JP2005288217A - Concentration device for aqueous solution - Google Patents

Concentration device for aqueous solution Download PDF

Info

Publication number
JP2005288217A
JP2005288217A JP2004103191A JP2004103191A JP2005288217A JP 2005288217 A JP2005288217 A JP 2005288217A JP 2004103191 A JP2004103191 A JP 2004103191A JP 2004103191 A JP2004103191 A JP 2004103191A JP 2005288217 A JP2005288217 A JP 2005288217A
Authority
JP
Japan
Prior art keywords
support plate
liquid
concentrated
osmosis membrane
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004103191A
Other languages
Japanese (ja)
Other versions
JP4106350B2 (en
Inventor
Takehiro Nosoko
武浩 野底
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004103191A priority Critical patent/JP4106350B2/en
Publication of JP2005288217A publication Critical patent/JP2005288217A/en
Application granted granted Critical
Publication of JP4106350B2 publication Critical patent/JP4106350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve various problems accompanying with a vertical structure when a solution such as sea water is concentrated/treated such as a problem of warping of an osmotic membrane support plate and a problem of quality reduction by an adhesive and of assembling/deassembling in a device capable of efficiently concentrating an aqueous solution. <P>SOLUTION: The thin support plate having one surface becoming an evaporation surface of a liquid to be concentrated and the other surface becoming a condensation surface is hung/supported in the state that it is inclined vertically or in a range of 30° or smaller from the vertical plane. It is made to a structure that the liquid to be concentrated is fed to the evaporation surface and a condensation liquid is recovered from the condensation surface. Therefore, its own weight is acted on the support plate in a vertical direction, deflection and deformation of the support plate by deflection and thermal distortion are outstandingly reduced and a drift current of the liquid to be concentrated is also suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、海水や動植物から得た搾汁などの水溶液における水分を除去して濃縮する、濃縮効率が極めて高く、しかも生産速度も高い装置に関する。 The present invention relates to an apparatus that removes and concentrates water in an aqueous solution such as squeezed juice obtained from seawater or animals and plants, and has a very high concentration efficiency and a high production rate.

特開昭57−184405号公報には、低濃度の溶液を特に沸騰させたり減圧して蒸発させたりする必要がなく、最小の熱量で最大の濃縮効率を得ることのできる濃縮器が提示されている。その構造は、下記のとおりである。 JP-A-57-184405 discloses a concentrator capable of obtaining the maximum concentration efficiency with a minimum amount of heat without the need to boil or evaporate a low-concentration solution particularly under reduced pressure. Yes. Its structure is as follows.

前記の濃縮器は、液体が浸透する膜すなわち浸透膜を上下両面に貼り付けた薄い支持板を多数枚狭い隙間を介して、わずかに傾けて互いに平行に配置した構造である。ただし、最上部の支持板は、その下面にのみ浸透膜を貼り付けてある。最上面の支持板を加熱し、最下面の支持板を冷却して、各支持板の間に温度差を生じさせる。浸透膜とは、液体が浸透しその中を広がる材質のもの(例えば布)であり、各支持板の下面の浸透膜には、海水などのような被濃縮液(以下、海水を例に説明する)が浸透している。支持板と支持板の間の温度差に駆動されて、海水が浸透している膜から水が蒸発し、隙間の空気層中を拡散して、対向する次段の支持板上面の浸透膜中へ凝縮する。同様に蒸発―拡散―凝縮の過程が、すべての支持板と支持板の間で生じ、濃縮海水と凝縮水(真水)が得られる。以下、海水が浸透し蒸発の生ずる浸透膜を蒸発浸透膜、凝縮の生ずる浸透膜を凝縮浸透膜と呼ぶ。 The concentrator has a structure in which a large number of thin support plates each having a liquid permeable membrane, that is, permeable membranes attached on both upper and lower surfaces, are arranged slightly parallel to each other through a narrow gap. However, the uppermost support plate has a permeable membrane attached only to its lower surface. The uppermost support plate is heated and the lowermost support plate is cooled to cause a temperature difference between the support plates. The osmosis membrane is a material (for example, a cloth) in which a liquid permeates and spreads, and the osmosis membrane on the lower surface of each support plate has a liquid to be concentrated (such as seawater) as an example. Is permeating. Driven by the temperature difference between the support plates, the water evaporates from the membrane in which seawater penetrates, diffuses in the air layer in the gap, and condenses into the osmosis membrane on the upper surface of the next support plate To do. Similarly, the evaporation-diffusion-condensation process occurs between all the support plates, and concentrated seawater and condensed water (fresh water) are obtained. Hereinafter, the osmosis membrane in which seawater permeates and causes evaporation is referred to as an evaporation osmosis membrane, and the osmosis membrane in which condensation occurs is referred to as a condensation osmosis membrane.

図1は、説明を容易にするため、前記の蒸発浸透膜を貼り付けた支持板と凝縮浸透膜を貼り付けた支持板の各々一枚ずつを取り出した縦断面図であり、以下の説明は、前記の全ての浸透膜を貼り付けた支持板にも適応される。上下の支持板1a、1bは、両端にV字形の溝2a、2bを有し、かつ、一方の溝2b近く3でくの字形に折り曲げられている。支持板1a、1bは、その屈曲部3から遠いV溝2a側が高位置になるよう、水平から角度をもって傾けられている。蒸発浸透膜4は、一方のV溝の底部頂点から他方の底部頂点まで、上側の支持板1aの下面を覆って貼り付けられている。一方、凝縮浸透膜5は、下側の支持板1bの上面の両端のV溝を除くV溝の端から端までの領域を覆うように貼り付けられている。 FIG. 1 is a longitudinal sectional view of the support plate with the evaporation osmosis membrane attached and the support plate with the condensation osmosis membrane attached, taken out one by one for ease of explanation. The present invention is also applicable to a support plate to which all the permeable membranes are attached. The upper and lower support plates 1a and 1b have V-shaped grooves 2a and 2b at both ends, respectively, and are bent into a square shape near one groove 2b. The support plates 1a and 1b are inclined at an angle from the horizontal so that the V-groove 2a side far from the bent portion 3 is at a high position. The evaporation osmosis membrane 4 is attached so as to cover the lower surface of the upper support plate 1a from the bottom vertex of one V-groove to the other bottom vertex. On the other hand, the condensation osmosis membrane 5 is affixed so as to cover the region from end to end of the V-groove excluding the V-groove at both ends of the upper surface of the lower support plate 1b.

この構造において、左端の海水供給管6から、下段の支持板1bの高位置のV溝に海水S1を供給し、上段の支持板1a下面の蒸発浸透膜4の端が、そのV溝に溜まった海水S1に浸るようにする。蒸発浸透膜4は、海水S1を吸い上げ、支持板1aに沿って傾斜した浸透膜4中を蒸発しつつ、浸透・流下し、高濃度となって低位置のV溝に滴下し、S2のように溜まる。一方、上下の支持板1a、1b間の空間の水蒸気が凝縮してなる凝縮水は、下段の支持板1b上面の傾斜した浸透膜5中を浸透・流下し、屈曲部3に集められ、毛管現象やサイフォンの原理を利用して、器外へ吸い出される。そのために、吸収性のよい厚めの浸透膜か、径の小さい管7を、屈曲部3の底部に沿ってスパン方向(紙面と直角方向)に器外まで設置する必要がある。以上の2枚の支持板間の蒸発−拡散−凝縮の過程は、多数枚の支持板を有する濃縮器内の全ての支持板の間でも生ずる。濃縮器の内部の支持板の上下面には、凝縮浸透膜と海水を含浸させた蒸発浸透膜が貼り付けられており、上面の凝縮浸透膜で発生した凝縮潜熱は支持板を通過して下面の浸透膜中の海水を蒸発させるので、全ての支持板の間で蒸発−拡散−凝縮の過程が順次繰返される。 In this structure, seawater S1 is supplied from the seawater supply pipe 6 at the left end to the V groove at the high position of the lower support plate 1b, and the end of the evaporating membrane 4 on the lower surface of the upper support plate 1a is accumulated in the V groove. Soak in seawater S1. The evaporating osmosis membrane 4 sucks up the seawater S1, and permeates and flows down while evaporating in the osmotic membrane 4 inclined along the support plate 1a. It collects in. On the other hand, the condensed water formed by condensing water vapor in the space between the upper and lower support plates 1a and 1b permeates and flows down in the inclined osmotic membrane 5 on the upper surface of the lower support plate 1b, and is collected in the bent portion 3 to be capillary. It is sucked out of the vessel using the phenomenon and siphon principle. Therefore, it is necessary to install a thick osmotic membrane with good absorbability or a small diameter tube 7 along the bottom of the bent portion 3 to the outside in the span direction (perpendicular to the paper surface). The above evaporation-diffusion-condensation process between the two support plates also occurs between all the support plates in the concentrator having a large number of support plates. A condensation osmosis membrane and an evaporation osmosis membrane impregnated with seawater are attached to the upper and lower surfaces of the support plate inside the concentrator. The condensation latent heat generated in the condensation osmosis membrane on the upper surface passes through the support plate and is Since the seawater in the osmotic membrane is evaporated, the process of evaporation-diffusion-condensation is sequentially repeated between all the support plates.

前記の特開昭57−184405号広報のようなほぼ水平な構造では、以下で述べる多くの問題があるが、それらの問題の一部を解消可能な縦型構造にして、海水を蒸留する装置は、特開昭55−127102号公報において提案されている。この装置は、裏面に蒸発浸透膜(特開昭55−127102号広報では多孔質給水シートと呼ばれる)が接合された支持板(特開昭55−127102号広報では反射冷却板と呼ばれる)を所定の間隔をおいて立て、上下両端あるいは四辺を断熱構造枠に固定した構造になっている。
特開昭57−184405 特開昭55−127102
The substantially horizontal structure as disclosed in the above publication of Japanese Patent Application Laid-Open No. 57-184405 has many problems described below. An apparatus for distilling seawater using a vertical structure that can solve some of these problems. Is proposed in Japanese Patent Laid-Open No. 55-127102. This apparatus is provided with a support plate (referred to as a reflective cooling plate in Japanese Laid-Open Patent Publication No. 55-127102) having an evaporating permeable membrane (referred to as a porous water supply sheet in Japanese Laid-Open Patent Publication No. 55-127102) on the back surface The structure is such that the upper and lower ends or the four sides are fixed to the heat insulating structure frame.
JP 57-184405 JP 55-127102

ところが、前記の特許文献1のようなほぼ水平の構造では、次のように種々の問題点が残されている。
1.前記のような濃縮器構造では、被濃縮液浸透膜支持用の薄板1a、1bは、自重によるたわみ及び熱膨張による熱歪みを起こし、被濃縮液の偏流を生じる。高濃度濃縮の場合は、偏流は浸透膜にスケール(塩の晶析)を発生させ、トラブルとなる。さらに、たわみおよび歪みが大きい場合には、浸透膜が次段の薄板の凝縮面と接触して、被濃縮液と凝縮水の混合を生じる。
2.上記の支持板のたわみ、および歪みがあることにより、上下の支持板の隙間を十分狭くできない。その結果、濃縮効率(入力熱量に対する生産量の割合として定義される)と生産速度が共に低い。V溝などの加工が面倒である。
3.スケールの発生や汚れによる浸透膜の目詰まりのトラブルが生じた場合、濃縮器を分解して浸透膜を洗浄することができない。
4.従来の濃縮器では、浸透膜が接着剤で支持板に接着されているが、高温の被濃縮液に長時間浸っているため剥離を生じ易く、支持板から剥離すると偏流が生じ、スケール発生や被濃縮液と凝縮水との混合トラブルを起こす。
5.前記の接着剤から溶け出した微量の成分が濃縮液に混入して、生産される濃縮液の品質を低下させる。これは、高濃度まで濃縮する際には致命的な問題となる。
6.従来の浸透膜への給液方法では、浸透膜のスパン方向に均一な速度での給液が困難である。不均一な給液は、被濃縮液の偏流を生じ、スケール発生のトラブルを起こす。また、高濃度濃縮ができない。
7.上下各段の浸透膜から流出する濃縮液の濃度を正確に設定維持するには、各浸透膜によって異なる、適切な給液速度に調節する必要があるが、従来の給液方法では、それが困難である。
8.多くの生産工程では、濃縮処理は、被濃縮液中の溶質の晶析分離の前処理の工程であり、濃縮、晶析(あるいは晶析の一部)を同時に行うことができれば理想である。また、多くの被濃縮液は複数種の溶質を有し、個々の溶質によって晶析を開始する濃度が異なる。多重効用濃縮器を用いても、先に晶析する単一または複数の溶質を晶析させることが可能であるが、この晶析はスケール発生と同じことであり、従来の濃縮器ではトラブルとして扱われてきた。すなわち、従来の濃縮器では、先に晶析する溶質を浸透膜に晶析させて分離することができなかった。
However, in the substantially horizontal structure as in Patent Document 1, various problems remain as follows.
1. In the concentrator structure as described above, the thin plates 1a and 1b for supporting the concentrated liquid permeable membrane cause deflection due to their own weight and thermal distortion due to thermal expansion, thereby causing a drift of the concentrated liquid. In the case of high concentration concentration, the drift current causes a scale (crystallization of salt) in the osmotic membrane and becomes a trouble. Further, when the deflection and distortion are large, the osmosis membrane comes into contact with the condensing surface of the thin plate at the next stage, and mixing of the liquid to be concentrated and condensed water occurs.
2. Due to the deflection and distortion of the support plate, the gap between the upper and lower support plates cannot be sufficiently narrowed. As a result, both the efficiency of concentration (defined as the ratio of production to input heat) and production rate are both low. Processing such as V-groove is troublesome.
3. When trouble of clogging of the osmosis membrane due to generation of scale or dirt occurs, it is not possible to disassemble the concentrator and wash the osmosis membrane.
4). In conventional concentrators, the osmotic membrane is bonded to the support plate with an adhesive, but it is easy to cause peeling because it is immersed in a high temperature concentrated liquid for a long time. This causes mixing troubles between the liquid to be concentrated and condensed water.
5). A trace amount of the component dissolved from the adhesive is mixed into the concentrated solution, thereby reducing the quality of the produced concentrated solution. This is a fatal problem when concentrating to a high concentration.
6). In the conventional method for supplying liquid to the osmotic membrane, it is difficult to supply liquid at a uniform speed in the span direction of the osmotic membrane. Inhomogeneous liquid supply causes a drift of the liquid to be concentrated and causes a scale problem. Moreover, high concentration concentration is impossible.
7). In order to accurately set and maintain the concentration of the concentrated liquid flowing out from the upper and lower osmotic membranes, it is necessary to adjust to an appropriate liquid supply speed that differs depending on the osmotic membrane. Have difficulty.
8). In many production processes, the concentration treatment is a pretreatment step for crystallization separation of the solute in the liquid to be concentrated, and it is ideal if concentration and crystallization (or part of the crystallization) can be performed simultaneously. In addition, many liquids to be concentrated have a plurality of types of solutes, and the concentration at which crystallization starts varies depending on each solute. Even with a multi-effect concentrator, it is possible to crystallize a single or multiple solutes that crystallize first, but this crystallization is the same as the generation of scale, and the conventional concentrator has a problem. Have been treated. That is, in the conventional concentrator, the solute that crystallizes first cannot be crystallized on the osmotic membrane and separated.

これに対し、前記の特許文献2のような縦型構造では、V溝などの加工上の問題は解決されたとしても、支持板(反射冷却板)の上下端あるいは四辺が固定されているため、自重によるたわみや熱膨張等による伸縮の逃げが困難であるという問題に加え、海水の蒸留が前提であって、溶液の濃縮のことは念頭にないため、濃縮処理に伴う種々の問題が残されている。すなわち、支持板(反射冷却板)を立て上下端あるいは四辺を固定した構造に起因する支持板の反りなどによって、海水の偏流を生じ、高濃度濃縮の場合は、蒸発浸透膜にスケールが発生することに加え、各支持板の間の隙間を十分狭くできず、濃縮効率および生産速度が共に低い。また、支持板に蒸発浸透膜を接合する接着剤から溶け出た微量成分が濃縮液に混入して、品質を低下させるなどの問題は解決できない。さらに、各支持板の上下端あるいは四辺が固定された構造であるため、組立て分解やメンテナンスなどが困難となる。 On the other hand, in the vertical structure as in Patent Document 2, the upper and lower ends or four sides of the support plate (reflection cooling plate) are fixed even if the processing problems such as the V-groove are solved. In addition to the problem that it is difficult to escape due to deflection or thermal expansion due to its own weight, it is premised on the distillation of seawater and it is not intended to concentrate the solution. Has been. In other words, seawater drifts due to the warping of the support plate caused by the structure in which the support plate (reflective cooling plate) is upright, the bottom end or the four sides are fixed, and in the case of high concentration concentration, scale is generated in the evaporative permeation membrane. In addition, the gap between the support plates cannot be sufficiently narrow, and the concentration efficiency and the production rate are both low. Further, it is impossible to solve the problem that the trace component dissolved from the adhesive for joining the evaporation osmosis membrane to the support plate is mixed into the concentrated liquid and the quality is deteriorated. Furthermore, since the upper and lower ends or the four sides of each support plate are fixed, assembly / disassembly and maintenance become difficult.

本発明の技術的課題は、このような問題に着目し、浸透膜支持板の反りの問題や接着剤による品質低下、組立て分解の問題など、海水などの溶液を濃縮処理する際に縦型構造としたことに伴う諸問題を解決可能とすることにある。 The technical problem of the present invention pays attention to such problems, and is a vertical structure when concentrating a solution such as seawater, such as a problem of warpage of the osmotic membrane support plate, a deterioration of quality due to an adhesive, and a problem of assembly / disassembly. It is to be able to solve various problems associated with this.

本発明の技術的課題は次のような手段によって解決される。請求項1は、片方の面が蒸発面となり、他方の面が凝縮面となる薄い支持板を、鉛直または鉛直から30度以内に傾けた状態で吊り下げ支持してあり、前記の蒸発面には被濃縮液を供給し、前記の凝縮面から凝縮水を回収する構造としたことを特徴とする濃縮装置である。 The technical problem of the present invention is solved by the following means. In the first aspect, a thin support plate having one surface serving as an evaporation surface and the other surface serving as a condensation surface is suspended and supported in a state of being inclined within 30 degrees from the vertical or vertical, Is a concentrator having a structure for supplying a liquid to be concentrated and collecting condensed water from the condensing surface.

このように、本濃縮装置では、片方の面が蒸発面となり、他方の面が凝縮面となる薄い支持板を、鉛直または鉛直から30度以内に傾けた状態で吊り下げ支持し、左右両辺と下端は固定されていないので、支持板には鉛直方向に自重が働くとともに熱膨張等による伸縮の逃げが可能になり、従来のように支持板の上下両端あるいは四辺を固定した構造に比べて、自重や熱膨張などによる板のたわみや変形が大幅に軽減される。 As described above, in the present concentration apparatus, a thin support plate in which one surface is an evaporation surface and the other surface is a condensing surface is suspended and supported in a state inclined within 30 degrees from the vertical or vertical, Since the lower end is not fixed, the support plate is subject to its own weight in the vertical direction and can escape by expansion and contraction due to thermal expansion, etc., compared to the conventional structure where the upper and lower ends or four sides of the support plate are fixed, Deflection and deformation of the plate due to its own weight and thermal expansion are greatly reduced.

また、各支持板の間に適当な数の表面が疎水性のスペーサーを使用すれば、自重たわみおよび熱歪みを抑制して、被濃縮液の偏流を抑制できる。さらに、隣接する支持板間の間隔が均一となり、しかも非常に狭く(例えば、5mm以下に)することができ、濃縮液と凝縮水の生産速度を著しく向上させ得る。あるいは、支持板をより多数枚狭い間隔で配置することが可能となり、濃縮効率が著しく向上する。 In addition, if a spacer having an appropriate number of surfaces between each support plate is used, the deflection of the concentrated liquid can be suppressed by suppressing its own weight deflection and thermal distortion. Furthermore, the distance between adjacent support plates is uniform, and can be very narrow (for example, 5 mm or less), and the production rate of the concentrated liquid and condensed water can be significantly improved. Or it becomes possible to arrange | position many support plates at a narrow space | interval, and concentration efficiency improves remarkably.

支持板の蒸発面を被濃縮液で濡らしたり、凝縮面から凝縮水を回収するための手法は任意であるが、最も一般的な浸透膜を用いる場合でも、従来のように接着剤を用いる必要はない。すなわち、支持板を立てて、鉛直または鉛直に近い構造とすることにより、接着剤や接着フィルム等の材料を使用せずに、蒸発用の浸透膜を支持板に貼り付けることができる。被濃縮液を含んだ浸透膜は、それらの材料なしに被濃縮液の毛管作用で支持板に貼り付けることができ、自重を利用して皺を作ることなく広げることができる。これにより、食品材料等の溶液の濃縮の際、接着剤や接着フィルムからの環境ホルモン等の好ましくない成分や不純物の濃縮液への混入が防止できる。 Any method can be used to wet the evaporating surface of the support plate with the liquid to be concentrated or to collect condensed water from the condensing surface. However, even when using the most common permeable membranes, it is necessary to use an adhesive as before. There is no. In other words, by erecting the support plate to have a vertical or nearly vertical structure, the osmosis membrane for evaporation can be attached to the support plate without using a material such as an adhesive or an adhesive film. The osmotic membrane containing the liquid to be concentrated can be attached to the support plate by the capillary action of the liquid to be concentrated without those materials, and can be spread without making wrinkles using its own weight. Thereby, at the time of concentration of solutions, such as food material, it can prevent mixing into an undesired component and impurities, such as environmental hormones from an adhesive and an adhesive film, to a concentrated liquid.

請求項2は、前記の蒸発面に蒸発用の浸透膜を設け、凝縮面には少なくとも下端部のみに凝縮水回収用の浸透膜を設けてなることを特徴とする請求項1に記載の濃縮装置である。前記のように、支持板を立てて、鉛直または鉛直に近い状態にすることにより、凝縮用の浸透膜は必ずしも必要としない。すなわち、浸透膜の無い、裸の支持板表面に凝縮し、凝縮水は裸面に筋を作って流下する。そして、支持板の下端部のみは浸透膜を設けてあるので、この浸透膜を伝わって凝縮水が所定の部位に導かれて、回収される。 2. The concentration according to claim 1, wherein an osmosis membrane for evaporation is provided on the evaporation surface, and an osmosis membrane for collecting condensed water is provided at least on the lower end portion of the condensation surface. Device. As described above, the osmosis membrane for condensation is not necessarily required by raising the support plate to be in the vertical or nearly vertical state. That is, it condenses on the surface of a bare support plate without an osmotic membrane, and the condensed water flows down with a streak formed on the bare surface. And since only the lower end part of the support plate is provided with the permeable membrane, the condensed water is guided through the permeable membrane to a predetermined site and collected.

請求項3は、被濃縮液を溜める溜め溝を前記支持板の頂部に沿って設け、前記溜め溝に浸した浸透膜から前記支持板面の蒸発浸透膜に毛管作用によって被濃縮液を供給する構造としたことを特徴とする請求項1または請求項2に記載の濃縮装置である。 According to a third aspect of the present invention, a reservoir groove for storing the liquid to be concentrated is provided along the top of the support plate, and the liquid to be concentrated is supplied from the osmotic membrane immersed in the reservoir groove to the evaporating osmosis membrane on the surface of the support plate by capillary action. The concentrating device according to claim 1 or 2, wherein the concentrating device has a structure.

このように、鉛直、あるいはそれに近い角度で吊り下げて立てた支持板の水平な頂部に沿って、被濃縮液を溜める溜め溝を設け、この溜め溝に浸した浸透膜から前記支持板面の蒸発浸透膜に毛管作用によって被濃縮液を供給する構造にしたので、支持板のスパン方向における被濃縮液の吸い上げ高さが均一となり、その結果、給液速度が均一となり、偏流を抑制することができ、蒸発浸透膜に含まれた海水の流れをスパン方向に一様にすることができる。すなわち鉛直または鉛直に近い角度で吊り下げ支持した支持板の頂辺の水平度を個別に微調整して、被濃縮液の吸い上げ高さを厳密に均一にでき、給液速度をスパン方向に均一にできる。また、蒸気や温水による最初の支持板のスパン方向に均一な加熱と、支持板のたわみが小さいことによる各支持板間の隙間の均一化により、全ての支持板でスパン方向に均一な加熱が実現し得る。このような、被濃縮液の均一な流れと均一な加熱によって、海水などの被濃縮液を高濃度まで濃縮することができる。 In this way, a reservoir groove for storing the liquid to be concentrated is provided along the horizontal top of the support plate that is suspended vertically or at an angle close thereto, and from the permeable membrane immersed in the reservoir groove, Since the concentrated liquid is supplied to the evaporative osmosis membrane by capillary action, the suction height of the concentrated liquid in the span direction of the support plate is uniform, and as a result, the liquid supply speed is uniform and the drift is suppressed. And the flow of seawater contained in the evaporative osmosis membrane can be made uniform in the span direction. In other words, the horizontal level of the top of the support plate that is supported vertically or at an angle close to the vertical can be finely adjusted individually, so that the suction height of the liquid to be concentrated can be made strictly uniform, and the liquid supply speed can be made uniform in the span direction. Can be. In addition, uniform heating in the span direction of the first support plate with steam or hot water and uniform clearance between the support plates due to the small deflection of the support plate, uniform heating in the span direction on all support plates It can be realized. By such a uniform flow of the liquid to be concentrated and uniform heating, the liquid to be concentrated such as seawater can be concentrated to a high concentration.

さらに、蒸発浸透膜に部分的な乾き面が発生するのを防止することもできる。海水は浸透膜中を低きへ流れようとするので、従来のように支持板を水平に近い姿勢にしたり、鉛直から大きな角度に支持板を設置した場合は、重力の作用や熱ひずみなどで、支持板に凸凹のたわみが生じて、浸透膜中の被濃縮液の流れは不均一となり、かつ、隙間も不均一となるため、浸透膜中の被濃縮液の不均一流れや蒸発過剰で乾き面が生じやすい。乾き面が発生すると、生産速度が大幅に減少することに加え、浸透膜にスケールが発生(海水の場合は塩が析出)してしまい、トラブルとなる。その結果、スケールや塩の洗い流し処理のために運転がストップするなどの弊害が多い。 Further, it is possible to prevent the partial dry surface from being generated in the evaporation osmosis membrane. Seawater tends to flow low in the osmosis membrane, so if the support plate is placed in a horizontal position as before, or if the support plate is installed at a large angle from the vertical, due to the action of gravity or thermal strain, etc. Since the unevenness of the support plate is generated, the flow of the liquid to be concentrated in the osmotic membrane becomes non-uniform, and the gaps are also non-uniform. A dry surface is likely to occur. When a dry surface is generated, in addition to a significant reduction in production rate, scale is generated in the osmotic membrane (salt is precipitated in the case of seawater), which causes a problem. As a result, there are many harmful effects such as stoppage of operation due to scale and salt washing treatment.

各支持板の鉛直方向設置と被濃縮液の均一供給と一様加熱により、高濃度まで濃縮しても、蒸発浸透膜に乾き面が発生するのを防止できるため、例えば海水濃縮の場合、硫酸カルシウムを分離して海水を濃縮することができる。硫酸カルシウムは食品としては好ましくない成分で、海水中の成分のうち最も初期にその多くが結晶として析出する。硫酸カルシウムは、蒸発浸透膜に析出して蓄積されるため、一定期間ごとに濃縮装置を分解して、浸透膜を取り替える必要がある。取り外した浸透膜は、洗浄して硫酸カルシウムを取り除く。このようにして、被濃縮液から先に析出する好ましくない成分を除去できる。 By installing each support plate in the vertical direction, uniform supply of the liquid to be concentrated, and uniform heating, it is possible to prevent a dry surface from being generated on the evaporative osmosis membrane even if it is concentrated to a high concentration. Seawater can be concentrated by separating calcium. Calcium sulfate is an unfavorable ingredient for food, and most of the ingredients in seawater are precipitated as crystals at the earliest stage. Since calcium sulfate is deposited and accumulated on the evaporating osmosis membrane, it is necessary to disassemble the concentrator and replace the osmosis membrane at regular intervals. The removed osmotic membrane is washed to remove calcium sulfate. In this way, it is possible to remove the undesired components that precipitate first from the liquid to be concentrated.

請求項4は、被濃縮液の供給容器の底部から毛細管で前記の各溜め溝に給水する構造とし、各毛細管の長さと内径と挿入長さを変えることによって、給液速度を設定する構造としたことを特徴とする請求項3に記載の濃縮装置である。このように、被濃縮液の入ったタンクの底部から毛細管で前記の各溜め溝に給水し、各毛細管の長さと内径を変えることによって、また、毛細管のタンクへの挿入長さを変えて、その出口とタンク液面とのヘッド差を変えることによって、それぞれの溜め溝への給液速度を大きな流量範囲で粗調整した後、微調整して最適値に設定することができる。これにより、各蒸発浸透膜の下端から得られる濃縮液の濃度を、個別に厳密な精度で調整できる。その結果、均一な給液、均一な加熱、さらに給液の微調節により、高濃度濃縮と生産される濃縮液の濃度の微調整が可能になる。均一な給液、加熱、給液微調節に加え、濃縮部の分解、組み立て、浸透膜の取り付け、取り外しが容易であることから、被濃縮液中の先に析出する溶質を晶析させることも可能になる。 According to a fourth aspect of the present invention, there is a structure in which water is supplied to each reservoir groove by a capillary from the bottom of the supply container for the liquid to be concentrated, and the liquid supply speed is set by changing the length, inner diameter, and insertion length of each capillary. The concentrator according to claim 3, wherein In this way, water is supplied to each reservoir groove with a capillary tube from the bottom of the tank containing the liquid to be concentrated, and by changing the length and inner diameter of each capillary tube, and also changing the insertion length of the capillary tube into the tank, By changing the head difference between the outlet and the tank liquid level, the liquid supply speed to each reservoir groove can be roughly adjusted within a large flow rate range, and then finely adjusted to set the optimum value. Thereby, the density | concentration of the concentrate obtained from the lower end of each evaporation osmosis membrane can be adjusted with exact precision separately. As a result, high concentration concentration and fine adjustment of the concentration of the concentrated liquid produced can be achieved by uniform liquid supply, uniform heating, and fine adjustment of the liquid supply. In addition to uniform liquid supply, heating, and fine adjustment of the liquid supply, it is easy to disassemble, assemble, attach and remove the osmosis membrane, so that the solute that precipitates in the liquid to be concentrated can be crystallized. It becomes possible.

請求項5は、前記支持板の下端における蒸発用の浸透膜の下端と凝縮水回収用の浸透膜の下端を3角波状とし、両3角波状部の各V字状垂下部が互い違いとなるようにずらしてあることを特徴とする請求項1、請求項2または請求項3に記載の濃縮装置である。 According to the fifth aspect of the present invention, the lower end of the osmosis membrane for evaporation and the lower end of the osmosis membrane for collecting condensed water at the lower end of the support plate are triangularly waved, and the V-shaped hanging portions of both triangular waved portions are staggered. The concentrator according to claim 1, claim 2, or claim 3, wherein the concentrator is shifted as described above.

このように、前記支持板の下端における蒸発浸透膜の下端と凝縮水回収用浸透膜の下端を3角波状に形成してあるので、蒸発後の濃縮液も凝縮液も3角波状部のV字状の垂下部から滴下する。そして、両3角波状部の各V字状垂下部が互い違いとなるようにずらしてあるので、蒸発浸透膜のV字状垂下部から滴下する濃縮液と凝縮水回収用浸透膜のV字状垂下部から滴下する凝縮液とが混ざることはなく、それぞれ完全に分離して回収できる。しかも、従来のように支持板をほぼ水平に寝かして、濃縮液や凝縮液の回収用の樋や溝を設ける場合に比べて、支持板の間隔を狭くできる。樋や溝を設ける場合に比べて、製作も容易である。 In this way, the lower end of the evaporating osmosis membrane and the lower end of the condensed water recovery osmosis membrane at the lower end of the support plate are formed in a triangular wave shape. Dripping from the hanging part of the character. And since each V-shaped drooping part of both triangular wave-shaped parts is shifted so that it may become alternate, the concentrated solution dripped from the V-shaped drooping part of the evaporation osmosis membrane and the V shape of the osmosis membrane for condensed water recovery The condensate dripping from the hanging part does not mix and can be completely separated and recovered. Moreover, the interval between the support plates can be narrowed compared to the case where the support plates are laid down almost horizontally as in the prior art and provided with a trough or groove for collecting the concentrated liquid or the condensed liquid. Manufacture is also easier compared to the case of providing ridges and grooves.

請求項6は、各支持板の上端を懸垂支持する横桟を、前記横桟と直角方向に設けたレールの上でスライドする構造としたことを特徴とする請求項1から請求項4までのいずれかの項に記載の濃縮装置である。このように、レールの上に支持された状態で、各支持板がスライドできる構造になっているので、各支持板の取り付け、取り外しが大変簡便となり、その結果、各支持板の分解、組み立てが容易になり、メンテナンスも簡便となる。特に高濃度濃縮の際には、個々の蒸発浸透膜への給液量調整、試運転中の流出濃縮液の流量とその濃度の測定、および分解してスケール発生をチェックする、といった一連の手順を繰返す必要があり、この分解、組み立ての容易さは大変重要である。 According to a sixth aspect of the present invention, the horizontal beam supporting the upper end of each support plate is slid on a rail provided in a direction perpendicular to the horizontal beam. The concentrator according to any one of the items. In this way, since each support plate can be slid while being supported on the rail, it is very easy to attach and remove each support plate, so that each support plate can be disassembled and assembled. It becomes easy and maintenance becomes easy. In particular, during high concentration concentration, a series of procedures such as adjusting the amount of liquid supplied to each evaporative osmosis membrane, measuring the flow rate and concentration of the effluent concentrate during trial operation, and checking for scale generation by disassembly. It must be repeated, and the ease of disassembly and assembly is very important.

請求項7は、濃縮処理部を圧力容器に入れて、高温加熱を実現することにより、濃縮効率と生産速度の向上を共に可能としたことを特徴とする請求項1から請求項6までのいずれかの項に記載の濃縮装置である。このように、濃縮処理部を圧力容器に入れて、高温加熱するため、濃縮効率と生産速度が共に著しく向上する。また、前記密閉容器は圧力容器にする必要があるが、濃縮処理部全体の厚さが50cm以下の薄型であるため、密閉容器も薄型となり、密閉容器の製作は容易である。 A seventh aspect of the present invention is characterized in that both the concentration efficiency and the production speed can be improved by putting the concentration processing section in a pressure vessel and realizing high temperature heating. A concentrating device according to any of the above items. Thus, since the concentration processing unit is put in a pressure vessel and heated at a high temperature, both the concentration efficiency and the production rate are remarkably improved. Moreover, although the said airtight container needs to be a pressure container, since the thickness of the whole concentration processing part is 50 cm or less, the airtight container also becomes thin and manufacture of an airtight container is easy.

請求項8は、濃縮処理部を密閉容器内に入れ、内部の空気を水素やヘリウムで置換する構造としたことを特徴とする請求項1から請求項7までのいずれかの項に記載の濃縮装置である。このように、濃縮処理部を密閉容器内に入れ、内部空気を水素、ヘリウム等で置換することにより、各々の支持板の蒸発面と次段の凝縮面の間の蒸気拡散速度が促進され、濃縮効率および生産速度が共に著しく向上する。 Claim 8 is a structure according to any one of claims 1 to 7, characterized in that the concentration processing section is placed in a sealed container and the air inside is replaced with hydrogen or helium. Device. In this way, by placing the concentration processing unit in a sealed container and replacing the internal air with hydrogen, helium, etc., the vapor diffusion rate between the evaporation surface of each support plate and the condensation surface of the next stage is promoted, Both the concentration efficiency and the production rate are significantly improved.

請求項1のように、本濃縮装置では、片方の面が蒸発面となり、他方の面が凝縮面となる薄い支持板を、鉛直または鉛直から30度以内に傾けた状態で吊り下げ支持し、左右両辺と下端は固定されていないので、支持板には鉛直方向に自重が働くとともに熱膨張等による伸縮の逃げが可能になり、従来のように支持板の上下両端あるいは四辺を固定した構造に比べて、熱ひずみなどによる板のたわみや変形が大幅に軽減される。 As in claim 1, in the present concentration apparatus, a thin support plate in which one surface is an evaporation surface and the other surface is a condensing surface is suspended and supported vertically or tilted within 30 degrees from the vertical, Since both the left and right sides and the lower end are not fixed, the support plate has its own weight in the vertical direction and can escape due to thermal expansion, etc., and has a structure in which the upper and lower ends or four sides of the support plate are fixed as before. In comparison, the deflection and deformation of the plate due to thermal strain and the like are greatly reduced.

また、各支持板の間に適当な数のスペーサーを使用すれば、自重たわみおよび熱歪みを抑制して、被濃縮液の偏流を抑制できる。さらに、隣接する支持板間の間隔が均一となり、しかも非常に狭く(例えば、5mm以下に)することができ、濃縮海水と凝縮水の生産速度を著しく向上させ得る。あるいは、被濃縮液の浸透膜を貼る支持板をより多数枚狭い間隔で配置することが可能となり、濃縮効率が著しく向上する。 Further, if an appropriate number of spacers are used between the support plates, it is possible to suppress the deflection of the liquid to be concentrated by suppressing its own weight deflection and thermal distortion. Furthermore, the interval between adjacent support plates can be made uniform and can be very narrow (for example, 5 mm or less), and the production rate of concentrated seawater and condensed water can be significantly improved. Or it becomes possible to arrange | position many support plates which stick the permeable membrane of a to-be-concentrated liquid at a narrow space | interval, and a concentration efficiency improves remarkably.

支持板の蒸発面を被濃縮液で濡らすための手法は任意であるが、最も一般的な浸透膜を用いる場合でも、従来のように接着剤を用いる必要はない。すなわち、支持板を立てて、鉛直または鉛直に近い構造とすることにより、接着剤や接着フィルム等の材料を使用せずに、蒸発用の浸透膜を支持板に貼り付けることができる。被濃縮液を含んだ浸透膜は、それらの材料なしに海水の毛管作用で支持板に貼り付けることができ、自重を利用して皺を作ることなく広げることができる。これにより、食品材料等の溶液の濃縮の際、接着剤や接着フィルムからの環境ホルモン等の好ましくない成分や不純物の濃縮液への混入が防止できる。 Although the method for wetting the evaporation surface of the support plate with the liquid to be concentrated is arbitrary, even when the most general permeable membrane is used, it is not necessary to use an adhesive as in the prior art. In other words, by erecting the support plate to have a vertical or nearly vertical structure, the osmosis membrane for evaporation can be attached to the support plate without using a material such as an adhesive or an adhesive film. The osmotic membrane containing the liquid to be concentrated can be attached to the support plate by the capillary action of seawater without those materials, and can be spread without making wrinkles using its own weight. Thereby, at the time of concentration of solutions, such as food material, it can prevent mixing into an undesired component and impurities, such as environmental hormones from an adhesive and an adhesive film, to a concentrated liquid.

請求項2のように、支持板を、鉛直または鉛直に近い状態にすることにより、凝縮用の浸透膜は必ずしも必要としない。すなわち、浸透膜の無い、裸の支持板表面に凝縮し、凝縮水は裸面に筋を作って流下する。そして、支持板の下端部のみは凝縮水回収用の浸透膜を設けてあるので、この浸透膜を伝わって凝縮水が所定の部位に導かれて、回収される。 According to the second aspect of the present invention, the osmosis membrane for condensation is not necessarily required by making the support plate vertical or nearly vertical. That is, it condenses on the surface of a bare support plate without an osmotic membrane, and the condensed water flows down with a streak formed on the bare surface. Since only the lower end portion of the support plate is provided with a permeation membrane for collecting condensed water, the condensed water is guided to a predetermined site through this permeation membrane and collected.

請求項3のように、鉛直、あるいはそれに近い角度で吊り下げて立てた支持板の水平な頂部に沿って、被濃縮液を溜める溜め溝を設け、この溜め溝に浸した浸透膜から前記支持板面の蒸発浸透膜に毛管作用によって被濃縮液を供給する構造にしたので、支持板のスパン方向における被濃縮液の吸い上げ高さが均一となり、その結果、給液速度が均一となり、偏流を抑制することができ、蒸発浸透膜に含まれた被濃縮液の流れをスパン方向に一様にすることができる。また、蒸気凝縮や温水による最初の支持板の均一加熱と、支持板のたわみが小さいことによる各支持板間の隙間の均一化により、全ての支持板でのスパン方向に均一な加熱が実現し得る。このような、被濃縮液の均一な流れと均一な加熱によって、海水などの被濃縮液を高濃度まで濃縮することができる。 A reservoir groove for storing the liquid to be concentrated is provided along a horizontal top portion of the support plate that is vertically or at an angle close to that of the support plate as in claim 3, and the support from the osmotic membrane immersed in the reservoir groove. Since the concentrated liquid is supplied to the evaporation osmosis membrane on the plate surface by capillary action, the suction height of the concentrated liquid in the span direction of the support plate is uniform, and as a result, the liquid supply speed is uniform and the drift is reduced. Therefore, the flow of the liquid to be concentrated contained in the evaporation / osmosis membrane can be made uniform in the span direction. In addition, uniform heating of the first support plate by steam condensation and hot water and uniform clearance between the support plates due to the small deflection of the support plate realizes uniform heating in the span direction on all the support plates. obtain. By such a uniform flow of the liquid to be concentrated and uniform heating, the liquid to be concentrated such as seawater can be concentrated to a high concentration.

さらに、蒸発浸透膜に部分的な乾き面が発生するのを防止することもできる。従来のように支持板を水平に近い姿勢にしたり、鉛直から大きな角度に支持板を設置した場合は、重力の作用や熱ひずみなどで、支持板に凸凹のたわみが生じ、浸透膜中の被濃縮液の流れは不均一となり、かつ、隙間も不均一となるため、浸透膜中の被濃縮液の不均一流れや、蒸発過剰で乾き面が生じやすい。乾き面が発生すると、生産速度が大幅に減少することに加え、浸透膜にスケールが発生(海水の場合は塩が析出)してしまい、トラブルとなる。その結果、スケールや塩の洗い流し処理のために運転がストップするなどの弊害が多い。 Further, it is possible to prevent the partial dry surface from being generated in the evaporation osmosis membrane. When the support plate is placed in a horizontal position as in the past, or when the support plate is installed at a large angle from the vertical, uneven deflection occurs in the support plate due to the action of gravity or thermal strain, etc. Since the flow of the concentrated liquid is non-uniform and the gaps are also non-uniform, the non-uniform flow of the liquid to be concentrated in the osmotic membrane and excessive dryness tends to occur. When a dry surface is generated, in addition to a significant reduction in production rate, scale is generated in the osmotic membrane (salt is precipitated in the case of seawater), which causes a problem. As a result, there are many harmful effects such as stoppage of operation due to scale and salt washing treatment.

各支持板の鉛直方向吊り下げ支持と被濃縮液の均一供給と一様加熱により、高濃度まで濃縮しても、蒸発浸透膜に乾き面が発生するのを防止できるため、例えば海水濃縮の場合、硫酸カルシウムを分離して海水を濃縮することができる。硫酸カルシウムは食品としては好ましくない成分で、海水中の成分のうち最も初期にその多くが結晶として析出する。硫酸カルシウムは、蒸発浸透膜に析出して蓄積されるため、一定期間ごとに濃縮装置を分解して、浸透膜を取り替える必要がある。取り外した浸透膜は、洗浄して硫酸カルシウムを取り除く。このようにして、被濃縮液中から先に析出する好ましくない成分を除去できる。 Even if it concentrates to a high concentration by the vertical suspension support of each support plate and uniform supply and uniform heating, it is possible to prevent a dry surface from being generated on the evaporation osmosis membrane. The seawater can be concentrated by separating calcium sulfate. Calcium sulfate is an unfavorable ingredient for food, and most of the ingredients in seawater are precipitated as crystals at the earliest stage. Since calcium sulfate is deposited and accumulated on the evaporating osmosis membrane, it is necessary to disassemble the concentrator and replace the osmosis membrane at regular intervals. The removed osmotic membrane is washed to remove calcium sulfate. In this way, it is possible to remove undesirable components that are first precipitated from the liquid to be concentrated.

請求項4のように、被濃縮液の入った供給容器の底部から毛細管で前記の各溜め溝に給水し、各毛細管の長さと内径を変えることによって、また毛細管のタンクへの挿入長さを変えて、その出口とタンク液面とのヘッド差を変えることによって、それぞれの溜め溝への給液速度を大きな流量範囲で粗調整した後、微調整して最適な値に設定することができる。その結果、均一な給液、均一な加熱、さらに給液の微調節により、高濃度濃縮が可能になる。均一な給液、加熱、給液微調節に加え、濃縮部の分解、組み立て、浸透膜の取り付け、取り外しが容易であることから、被濃縮液中の先に析出する溶質を晶析させることも可能になる。 As in claim 4, water is supplied to each reservoir groove by a capillary tube from the bottom of the supply container containing the liquid to be concentrated, and the length and inner diameter of each capillary tube are changed, and the length of insertion of the capillary tube into the tank is reduced. By changing the head difference between the outlet and the tank liquid level, the liquid supply speed to each reservoir groove can be roughly adjusted in a large flow rate range, and then finely adjusted to set the optimum value. . As a result, high concentration concentration is possible by uniform liquid supply, uniform heating, and fine adjustment of the liquid supply. In addition to uniform liquid supply, heating, and fine adjustment of the liquid supply, it is easy to disassemble, assemble, attach and remove the osmosis membrane, so that the solute that precipitates in the liquid to be concentrated can be crystallized. It becomes possible.

請求項5のように、前記支持板の下端における蒸発浸透膜の下端と凝縮水回収用浸透膜の下端を3角波状に形成してあるので、蒸発後の濃縮液も凝縮水も3角波状部のV字状の垂下部から滴下する。そして、両3角波状部の各V字状垂下部が互い違いとなるようにずらしてあるので、蒸発浸透膜のV字状垂下部から滴下する濃縮液と凝縮水回収用浸透膜のV字状垂下部から滴下する凝縮水とが混ざることはなく、それぞれ完全に分離して回収できる。しかも、従来のように支持板をほぼ水平に寝かして、濃縮液や凝縮水の回収用の樋や溝を設ける場合に比べて、支持板の間隔を狭くできる。従来のように、樋や溝を設ける場合に比べて、製作も容易である。 Since the lower end of the evaporative osmosis membrane at the lower end of the support plate and the lower end of the osmosis membrane for condensed water recovery are formed in a triangular wave shape as in claim 5, both the concentrated liquid after evaporation and the condensed water are in a triangular wave shape. It is dripped from the V-shaped hanging part of the part. And since each V-shaped drooping part of both triangular wave-shaped parts is shifted so that it may become alternate, the concentrated solution dripped from the V-shaped drooping part of the evaporation osmosis membrane and the V shape of the osmosis membrane for condensed water recovery Condensed water dripping from the hanging part does not mix and can be completely separated and recovered. Moreover, the interval between the support plates can be narrowed as compared with the conventional case where the support plates are laid down almost horizontally and provided with a trough or groove for collecting concentrated liquid or condensed water. Compared with the case where a ridge or a groove is provided as in the prior art, the manufacture is also easier.

請求項6のように、レールの上に支持された状態で、各支持板がスライドできる構造になっているので、各支持板の取り付け、取り外しが大変簡便となり、その結果、各支持板の分解、組み立てが容易になり、メンテナンスも簡便となる。 Since each support plate can be slid while being supported on the rail as in claim 6, it is very easy to attach and detach each support plate. As a result, each support plate can be disassembled. Assembling becomes easy and maintenance becomes simple.

請求項7のように、濃縮処理部を圧力容器に入れて、高温加熱するため、濃縮効率と生産速度が共に著しく向上する。また、前記密閉容器は圧力容器にする必要があるが、濃縮処理部全体の厚さが50cm以下の薄型であるため、密閉容器も薄型となり、密閉容器の製作は容易である。 Since the concentration processing unit is put in the pressure vessel and heated at a high temperature as in the seventh aspect, both the concentration efficiency and the production rate are remarkably improved. Moreover, although the said airtight container needs to be a pressure container, since the thickness of the whole concentration processing part is 50 cm or less, the airtight container also becomes thin and manufacture of an airtight container is easy.

請求項8のように、濃縮処理部を密閉容器内に入れ、内部空気を水素、ヘリウム等で置換することにより、各支持板の蒸発面と次段の凝縮面の間の蒸気拡散速度が促進されて、濃縮効率および生産速度が共に著しく向上する。 As in claim 8, the vapor diffusion rate between the evaporation surface of each support plate and the condensation surface of the next stage is accelerated by placing the concentration processing unit in a sealed container and replacing the internal air with hydrogen, helium or the like. Thus, both the concentration efficiency and the production rate are significantly improved.

次に本発明による水溶液の濃縮装置が実際上どのように具体化されるか実施形態を説明する。まず、図2から図11において、装置の構成を説明した後、装置の作用を詳述する。図2、図3は、本発明による濃縮装置の基本構成を示す模式断面図である。本濃縮器の濃縮原理は、従来のものと同様、浸透膜からの蒸発、隙間の空気層中の拡散、対向面への凝縮というものであるが、以下のように重要な改良点がある。 Next, an embodiment of how the apparatus for concentrating an aqueous solution according to the present invention is practically described will be described. First, in FIG. 2 to FIG. 11, after describing the configuration of the apparatus, the operation of the apparatus will be described in detail. 2 and 3 are schematic cross-sectional views showing the basic configuration of the concentrator according to the present invention. The concentration principle of this concentrator is the evaporation from the osmosis membrane, the diffusion in the air layer of the gap, and the condensation on the opposite surface as in the conventional one, but there are important improvements as follows.

Hは加熱室であり、その左右両側に複数枚例えば20枚近い数の支持板8…を吊り下げ支持してあるが、以下、左側のみを詳述する。各支持板8…は、例えば厚さ0.5mm程度のステンレス板などのような耐食性薄板からなり、その片面に、海水などのような被濃縮液を浸透させる蒸発浸透膜9を密着させてある。図は、説明の都合上、浸透膜と支持板の間に隙間が有るように表示してあるが、実際は密着している。この蒸発浸透膜9の上端を延長して、支持板8上端側に設けた溜め溝10中の海水中に浸漬してあり、海水が毛管現象で供給されて、下端までの全体が常時海水で濡れている。蒸発浸透膜9の下端の下側には、濃縮液の回収容器11を設けてある。 H is a heating chamber, and a plurality of, for example, nearly 20 support plates 8 are suspended and supported on the left and right sides of the heating chamber, but only the left side will be described in detail below. Each of the support plates 8 is made of a corrosion-resistant thin plate such as a stainless steel plate having a thickness of about 0.5 mm, for example, and an evaporation osmosis membrane 9 for allowing a liquid to be concentrated such as seawater to permeate is in close contact with one surface thereof. . For convenience of explanation, the drawing shows that there is a gap between the osmosis membrane and the support plate, but in actuality it is in close contact. The upper end of the evaporative osmosis membrane 9 is extended and immersed in seawater in a reservoir groove 10 provided on the upper end side of the support plate 8, seawater is supplied by capillary action, and the whole to the lower end is always seawater. Wet. A concentrated liquid recovery container 11 is provided below the lower end of the evaporation osmosis membrane 9.

この装置において、加熱室H中に蒸気を供給するなどの手法で常時加温しておくと、各支持板8に付着している蒸発浸透膜9中に浸透している海水中の水分が蒸発し、各支持板8…間の空間に水蒸気が供給され対向面へ拡散する。そして、対向している支持板8の裏面において冷却されて凝縮水となり、下端の凝縮浸透膜12を経て回収される。一方、水分が蒸発して残った濃縮海水は、蒸発浸透膜9に沿って下降し、下部の濃縮液回収容器11中に回収される。なお、図示の支持板8において、蒸発浸透膜9の付着していない裏面は、水蒸気を冷却して凝縮させる凝縮面として作用する。 In this apparatus, when the heating is performed constantly by supplying steam into the heating chamber H, the water in the seawater permeating into the evaporating permeable membrane 9 adhering to each support plate 8 evaporates. And water vapor | steam is supplied to the space between each support plate 8 ..., and is spread | diffused to an opposing surface. And it cools in the back surface of the support plate 8 which opposes, becomes condensed water, and is collect | recovered through the condensation permeable membrane 12 of a lower end. On the other hand, the concentrated seawater remaining after the evaporation of water descends along the evaporative osmosis membrane 9 and is collected in the lower concentrated liquid collection container 11. In the illustrated support plate 8, the back surface to which the evaporation osmosis membrane 9 is not attached functions as a condensation surface that cools and condenses the water vapor.

図3は、前記の各支持板8…を鉛直から30度以内に傾けた状態で吊り下げ支持してある。この場合は、蒸発浸透膜9が付着している面が上向きになるように傾ける。このように傾けて作動させる場合は、加温室Hの下側となる部分を断熱板13で断熱し、図の右半分は使用しない。 In FIG. 3, the support plates 8 are suspended and supported in an inclined state within 30 degrees from the vertical. In this case, it is tilted so that the surface to which the vapor permeable membrane 9 is attached faces upward. In the case of operating by tilting in this way, the lower part of the heating chamber H is insulated with the heat insulating plate 13, and the right half of the figure is not used.

図2、図3のように、蒸発浸透膜9には、被濃縮液である海水を供給して常時濡らした状態で作動させるため、接着剤を用いなくても、被濃縮液の表面張力の作用で蒸発浸透膜9を支持板8に密着状態で貼り付けできる。また、図2のように、支持板8を鉛直に吊り下げ支持する場合は、1つの加温室Hで左右2つの濃縮器を構成できるとともに、加熱容器の断熱を要する面積が大幅に低減される。図3のように、蒸発浸透膜9側を上にして、鉛直からわずかに傾ける場合は、前記の毛管作用に自重の作用が加わるので、蒸発浸透膜9を支持板8に貼り付ける作業が容易になる。 As shown in FIGS. 2 and 3, the evaporative osmosis membrane 9 is operated in a state where it is always wet by supplying seawater as the liquid to be concentrated, so that the surface tension of the liquid to be concentrated can be reduced without using an adhesive. By the action, the evaporation osmosis membrane 9 can be adhered to the support plate 8 in a close contact state. Further, as shown in FIG. 2, when the support plate 8 is vertically suspended and supported, two concentrators can be configured with one heating chamber H, and the area required for heat insulation of the heating container is greatly reduced. . As shown in FIG. 3, when the evaporation osmosis membrane 9 side is inclined upward and slightly tilted from the vertical, since the action of its own weight is added to the capillary action, the work of attaching the evaporation osmosis membrane 9 to the support plate 8 is easy. become.

このように、多数の支持板8を間隔をおいて吊り下げ支持する場合は、隣接する支持板8…間に適当な数のスペーサーかあるいはメッシュ状のものを挟んで、支持板8と支持板8との間隔Gを非常に狭く、かつ均一にできる。尚、これらのスペーサーあるいはメッシュ状のものは、被濃縮液への凝縮水の混入あるいは逆方向の混入を防止するため、その表面が疎水性であることが望ましい。 As described above, when a large number of support plates 8 are suspended and supported at intervals, an appropriate number of spacers or mesh-like members are sandwiched between adjacent support plates 8. 8 can be made very narrow and uniform. In addition, it is desirable that the surface of these spacers or meshes be hydrophobic in order to prevent the condensed water from being mixed into the liquid to be concentrated or in the reverse direction.

図2、図3の支持板8…は、蒸発浸透膜9とは反対側の面は裸状に露出しているが、下端には、凝縮水回収用浸透膜12が貼着しているか、反対側の面の全面に凝縮浸透膜を貼着させてもよい。 2 and 3, the surface opposite to the evaporation osmosis membrane 9 is barely exposed, but the condensed water recovery osmosis membrane 12 is adhered to the lower end, A condensation osmosis membrane may be attached to the entire surface of the opposite side.

図2、図3において、加温室Hを構成する加熱容器の中に水蒸気を供給し凝縮させて、一様温度で加熱することによって、最寄りの支持板8を加熱する。例えば、加温室容器内の圧力が1気圧の場合、水蒸気は100℃で凝縮するため、温度のむらなく加熱することができる。そして、最寄りの支持板8aが加熱されて、その裏面の蒸発浸透膜9aが加熱され、被濃縮液から水蒸気が発生して、隣接する支持板8で冷却されて凝縮する。この際の凝縮熱で、前記の隣接する支持板8の裏面の蒸発浸透膜9が加熱される。このような熱作用が、順次、隣接する次の支持板8に伝わって、全ての支持板8…が加熱され、蒸発濃縮と凝縮が行われる。 2 and 3, the nearest support plate 8 is heated by supplying and condensing water vapor into a heating vessel constituting the heated greenhouse H and heating it at a uniform temperature. For example, when the pressure in the greenhouse is 1 atm, since water vapor condenses at 100 ° C., it can be heated without uneven temperature. Then, the nearest support plate 8a is heated, and the evaporation / osmosis membrane 9a on the back surface thereof is heated, and water vapor is generated from the liquid to be concentrated, and is cooled and condensed by the adjacent support plate 8. The evaporation permeation membrane 9 on the back surface of the adjacent support plate 8 is heated by the condensation heat at this time. Such a thermal action is sequentially transmitted to the next adjacent support plate 8, and all the support plates 8 are heated to perform evaporation and condensation.

図4は、図2、図3における各支持板8…の下端側を拡大して示した図で、凝縮面側から見た正面図である。前記のように、各支持板8の凝縮面側の下端には、凝縮水回収のために、浸透膜12を貼着させてあるが、この凝縮水回収用浸透膜12の下端は、三角波状に形成してある。そして、三角形に尖った下端12eのみが、支持板下部8uから、下側に突出している。そして、この三角形に尖った下端12eの下側に、凝縮水の回収容器14を設けてあるので、支持板8の凝縮面で凝縮した水は、凝縮水回収用浸透膜12中を浸透し、三角形に尖った下端12eに到達して滴下し、下側の凝縮水の回収容器14に溜まる。 4 is an enlarged view of the lower end side of each support plate 8 in FIGS. 2 and 3, and is a front view seen from the condensation surface side. As described above, the permeable membrane 12 is attached to the lower end of each support plate 8 on the condensing surface side for collecting condensed water. The lower end of the osmotic membrane 12 for collecting condensed water has a triangular wave shape. Is formed. And only the lower end 12e pointed in the triangle protrudes downward from the support plate lower part 8u. And since the condensed water collection | recovery container 14 is provided under the lower end 12e pointed to this triangle, the water condensed on the condensing surface of the support plate 8 permeates the permeable membrane 12 for collecting condensed water, It reaches the lower end 12e pointed in a triangle and drops, and accumulates in the lower condensed water recovery container 14.

図4において、各支持板8…の裏面側すなわち蒸発面側に密着している蒸発浸透膜9の下側も、三角波状に形成されている。そして、三角形に尖った下端9eの下側に、前記の濃縮液の回収容器11を設けてあるので、蒸発浸透膜9で濃縮された濃縮液は下部まで浸透降下し、三角形に尖った下端9eに到達して滴下し、下側の濃縮液の回収容器11に溜まる。 In FIG. 4, the lower side of the evaporation osmosis membrane 9 that is in close contact with the back side of each support plate 8, that is, the evaporation side, is also formed in a triangular wave shape. Since the concentrated liquid recovery container 11 is provided below the triangularly-pointed lower end 9e, the concentrated liquid concentrated by the evaporating osmosis membrane 9 permeates and falls to the lower part, and the triangularly-lowered lower end 9e. And drops, and accumulates in the lower concentrated liquid recovery container 11.

このように、支持板8の片方の面に貼着している凝縮水回収用浸透膜の三角波状部の三角形下端12eから凝縮水が滴下し、他方の面に密着している蒸発浸透膜9の三角波状部の三角形下端9eから濃縮液が滴下するので、薄い支持板8を隔てて、凝縮水と濃縮液とを分離回収できる。このように分離するには、手前側の面の三角形下端12eと裏面側の三角形下端9eとが、ちょうど半ピッチ分だけ、位相をずらしてあることが重要である。そして、このようにV字状垂下部12eと9eとが互い違いになった状態で、支持板8の下部8uの下端縁8eより下側の空間においては、手前側のV字状垂下部12eと裏面側のV字状垂下部9eとが重ならないようにしてある。すなわち、支持板8内において8xで示す領域のように、表裏のV字状垂下部12eと9eとの間に、凝縮水回収用浸透膜12も蒸発浸透膜9も密着していない領域を設けてある。その結果、濃縮海水と凝縮水が互いに混合することなく、各々の三角波状の先端に集められ、容易に回収される。板の裸面で凝縮した水はその裸面を流下し、下端の凝縮水回収用浸透膜に吸収され、上記のように回収される。 In this way, the condensed water drops from the triangular lower end 12e of the triangular wave-shaped portion of the condensed water recovery osmotic membrane adhered to one surface of the support plate 8, and the evaporated osmotic membrane 9 is in close contact with the other surface. Since the concentrated liquid drops from the triangular lower end 9e of the triangular wave-shaped part, the condensed water and the concentrated liquid can be separated and recovered with the thin support plate 8 interposed therebetween. In order to separate in this way, it is important that the triangle lower end 12e on the near side and the triangle lower end 9e on the back side are shifted in phase by exactly half a pitch. In the state where the V-shaped hanging portions 12e and 9e are alternately arranged in this manner, in the space below the lower end edge 8e of the lower portion 8u of the support plate 8, the front V-shaped hanging portion 12e and The V-shaped hanging portion 9e on the back side is not overlapped. That is, a region where neither the condensed water recovery osmosis membrane 12 nor the evaporation osmosis membrane 9 is in close contact is provided between the front and back V-shaped hanging portions 12e and 9e, as in the region indicated by 8x in the support plate 8. It is. As a result, the concentrated seawater and the condensed water are collected at the respective triangular wave-shaped tips without being mixed with each other and easily recovered. The water condensed on the bare surface of the plate flows down the bare surface, is absorbed by the permeated membrane for collecting condensed water at the lower end, and is collected as described above.

図5は、図2、図3における各支持板8…の上端に設けた被濃縮液の溜め溝10を示す断面図であり、各支持板8…の水平な頂端8tに沿って、側面に溜め溝10を設けてある。この溜め溝10は、支持板8の水平方向のほぼ全長に渡って設けてあり、その中に、被濃縮液となる例えば海水Wを入れてある。そして、この溜め溝10の中に、前記の支持板8側面の蒸発浸透膜9の上端が延長して、底部まで挿入浸漬されている。 FIG. 5 is a cross-sectional view showing the concentrated liquid reservoir groove 10 provided at the upper end of each support plate 8 in FIG. 2 and FIG. 3, and on the side surface along the horizontal top end 8t of each support plate 8. A reservoir groove 10 is provided. The reservoir groove 10 is provided over substantially the entire length of the support plate 8 in the horizontal direction, and for example, seawater W, which is a liquid to be concentrated, is placed therein. The upper end of the evaporating and permeable membrane 9 on the side surface of the support plate 8 extends into the reservoir groove 10 and is inserted and immersed to the bottom.

9tが延長部であり、蒸発浸透膜9がそのまま、又は別体を重ねて延長していて、液体の浸透作用があるので、溜め溝10中に浸漬された部分から吸収した海水が毛管現象によって吸い上げられ、支持板8の水平な頂端を越えて、支持板8背面の蒸発浸透膜9に連続的に浸透し流下して供給される。そして、蒸発浸透膜9は常に海水で濡れた状態で蒸発が行われるので、海水は高濃度となって、蒸発浸透膜9の下端から濃縮液として回収される。各支持板8の頂辺を水平にすることにより、溜め溝10からの海水の吸い上げ高さを均一にして、蒸発浸透膜9のスパン方向に一様に海水を供給することが可能である。なお、溜め溝10中の液面から支持板8の頂端までの寸法は、例えば1〜10cm程度が適するが、この寸法に限定されない。 9t is an extension part, and the evaporation osmosis membrane 9 is extended as it is or with another body, and since there is a liquid osmosis action, the seawater absorbed from the portion immersed in the reservoir groove 10 is caused by capillary action. It is sucked up, supplied to the evaporating and permeable membrane 9 on the back surface of the support plate 8 through the horizontal top end of the support plate 8 and continuously permeating and flowing down. And since the evaporation osmosis membrane 9 is always evaporated in a state wet with seawater, the seawater becomes a high concentration and is collected as a concentrated liquid from the lower end of the evaporation osmosis membrane 9. By making the top side of each support plate 8 horizontal, it is possible to make the suction height of seawater from the reservoir groove 10 uniform, and to supply seawater uniformly in the span direction of the evaporative osmosis membrane 9. In addition, although the dimension from the liquid level in the storage groove | channel 10 to the top end of the support plate 8 is suitable, for example, about 1-10 cm, it is not limited to this dimension.

図6は、前記の各溜め溝10へ被濃縮液を定量供給するための制御部であり、被濃縮液の供給槽15中に供給口16から被濃縮液を供給しながら、堰17からオーバーフローさせて、一定液面を維持している。そして、この供給槽15の底板18に多数の毛細管19を貫通させて立てて、上端は供給槽15中の被濃縮液中に入れ、下端から流出する被濃縮液は別のチューブ(図5、図11のチューブ19t)を経て前記の各溜め溝10の中に流入するようにしておく。この状態を斜視図で示すと、図11の通りである。このような構成にすると、供給槽15中から各溜め溝10への海水の供給量は、毛細管19の内径と長さおよび海水面と毛細管19下端のヘッド高さhによって決まるので、常時、適量の海水が供給されるように制御できる。本発明では、毛細管19の供給槽15への挿入距離を変えることによって、ヘッド高さhを制御し、流量を調節することができる。なお、毛細管19下端から流出する被濃縮液はチューブ19tを経て各溜め溝10に海水を供給するほか、毛細管19を直接に溜め溝10に挿入する構成でもよい。 FIG. 6 shows a control unit for quantitatively supplying the liquid to be concentrated to each reservoir groove 10, and overflowing from the weir 17 while supplying the liquid to be concentrated from the supply port 16 into the supply tank 15 of the liquid to be concentrated. To maintain a constant liquid level. Then, a large number of capillaries 19 are pierced through the bottom plate 18 of the supply tank 15, the upper end is placed in the liquid to be concentrated in the supply tank 15, and the liquid to be concentrated flowing out from the lower end is separated from another tube (FIG. 5, It flows so that it may flow in into each said storage groove | channel 10 through the tube 19t) of FIG. FIG. 11 is a perspective view of this state. With such a configuration, the supply amount of seawater from the supply tank 15 to each reservoir groove 10 is determined by the inner diameter and length of the capillary tube 19 and the seawater surface and the head height h at the lower end of the capillary tube 19. It is possible to control so that seawater is supplied. In the present invention, the head height h can be controlled and the flow rate can be adjusted by changing the insertion distance of the capillary tube 19 into the supply tank 15. In addition, the to-be-concentrated liquid which flows out from the lower end of the capillary tube 19 may be configured to insert the capillary tube 19 directly into the reservoir groove 10 in addition to supplying seawater to each reservoir groove 10 via the tube 19t.

図7は密閉型の濃縮装置の縦断面図であり、前記のような濃縮装置が、密閉容器20の中に収納してある。そして、この実施形態では、密閉容器20の内部空間を、空気の代わりに水素、ヘリウム等の分子量の小さい(軽い)気体で満たすことにより、被濃縮液の蒸発浸透膜9と支持板8裸面の間の気体中の水蒸気の拡散速度が促進されて、濃縮効率(与えた熱量に対する濃縮液生産量の割合)および濃縮液生産速度が共に向上する。この場合、密閉容器20の側壁外面に、冷却管21を張り巡らせて、冷却水等で冷却してもよいし、空冷してもよい。あるいは、冷却管21に代えて、密閉容器20外面に浸透膜を貼り付けて水等を含浸蒸発させて冷却してもよい。なお、前記密閉容器20の内外の圧力差はほぼゼロで、密閉容器20は圧力容器である必要はない。 FIG. 7 is a longitudinal sectional view of a closed type concentrating device. The concentrating device as described above is housed in a sealed container 20. In this embodiment, the inner space of the sealed container 20 is filled with a low molecular weight (light) gas such as hydrogen or helium instead of air, so that the concentrated liquid evaporative permeation membrane 9 and the support plate 8 are bare. During this period, the diffusion rate of water vapor in the gas is promoted, and the concentration efficiency (the ratio of the concentrate production amount to the amount of heat applied) and the concentrate production rate are both improved. In this case, the cooling pipe 21 may be stretched around the outer surface of the side wall of the sealed container 20 and cooled with cooling water or the like, or may be air-cooled. Alternatively, instead of the cooling pipe 21, an osmotic membrane may be attached to the outer surface of the sealed container 20 to impregnate and evaporate water or the like for cooling. The pressure difference between the inside and outside of the sealed container 20 is almost zero, and the sealed container 20 does not have to be a pressure container.

これに対し、前記の密閉容器20を圧力容器にすると共に、前記の加温室Hに高温高圧の蒸気を供給することも可能である。このように、加熱室Hに高温高圧の蒸気を供給して加熱すると、各々の被濃縮液蒸発浸透膜9において、より高温での蒸発濃縮が行われ、その結果、濃縮効率および濃縮液生産速度が著しく向上する。また、加熱室Hと密閉容器20側壁との温度差を大きく取れることから、蒸発浸透膜9を密着させる支持板8…をより多数枚設置でき、濃縮効率がさらに向上する。 On the other hand, while making the said airtight container 20 into a pressure container, it is also possible to supply a high temperature / high pressure steam to the said heating chamber H. FIG. Thus, when high-temperature and high-pressure steam is supplied to the heating chamber H and heated, each concentrated liquid evaporating and permeating membrane 9 performs evaporative concentration at a higher temperature. As a result, the concentration efficiency and the concentrated liquid production rate are obtained. Is significantly improved. Further, since a large temperature difference between the heating chamber H and the side wall of the sealed container 20 can be obtained, a larger number of support plates 8 for closely contacting the evaporation osmosis membrane 9 can be installed, and the concentration efficiency is further improved.

図8、図9は、図2、図3の加温室H寄りの支持板8aの加熱手段の他の実施形態であり、最初の支持板8aに温水流路を設ける構造になっている。すなわち、図8は、最初の支持板8aも兼ねる加熱室の左右の隔壁の間に、ガイド板22を左右両側から櫛歯状に設けることによって、ジグザグ状ないし蛇行状の流水路23を形成する。そして、下端の入り口23iから、加温手段で加温された温水を供給すると、温水が流水路23中をジグザグを描いて上昇し、上端の出口23oから流出するため、支持板8の全面を加熱できる。 FIGS. 8 and 9 show another embodiment of the heating means for the support plate 8a near the greenhouse H in FIGS. 2 and 3, and the first support plate 8a is provided with a hot water channel. That is, in FIG. 8, a zigzag or meandering flow channel 23 is formed by providing the guide plate 22 in a comb-like shape from the left and right sides between the left and right partition walls of the heating chamber that also serves as the first support plate 8a. . Then, when hot water heated by the heating means is supplied from the lower end inlet 23i, the hot water rises in a zigzag manner in the flow channel 23 and flows out from the upper end outlet 23o. Can be heated.

図9は、ガイド板22による流路形成に代えて、温水管24をジグザグ状ないし蛇行状に形成し、最初の支持板8aに接着または溶接することによって、支持板8aの全面にジグザグ状ないし蛇行状の水路を形成してある。そして、下端の入り口24iから、温水を供給すると、温水管24中を蛇行しながら上昇して、上端の出口24oから流出し、支持板8aの全面が加熱される。なお、図9に示す配管構造は、図2、図3の加熱室構造に比較して製作が容易であるので、図9の配管構造のものに加熱蒸気を供給して、同様に、支持板8aの全面を加熱することもできる。また、均一加熱には、図2、図3のような均一蒸気加熱が望ましいが、別に蒸気発生器が必要となる。加熱源が100℃以下の場合には、図8、図9のような温水加熱が簡便であるが、支持板8aのスパン方向に均一な加熱となるようガイド板または配管に工夫が必要となる。 In FIG. 9, instead of forming the flow path by the guide plate 22, the hot water pipe 24 is formed in a zigzag shape or a meandering shape, and is bonded or welded to the first support plate 8a. A serpentine channel is formed. When hot water is supplied from the lower end inlet 24i, the hot water pipe 24 rises while meandering, flows out from the upper end outlet 24o, and the entire surface of the support plate 8a is heated. Since the piping structure shown in FIG. 9 is easier to manufacture than the heating chamber structure shown in FIGS. 2 and 3, heating steam is supplied to the piping structure shown in FIG. The entire surface of 8a can also be heated. Further, for uniform heating, uniform steam heating as shown in FIGS. 2 and 3 is desirable, but a steam generator is required separately. When the heating source is 100 ° C. or lower, warm water heating as shown in FIGS. 8 and 9 is simple, but it is necessary to devise the guide plate or piping so as to achieve uniform heating in the span direction of the support plate 8a. .

図10は、各支持板8…を吊り下げ支持する構造を示す分解斜視図であり、図9の蛇行温水管24が装備された最初の支持板8aと最後の支持板8zが現れている。この最初の支持板8aと最後の支持板8zとの間の複数の支持板8…も実装された状態が図11である。また、図11の斜視図の状態を正面図と縦断面図で示したのが図12である。図10の最後の支持板8の背面に現れているように、多数のスペーサ用の突起25…を固定してある。このようなスペーサ手段が、図11の各支持板8…の背面にも設けることによって、複数の支持板8を例えば5mm程度の一定の間隔を開けて吊り下げ支持できる。 FIG. 10 is an exploded perspective view showing a structure in which the support plates 8 are suspended and supported, and the first support plate 8a and the last support plate 8z equipped with the meandering hot water pipe 24 of FIG. 9 appear. FIG. 11 shows a state in which a plurality of support plates 8 between the first support plate 8a and the last support plate 8z are also mounted. Further, FIG. 12 shows the state of the perspective view of FIG. 11 in a front view and a longitudinal sectional view. As shown on the rear surface of the last support plate 8 in FIG. 10, a large number of spacer projections 25 are fixed. By providing such a spacer means also on the back surface of each support plate 8 in FIG. 11, the plurality of support plates 8 can be supported by being suspended with a constant interval of, for example, about 5 mm.

各支持板8…を吊り下げ支持するために、各支持板8…の上部には、前記の溜め溝10の真下の位置において、横桟26を取付けてある。各支持板8…の両側の上部には、各横桟26の両端を載せて支持するガイドレール27を直角方向に設けてある。このように、各支持板8…は、その上側に取付けた横桟26の両端を横桟26に載せた構造とすることにより、各支持板8…がガイドレール27に懸垂支持されることによって、各支持板8…を吊り下げ支持している。各横桟26の両端下部に形成した凹部26aにガイドレール27が嵌入する構造にしてあるので、各支持板8は、ガイドレール27に対し一定の位置を保持しながら、ガイドレール27上を矢印a1方向にスライド移動できる。なお、凹部26aに代えて、図12(1)のように、横桟26の両端をガイドレール27の外側に引っ掛けて、離脱不能な構造にしてもよい。 In order to suspend and support the support plates 8..., Horizontal rails 26 are attached to the upper portions of the support plates 8 at positions immediately below the storage grooves 10. Guide rails 27 are provided at right angles in the upper portions on both sides of each support plate 8 to support both ends of each cross rail 26. In this way, each support plate 8 has a structure in which both ends of the horizontal beam 26 attached to the upper side thereof are placed on the horizontal beam 26, so that each support plate 8 is suspended and supported by the guide rail 27. The support plates 8 are suspended and supported. Since the guide rails 27 are inserted into the recesses 26 a formed at the lower ends of the both ends of each horizontal rail 26, each support plate 8 has an arrow on the guide rails 27 while maintaining a fixed position with respect to the guide rails 27. It can slide in the a1 direction. Instead of the recess 26a, as shown in FIG. 12 (1), both ends of the cross rail 26 may be hooked on the outside of the guide rail 27 so that the structure cannot be detached.

したがって、完成状態の各支持板8…を左右のガイドレール27上に懸垂支持させて、スライドするだけで、濃縮装置を組立てることができ、また定期点検や清掃などのメンテナンスの際には、容易に分解もできる。なお、横桟26のスライド移動を円滑にするべく、ガイドレール27との間に滑車状の車輪を介在させることもできる。 Therefore, it is possible to assemble the concentrator simply by suspending and supporting the respective support plates 8 on the left and right guide rails 27 and sliding them, and it is easy for maintenance such as periodic inspection and cleaning. Can also be disassembled. A pulley-like wheel may be interposed between the rail 26 and the guide rail 27 in order to make the horizontal rail 26 slide smoothly.

〔装置の作用〕
以上のように、各支持板8…の間はスペーサ手段によって一定の間隔Gが開けられ、間に空気層が形成されている。そのため、蒸発浸透膜9から蒸発した蒸気が、その空気層中を拡散して、隣接する次の支持板8の裏面の裸面に達し、そこで凝縮して熱を伝える。それに加えて、伝導と輻射によっても蒸発浸透膜9から支持板裸面へ熱が伝わる。これらの伝熱の三形態のうち、蒸気拡散による伝熱形態が、平均すれば約90%の熱を伝えるが、その割合は高温ほど高くなる。よって、濃縮手段全体としての効率も高温ほど高くなる。
[Operation of the device]
As described above, a certain distance G is provided between the support plates 8 by the spacer means, and an air layer is formed therebetween. Therefore, the vapor evaporated from the evaporation osmosis membrane 9 diffuses in the air layer, reaches the bare surface on the back surface of the next adjacent support plate 8, and condenses there to transmit heat. In addition, heat is transferred from the evaporation / permeable membrane 9 to the bare surface of the support plate by conduction and radiation. Of these three types of heat transfer, the heat transfer mode by vapor diffusion, on average, transfers about 90% of the heat, but the rate is higher at higher temperatures. Therefore, the efficiency of the concentration means as a whole increases as the temperature increases.

次に、前記空気層を形成する間隔Gが狭いほど拡散距離は短く、十分な拡散速度(蒸発速度)に必要な蒸発浸透膜9と凝縮面との間の温度差も小さくなる。一方、最初の支持板8aの裏面の最初の蒸発浸透膜9aの温度の上限は、被濃縮液の沸点が限界であるので、最初の蒸発浸透膜9aと周囲空気の温度差は限られている。したがって、前記空気層が狭いほど、より多数枚の蒸発浸透膜の貼着け用の支持板8を配置できるため、より多数の蒸発浸透膜から濃縮液が得られ、濃縮装置全体の濃縮効率は向上する。 Next, the narrower the gap G forming the air layer, the shorter the diffusion distance, and the smaller the temperature difference between the evaporation osmosis membrane 9 and the condensation surface required for a sufficient diffusion rate (evaporation rate). On the other hand, since the upper limit of the temperature of the first evaporative osmosis membrane 9a on the back surface of the first support plate 8a is limited by the boiling point of the liquid to be concentrated, the temperature difference between the initial evaporative osmosis membrane 9a and the ambient air is limited. . Therefore, the narrower the air layer, the more support plates 8 for attaching the evaporative permeation membrane can be arranged, so that a concentrated liquid can be obtained from the larger number of evaporative permeation membranes, and the concentration efficiency of the entire concentrating device is improved. To do.

一方、支持板8…の配置枚数が多いほど生産速度は低下する。最初の支持板8aと周囲空気の温度差は限られており、支持板8…の枚数が多いと、個々の蒸発浸透膜9と次段の支持板8の裸面との温度差は小さくなる。その結果、空気層中の蒸気拡散速度および蒸発速度も小さくなり、個々の蒸発浸透膜から得られる濃縮液も、また全体の生産速度も小さくなる。同時に、最初の蒸発浸透膜9aからの蒸発速度にほぼ比例して入力熱量は減少するが、その減少量は生産速度に比べてより著しいため、生産量に対する入力熱量の比で定義される濃縮効率は向上する。以上の関係より、支持板8…の間隔Gを極限まで狭くして、より多くの枚数の支持板8…を吊り下げ配置すれば、濃縮効率は著しく向上し、かつ十分な生産速度を確保できることになる。 On the other hand, the production speed decreases as the number of support plates 8 arranged increases. The temperature difference between the first support plate 8a and the ambient air is limited, and when the number of the support plates 8 is large, the temperature difference between each evaporative permeable membrane 9 and the bare surface of the support plate 8 at the next stage is small. . As a result, the vapor diffusion rate and the evaporation rate in the air layer are also reduced, and the concentrate obtained from the individual evaporative permeable membranes is also reduced in the overall production rate. At the same time, the amount of input heat decreases approximately in proportion to the evaporation rate from the first evaporation osmosis membrane 9a, but the amount of decrease is more significant than the production rate, so the concentration efficiency defined by the ratio of input heat amount to production amount Will improve. From the above relationship, if the gap G between the support plates 8 is narrowed to the limit and a larger number of support plates 8 are suspended, the concentration efficiency can be remarkably improved and a sufficient production speed can be secured. become.

濃縮手段の部分を圧力容器内に入れれば、被濃縮液の沸点をより高温にできるため、最初の蒸発浸透膜9aをより高温で加熱でき、周囲空気との温度差を大きく取れる。よって、より多数枚の支持板8…を設置しても、個々の蒸発浸透膜と次段の支持板の裸面間の温度を同じか、より大きくできるため、効率および生産速度を著しく向上させ得る。この場合、支持板の枚数増加による効率向上が主であるが、個々の空気層の温度もより高温になるので、伝熱の三形態のうち、蒸気拡散による伝熱の割合も高くなり、その結果、効率も向上するという効果も加わる。 If the portion of the concentration means is placed in the pressure vessel, the boiling point of the liquid to be concentrated can be raised to a higher temperature. Therefore, the first evaporative osmosis membrane 9a can be heated at a higher temperature, and the temperature difference from the ambient air can be increased. Therefore, even when a larger number of support plates 8 are installed, the temperature between the bare surfaces of the individual evaporative permeation membranes and the support plate of the next stage can be the same or larger, so that the efficiency and the production speed are remarkably improved. obtain. In this case, efficiency is mainly improved by increasing the number of support plates. However, since the temperature of each air layer is also higher, among the three forms of heat transfer, the rate of heat transfer by vapor diffusion is also increased. As a result, the effect of improving efficiency is also added.

蒸気は、水素やヘリウム等の低分子量の気体中はより速く拡散する。各支持板8…間の空気を、水素やヘリウム等で置換すれば、個々の気体層中の蒸気拡散速度および蒸気拡散による伝熱割合は高くなるので、濃縮器全体の生産速度および効率が共に著しく向上する。 Vapors diffuse faster in low molecular weight gases such as hydrogen and helium. If the air between the support plates 8 is replaced with hydrogen, helium, or the like, the vapor diffusion rate in each gas layer and the heat transfer rate due to vapor diffusion increase, so the production speed and efficiency of the entire concentrator are both high. Remarkably improved.

〔付記事項〕
支持板8…の凝縮面を裸面にしないで、全面に凝縮浸透膜を貼り付けてもよい。しかしながら、この凝縮浸透膜を介して部分的な接触が生じた場合は、被濃縮液と凝縮水との混合を招く恐れがあるので、注意を要する。蒸発浸透膜9は、全面を濡らせば、被濃縮液の毛管現象によって、支持板8に密着保持させることができるので、接着剤の使用を避けることができる。なお、支持板8の頂辺の適当な箇所で蒸発浸透膜9をクリップなどで挟んで固定しておくと安心である。ただし、本発明は、接着剤使用を排除するものではない。
[Additional Notes]
A condensing permeation membrane may be attached to the entire surface without making the condensing surface of the support plate 8. However, when partial contact occurs through the condensation osmosis membrane, care should be taken because there is a risk of mixing the liquid to be concentrated and the condensed water. If the entire surface of the evaporation osmosis membrane 9 is wetted, it can be held in close contact with the support plate 8 by the capillary phenomenon of the liquid to be concentrated, so that the use of an adhesive can be avoided. In addition, it is safe to hold the evaporation osmosis membrane 9 with a clip or the like at an appropriate location on the top side of the support plate 8. However, the present invention does not exclude the use of an adhesive.

最初の支持板8aは、加温室Hを設けて積極的に加温するのに対し、最終段の支持板8zは、積極的に冷却することが望ましい。このように、周囲空気に面する最終段の支持板8zを冷却するには、次の3方法が考えられる。
1.支持板8zの外面に浸透膜を貼り付け、被濃縮液または水を含浸させておいて、その蒸発熱で冷却する。
2.支持板8zの外面に冷却室または冷却管を設け、その中を冷却水を通して冷却する。3.支持板8zの外面を裸面にして、空冷する。
前記の第1の蒸発冷却法と第2の冷却水冷却法は、第3の空冷法に比較して前記支持板をより低温に冷却できるので望ましいが、浸透膜の貼り付けあるいは冷却用の配管が必要になる。
It is desirable that the first support plate 8a is positively heated by providing a heating chamber H, whereas the last support plate 8z is positively cooled. In this way, the following three methods are conceivable for cooling the last stage support plate 8z facing the ambient air.
1. An osmotic membrane is attached to the outer surface of the support plate 8z, impregnated with a liquid to be concentrated or water, and cooled by the heat of evaporation.
2. A cooling chamber or a cooling pipe is provided on the outer surface of the support plate 8z, and the inside is cooled through cooling water. 3. The outer surface of the support plate 8z is made bare and air-cooled.
The first evaporative cooling method and the second cooling water cooling method are preferable because the support plate can be cooled at a lower temperature than the third air cooling method, but the permeation membrane is attached or the piping for cooling is used. Is required.

以上の実施形態においては、被濃縮液として海水を例に説明したが、被濃縮液は海水に限られない。動植物の溶液およびその他の有機化合物や無気化合物の水溶液などを濃縮する場合にも適用し、濃縮の際に発生する凝縮水を副産物として回収し利用できる。しかしながら、水溶液のみに限定されず、アルコールやベンゼン、アセトンなどのような有機溶液の濃縮への応用も考えられる。なお、以上の説明における浸透膜とは、布などのように液体の浸透作用のある膜やシート、フィルムなどを総称するものとする。 In the above embodiment, seawater was taken as an example of the liquid to be concentrated, but the liquid to be concentrated is not limited to seawater. It can also be applied to the concentration of animal and plant solutions and aqueous solutions of other organic compounds and anaerobic compounds, and the condensed water generated during concentration can be recovered and used as a by-product. However, the present invention is not limited to only aqueous solutions, and application to the concentration of organic solutions such as alcohol, benzene, and acetone is also conceivable. In the above description, the osmotic membrane is a generic term for membranes, sheets, films, and the like that have a liquid osmotic action such as cloth.

以上のように、本発明による濃縮装置によると、海水その他の水溶液を効率的に濃縮して回収でき、濃縮の際に発生する凝縮水も効果的に回収して、水資源として利用できるので、一石二鳥の効果を奏する。 As described above, according to the concentrating device according to the present invention, seawater and other aqueous solutions can be efficiently concentrated and recovered, and condensed water generated during concentration can also be effectively recovered and used as a water resource. Has the effect of two birds with one stone.

従来の蒸発浸透膜を用いた濃縮装置の断面図である。It is sectional drawing of the concentration apparatus using the conventional evaporation osmosis membrane. 本発明による濃縮装置の基本構成を説明する断面図であり、鉛直タイプの例である。It is sectional drawing explaining the basic composition of the concentration apparatus by this invention, and is an example of a vertical type. 本発明による濃縮装置の基本構成を説明する断面図であり、傾斜タイプの例である。It is sectional drawing explaining the basic composition of the concentration apparatus by this invention, and is an example of an inclination type. 図2、図3における各支持板の下端側を拡大して示した図である。It is the figure which expanded and showed the lower end side of each support plate in FIG. 2, FIG. 図2、図3における各支持板の上端に設ける被濃縮液の溜め溝を示す断面図である。It is sectional drawing which shows the reservoir groove of the to-be-concentrated liquid provided in the upper end of each support plate in FIG. 2, FIG. 前記の各溜め溝へ被濃縮液を定量供給するための制御部を示す断面図である。It is sectional drawing which shows the control part for supplying a to-be-concentrated liquid quantitatively to each said reservoir groove. 密閉型の濃縮装置の縦断面図である。It is a longitudinal cross-sectional view of a closed type concentration apparatus. 最初の支持板のガイド板式加熱手段を示す実施形態であり、(1)は正面図、(2)はそのA−A断面図である。It is embodiment which shows the guide plate type heating means of the first support plate, (1) is a front view, (2) is the AA sectional drawing. 最初の支持板の温水管式加熱手段を示す実施形態であり、(1)は正面図、(2)はそのB−B断面図である。It is embodiment which shows the warm water pipe | tube type heating means of the first support plate, (1) is a front view, (2) is the BB sectional drawing. 最初と最後の支持板を吊り下げ支持した状態の分解斜視図である。It is a disassembled perspective view of the state which suspended and supported the first and last support plates. 最初の支持板と最後の支持板との間に複数の支持板が吊り下げ支持されている状態を示す斜視図である。It is a perspective view which shows the state by which the some support plate is suspended and supported between the 1st support plate and the last support plate. 図11の斜視図の状態を正面図と縦断面図で示したもので、(1)は正面図、(2)は縦断面図である。The state of the perspective view of FIG. 11 is shown with the front view and the longitudinal cross-sectional view, (1) is a front view, (2) is a longitudinal cross-sectional view.

符号の説明Explanation of symbols

4 蒸発浸透膜
5 凝縮浸透膜
S 被濃縮液
H 加熱室
8 支持板
8a 最初の支持板
8z 最後の支持板
9 蒸発浸透膜
9a 最初の蒸発浸透膜
9e 蒸発浸透膜の三角形下端
9z 最後の蒸発浸透膜
10 溜め溝
11 濃縮液回収容器
12 凝縮水回収用浸透膜
12e 凝縮水回収用浸透膜の三角形下端
13 断熱板
14 凝縮水回収容器
15 被濃縮液の供給容器
16 被濃縮液の供給口
17 堰
19 毛細管
19t チューブ
20 密閉容器
21 冷却管
22 隔壁
23 流水路
24 温水管
25 スペーサ突起
26 横桟
27 ガイドレール
4 Evaporation and osmosis membrane 5 Condensation and osmosis membrane S Concentrated liquid H Heating chamber
8 Support plate
8a First support plate
8z Last support plate
9 evaporative osmosis membrane 9a first evaporative osmosis membrane 9e evaporative osmosis membrane lower triangle end 9z last evaporative osmosis membrane 10 reservoir groove
11 Concentrated liquid collection container
12 Condensed water recovery osmosis membrane 12e Triangular lower end 13 of the condensed water recovery osmosis membrane
14 Condensed water recovery container 15 Concentrated liquid supply container 16 Concentrated liquid supply port 17 Weir 19 Capillary tube 19 t Tube 20 Sealed container 21 Cooling pipe 22 Partition wall 23 Water flow path 24 Hot water pipe 25 Spacer projection 26 Side rail 27 Guide rail

Claims (8)

片方の面が蒸発面となり、他方の面が凝縮面となる薄い支持板を、鉛直または鉛直から30度以内に傾けた状態で吊り下げ支持してあり、前記の蒸発面には被濃縮液を供給し、前記の凝縮面から凝縮液を回収する構造としたことを特徴とする濃縮装置。 A thin support plate with one surface serving as the evaporation surface and the other surface serving as the condensing surface is suspended and supported vertically or tilted within 30 degrees from the vertical, and the liquid to be concentrated is placed on the evaporation surface. A concentrating device characterized in that it is configured to supply and collect condensate from the condensing surface. 前記の蒸発面に蒸発用の浸透膜を設け、凝縮面には少なくとも下端部のみに凝縮液回収用の浸透膜を設けてなることを特徴とする請求項1に記載の濃縮装置。 2. The concentrating apparatus according to claim 1, wherein an osmosis membrane for evaporation is provided on the evaporation surface, and an osmosis membrane for condensate recovery is provided at least on the lower end of the condensation surface. 被濃縮液を溜める溜め溝を前記支持板の頂部に沿って設け、前記溜め溝に浸した浸透膜から前記支持板面の蒸発用浸透膜に毛管作用によって被濃縮液を供給する構造としたことを特徴とする請求項1または請求項2に記載の濃縮装置。 A reservoir groove for storing the concentrated liquid is provided along the top of the support plate, and the concentrated liquid is supplied from the osmotic membrane immersed in the reservoir groove to the osmotic membrane for evaporation on the support plate surface by capillary action. The concentrator according to claim 1 or 2, wherein 被濃縮液の供給容器の底部から毛細管で前記の各溜め溝に給水する構造とし、各毛細管の長さを変えることによって、給液速度を設定する構造としたことを特徴とする請求項3に記載の濃縮装置。 4. The structure according to claim 3, wherein water is supplied to each reservoir groove by a capillary from the bottom of the supply container of the liquid to be concentrated, and the liquid supply speed is set by changing the length of each capillary. The concentration apparatus as described. 前記支持板の下端における蒸発用の浸透膜の下端と凝縮水回収用の浸透膜の下端を3角波状とし、両3角波状部の各V字状垂下部が互い違いとなるようにずらしてあることを特徴とする請求項2、請求項3または請求項4に記載の濃縮装置。 The lower end of the osmosis membrane for evaporation and the lower end of the osmosis membrane for condensate recovery at the lower end of the support plate have a triangular wave shape, and are shifted so that the V-shaped hanging portions of both triangular wave portions are staggered. The concentrator according to claim 2, 3, or 4. 各支持板の上端を懸垂支持する横桟を、前記横桟と直角方向に設けたレールの上でスライドする構造としたことを特徴とする請求項1から請求項5までのいずれかの項に記載の濃縮装置。 6. The structure according to claim 1, wherein a horizontal beam that supports the upper end of each support plate is suspended on a rail provided in a direction perpendicular to the horizontal beam. The concentration apparatus as described. 濃縮処理部を圧力容器に収納して、高温加熱を実現することにより、熱効率と生産速度の向上を可能としたことを特徴とする請求項1から請求項6までのいずれかの項に記載の濃縮装置。 7. The heat efficiency and production rate can be improved by housing the concentration processing unit in a pressure vessel and realizing high-temperature heating. 8. Concentrator. 濃縮処理部を密閉容器内に収納して、内部の空気を水素やヘリウムで置換する構造としたことを特徴とする請求項1から請求項7までのいずれかの項に記載の濃縮装置。 The concentration apparatus according to any one of claims 1 to 7, wherein the concentration processing unit is housed in a sealed container and the internal air is replaced with hydrogen or helium.
JP2004103191A 2004-03-31 2004-03-31 Aqueous solution concentrator Expired - Fee Related JP4106350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004103191A JP4106350B2 (en) 2004-03-31 2004-03-31 Aqueous solution concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004103191A JP4106350B2 (en) 2004-03-31 2004-03-31 Aqueous solution concentrator

Publications (2)

Publication Number Publication Date
JP2005288217A true JP2005288217A (en) 2005-10-20
JP4106350B2 JP4106350B2 (en) 2008-06-25

Family

ID=35321777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004103191A Expired - Fee Related JP4106350B2 (en) 2004-03-31 2004-03-31 Aqueous solution concentrator

Country Status (1)

Country Link
JP (1) JP4106350B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173107A (en) * 2010-02-23 2011-09-08 Takehiro Nosoko Concentrator of solution by wind and solar heat
KR101828459B1 (en) * 2017-06-21 2018-03-29 한국기계연구원 Desalination apparatus including feeding tank for supplying seawater to a plurality of plates
CN111661888A (en) * 2020-06-15 2020-09-15 方诺传热系统(江苏)有限公司 Falling film type air cooler based on evaporative air cooling technology and wastewater treatment process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173107A (en) * 2010-02-23 2011-09-08 Takehiro Nosoko Concentrator of solution by wind and solar heat
KR101828459B1 (en) * 2017-06-21 2018-03-29 한국기계연구원 Desalination apparatus including feeding tank for supplying seawater to a plurality of plates
CN111661888A (en) * 2020-06-15 2020-09-15 方诺传热系统(江苏)有限公司 Falling film type air cooler based on evaporative air cooling technology and wastewater treatment process

Also Published As

Publication number Publication date
JP4106350B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
US10703652B2 (en) Forward osmosis process
KR101936159B1 (en) Seawater desalination system using air gap membrane distillation (agmd) module of hollow fiber type, and method for the same
Zaragoza et al. Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production
KR102424159B1 (en) Systems including a condensing apparatus such as a bubble column condenser
Susanto Towards practical implementations of membrane distillation
KR102050990B1 (en) Gas-liquid contact device, distillation device, and heat exchange device
FI78442B (en) AVSALTNINGSFOERFARANDE OCH -ANORDNING.
RU2080140C1 (en) Distillation apparatus
US9770673B2 (en) Apparatus for diffusion-gap thermal desalination
Hejazi et al. Effect of intermittent operation on performance of a solar-powered membrane distillation system
US10143971B2 (en) Crystallization system with frame elements
WO2018033722A1 (en) Water or evaporative cooler comprising a woven or warp-knitted mesh sheet
US20150014144A1 (en) Cooling device
EP3536390A1 (en) Gradient sub-boiling distiller
Chang et al. Numerical study on performance and efficiency of batch submerged vacuum membrane distillation for desalination
JP4106350B2 (en) Aqueous solution concentrator
US20070137996A1 (en) Method and apparatus for simultaneous heat and mass transfer utilizing a carrier-gas
CN201713349U (en) Membrane distillation device
CN113387405B (en) Seawater desalination device and seawater desalination system
JP2003236301A (en) Distillation apparatus
JPH08281250A (en) Seawater desalination device
JPS6118406A (en) Thermal diffusion type multiple effect distillation apparatus
Gryta et al. Solutions concentration by natural membrane evaporation
Tiwari et al. Thermal analysis of humidification–dehumidification desalination system based on evacuated tube solar air heater
JP2002102844A (en) Apparatus for converting seawater into fresh water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees