method for injecting powdered activated carbon into the water to be treated to remove soluble organic substances in the water to be treated, which is an organic substance coexisting with the concentration of odorous substances in the water to be treated. Concentrations are measured respectively, and coefficients that affect the residual ratio of these odorous substances and organic substances with the powdered activated carbon injection are obtained based on the measured odorous substance concentration and organic substance concentration, respectively, and obtained in advance. The injection rate of the powdered activated carbon necessary to achieve the target removal rate of odorous substances is obtained as a function of each coefficient and residence time.

本発明方法では、有機物質の濃度の測定に当り、被処理水の蛍光強度を測定し、この蛍光強度と有機物質濃度との相関関係から有機物質濃度を求めてもよい。   In the method of the present invention, in measuring the concentration of the organic substance, the fluorescence intensity of the water to be treated may be measured, and the organic substance concentration may be obtained from the correlation between the fluorescence intensity and the organic substance concentration.

また、本発明の水処理方法では、処理後の臭気物質の濃度目標値および共存する有機物質の濃度目標値をそれぞれ設定し、前記有機物質濃度目標値に相当する蛍光強度を処理後蛍光強度目標値として相関関係から求め、前記被処理水の蛍光強度を測定し、この測定された蛍光強度と前記処理蛍光強度目標値との差から有機物質除去に必要な粉末活性炭の第1の注入率を求め、前記被処理水中の臭気物質の濃度を測定すると共に、前記測定された被処理水の蛍光強度から相関により共存する有機物質の濃度を求め、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求め、予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の第2の注入率を、前記各係数及び滞留時間の関数として求め、これら第1の注入率と第2の注入率の中から最大の値を被処理水に対する粉末活性炭注入率として決定してもよい。   In the water treatment method of the present invention, the concentration target value of the treated odor substance and the concentration target value of the coexisting organic substance are set, and the fluorescence intensity corresponding to the organic substance concentration target value is set as the processed fluorescence intensity target. Obtained from the correlation as a value, measure the fluorescence intensity of the water to be treated, and from the difference between the measured fluorescence intensity and the target value of the treatment fluorescence intensity, the first injection rate of powdered activated carbon necessary for organic substance removal is determined Obtaining and measuring the concentration of odorous substances in the treated water, obtaining the concentration of organic substances coexisting by correlation from the measured fluorescence intensity of the treated water, and injecting the powdered activated carbon of these odorous substances and organic substances Necessary to achieve the target removal rate of odorous substances determined in advance based on the measured odorous substance concentration and organic substance concentration, respectively. The second injection rate of the powdered activated carbon is obtained as a function of the coefficients and the residence time, and the maximum value among the first injection rate and the second injection rate is used as the powdered activated carbon injection rate for the water to be treated. You may decide.

また、本発明方法では、粉末活性炭注入後の処理水における臭気物質の濃度および蛍光強度をそれぞれ測定し、予め設定した処理後の臭気物質の濃度目標値および処理後の蛍光強度目標値と、前記処理水の臭気物質の濃度測定値および蛍光強度の測定値との差をそれぞれ求め、これら差のうち大きい方の値に基づき粉末活性炭注入率の補正値を求めてもよい。   Further, in the method of the present invention, the concentration of the odorous substance and the fluorescence intensity in the treated water after the powdered activated carbon injection are measured, respectively, the concentration target value of the odorous substance after the treatment and the fluorescence intensity target value after the treatment, A difference between the measured value of the odorous substance of the treated water and the measured value of the fluorescence intensity may be obtained, and a correction value for the powder activated carbon injection rate may be obtained based on the larger value of these differences.

本発明の水処理システムは、被処理水中の臭気物質の濃度と共存する有機物質の濃度をそれぞれ測定する臭気物質濃度測定装置および有機物質濃度測定装置と、これら臭気物質の濃度測定値と有機物質の濃度測定値とをそれぞれ入力し、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記臭気物質濃度測定値および有機物質濃度測定値に基づいてそれぞれ求める係数演算手段と、予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の注入率を、前記算出された各係数および滞留時間の関数として求める注入率演算手段とを備えたことを特徴とする。   The water treatment system of the present invention includes an odor substance concentration measuring device and an organic substance concentration measuring device for measuring the concentration of an odorous substance in the water to be treated and the concentration of the organic substance, and the concentration measurement value of these odorous substances and the organic substance. The concentration measurement values of these odorous substances and organic substances are input, and the coefficients that affect the residual ratio of these odorous substances and organic substances accompanying the powder activated carbon injection are determined based on the odorous substance concentration measurement values and the organic substance concentration measurement values. Coefficient calculation means for obtaining each, and injection rate calculation means for obtaining the injection rate of the powdered activated carbon necessary for achieving the target removal rate of odorous substances determined in advance as a function of the calculated coefficients and residence time. It is characterized by that.

また、本発明システムでは、有機物質濃度測定装置として、被処理水の蛍光強度を測定する蛍光分析計と、被処理水中の臭気物質の濃度この蛍光分析計の測定値に基づき、蛍光強度と有機物質濃度との相関関係から有機物質濃度を求める有機物質濃度演算手段とを設けてもよい。   Further, in the system of the present invention, as an organic substance concentration measuring device, a fluorescence analyzer for measuring the fluorescence intensity of the water to be treated, and the concentration of odorous substances in the water to be treated, the fluorescence intensity and the organic Organic substance concentration calculating means for obtaining the organic substance concentration from the correlation with the substance concentration may be provided.

また、本発明の水処理システムでは、活性炭注入処理後の処理水の臭気物質の濃度目標値および共存する有機物質の濃度目標値をそれぞれ設定すると共に、この設定された有機物質濃度目標値に相当する蛍光強度を処理後蛍光強度目標値として相関関係から求める水質目標値設定手段と、前記被処理水の蛍光強度を測定する蛍光分析計と、前記被処理水中の臭気物質の濃度を測定する臭気物質濃度測定装置と、前記蛍光分析計で測定された蛍光強度と前記処理後蛍光強度目標値との差から有機物質除去に必要な粉末活性炭の第1の注入率を求めると共に、前記測定された被処理水の蛍光強度から相関により共存する有機物質の濃度求める第1の注入率演算手段と、前記臭気物質の濃度測定値と有機物質の濃度測定値とをそれぞれ入力し、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求める係数演算手段と、前記被処理水中の臭気物質を前記処理後臭気物質濃度目標値へ低減させるに必要な前記粉末活性炭の第2の注入率を、前記各係数及び滞留時間の関数として求める第2の注入率演算手段と、これら注入率演算手段で求められた第1の注入率と第2の注入率の中から最大の値を被処理水に対する粉末活性炭注入率として決定する注入率決定手段とを備えた構成としてもよい。   In the water treatment system of the present invention, the concentration target value of the odorous substance of the treated water after the activated carbon injection treatment and the concentration target value of the coexisting organic substance are respectively set, and the equivalent organic substance concentration target value is set. Water quality target value setting means for obtaining the fluorescence intensity to be processed from the correlation as a processed fluorescence intensity target value, a fluorescence analyzer for measuring the fluorescence intensity of the treated water, and an odor for measuring the concentration of odorous substances in the treated water The first injection rate of powdered activated carbon necessary for organic substance removal is determined from the difference between the substance concentration measuring device and the fluorescence intensity measured by the fluorescence analyzer and the target fluorescence intensity after treatment, and the measured The first injection rate calculating means for obtaining the concentration of the coexisting organic substance from the fluorescence intensity of the water to be treated, and the odorous substance concentration measurement value and the organic substance concentration measurement value are respectively input. Coefficient calculating means for determining coefficients that affect the residual ratio of the odorous substance and organic substance with the powdered activated carbon injection based on the measured odorous substance concentration and organic substance concentration, respectively, Second injection rate calculation means for obtaining a second injection rate of the powdered activated carbon necessary for reducing the odorous substance to the target value of the processed odorous substance concentration as a function of the coefficients and residence time, and these injection rates It is good also as a structure provided with the injection | pouring rate determination means which determines the largest value as the powder activated carbon injection | pouring rate with respect to to-be-processed water among the 1st injection | pouring rate calculated | required by the calculating means and a 2nd injection | pouring rate.

さらに、本発明システムでは、粉末活性炭注入後の処理水の臭気物質濃度および蛍光強度をそれぞれ臭気物質濃度測定装置および蛍光分析計に測定させる処理水案内装置と、 予め設定した処理後の臭気物質の濃度目標値および処理後の蛍光強度目標値と、前記処理水案内装置を経て測定された処理水の臭気物質の濃度測定値および蛍光強度の測定値との差をそれぞれ求め、これら差のうち大きい方の値に基づき粉末活性炭注入率の補正値を求める補正値演算手段とを備えてもよい。   Further, in the system of the present invention, the odorous substance concentration measuring apparatus and the fluorescence analyzer for measuring the odorous substance concentration and the fluorescence intensity of the treated water after the powdered activated carbon injection, respectively, and the pretreated odorous substance after the treatment are measured. The difference between the concentration target value and the treated fluorescence intensity target value, and the measured odor substance concentration measured value and the fluorescence intensity measured value through the treated water guiding device are obtained, and the larger of these differences. Correction value calculation means for obtaining a correction value of the powdered activated carbon injection rate based on one of the values may be provided.

本発明によれば、被処理水中の臭気物質の濃度と共存する有機物質の濃度をそれぞれ測定し、これら臭気物質および有機物質の、粉末活性炭注入時の残存率に影響を与える係数をそれぞれ求め、必要な前記粉末活性炭の注入率を求めているので、共存する有機物質の影響を受けることなく臭気物質を有効に除去することができる。   According to the present invention, the concentration of organic substances coexisting with the concentration of odorous substances in the water to be treated is measured, respectively, and the coefficients that affect the residual ratio of these odorous substances and organic substances at the time of powder activated carbon injection are determined, Since the required injection rate of the powdered activated carbon is obtained, the odorous substance can be effectively removed without being affected by the coexisting organic substance.

また、活性炭注入処理後の処理水の臭気物質濃度、共存する溶解性有機物等、処理対象物質濃度も測定して、フィードバック制御を行なうようにすれば、水質特性の変化等にも対応でき、無駄なく、確実な粉末活性炭注入制御を行なうことができる。   In addition, if the concentration of substances to be treated, such as the concentration of odorous substances in treated water after activated carbon injection treatment and soluble organic substances coexisting, is measured and feedback control is performed, it is possible to cope with changes in water quality characteristics, etc. Therefore, reliable powder activated carbon injection control can be performed.

これらのことにより、過剰な粉末活性炭注入の抑制による処理コストを適正化でき、粉末活性炭注入量の不足による処理水の水質悪化を防止できる。   By these things, the processing cost by suppression of excessive powder activated carbon injection | pouring can be optimized, and the water quality deterioration of the treated water by the shortage of powder activated carbon injection | pouring quantity can be prevented.

以下、本発明による水処理方法および水処理システムの一実施の形態について図面を用いて詳細に説明する。   Hereinafter, an embodiment of a water treatment method and a water treatment system according to the present invention will be described in detail with reference to the drawings.

図1はこの実施の形態が適用される浄水施設および粉末活性炭注入制御システムを表している。図1において、1は取水口で、この取水口1から汲み上げられた原水は、導水管2を介して沈砂池3に導かれ、ここで大きな夾雑物が取り除かれる。この後、原水は、沈砂池3に接続した着水井4を経て凝集・沈殿池5に入る。凝集・沈殿池5では、入口で凝集剤が注入され原水中の粘土質、細菌、藻類等の懸濁物質が凝集しフロックとして分離される。さらに、ろ過池6で残った懸濁物質が除去される。   FIG. 1 shows a water purification facility and a powdered activated carbon injection control system to which this embodiment is applied. In FIG. 1, 1 is a water intake, and the raw water pumped up from this water intake 1 is led to the sand basin 3 through the water conduit 2, and a large contaminant is removed here. Thereafter, the raw water enters the agglomeration / sedimentation basin 5 through the landing well 4 connected to the sedimentation basin 3. In the flocculation / sedimentation basin 5, a flocculant is injected at the inlet, and suspended substances such as clay, bacteria, and algae in the raw water are aggregated and separated as floc. Furthermore, the suspended substance remaining in the filter basin 6 is removed.

導水管2には、採水管9を介して前処理装置10が連結され、さらに、この前処理装置10には臭気物質濃度測定装置11および溶解性有機物質濃度測定装置13が接続されている。導水管2を流れる原水(被処理水)は、採水管9によりその一部が採水され、原水内の侠雑物、および懸濁物質を除去するための前処理装置10を介して臭気物質濃度測定装置11および溶解性有機物質濃度測定装置13へ供給される。   A pretreatment device 10 is connected to the water conduit 2 via a water collection tube 9, and an odorous substance concentration measuring device 11 and a soluble organic substance concentration measuring device 13 are connected to the pretreatment device 10. Part of the raw water (treated water) flowing through the water conduit 2 is sampled by the water sampling pipe 9, and the odorous substance is passed through the pretreatment device 10 for removing impurities and suspended substances in the raw water. It is supplied to the concentration measuring device 11 and the soluble organic substance concentration measuring device 13.

7は粉末活性炭注入演算装置で、臭気物質濃度測定装置11により測定された臭気物質濃度計測値12と溶解性有機物濃度測定装置13により測定された溶解性有機物質濃度計測値14とがそれぞれ入力される。この粉末活性炭注入演算装置7には、水質目標値入力手段15が接続されており、ここで臭気物質濃度および溶解性有機物質濃度の処理目標値が入力される。   Reference numeral 7 denotes a powdered activated carbon injection arithmetic unit, to which the odorous substance concentration measurement value 12 measured by the odorous substance concentration measurement apparatus 11 and the soluble organic substance concentration measurement value 14 measured by the soluble organic substance concentration measurement apparatus 13 are respectively input. The A water quality target value input means 15 is connected to the powdered activated carbon injection arithmetic unit 7, and processing target values of the odor substance concentration and the soluble organic substance concentration are input here.

この粉末活性炭注入演算装置7では、臭気物質濃度と溶解性有機物濃度の関係と予め設定された臭気物質濃度および溶解性有機物質の処理目標値を比較して、それぞれの目標値を達成するのに必要な粉末活性炭注入率が演算される。   In this powdered activated carbon injection arithmetic unit 7, the relationship between the odor substance concentration and the soluble organic substance concentration is compared with the preset target values for the odor substance concentration and the soluble organic substance to achieve each target value. The required powdered activated carbon injection rate is calculated.

さらに、この粉末活性炭注入演算装置7には、表示装置16が接続されており、臭気物質濃度計測値12、溶解性有機物質濃度計測値14、水質目標値および粉末活性炭注入率演算結果が出力され表示される。   Further, a display device 16 is connected to the powdered activated carbon injection computing device 7, and an odor substance concentration measurement value 12, a soluble organic substance concentration measurement value 14, a water quality target value, and a powdered activated carbon injection rate calculation result are output. Is displayed.

また、前記導水管2には流量計測器17が設けられており、この流量計測器17により原水流量18が計測される。8は粉末活性炭注入装置で、粉末活性炭注入演算装置7で求められた粉末活性炭注入率19と、流量計測器17で計測された原水流量18とを入力し、原水流量18に応じた粉末活性炭注入量が演算され、粉末活性炭20が沈砂池3に注入される。   Further, a flow rate measuring device 17 is provided in the water conduit 2, and the raw water flow rate 18 is measured by the flow rate measuring device 17. 8 is a powdered activated carbon injection device, which inputs the powdered activated carbon injection rate 19 obtained by the powdered activated carbon injection arithmetic unit 7 and the raw water flow rate 18 measured by the flow rate measuring device 17, and powdered activated carbon injection according to the raw water flow rate 18. The amount is calculated and powdered activated carbon 20 is injected into the sand basin 3.

次に、本実施の形態の作用について説明する。   Next, the operation of the present embodiment will be described.

まず、粉末活性炭注入演算装置7に設定されている演算式を図2乃至図4を用いて説明する。   First, arithmetic expressions set in the powdered activated carbon injection arithmetic unit 7 will be described with reference to FIGS.

図2は、共存する溶解性有機物質濃度と、臭気物質除去率との関係を示している。ここで、臭気物質としては、2M−IBを例にとり、溶解性有機物濃度は溶解性有機体炭素濃度(以下、DOCと記す)を用いて表している。縦軸の2−MIB除去率は、(1)式により計算される。

Figure 2005288309
FIG. 2 shows the relationship between the coexisting soluble organic substance concentration and the odor substance removal rate. Here, as an odor substance, 2M-IB is taken as an example, and the soluble organic substance concentration is expressed using a soluble organic carbon concentration (hereinafter referred to as DOC). The 2-MIB removal rate on the vertical axis is calculated by equation (1).
Figure 2005288309

図2に示したように、DOCが増加すると2−MIB除去率は低下する。その影響は、原水の2−MIB濃度が高いほど大きくなる。したがって、2−MIBの処理目標を達成するのに必要な粉末活性炭注入率を推定するためには、原水の2−MIB濃度と、共存する溶解性有機物濃度の関係を考慮する必要がある。   As shown in FIG. 2, as the DOC increases, the 2-MIB removal rate decreases. The effect increases as the 2-MIB concentration of raw water increases. Therefore, in order to estimate the powdered activated carbon injection rate required to achieve the 2-MIB treatment target, it is necessary to consider the relationship between the 2-MIB concentration of raw water and the concentration of soluble organic matter coexisting therewith.

次に、2−MIB除去に必要な粉末活性炭注入率の演算方法を説明する。図3は、粉末活性炭注入率を一定とした場合の、滞留時間と2−MIB残存率との関係への、共存する有機物濃度(DOC)の影響を表している。また、図4は、滞留時間を一定とした場合の、粉末活性炭注入率と2−MIB残存率の関係と、DOCの影響を表している。ここで、2−MIB残存率は、(2)式により計算される。

Figure 2005288309
Next, a method for calculating the powdered activated carbon injection rate necessary for 2-MIB removal will be described. FIG. 3 shows the influence of the coexisting organic substance concentration (DOC) on the relationship between the residence time and the 2-MIB residual rate when the powdered activated carbon injection rate is constant. FIG. 4 shows the relationship between the powder activated carbon injection rate and the 2-MIB residual rate when the residence time is constant, and the influence of DOC. Here, the 2-MIB remaining rate is calculated by the equation (2).
Figure 2005288309

図3において、2−MIB残存率と滞留時間、およびDOCの関係は、(3)式のような関係式により計算される。   In FIG. 3, the relationship between the 2-MIB remaining rate, the residence time, and the DOC is calculated by a relational expression such as the expression (3).

2-MIB残存率=1−MtDOC×Mt2−MIB×t ・・・(3)
ここで、tは滞留時間、nは指数係数である。また、MtDOC、Mt2-MIBは、それぞれDOC、および2−MIBの影響を考慮するための係数であり、以下の(4)式、(5)式により求められる。
2-MIB residual ratio = 1-Mt DOC × Mt 2-MIB × t n (3)
Here, t is a residence time and n is an exponential coefficient. Mt DOC and Mt 2 -MIB are coefficients for considering the effects of DOC and 2-MIB, respectively, and are obtained by the following equations (4) and (5).

MtDOC=at1×exp(at2×DOC) ・・・(4)
ここで、at1、at2は係数。DOCiは、原水の溶解性有機体炭素濃度測定値である。
Mt DOC = a t1 × exp ( a t2 × DOC i) ··· (4)
Here, a t1 and a t2 are coefficients. DOC i is a measured value of dissolved organic carbon concentration in raw water.

Mt2−MIB=bt1×C2−MIBi+bt2 ・・・(5)
ここで、bt1、bt2は係数。C2-MIBiは、原水の2−MIB濃度測定値である。
Mt 2 -MIB = b t1 × C 2 -MIBi + b t2 (5)
Here, b t1 and b t2 are coefficients. C 2-MIBi is a measured value of 2-MIB concentration of raw water.

また、図4において、2−MIB残存率と粉末活性炭注入率、および原水2−MIB濃度とDOCの関係は、以下の(6)式のような関係式で計算される。   In FIG. 4, the relationship between the 2-MIB residual rate and the powdered activated carbon injection rate, and the raw water 2-MIB concentration and DOC are calculated by the following relational expression (6).

2-MIB残存率=exp(MiDOC×Mi2−MIB×I) ・・・(6)
ここで、Iは粉末活性炭注入率である。また、MiDOC、Mi2-MIBは、それぞれDOC、および2−MIBの影響を考慮するための係数であり、以下の(7)式、(8)式により求められる。
2-MIB remaining rate = exp (Mi DOC × Mi 2-MIB × I) (6)
Here, I is the powder activated carbon injection rate. Mi DOC and Mi 2-MIB are coefficients for considering the effects of DOC and 2-MIB, respectively, and are obtained by the following equations (7) and (8).

MiDOC=ai1×exp(ai2×DOC) ・・・(7)
ここで、ai1、ai2は係数。DOCiは、原水の溶解性有機体炭素濃度測定値である。
Mi DOC = a i1 × exp (a i2 × DOC i ) (7)
Here, a i1 and a i2 are coefficients. DOC i is a measured value of dissolved organic carbon concentration in raw water.

Mi2−MIB=bi1×C2−MIBi+bi2 ・・・(8)
ここで、bi1、bi2は係数。C2-MIBiは、原水の2−MIB濃度測定値である。
Mi 2-MIB = b i1 × C 2-MIBi + b i2 (8)
Here, b i1 and b i2 are coefficients. C 2-MIBi is a measured value of 2-MIB concentration of raw water.

したがって、粉末活性炭注入率Iは、(3)式と(6)式との関係から、次の(9)式に示したような、係数MiDOC、Mi2-MIBおよび滞留時間tの関数として、演算することができる。 Therefore, the powder activated carbon injection rate I is a function of the coefficients Mi DOC , Mi 2 -MIB and residence time t as shown in the following equation (9) from the relationship between the equations (3) and (6). Can be computed.

I=f(MiDOC,Mi2-MIB,t) ・・・(9)
すなわち、粉末活性炭注入演算装置7では、被処理水(原水)中の臭気物質(ここでは2−MIB)の濃度測定値C2-MIBiと共存する有機物質の濃度測定値DOCiを入力し、係数演算手段により、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数Mi2-MIB、MiDOCを、前記測定された臭気物質濃度測定値C2-MIBiおよび有機物質濃度DOCiに基づいて(4)式、(5)式および(7)式、(8)式を用い、(3)式、(6)式の関係からそれぞれ求め、注入率演算手段により、前記被処理水中の臭気物質を、(1)式で予め求めた目標除去率を達成するに必要な前記粉末活性炭の注入率Iを、(9)式で示した関係式により、前記各係数MiDOC,Mi2-MIB及び滞留時間tの関数として求める。
I = f (Mi DOC , Mi 2-MIB , t) (9)
That is, the powdered activated carbon injection arithmetic unit 7 inputs the concentration measurement value DOC i of the organic substance coexisting with the concentration measurement value C 2-MIBi of the odorous substance (2-MIB in this case) in the treated water (raw water), The coefficient calculation means calculates the coefficients Mi 2-MIB and Mi DOC that affect the residual rate of these odorous substances and organic substances accompanying the powdered activated carbon injection into the measured odorous substance concentration measurement value C 2-MIBi. And the formula (4), (5), (7), and (8) based on the organic substance concentration DOC i , respectively, and obtained from the relationship between the expressions (3) and (6), and the injection rate calculating means Thus, the odorous substance in the water to be treated is determined by using the relational expression shown in the equation (9), the injection rate I of the powdered activated carbon necessary to achieve the target removal rate obtained in advance by the equation (1). Obtained as a function of the coefficients Mi DOC , Mi 2 -MIB and residence time t.

本実施の形態によれば、粉末活性炭でカビ臭物質の除去を行う場合に、粉末活性炭注入演算装置7では、共存する溶解性有機物質濃度の影響を考慮して粉末活性炭注入率I(19)を演算し、その注入率に基づいて粉末活性炭注入装置8を制御することができるため、粉末活性炭注入不足による処理水質の悪化を防止できると共に、無駄な粉末活性炭注入を抑制することにより経済性に優れた粉末活性炭注入制御支援および、注入制御システムを実現できる。   According to this embodiment, when removing the musty odor substance with powdered activated carbon, the powdered activated carbon injection computing device 7 takes into consideration the influence of the coexisting dissolved organic substance concentration, and the powdered activated carbon injection rate I (19) Since the activated carbon powder injection device 8 can be controlled based on the injection rate, it is possible to prevent deterioration of the treated water quality due to insufficient powder activated carbon injection, and economically by suppressing unnecessary powder activated carbon injection. Excellent powder activated carbon injection control support and injection control system can be realized.

次に、図5で示す実施の形態を説明する。なお、図1と同一の部分には同じ符号を付している。   Next, the embodiment shown in FIG. 5 will be described. In addition, the same code | symbol is attached | subjected to the part same as FIG.

図5において、原水が取水口1から導水管2を通って沈砂池3に導かれ、さらに、着水井4から凝集・沈殿池5、ろ過池6を通過する間に、懸濁物質が取り除かれる。導水管2には、採水管9が接続され、前処理装置10を介して臭気物質濃度測定装置11および蛍光分析計21へ供給されるようになっている。臭気物質濃度測定装置11により、臭気物質濃度が計測され、その計測値12は粉末活性炭注入演算装置7に入る。   In FIG. 5, raw water is led from the intake 1 to the sedimentation basin 3 through the water conduit 2, and the suspended solids are removed while passing from the landing well 4 through the coagulation / sedimentation basin 5 and the filtration basin 6. . A water sampling tube 9 is connected to the water conduit 2 and is supplied to the odorous substance concentration measuring device 11 and the fluorescence analyzer 21 via the pretreatment device 10. The odor substance concentration measuring device 11 measures the odor substance concentration, and the measured value 12 enters the powdered activated carbon injection arithmetic unit 7.

蛍光分析計21は有機物濃度測定装置として使用している。すなわち、波長345nmの励起光に反応して発光する波長425nmの蛍光の強度を計測し、その測定値22は、粉末活性炭注入演算装置7に入る。蛍光強度と、溶解性有機炭素濃度(DOC)との間には相関があるため、蛍光強度測定値から相関関係によりDOCを推定する。   The fluorescence analyzer 21 is used as an organic substance concentration measuring device. That is, the intensity of fluorescence having a wavelength of 425 nm emitted in response to excitation light having a wavelength of 345 nm is measured, and the measured value 22 enters the powdered activated carbon injection arithmetic unit 7. Since there is a correlation between the fluorescence intensity and the soluble organic carbon concentration (DOC), the DOC is estimated from the fluorescence intensity measurement value based on the correlation.

粉末活性炭注入演算装置7には、水質目標値入力手段15が接続されており、ここで臭気物質濃度、および溶解性有機物質濃度の目標値が入力される。粉末活性炭注入演算装置7では、臭気物質濃度と溶解性有機物濃度の関係と予め設定された臭気物質濃度、および溶解性有機物質の処理目標値を比較して、それぞれの目標値を達成するのに必要な粉末活性炭注入率が演算される。また、粉末活性炭注入演算装置7には、表示装置16が接続されており、臭気物質濃度計測値12、蛍光強度計測値、溶解性有機物質濃度推定値、水質目標値、および粉末活性炭注入率演算結果が出力され表示される。   A water quality target value input means 15 is connected to the powdered activated carbon injection arithmetic unit 7, and the target value of the odor substance concentration and the soluble organic substance concentration is input here. The powdered activated carbon injection arithmetic unit 7 compares the relationship between the odor substance concentration and the soluble organic substance concentration with the preset odor substance concentration and the treatment target value of the soluble organic substance to achieve each target value. The required powdered activated carbon injection rate is calculated. Further, a display device 16 is connected to the powdered activated carbon injection calculation device 7, and the odorous substance concentration measurement value 12, fluorescence intensity measurement value, soluble organic substance concentration estimated value, water quality target value, and powdered activated carbon injection rate calculation are calculated. The result is output and displayed.

一方、流量計測器17により原水流量が計測され、この計測値18は前記粉末活性炭注入演算値19と共に粉末活性炭注入装置8に入り、ここで、これに応じた粉末活性炭注入量が演算され、粉末活性炭20が沈砂池3に注入される。 On the other hand, the raw water flow rate is measured by the flow meter 17, and this measured value 18 enters the powdered activated carbon injection device 8 together with the powdered activated carbon injection calculation value 19. Here, the powdered activated carbon injection amount corresponding to this is calculated, and the powder Activated carbon 20 is injected into the sand basin 3.

次に、本実施例の作用について説明する。   Next, the operation of this embodiment will be described.

図6に、蛍光分析計21によって測定される蛍光強度と、溶解性有機炭素濃度(DOC)の関係を示す。前述のように、蛍光強度とDOCの間には図6で示す相関があるため、蛍光強度を測定することにより、測定値から以下の(10)式によりDOCを推定することが可能である。   FIG. 6 shows the relationship between the fluorescence intensity measured by the fluorescence analyzer 21 and the soluble organic carbon concentration (DOC). As described above, since there is a correlation shown in FIG. 6 between the fluorescence intensity and the DOC, it is possible to estimate the DOC from the measured value by the following equation (10) by measuring the fluorescence intensity.

DOC=cD1×FL+cD2 ・・・(10)
ここで、cD1、は係数、cD2は定数、FLは蛍光強度である。この式を用いてDOCを推定し、さらに、臭気物質濃度測定装置11により測定された臭気物質濃度C2-MIBiを用いて、前記(3)式から(9)式の演算式により、臭気物質除去目標を達成するのに必要な粉末活性炭注入率を演算することができる。
DOC i = c D1 × FL + c D2 (10)
Here, c D1 is a coefficient, c D2 is a constant, and FL is fluorescence intensity. The DOC i is estimated using this equation, and the odor substance concentration C 2 -MIBi measured by the odor substance concentration measuring device 11 is used to calculate the odor according to the above equations (3) to (9). The powdered activated carbon injection rate necessary to achieve the substance removal target can be calculated.

本実施形態によれば、蛍光分析計21により、時間遅れなく、また非接触で原水の蛍光強度を測定する、この蛍光強度からDOCを推定できるため、時間遅れなく粉末活性炭注入率の演算が可能となり、粉末活性炭注入不足による処理水質の悪化を防止できると共に、無駄な粉末活性炭注入を抑制することにより経済性に優れた粉末活性炭注入制御支援および、注入制御システムを実現できる。   According to this embodiment, the fluorescence analyzer 21 can measure the fluorescence intensity of raw water without contact with time delay, and can estimate the DOC from this fluorescence intensity. Thus, it is possible to prevent the deterioration of the treated water quality due to insufficient powdered activated carbon injection, and it is possible to realize a powdered activated carbon injection control support and an injection control system excellent in economic efficiency by suppressing unnecessary powdered activated carbon injection.

次に、図7で示す実施の形態を説明する。この実施の形態におけるハード構成は図5と同様の構成であるが、粉末活性炭注入率の演算手段が異なる。以下に、粉末活性炭注入率の演算手順を説明する。   Next, the embodiment shown in FIG. 7 will be described. The hardware configuration in this embodiment is the same as that shown in FIG. 5, but the means for calculating the powdered activated carbon injection rate is different. Below, the calculation procedure of powder activated carbon injection rate is demonstrated.

図7において、ステップ30では、図5で示した水質目標設定手段15により、臭気成分物質として、2−MIBとジェオスミンの処理目標濃度(Ct2-MIB、CtG)と、溶解性有機物の指標として、溶解性有機体炭素濃度(DOC)、過マンガン酸カリウム消費量(KMnO消費量)およびトリハロメタン生成能(THMFP)の粉末活性炭処理後の目標濃度(DOCt、KMnO4t、THMFPt)を設定する。 In FIG. 7, in step 30, the water quality target setting means 15 shown in FIG. 5 uses the treatment target concentrations of 2-MIB and geosmin (Ct 2 -MIB, Ct G ) as the odor component substance and the indicator of the soluble organic matter. As a target, the dissolved organic carbon concentration (DOC), potassium permanganate consumption (KMnO 4 consumption) and trihalomethane production ability (THMFP) after powder activated carbon treatment (DOC t , KMnO 4 t , THMFP t ) Set.

ここで、DOCと蛍光分析計21により測定される蛍光強度の間には、図6に示したように相関がある。また、蛍光強度とKMnO消費量およびTHMFPの間にも、図8、図9に示したように相関があることが確認されており、この関係を利用して、ステップ31では、水質目標値の中で有機物濃度に関連する、DOCt、KMnO4t、THMFPtに対応した蛍光強度FLを、以下の(11)式、(12)式、(13)式より演算する。 Here, there is a correlation between the DOC and the fluorescence intensity measured by the fluorescence analyzer 21 as shown in FIG. Further, it has been confirmed that there is a correlation between the fluorescence intensity, the KMnO 4 consumption amount, and THMFP as shown in FIGS. 8 and 9, and using this relationship, in step 31, the water quality target value is obtained. Among them, the fluorescence intensity FL corresponding to DOC t , KMnO 4 t , and THMFP t related to the organic substance concentration is calculated from the following expressions (11), (12), and (13).

FLDOC=cD3×DOC+cD4 ・・・(11)
FLKMnO4=cK1×KMnO消費量+cK2 ・・・(12)
FLTHMFP=cT1×THMFP+cT2 ・・・(13)
ステップ32では、FLDOC、FLKMnO4、FLTHMFPを比較し、最小の蛍光強度を処理水蛍光強度の目標値(FLt)に決定する。
FL DOC = c D3 × DOC t + c D4 (11)
FL KMnO4 = c K1 × KMnO 4 consumption t + c K2 (12)
FL THMFP = c T1 × THMFP t + c T2 (13)
In step 32, FL DOC , FL KMnO4 , and FL THMFP are compared, and the minimum fluorescence intensity is determined as the target value (FL t ) of the treated water fluorescence intensity.

ステップ34では、蛍光分析計21による計測値FLi(33)と、処理後蛍光強度の目標値FLtと、活性炭処理時間tとの関係から、溶解性有機物質濃度の目標を達成するのに必要な、粉末活性炭注入率(第1の注入率)IOを、以下の(14)式で演算する。 In step 34, in order to achieve the target of the soluble organic substance concentration from the relationship between the measured value FL i (33) by the fluorescence analyzer 21, the target value FL t of the post-treatment fluorescence intensity, and the activated carbon treatment time t. The required powdered activated carbon injection rate (first injection rate) I O is calculated by the following equation (14).

Io=f(FLi,FLt,t) ・・・(14)
ステップ35では、蛍光分析計21による計測値FLiを用いて、前述の(10)式により原水のDOCiを推定する。
Io = f (FL i , FL t , t) (14)
In step 35, the DOC i of the raw water is estimated by the above equation (10) using the measured value FL i by the fluorescence analyzer 21.

ステップ37では、臭気物質濃度測定装置11により計測された原水内の臭気物質濃度(Ci2-MIB、CiG)(36)と臭気物質濃度処理目標値(Ct2-MIB、CtG)と、共存する溶解性有機物質濃度(DOCi)の関係から、前述の(9)式により処理目標を達成するのに必要な粉末活性炭注入率(第2の注入率)I2−MIB、Iを演算する。 In step 37, odorant concentration in the raw water that is measured by the odorant concentration measuring device 11 (Ci 2-MIB, Ci G) (36) and the odorant concentration process target value (Ct 2-MIB, Ct G ) and, from the relationship of solubility organic substance concentration of the coexisting (DOC i), powdered activated carbon injection rate required to achieve the target processing by the above equation (9) (a second injection rate) I 2-MIB, and I G Calculate.

ステップ38では、溶解性有機物質濃度の目標を達成するのに必要な、第1の粉末活性炭注入率IOと、臭気物質濃度の処理目標を達成するのに必要な第2の粉末活性炭注入率I2−MIB、Iを比較し、最大値を粉末活性炭注入率Iとする。 In step 38, a first powdered activated carbon injection rate IO required to achieve the soluble organic concentration target and a second powdered activated carbon injection rate required to achieve the odorous substance treatment target. I 2 -MIB and IG are compared, and the maximum value is defined as the powder activated carbon injection rate I.

本実施の形態によれば、臭気物質、および溶解性有機物質の処理目標を同時に達成するのに最適な粉末活性炭注入率で粉末活性炭注入装置を制御することができるため、臭気物質による水質事故、トリハロメタン等消毒副生成物の発生を防止できると共に、無駄な粉末活性炭注入を防止することにより経済性に優れた粉末活性炭注入制御支援および、注入制御システムを実現できる。   According to the present embodiment, it is possible to control the powdered activated carbon injection device at the optimum powdered activated carbon injection rate to simultaneously achieve the treatment target of the odorous substance and the soluble organic substance. Generation of disinfection by-products such as trihalomethane can be prevented, and powder activated carbon injection control support and injection control system excellent in economic efficiency can be realized by preventing unnecessary powdered activated carbon injection.

次に、図10に示す実施の形態を説明する。   Next, the embodiment shown in FIG. 10 will be described.

図10において、原水は取水口1から導水管2を通って沈砂池3に導かれ、ここで大きな夾雑物は取り除かれる。その後、着水井4から凝集・沈殿池5、ろ過池6を通過する間に、懸濁物質が取り除かれる。導水管2には、採水管9が接続されており、前処理装置10原水の一部が採水され、原水内の侠雑物、および懸濁物質を除去する。ここまでの構成は図1および図5と同様である。   In FIG. 10, the raw water is led from the water intake 1 through the water conduit 2 to the sand basin 3 where large impurities are removed. Thereafter, suspended substances are removed while passing from the landing well 4 through the coagulation / sedimentation basin 5 and the filtration basin 6. A water collection pipe 9 is connected to the water conduit 2, and a part of the raw water of the pretreatment device 10 is collected to remove impurities and suspended substances in the raw water. The configuration up to this point is the same as in FIGS.

図10の構成では、前処理装置10の出口側に三方弁25を設け、その一方の入り口側を前処理装置の出口側に接続している。また、三方弁25の出口側は臭気物質濃度測定装置11、および蛍光分析計21へ接続し、これらに原水を供給できるように構成している。   In the configuration of FIG. 10, a three-way valve 25 is provided on the outlet side of the pretreatment device 10, and one inlet side thereof is connected to the outlet side of the pretreatment device. Further, the outlet side of the three-way valve 25 is connected to the odor substance concentration measuring device 11 and the fluorescence analyzer 21 so that raw water can be supplied thereto.

また、この実施の形態では、粉末活性炭の注入が行われる沈砂池3の出口側配管に採水管23が接続されており、ここで採水された粉末活性炭注入処理後の処理水は、前処理装置24へ導かれる。前処理装置24は、ろ過機能を有しており、粉末活性炭注入装置8から注入された粉末活性炭20などの懸濁物質を除去する。   Moreover, in this embodiment, the water sampling pipe 23 is connected to the outlet side piping of the sand basin 3 where the powdered activated carbon is injected, and the treated water after the powdered activated carbon injection processing collected here is pretreated. Guided to device 24. The pretreatment device 24 has a filtration function, and removes suspended substances such as the powdered activated carbon 20 injected from the powdered activated carbon injection device 8.

前処理装置24の出口側は、前記三方弁25の他方の入り口に接続しており、前処理装置24で処理されたサンプル水は、三方弁25へ導かれる。三方弁25では、周期的に流路を切り替えるように設定されており、所定時間毎に、原水と、粉末活性炭処理水とが択一的に切り替えられ、臭気物質濃度測定装置11および蛍光分析計21へと供給される。三方弁25の切り替え周期は、例えば、臭物質濃度測定装置11と蛍光分析計21の最小分析時間を比較して大きい方の値を最小切り替え周期とする。   The outlet side of the pretreatment device 24 is connected to the other inlet of the three-way valve 25, and the sample water treated by the pretreatment device 24 is guided to the three-way valve 25. The three-way valve 25 is set so as to periodically switch the flow path, and the raw water and the powdered activated carbon treatment water are alternatively switched every predetermined time, and the odorous substance concentration measuring device 11 and the fluorescence analyzer are switched. 21 is supplied. As for the switching cycle of the three-way valve 25, for example, the minimum analysis time of the odor substance concentration measuring device 11 and the fluorescence analyzer 21 is compared, and the larger value is set as the minimum switching cycle.

臭気物質濃度測定装置11では、臭気物質濃度が計測され、その計測値12は粉末活性炭注入演算装置7に入る。また、蛍光分析計21により、波長345nmの励起光に反応して発光する波長425nmの蛍光の強度が計測され、その測定値22は、粉末活性炭注 入演算装置7に入る。   The odorous substance concentration measuring device 11 measures the odorous substance concentration, and the measured value 12 enters the powdered activated carbon injection arithmetic unit 7. The fluorescence analyzer 21 measures the intensity of fluorescence having a wavelength of 425 nm, which is emitted in response to excitation light having a wavelength of 345 nm, and the measured value 22 enters the powdered activated carbon injection arithmetic unit 7.

粉末活性炭注入演算装置7には、水質目標値入力手段15が接続されており、ここから臭気物質濃度および溶解性有機物質濃度の目標値が入力される。粉末活性炭注入演算装置7では、原水および処理水の臭気物質濃度と溶解性有機物濃度、および臭気物質濃度、溶解性有機物質の処理目標値を用いて、最適な粉末活性炭注入率が演算される。また、粉末活性炭注入演算装置7には、表示装置16が接続されており、原水および処理水の臭気物質濃度計測値12と、蛍光強度計測値22と、溶解性有機物質濃度推定値と、夫々の水質目標値、および粉末活性炭注入率演算結果が出力され表示される。   A water quality target value input means 15 is connected to the powdered activated carbon injection arithmetic unit 7, from which target values of odor substance concentration and soluble organic substance concentration are input. In the powdered activated carbon injection calculation device 7, the optimum powdered activated carbon injection rate is calculated using the odor substance concentration and the soluble organic substance concentration of raw water and treated water, and the treatment target value of the odor substance concentration and the soluble organic substance. Moreover, the display apparatus 16 is connected to the powdered activated carbon injection | pouring calculating apparatus 7, and the odorous substance density | concentration measured value 12, the fluorescence intensity measured value 22, the soluble organic substance density | concentration estimated value of raw | natural water and treated water, respectively. Water quality target value and powder activated carbon injection rate calculation result are output and displayed.

一方、流量計測器17により原水流量が計測され、この計測値18は前記粉末活性炭注入演算値19と共に粉末活性炭注入装置8に入り、これに応じた粉末活性炭注入量が演算され、粉末活性炭20が沈砂池3に注入される。   On the other hand, the raw water flow rate is measured by the flow meter 17, and this measured value 18 enters the powdered activated carbon injection device 8 together with the powdered activated carbon injection calculation value 19, and the powdered activated carbon injection amount corresponding to this is calculated. It is injected into the sand basin 3.

次に、粉末活性炭注入演算装置7における粉末活性炭注入率演算手順を、図11を用いて説明する。   Next, the powder activated carbon injection rate calculation procedure in the powder activated carbon injection calculation device 7 will be described with reference to FIG.

図11において、ステップ30から、ステップ38までの処理は図7と同じである。すなわち、ステップ30では、水質目標設定手段16により、2−MIBとジェオスミンの処理後目標濃度(Ct2-MIB、CtG)と、溶解性有機物の指標として、溶解性有機体炭素濃度(DOC)、過マンガン酸カリウム消費量(KMnO消費量)およびトリハロメタン生成能(THMFP)の粉末活性炭処理後の目標濃度(DOCt、KMnO4t、THMFPt)を設定する。 In FIG. 11, the processing from step 30 to step 38 is the same as that in FIG. That is, in step 30, the water quality target setting means 16, after processing target concentration of 2-MIB and geosmin (Ct 2-MIB, Ct G ) and, as an indicator of soluble organic substances, soluble organic carbon concentration (DOC) , The target concentration (DOC t , KMnO 4t , THMFP t ) after the powdered activated carbon treatment of potassium permanganate consumption (KMnO 4 consumption) and trihalomethane production ability (THMFP) is set.

ステップ31では、図6、図8、図9に示した相関関係により、水質目標値の中で有機物濃度に関連する、DOCt、KMnO4t、THMFPtに対応した蛍光強度FLを(11)式、(12)式、(13)式より演算する。 In step 31, the fluorescence intensity FL corresponding to DOC t , KMnO 4t , and THMFP t related to the organic substance concentration in the water quality target value is expressed by the equation (11) based on the correlation shown in FIGS. , (12) and (13).

ステップ32では、FLDOC、FLKMnO4、FLTHMFPを比較し、最小の蛍光強度を処理水蛍光強度の目標値FLtに決定する。 In step 32, FL DOC, compares the FL KMnO4, FL THMFP, to determine the minimum fluorescent intensity target value FL t of treated water fluorescence intensity.

ステップ34では、原水の蛍光強度計測値FLiと処理後蛍光強度の目標値FLtと、活性炭処理時間tの値を用いて、(14)式により、溶解性有機物質濃度の目標を達成するのに必要な、第1の粉末活性炭注入率IOを演算する。 In step 34, the target value of the soluble organic substance concentration is achieved by the equation (14) using the measured value of the fluorescence intensity FL i of the raw water, the target value FL t of the post-treatment fluorescence intensity, and the value of the activated carbon treatment time t. The first powdered activated carbon injection rate IO required for the calculation is calculated.

ステップ35では、原水蛍光強度測定値FLiを用いて、(10)式により原水のDOCiを推定する。 In step 35, the DOC i of the raw water is estimated from the equation (10) using the raw water fluorescence intensity measurement value FL i .

ステップ37では、臭気物質濃度測定装置11により計測された原水内の臭気物質濃度(Ci2-MIB、CiG)と臭気物質濃度処理後目標値(Ct2-MIB、CtG)と、共存する溶解性有機物質濃度(DOCi)の関係から、(9)式により処理目標を達成するのに必要な第2の粉末活性炭注入率(I2−MIB、I)を演算する。 In step 37, odorant concentration in the raw water that is measured by the odorant concentration measuring device 11 (Ci 2-MIB, Ci G) and odorant concentration process after the target value (Ct 2-MIB, Ct G ) and, coexist From the relationship of the dissolved organic substance concentration (DOC i ), the second powdered activated carbon injection rate (I 2 -MIB , I G ) necessary to achieve the treatment target is calculated by the equation (9).

ステップ38では、溶解性有機物質濃度の目標を達成するのに必要な、第1の粉末活性炭注入率IOと、臭気物質濃度の処理目標を達成するのに必要な第2の粉末活性炭注入率(I2−MIB、I)を比較し、最大値を粉末活性炭の基本注入率Ibasとする。 In step 38, a first powdered activated carbon injection rate IO required to achieve the soluble organic concentration target and a second powdered activated carbon injection rate required to achieve the odorous substance treatment target. (I 2 -MIB , I G ) are compared, and the maximum value is defined as the basic injection rate I bas of the powdered activated carbon.

次に、ステップ39では、あらかじめ設定してある臭気物質濃度処理目標値(Ct2-MIB、CtG)および有機物濃度に関連する目標値、DOCt、KMnO4t、THMFPtと、三方弁25の切換えにより測定された、粉末活性炭処理水の、2−MIB濃度Co2-MIB、ジェオスミン濃度CoG、および蛍光強度FLoの計測値を比較する。その結果、どれか1項目でも処理水の濃度が目標値を上回っている場合は、夫々の差に応じて、以下の(15)式乃至(19)により各水質項目の粉末活性炭注入率補正値を計算する。 Next, at step 39, a preset odorant concentration process target values are (Ct 2-MIB, Ct G ) target values associated with and concentration of organic substances, DOC t, KMnO4 t, and THMFP t, of the three-way valve 25 measured by switching, the powdered activated carbon treated water, 2-MIB concentration Co 2-MIB, compared geosmin concentration Co G, and the measured value of fluorescence intensity FLo. As a result, if the concentration of treated water exceeds the target value in any one item, the powder activated carbon injection rate correction value for each water quality item is calculated according to the following formulas (15) to (19) depending on the difference. Calculate

ΔI2−MIB=a×(Ct2−MIB―Co2−MIB) ・・・(15)
ΔI=b×(Ct―Co) ・・・(16)
ΔIDOC=c×(CtDOC―CoDOC) ・・・(17)
ΔIKMnO4=d×(CtKMnO4―CoKMnO4) ・・・(18)
ΔITHMFP=e×(CtTHMFP―CoTHMFP) ・・・(19)
ここで、a、b、c、dは係数である。
ΔI 2−MIB = a × (Ct 2−MIB− Co 2−MIB ) (15)
ΔI G = b × (Ct G -Co G ) (16)
ΔI DOC = c × (Ct DOC -Co DOC ) (17)
ΔI KMnO 4 = d × (Ct KMnO 4 —Co KMnO 4 ) (18)
ΔI THMFP = e × (Ct THMFP− Co THMFP ) (19)
Here, a, b, c, and d are coefficients.

これらの結果、例えば、1項目だけ処理水濃度が目標を上回っている場合は、その項目の補正値を粉末活性炭注入率補正値ΔIとする。また、複数項目の処理水濃度が目標値を上回っている場合は、該当項目の内最大の補正値をΔIに採用する。また、各水質項目における処理水濃度と目標濃度の許容差を予め定めておき、すべての水質項目で処理水濃度が目標濃度を下回っている場合は、粉末活性炭基本注入率を減少させるように補正値ΔIを決定する。   As a result, for example, when the treated water concentration exceeds the target for one item, the correction value for that item is set as the powder activated carbon injection rate correction value ΔI. Further, when the concentration of treated water in a plurality of items exceeds the target value, the maximum correction value among the corresponding items is adopted as ΔI. In addition, the tolerance between the treated water concentration and the target concentration in each water quality item is determined in advance, and if the treated water concentration is lower than the target concentration in all the water quality items, it is corrected to reduce the powder activated carbon basic injection rate. The value ΔI is determined.

最後にステップ40で、(20)式により粉末活性炭注入率Iを決定する。   Finally, in step 40, the powdered activated carbon injection rate I is determined by the equation (20).

I=Ibas±ΔI ・・・(20)
本実施の形態によれば、原水の臭気物質濃度と蛍光強度を測定して粉末活性炭注入率を決定できるため、水質の急激な変動にも時間遅れなく粉末活性炭注入率を増減することができるため、注入率不足による処理水質の悪化を防止すると共に、過剰注入による処理コストの増大を防止することができる。また、粉末活性炭処理後の臭気物質濃度と蛍光強度を測定して、粉末活性炭注入率を補正するようにフィードバック制御する機能を有しているため、より正確な粉末活性炭注入制御が可能となるため、臭気物質による水質事故、トリハロメタン等消毒副生成物の発生を防止できると共に、無駄な粉末活性炭注入を防止することにより経済性に優れた粉末活性炭注入制御支援および、注入制御システムを実現できる。
I = Ibas ± ΔI (20)
According to the present embodiment, since the powder activated carbon injection rate can be determined by measuring the odor substance concentration and the fluorescence intensity of the raw water, the powder activated carbon injection rate can be increased or decreased without a time delay even for sudden fluctuations in water quality. In addition to preventing deterioration of treated water quality due to insufficient injection rate, it is possible to prevent an increase in processing cost due to excessive injection. In addition, since it has the function of feedback control to correct the powder activated carbon injection rate by measuring the odorous substance concentration and fluorescence intensity after powdered activated carbon treatment, more accurate powder activated carbon injection control becomes possible. In addition to preventing water quality accidents due to odorous substances and generation of disinfection by-products such as trihalomethanes, it is possible to realize a powdered activated carbon injection control support and an injection control system that are excellent in economy by preventing unnecessary powdered activated carbon injection.

本発明による水処理システムの一実施の形態を示すシステム構成図である。It is a system configuration figure showing one embodiment of a water treatment system by the present invention. 同上一実施の形態における臭気物質除去率と有機物質濃度との関係を説明する特性図である。It is a characteristic figure explaining the relationship between the odorous substance removal rate and organic substance density | concentration in one Embodiment same as the above. 同上一実施の形態における臭気物質残存率と滞留時間との関係を説明する特性図である。It is a characteristic view explaining the relationship between the odorous substance residual rate and residence time in one embodiment same as the above. 同上一実施の形態における臭気物質残存率と注入率との関係を説明する特性図である。It is a characteristic figure explaining the relationship between the odorous substance residual rate and injection | pouring rate in one Embodiment same as the above. 本発明の他の実施の形態を示すシステム構成図である。It is a system block diagram which shows other embodiment of this invention. 同上実施の形態に使用する蛍光強度と有機物濃度との相関関係を説明する特性図である。It is a characteristic view explaining the correlation between the fluorescence intensity and the organic substance concentration used in the embodiment. 他の実施の形態の粉末活性炭注入率の演算処理手順を説明するフローチャートである。It is a flowchart explaining the calculation processing procedure of the powdered activated carbon injection rate of other embodiment. 同上実施の形態に使用する蛍光強度とKMnO4との相関関係を説明する特性図である。It is a characteristic view explaining the correlation of the fluorescence intensity used for embodiment same as the above and KMnO4. 同上実施の形態に使用する蛍光強度とTHMFPとの相関関係を説明する特性図である。It is a characteristic view explaining the correlation between the fluorescence intensity and THMFP used in the same embodiment. 本発明の更に他の実施の形態を示すシステム構成図である。It is a system configuration figure showing other embodiments of the present invention. 同上更に他の実施の形態の粉末活性炭注入率の演算処理手順を説明するフローチャートである。It is a flowchart explaining the calculation processing procedure of the powdered activated carbon injection rate of other embodiment same as the above.

符号の説明Explanation of symbols

7 粉末活性炭注入演算装置
8 粉末活性炭注入装置
11 臭気物質濃度測定装置
13 有機物濃度測定装置
15 水質目標値設定手段
21 蛍光分析計
7 Powdered activated carbon injection computing device 8 Powdered activated carbon injection device 11 Odor substance concentration measuring device 13 Organic substance concentration measuring device 15 Water quality target value setting means 21 Fluorescence analyzer

Claims (8)

被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理方法であって、
被処理水中の臭気物質の濃度と共存する有機物質の濃度をそれぞれ測定し、
これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求め、
予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の注入率を、前記各係数及び滞留時間の関数として求める
ことを特徴とする水処理方法。
A water treatment method for injecting powdered activated carbon into water to be treated and removing soluble organic substances in the water to be treated,
Measure the concentration of odorous substances in the water to be treated and the concentration of coexisting organic substances,
Coefficients that affect the residual ratio of these odorous substances and organic substances with the powdered activated carbon injection are determined based on the measured odorous substance concentration and organic substance concentration, respectively.
A water treatment method, characterized in that an injection rate of the powdered activated carbon necessary to achieve a target removal rate of odorous substances determined in advance is determined as a function of the coefficients and residence time.
有機物質の濃度の測定に当り、被処理水の蛍光強度を測定し、この蛍光強度と有機物質濃度との相関関係から有機物質濃度を求めることを特徴とする請求項1に記載の水処理方法。   2. The water treatment method according to claim 1, wherein in measuring the concentration of the organic substance, the fluorescence intensity of the water to be treated is measured, and the concentration of the organic substance is obtained from the correlation between the fluorescence intensity and the concentration of the organic substance. . 被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理方法であって、
処理後の臭気物質の濃度目標値および共存する有機物質の濃度目標値をそれぞれ設定し、
前記有機物質濃度目標値に相当する蛍光強度を処理後蛍光強度目標値として相関関係から求め、
前記被処理水の蛍光強度を測定し、この測定された蛍光強度と前記処理後蛍光強度目標値と活性炭処理時間とから有機物質除去に必要な粉末活性炭の第1の注入率を求め、
前記被処理水中の臭気物質の濃度を測定すると共に、前記測定された被処理水の蛍光強度から相関により共存する有機物質の濃度を求め、
これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求め、
予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の第2の注入率を、前記各係数及び滞留時間の関数として求め、
これら第1の注入率と第2の注入率の中から最大の値を被処理水に対する粉末活性炭注入率として決定する
ことを特徴とする水処理方法。
A water treatment method for injecting powdered activated carbon into water to be treated and removing soluble organic substances in the water to be treated,
Set the target concentration of odorous substances after treatment and the target concentration of coexisting organic substances,
The fluorescence intensity corresponding to the organic substance concentration target value is determined from the correlation as the processed fluorescence intensity target value,
The fluorescence intensity of the water to be treated is measured, and the first injection rate of powdered activated carbon necessary for organic substance removal is determined from the measured fluorescence intensity, the post-treatment fluorescence intensity target value, and the activated carbon treatment time,
While measuring the concentration of odorous substances in the treated water, obtain the concentration of organic substances coexisting by correlation from the measured fluorescence intensity of the treated water,
Coefficients that affect the residual ratio of these odorous substances and organic substances with the powdered activated carbon injection are determined based on the measured odorous substance concentration and organic substance concentration, respectively.
Determining a second injection rate of the powdered activated carbon necessary to achieve the target removal rate of odorous substance determined in advance as a function of the coefficients and residence time;
A water treatment method characterized in that the maximum value among the first injection rate and the second injection rate is determined as the powdered activated carbon injection rate for the water to be treated.
粉末活性炭注入後の処理水における臭気物質の濃度および蛍光強度をそれぞれ測定し、予め設定した処理後の臭気物質の濃度目標値および処理後の蛍光強度目標値と、前記処理水の臭気物質の濃度測定値および蛍光強度の測定値との差をそれぞれ求め、これら差のうち大きい方の値に基づき粉末活性炭注入率の補正値を求めることを特徴とする請求項3に記載の水処理方法。   The concentration of the odorous substance and the fluorescence intensity in the treated water after powdered activated carbon injection are measured, respectively. The concentration target value of the odorous substance after treatment and the target value of the fluorescence intensity after treatment, and the concentration of the odorous substance in the treated water 4. The water treatment method according to claim 3, wherein a difference between the measured value and the measured value of the fluorescence intensity is obtained, and a correction value for the powder activated carbon injection rate is obtained based on the larger value of these differences. 被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理システムであって、
被処理水中の臭気物質の濃度と共存する有機物質の濃度をそれぞれ測定する臭気物質濃度測定装置および有機物質濃度測定装置と、
これら臭気物質の濃度測定値と有機物質の濃度測定値とをそれぞれ入力し、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記臭気物質濃度測定値および有機物質濃度測定値に基づいてそれぞれ求める係数演算手段と、
予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の注入率を、前記算出された各係数および滞留時間の関数として求める注入率演算手段と、
を備えたことを特徴とする水処理システム。
A water treatment system for injecting powdered activated carbon into the water to be treated to remove soluble organic substances in the water to be treated,
An odor substance concentration measuring device and an organic substance concentration measuring device for measuring the concentration of odorous substances in the water to be treated and the concentration of organic substances coexisting with each other;
The odorous substance concentration measurement value and the organic substance concentration measurement value are respectively input, and the odorous substance concentration measurement is performed to determine a coefficient that affects the residual ratio of the odorous substance and the organic substance accompanying the powdered activated carbon injection. Coefficient calculating means for obtaining the value and the measured value of organic substance concentration, respectively,
An injection rate calculating means for determining the injection rate of the powdered activated carbon necessary to achieve the target removal rate of the odorous substance determined in advance as a function of the calculated coefficients and residence time;
A water treatment system comprising:
有機物質濃度測定装置として、
被処理水の蛍光強度を測定する蛍光分析計と、
被処理水中の臭気物質の濃度この蛍光分析計の測定値に基づき、蛍光強度と有機物質濃度との相関関係から有機物質濃度を求める有機物質濃度演算手段と、
を設けたことを特徴とする請求項5に記載の水処理システム。
As an organic substance concentration measuring device,
A fluorescence analyzer that measures the fluorescence intensity of the water to be treated;
Concentration of odorous substance in the water to be treated Based on the measurement value of the fluorescence analyzer, an organic substance concentration calculating means for obtaining the organic substance concentration from the correlation between the fluorescence intensity and the organic substance concentration,
The water treatment system according to claim 5, wherein the water treatment system is provided.
被処理水に粉末活性炭を注入し、被処理水中の溶解性有機物質を除去する水処理システムであって、
活性炭注入処理後の処理水の臭気物質の濃度目標値および共存する有機物質の濃度目標値をそれぞれ設定すると共に、この設定された有機物質濃度目標値に相当する蛍光強度を処理後蛍光強度目標値として相関関係から求める水質目標値設定手段と、
前記被処理水の蛍光強度を測定する蛍光分析計と、
前記被処理水中の臭気物質の濃度を測定する臭気物質濃度測定装置と、
前記蛍光分析計で測定された蛍光強度と前記処理後蛍光強度目標値と活性炭処理時間とから有機物質除去に必要な粉末活性炭の第1の注入率を求めると共に、前記測定された被処理水の蛍光強度から相関により共存する有機物質の濃度求める第1の注入率演算手段と、
前記臭気物質の濃度測定値と有機物質の濃度測定値とをそれぞれ入力し、これら臭気物質および有機物質の、前記粉末活性炭注入に伴うそれらの残存率に影響を与える係数を、前記測定された臭気物質濃度および有機物質濃度に基づいてそれぞれ求める係数演算手段と、
予め求めた臭気物質の目標除去率を達成するに必要な前記粉末活性炭の第2の注入率を、前記各係数及び滞留時間の関数として求める第2の注入率演算手段と、
これら注入率演算手段で求められた第1の注入率と第2の注入率の中から最大の値を被処理水に対する粉末活性炭注入率として決定する注入率決定手段と
を備えたことを特徴とする水処理システム。
A water treatment system for injecting powdered activated carbon into the water to be treated to remove soluble organic substances in the water to be treated,
Set the target concentration of odorous substances and the target concentration of coexisting organic substances after activated carbon injection treatment, and set the fluorescence intensity corresponding to the set organic substance concentration target value after processing. Water quality target value setting means to obtain from the correlation as,
A fluorescence analyzer for measuring the fluorescence intensity of the water to be treated;
An odor substance concentration measuring device for measuring the concentration of the odor substance in the treated water;
A first injection rate of powdered activated carbon necessary for organic substance removal is obtained from the fluorescence intensity measured by the fluorescence analyzer, the post-treatment fluorescence intensity target value, and the activated carbon treatment time, and the measured water to be treated is obtained. A first injection rate calculating means for determining the concentration of the coexisting organic substance from the fluorescence intensity;
The concentration measurement value of the odorous substance and the concentration measurement value of the organic substance are respectively input, and the coefficient that affects the residual rate of the odorous substance and the organic substance accompanying the powdered activated carbon injection is determined as the measured odorous substance. Coefficient calculation means for obtaining each based on the substance concentration and the organic substance concentration,
A second injection rate calculating means for determining a second injection rate of the powdered activated carbon necessary for achieving the target removal rate of the odorous substance determined in advance as a function of the coefficients and residence time;
And an injection rate determining means for determining a maximum value among the first injection rate and the second injection rate obtained by the injection rate calculating means as the powdered activated carbon injection rate for the water to be treated. Water treatment system.
粉末活性炭注入後の処理水の臭気物質濃度および蛍光強度をそれぞれ臭気物質濃度測定装置および蛍光分析計に測定させる処理水案内装置と、
予め設定した処理後の臭気物質の濃度目標値および処理後の蛍光強度目標値と、前記処理水案内装置を経て測定された処理水の臭気物質の濃度測定値および蛍光強度の測定値との差をそれぞれ求め、これら差のうち大きい方の値に基づき粉末活性炭注入率の補正値を求める補正値演算手段と
を備えたことを特徴とする請求項7に記載の水処理システム。
A treated water guide device that causes the odorous substance concentration measuring device and the fluorescence analyzer to measure the odorous substance concentration and fluorescence intensity of the treated water after the powdered activated carbon injection,
Difference between the target concentration value of the processed odorous substance and the target fluorescence intensity value after processing, and the measured odorous substance concentration measured value and fluorescent intensity measured value through the treated water guide device The water treatment system according to claim 7, further comprising: a correction value calculation unit that calculates the correction value of the powdered activated carbon injection rate based on a larger value of these differences.
JP2004106773A 2004-03-31 2004-03-31 Water treatment method and water treatment system Expired - Fee Related JP4153893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106773A JP4153893B2 (en) 2004-03-31 2004-03-31 Water treatment method and water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106773A JP4153893B2 (en) 2004-03-31 2004-03-31 Water treatment method and water treatment system

Publications (2)

Publication Number Publication Date
JP2005288309A true JP2005288309A (en) 2005-10-20
JP4153893B2 JP4153893B2 (en) 2008-09-24

Family

ID=35321864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106773A Expired - Fee Related JP4153893B2 (en) 2004-03-31 2004-03-31 Water treatment method and water treatment system

Country Status (1)

Country Link
JP (1) JP4153893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157239A (en) * 2014-02-21 2015-09-03 メタウォーター株式会社 Method and device for controlling water treatment process
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157239A (en) * 2014-02-21 2015-09-03 メタウォーター株式会社 Method and device for controlling water treatment process
JP2019162583A (en) * 2018-03-19 2019-09-26 東芝インフラシステムズ株式会社 Water treatment system and water treatment method
JP7086658B2 (en) 2018-03-19 2022-06-20 東芝インフラシステムズ株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP4153893B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
Oloibiri et al. A comparative study on the efficiency of ozonation and coagulation–flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate
Altmann et al. UV254 absorbance as real-time monitoring and control parameter for micropollutant removal in advanced wastewater treatment with powdered activated carbon
CA2989452A1 (en) Process and device for the treatment of a fluid containing a contaminant
Liu et al. Removal of natural organic matter for controlling disinfection by-products formation by enhanced coagulation: A case study
JP2008161809A (en) Coagulant injection control system
Aryal et al. Evidence that BAC treatment enhances the DOC Removal by enhanced coagulation
Xu et al. Sonophotolytic degradation of phthalate acid esters in water and wastewater: influence of compound properties and degradation mechanisms
KR20160148284A (en) Complex water treatment system using advanced oxidation process of two-step uv for combining hydrogen peroxide-uv process and chlorine-uv process, and method for the same
TW201945293A (en) Water treatment management device and water quality monitoring method
KR20140144933A (en) Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same
CN108698859A (en) The running management method and reverse osmosis membrane treatment system of reverse osmosis membrane apparatus
JP2008068200A (en) Flocculation device and flocculation method
JP4439825B2 (en) Water quality control device for sewer facilities
Kang et al. Rapid and economical indicator for evaluating arsenic removal with minimum aluminum residual during coagulation process
JP4153893B2 (en) Water treatment method and water treatment system
JP5636263B2 (en) Flocculant injection control system
JP4660211B2 (en) Water treatment control system and water treatment control method
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
WO2020170364A1 (en) Water treatment apparatus and water treatment method
JP2007245146A (en) Sewage treatment system and measurement system
Govorova et al. Evaluation of barrier functions of traditional water supply facilities in relation to toxic trihalomethanes
JP4249768B2 (en) Water quality control system
JP2005313022A (en) Raw water quality estimating device
JP4170610B2 (en) Water quality control system
Brookman et al. A method for the detection of bromate in brackish water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R151 Written notification of patent or utility model registration

Ref document number: 4153893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees