JP2005288085A - Capsule endoscope - Google Patents

Capsule endoscope Download PDF

Info

Publication number
JP2005288085A
JP2005288085A JP2004132240A JP2004132240A JP2005288085A JP 2005288085 A JP2005288085 A JP 2005288085A JP 2004132240 A JP2004132240 A JP 2004132240A JP 2004132240 A JP2004132240 A JP 2004132240A JP 2005288085 A JP2005288085 A JP 2005288085A
Authority
JP
Japan
Prior art keywords
capsule
optical
vivo information
organism
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004132240A
Other languages
Japanese (ja)
Inventor
Yuji Watabe
祐司 渡部
Tsunehiro Maehara
常弘 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004132240A priority Critical patent/JP2005288085A/en
Publication of JP2005288085A publication Critical patent/JP2005288085A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00013Operational features of endoscopes characterised by signal transmission using optical means

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Endoscopes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capsule type intra-organism information detector, which has been difficult to control the position after dosing to the organism, simultaneously realizing facilitation of position control and large-amount and high-speed bi-directional information communication and energy supply. <P>SOLUTION: An optical communication cable is fitted to the capsule type intra-organism information detector, thereby facilitating position control and performing bi-directional information communication and energy supply. Further, completely fine and flexible optical cable is used to reduce load on the organism as compared with a conventional endoscope. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は生体内に留置させて生体内の情報の検出などを行うカプセル型生体内情報検出装置に関する。  The present invention relates to a capsule-type in-vivo information detecting device that is placed in a living body and detects information in the living body.

生体内に留置させて生体内の情報の検出などを行うカプセル型生体内情報検出装置の従来例として、例えば特許公開2004−49756が挙げられる。ここでは、カプセル内視鏡を生体内の目的位置に保持するために特殊な保持具を使用している。しかしながら、その構成は必ずしも平易なものではない。  As a conventional example of a capsule-type in-vivo information detecting device that is placed in a living body and detects information in the living body, for example, Japanese Patent Publication No. 2004-49756 can be cited. Here, a special holder is used to hold the capsule endoscope at a target position in the living body. However, the configuration is not always simple.

一方、ノイズ耐性を向上させる目的から、カプセル型生体内情報検出装置の通信手段として光信号を採用したものがある。例えば特許公開平11−225996であり、この場合は双方向通信を考えていない。  On the other hand, for the purpose of improving noise resistance, there is one that employs an optical signal as a communication means of a capsule-type in-vivo information detecting device. For example, Japanese Patent Laid-Open No. 11-225996, in which case bidirectional communication is not considered.

本明細書においては撮像手段を備えて生体内の映像情報を得ることが可能なカプセル型生体内情報検出装置をカプセル内視鏡と呼ぶが、本発明はカプセル型生体内情報検出装置一般を対象としており、カプセル内視鏡に対象を絞るものではない。  In this specification, a capsule-type in-vivo information detecting device that includes an imaging unit and can obtain in-vivo video information is called a capsule endoscope. The present invention is intended for general capsule-type in-vivo information detecting devices. It is not intended to focus on the capsule endoscope.

本明細書において、カプセル型生体内情報検出装置とは直径10mm以下、長さ30mm以下の生体内情報検出装置をいう。通常、滑らかな形状である。また、既存のカプセル型生体内情報検出装置は通常、外部との通信の手段として、ケーブルを有しない。  In this specification, the capsule-type in-vivo information detecting device refers to an in-vivo information detecting device having a diameter of 10 mm or less and a length of 30 mm or less. Usually, it has a smooth shape. Moreover, the existing capsule-type in-vivo information detection apparatus usually does not have a cable as a means for communication with the outside.

カプセル型以外の内視鏡では先端検出部の後方に軟性部が取りつけられ、軟性部中に制御もしくは通信のためのケーブルを含む。軟性部の直径xは先端検出部の直径dと同程度であることが多く、小さくともx=0.9d程度である。  In endoscopes other than the capsule type, a soft part is attached behind the tip detection part, and a cable for control or communication is included in the soft part. The diameter x of the soft part is often about the same as the diameter d of the tip detection part, and at most x = 0.9d.

カプセル型以外の内視鏡では軟性部が太いため、位置制御や内視鏡を用いた手術は容易であるが、検査において検査対象である患者への負担となっている。
特許公開2004−49756 特許公開平11−225996
Endoscopes other than the capsule type have a thick flexible part, so that position control and surgery using the endoscope are easy, but this places a burden on the patient to be examined in the examination.
Patent Publication 2004-49756 Patent Publication 11-225996

カプセル型生体内情報検出装置においては平易な位置制御手段が求められるとともに、多量かつ高速の双方向通信が求められる。  A capsule-type in-vivo information detecting apparatus requires a simple position control means and a large amount of high-speed bidirectional communication.

カプセル型以外の内視鏡では軟性部が十分に細く、検査時に患者の負担を軽減する内視鏡が求められている。  In endoscopes other than the capsule type, there is a demand for an endoscope that has a sufficiently thin flexible portion and reduces the burden on the patient during examination.

本発明はこのような従来の治療装置が有していた問題を解決しようとするものであり、平易な位置制御および、多量かつ高速の双方向通信を可能とすること、および、十分に細く柔軟な軟性部の実現を目的としている。  The present invention is intended to solve the problems of such a conventional treatment apparatus, and enables simple position control and a large amount of high-speed bidirectional communication, and is sufficiently thin and flexible. The purpose is to realize a flexible part.

課題を解決しようとする手段Means to solve the problem

本発明は上記目的を達するため、カプセル型生体内情報検出装置に光通信ケーブルを取りつけることで、平易な位置制御および、多量かつ高速の双方向通信を実現し、十分に細く柔軟な軟性部を実現する。  In order to achieve the above object, the present invention achieves simple position control and a large amount of high-speed bidirectional communication by attaching an optical communication cable to a capsule-type in-vivo information detecting device. Realize.

作用Action

カプセル型生体内情報検出装置に光通信ケーブルを接続することにより、そのケーブルの押し引きによって、位置を容易に制御することが可能である。    By connecting an optical communication cable to the capsule in-vivo information detecting device, the position can be easily controlled by pushing and pulling the cable.

光通信ケーブルを使用することで、双方向の高速通信が可能となる。    By using the optical communication cable, bidirectional high-speed communication is possible.

発明の効果The invention's effect

カプセル型生体内情報検出装置に光通信ケーブルを取りつけることで、平易な位置制御および、多量かつ高速の双方向通信を可能とする。    By attaching an optical communication cable to the capsule-type in-vivo information detecting device, simple position control and a large amount of high-speed bidirectional communication are possible.

図1、図2および図3に本発明の実施の形態を示す。これらの図は例を挙げたもので、これらの例に限定するものではない。図1にカプセル内視鏡の外観図、図2と3にカプセル内視鏡の内部構成を説明する説明図、図4は使用法の概念図である。  1, 2 and 3 show an embodiment of the present invention. These figures are examples, and are not limited to these examples. FIG. 1 is an external view of a capsule endoscope, FIGS. 2 and 3 are explanatory diagrams for explaining the internal configuration of the capsule endoscope, and FIG. 4 is a conceptual diagram of usage.

図1の外観図のように、カプセル内視鏡1の外面には生体内の照明用光源用窓2と撮像口3、生体内情報センサー4、軟性部5を有する。図1では円筒形としているが、生体内部への投与に際し、抵抗が小さくなるよう滑らかな形状であることが望ましい。  As shown in the external view of FIG. 1, the capsule endoscope 1 has an in-vivo illumination light source window 2, an imaging port 3, an in-vivo information sensor 4, and a flexible portion 5 on the outer surface of the capsule endoscope 1. Although it is cylindrical in FIG. 1, it is desirable that it has a smooth shape so that the resistance is reduced upon administration into the living body.

軟性部は光通信ケーブルよりなる。光通信ケーブルを構成する光ファイバーは1本でもよく、複数本を組み合わせたものでもよい。通常は光ファイバー1本以上から10本以下からなるが、1本以上4本以下が特に好ましい。  The flexible part is made of an optical communication cable. There may be one optical fiber constituting the optical communication cable, or a combination of a plurality of optical fibers. Usually, it consists of 1 to 10 optical fibers, but 1 to 4 is particularly preferable.

軟性部の直径xは0.1mm以上3mm以下が好ましく、0.3mm以上1.0mm以下が特に好ましい。生体を傷つけないため、また、強度を上げるため光ファイバーをまとめて外側を樹脂で覆う。  The diameter x of the soft part is preferably from 0.1 mm to 3 mm, particularly preferably from 0.3 mm to 1.0 mm. In order not to damage the living body and to increase the strength, the optical fibers are gathered and the outside is covered with resin.

カプセル内視鏡1と軟性部5は着脱可能とする場合がある。  The capsule endoscope 1 and the flexible part 5 may be detachable.

図2の説明図に示すように、カプセル内は複数の部品より成り立つ。  As shown in the explanatory diagram of FIG. 2, the capsule is made up of a plurality of parts.

照明用光源用窓2には通常LED7を使用する。LED7は白色光を発するLEDが一般的であるが、対象物の光の反射や吸収といった用件に応じて、単色光を使用する場合もある。また、LEDを使用せず、光ファイバーより供給される光の利用も可能である。  An LED 7 is usually used for the illumination light source window 2. The LED 7 is generally an LED that emits white light, but monochromatic light may be used depending on requirements such as reflection and absorption of light from the object. Further, it is possible to use light supplied from an optical fiber without using an LED.

撮像口3の内側には、生体内の映像を撮像する手段として固体撮像素子9を置く。固体撮像素子9によって得られた生体内の映像は電気信号として、制御回路8に入力される。制御回路8に入力された信号はデジタル化され、LED6によって光信号に変換される。この光信号は、光ファイバー13を経由して受信機に伝達される。  A solid-state image sensor 9 is placed inside the imaging port 3 as means for capturing an in-vivo image. The in-vivo image obtained by the solid-state imaging device 9 is input to the control circuit 8 as an electrical signal. The signal input to the control circuit 8 is digitized and converted into an optical signal by the LED 6. This optical signal is transmitted to the receiver via the optical fiber 13.

光信号によりエネルギー供給や制御を行う。光ファイバー14により伝播された光信号は受信機(フォトセンサ)11で電気信号へ変換後、制御信号は制御回路8に伝えられ、制御される。また、エネルギー供給は光ファイバー12により光が伝播され、それを太陽電池などの光−電力変換器10を利用して電気エネルギーへと変換し、電力を供給する。  Energy supply and control are performed by optical signals. The optical signal propagated by the optical fiber 14 is converted into an electrical signal by the receiver (photosensor) 11, and then the control signal is transmitted to the control circuit 8 and controlled. In addition, light is propagated through the optical fiber 12 for energy supply, and the light is converted into electric energy by using a light-power converter 10 such as a solar cell to supply electric power.

図2では光ファイバー3本をまとめて光通信ケーブルとしている。すなわち、光ファイバー1本に1つの機能を持たせ、3本の光ファイバーを用いているが、スイッチング機能の付加や複数波長の光の利用により、1本の光ファイバーに複数の機能を持たせることが可能である。  In FIG. 2, three optical fibers are collectively used as an optical communication cable. That is, one optical fiber has one function and three optical fibers are used. However, a single optical fiber can have a plurality of functions by adding a switching function or using light of multiple wavelengths. It is.

一般に高周波などの電気信号を使用する場合に比べ、光信号を使用することで、通信能力は大きくなる。また、ノイズ耐性も各段に向上する。本発明では光信号を光通信ケーブルによって伝達することで、ノイズ耐性の向上と多量で高速な双方向通信が可能となる。  In general, communication capability is increased by using an optical signal as compared with the case of using an electrical signal such as a high frequency. In addition, noise resistance is improved in each stage. In the present invention, by transmitting an optical signal through an optical communication cable, it is possible to improve noise resistance and perform a large amount of high-speed bidirectional communication.

図2では光通信ケーブルが3つの機能を有しているが、限定することも可能である。図3はデータ出力のみに限定した例である。  In FIG. 2, the optical communication cable has three functions, but can be limited. FIG. 3 shows an example limited to data output only.

図4に人体消化器系に使用する場合の一例を概念図として示す。光通信ケーブルは、鼻より出されている。光通信ケーブルの押し引きにより、カプセルの位置制御が可能である。  An example in the case of using for a human body digestive system in FIG. 4 is shown as a conceptual diagram. The optical communication cable is extended from the nose. Capsule position can be controlled by pushing and pulling the optical communication cable.

これらのことから、カプセル型生体内情報検出装置に光通信ケーブルを接続することで、ノイズ耐性の向上と多量で高速な双方向通信が可能となり、さらに位置制御も容易になる。  For these reasons, by connecting the optical communication cable to the capsule in-vivo information detecting device, noise resistance can be improved, a large amount of high-speed bidirectional communication is possible, and position control is also facilitated.

カプセル型生体内情報検出装置の位置制御を平易にし、多量で高速の双方向情報通信が可能となる。したがって、生体内部の検査機器に適用できる。    Position control of the capsule-type in-vivo information detection device is simplified, and a large amount of high-speed bidirectional information communication is possible. Therefore, it can be applied to an inspection device inside a living body.

本発明のカプセル生体内情報検出装置の外観図の一例であるIt is an example of the external view of the capsule in-vivo information detection apparatus of this invention. 本発明のカプセル生体内情報検出装置の内部構成の一例を表す図である。It is a figure showing an example of an internal structure of the capsule in-vivo information detection apparatus of this invention. 本発明のカプセル生体内情報検出装置の内部構成の一例を表す図である。It is a figure showing an example of an internal structure of the capsule in-vivo information detection apparatus of this invention. 本発明のカプセル生体内情報検出装置の使用例である。It is an example of use of the capsule in-vivo information detection device of the present invention.

符号の説明Explanation of symbols

1. 生体内情報検出装置
2. 照明用光源用窓
3. 撮像口
4. 生体内情報センサー
5. 光通信ケーブル
6. LED
7. LED
8. 制御回路
9. 固体撮像素子
10. 太陽電池
11. フォトセンサ
12. 光ファイバー
13. 光ファイバー
14. 光ファイバー
15. 電池
16. 人体
1. 1. In vivo information detection apparatus 2. Light source window for illumination Imaging port 4. 4. In vivo information sensor 5. Optical communication cable LED
7). LED
8). Control circuit 9. Solid-state image sensor 10. Solar cell 11. Photo sensor 12. Optical fiber 13. Optical fiber 14. Optical fiber 15. Battery 16. human body

Claims (1)

光通信ケーブルを有するカプセル型生体内情報検出装置。  A capsule-type in-vivo information detecting device having an optical communication cable.
JP2004132240A 2004-03-31 2004-03-31 Capsule endoscope Pending JP2005288085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004132240A JP2005288085A (en) 2004-03-31 2004-03-31 Capsule endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004132240A JP2005288085A (en) 2004-03-31 2004-03-31 Capsule endoscope

Publications (1)

Publication Number Publication Date
JP2005288085A true JP2005288085A (en) 2005-10-20

Family

ID=35321678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004132240A Pending JP2005288085A (en) 2004-03-31 2004-03-31 Capsule endoscope

Country Status (1)

Country Link
JP (1) JP2005288085A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007319686A (en) * 2006-05-31 2007-12-13 Karl Storz Endovision Inc Optically coupled endoscope with microchip
JP2015006427A (en) * 2006-01-19 2015-01-15 ザ ジェネラル ホスピタル コーポレイション Method and system for optical imaging of epithelial luminal organs by beam scanning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015006427A (en) * 2006-01-19 2015-01-15 ザ ジェネラル ホスピタル コーポレイション Method and system for optical imaging of epithelial luminal organs by beam scanning
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
JP2007319686A (en) * 2006-05-31 2007-12-13 Karl Storz Endovision Inc Optically coupled endoscope with microchip

Similar Documents

Publication Publication Date Title
US20220409012A1 (en) Imaging Apparatus and Method Which Utilizes Multidirectional Field of View Endoscopy
JP5893124B2 (en) Laparoscopic system
US20120310045A1 (en) Electronic endoscope
US9247867B2 (en) Endoscopic arrangement
JP2009522052A (en) Module visualization stylet device and method of use
TW200630066A (en) Disposable two-stage endoscope
DE60324378D1 (en) Local powered intraluminal device with rope loop trace
US11096557B2 (en) Endoscopy system having a miniature closed head
JPWO2004096028A1 (en) Capsule endoscope and capsule endoscope system
WO2006006382A1 (en) Introdulcing device into subject and introducing system into subject
EP3085299A1 (en) Endoscopic device
US20190183324A1 (en) Digital disposable endoscope system
JP6151850B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP2010511432A (en) Scanning beam imaging device and endoscope using multiple concentrators
JP4767618B2 (en) In vivo information acquisition device
US10498940B2 (en) Endoscope
US20120086791A1 (en) Endoscope and Angiograph System with Options for Advantages in Signal-to-Noise and Disposability
JP2005288085A (en) Capsule endoscope
CN105361843A (en) Wireless capsule OCT (optical coherence tomography) endoscope system for gastrointestinal tract diagnosis and treatment
WO2014195843A2 (en) Endoscopic/boroscopic instrument with wireless transmission and charging module
WO2020217541A1 (en) Light source unit
WO2014196287A1 (en) Endoscope system
KR20160050576A (en) endoscope
CN216823381U (en) Endoscope image transmission system and capsule endoscope
JP2019165855A (en) Endoscope device and medical imaging device