JP2005286002A - Manufacturing method of electronic component - Google Patents

Manufacturing method of electronic component Download PDF

Info

Publication number
JP2005286002A
JP2005286002A JP2004096055A JP2004096055A JP2005286002A JP 2005286002 A JP2005286002 A JP 2005286002A JP 2004096055 A JP2004096055 A JP 2004096055A JP 2004096055 A JP2004096055 A JP 2004096055A JP 2005286002 A JP2005286002 A JP 2005286002A
Authority
JP
Japan
Prior art keywords
support
ceramic molded
molded body
electronic component
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004096055A
Other languages
Japanese (ja)
Other versions
JP4480438B2 (en
Inventor
Hiroshi Yamamoto
浩史 山本
Yasushi Takada
靖 高田
Takeshi Hagiwara
剛 萩原
Kenji Yazawa
健二 矢澤
Kazuhisa Shimizu
和久 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2004096055A priority Critical patent/JP4480438B2/en
Publication of JP2005286002A publication Critical patent/JP2005286002A/en
Application granted granted Critical
Publication of JP4480438B2 publication Critical patent/JP4480438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of electronic component which is capable of preventing the generation of variation in the electric characteristics of semiconductor porcelain, by effectively dissipating heat from sintering porcelain in the temperature lowering process of sintering process. <P>SOLUTION: Under the condition that supporting fixtures 10, in which a multitude of ceramic forms MP are retained, are seen from fore-and-rear direction and left-and-right direction, the lower ends of all of the ceramic forms MP positioned at the fore and rear ends of the fixtures 10 are hidden by supporting bars 12 at the fore and rear ends thereof. However, almost all parts of the ceramic forms MP or the parts more than 3/4 of them materially are exposed. Further, the lower ends of all ceramic forms MP positioned at the left and right ends are hidden by the other side bars 11. However, almost all parts of all ceramic forms MP or more than 3/4 of them materially are exposed whereby elements which preclude the dissipation of heat from the semiconductor porcelain after sintering do not exist substantially at the fore and rear ends and the left and right ends of the supporting fixtures 10, under the process of lowering temperature in the sintering process wherein the ceramic forms MP are sintered and the temperature of them is lowered to change them into semiconductors. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、所定形状のセラミック成形体を焼成する工程を備えた電子部品製造方法に関する。   The present invention relates to an electronic component manufacturing method including a step of firing a ceramic molded body having a predetermined shape.

製造工程との1つとしてセラミック成形体を焼成する工程を含む電子部品、例えば、所定の内外径と肉厚を有するリングバリスタは、原料粒体をリング状のキャビティを有する金型に入れ成形してリング形状のセラミック成形体を得る工程と、多数のセラミック成形体を所定姿勢で保持した耐火性支持具をコンベア等の搬送手段を用いてトンネル状の焼成炉内を通過させて多数のセラミック成形体を一括で焼結し半導体化する工程と、焼成により得られた半導体磁器に電極を形成する工程を経て製造される。   An electronic component including a step of firing a ceramic molded body as one of the manufacturing processes, for example, a ring varistor having a predetermined inner and outer diameter and wall thickness, is formed by placing raw material granules in a mold having a ring-shaped cavity. A ring-shaped ceramic molded body, and a refractory support holding a large number of ceramic molded bodies in a predetermined posture is passed through a tunnel-like firing furnace using a conveying means such as a conveyor. It is manufactured through a process of sintering the body in a lump to make a semiconductor and a process of forming an electrode on a semiconductor ceramic obtained by firing.

前記の焼成工程で用いられる支持具には図1に示すものが一般に知られている。この支持具100は上面を開口した矩形容器状を成し、多数のセラミック成形体を所定姿勢で保持するための矩形状凹部100aをその内側に有すると共に、対向する2つの壁面の上部にガス流通用の切り欠き100bを有する。   The support shown in FIG. 1 is generally known as the support used in the firing step. The support 100 has a rectangular container shape with an open upper surface, and has a rectangular recess 100a for holding a large number of ceramic molded bodies in a predetermined posture, and has gas flow in the upper part of two opposing wall surfaces. A notch 100b.

この支持具100によってリング状を成す多数のセラミック成形体MPを保持するときには、セラミック成形体MPを互いの環状面が接触するように重ねたものを横向きにして凹部100aの底面に平行に並べて載置するか(図1参照)、または、縦向きにして凹部100a内に所定配列で並べて載置する(図2参照)。   When a large number of ring-shaped ceramic molded bodies MP are held by the support tool 100, the ceramic molded bodies MP are stacked side by side so that their annular surfaces are in contact with each other and arranged side by side in parallel with the bottom surface of the recess 100a. (See FIG. 1) or placed in a predetermined arrangement in the recess 100a in a vertical orientation (see FIG. 2).

支持具100に保持された多数のセラミック成形体MPを焼成するときには、多数のセラミック成形体MPを保持した支持具100を図1に示すように多段に積み重ねてこれを焼成炉のコンベア上に載置し図1中の白抜き矢印方向に移動させながら所期の焼成を行う。   When firing a large number of ceramic molded bodies MP held on the support tool 100, the support tools 100 holding a large number of ceramic molded bodies MP are stacked in multiple stages as shown in FIG. 1 and placed on a conveyor of a firing furnace. The desired firing is performed while moving in the direction of the white arrow in FIG.

また、前記とは異なる構成を備えた支持具として図3〜図5に示すような支持具110も知られている(特開2002−343609号公報参照)。この支持具110は矩形枠111と複数の丸棒112とから成り、支持枠111は対向する2辺部分の上面に丸棒112の両端を支える溝111aを等間隔で複数個有し、他の2辺部分にガス流通用の切り欠き111bを有する。   A support 110 shown in FIGS. 3 to 5 is also known as a support having a configuration different from the above (see Japanese Patent Application Laid-Open No. 2002-343609). The support 110 includes a rectangular frame 111 and a plurality of round bars 112. The support frame 111 has a plurality of grooves 111a that support both ends of the round bar 112 at equal intervals on the upper surface of two opposing side portions. There are notches 111b for gas distribution on the two sides.

この支持具110によってリング状を成す多数のセラミック成形体MPを保持するときには、セラミック成形体MPを互いの環状面が接触するように重ねたものの内孔に丸棒112を挿入して該丸棒112の両端を支持枠111の溝111aに載置する作業を繰り返す。   When a large number of ring-shaped ceramic molded bodies MP are held by the support tool 110, the round bars 112 are inserted into the inner holes of the stacked ceramic molded bodies MP so that their annular surfaces are in contact with each other. The operation of placing both ends of 112 in the groove 111a of the support frame 111 is repeated.

支持具110の保持された多数のセラミック成形体MPを焼成するときには、セラミック成形体MPを保持した支持具110を図6に示すように多段に積み重ねてこれを焼成炉のコンベア上に載置し図6中の白抜き矢印方向に移動させながら所期の焼成を行う。
特開2002−343609号公報
When firing a large number of ceramic molded bodies MP held by the support 110, the supports 110 holding the ceramic molded bodies MP are stacked in multiple stages as shown in FIG. 6 and placed on a conveyor of a firing furnace. The desired firing is performed while moving in the direction of the white arrow in FIG.
JP 2002-343609 A

セラミック成形体を焼結し降温して半導体化する焼成工程を備えたリングバリスタの如き電子部品の製造方法にあって、焼成により得られる半導体磁器の電気特性を安定化させるには、焼成工程の降温過程での冷却を迅速に行うことが肝要であり、冷却速度が遅くなると前記の半導体化が不均一になって半導体磁器の電気特性にバラツキを生じ易い。   In a method of manufacturing an electronic component such as a ring varistor having a firing process in which a ceramic molded body is sintered and cooled to become a semiconductor, in order to stabilize the electrical characteristics of semiconductor ceramics obtained by firing, It is important to quickly cool in the temperature lowering process. When the cooling rate is slow, the semiconductor is not uniform, and the electrical characteristics of the semiconductor ceramic are likely to vary.

前記降温過程における冷却速度は焼結磁器からの放熱効率に主として依存するが、図1及び図2に示した支持具100にあってはセラミック成形体MPが凹部100aの底面に載置され、しかも、凹部100a内に収容されたセラミック成形体MPの周囲が壁面によって囲まれているため、多段に積み重ねた状態において各段毎に冷却速度に違いが生じると共に、焼結磁器からの放熱が底面及び周囲の壁面により遮られて冷却速度の低下を招来する。   The cooling rate in the temperature lowering process mainly depends on the heat dissipation efficiency from the sintered porcelain. In the support tool 100 shown in FIGS. 1 and 2, the ceramic molded body MP is placed on the bottom surface of the recess 100a. In addition, since the periphery of the ceramic molded body MP accommodated in the recess 100a is surrounded by the wall surface, the cooling rate is different for each stage in a multi-layered state, and the heat radiation from the sintered porcelain It is obstructed by the surrounding wall surface and causes a decrease in cooling rate.

また、図3〜図6に示した支持具110にあっては図1及び図2に示した支持具100のような底面を有しないものの、セラミック成形体MPの周囲が矩形枠111で囲まれているため、焼結磁器からの放熱が矩形枠により遮られて冷却速度の迅速化が図り難い。   3 to 6 does not have a bottom surface like the support 100 shown in FIGS. 1 and 2, the periphery of the ceramic molded body MP is surrounded by a rectangular frame 111. Therefore, heat radiation from the sintered porcelain is blocked by the rectangular frame, and it is difficult to increase the cooling rate.

本発明は前記事情に鑑みて創作されたもので、その目的とするところは、焼成工程の降温過程における焼結磁器からの放熱を効率良く行って半導体磁器の電気特性にバラツキを生じることを防止できる電子部品製造方法を提供することにある。   The present invention was created in view of the above circumstances, and its purpose is to prevent heat from being efficiently dissipated from the sintered porcelain during the temperature-decreasing process of the firing process, thereby preventing variations in the electrical characteristics of the semiconductor porcelain. An object of the present invention is to provide a method for manufacturing an electronic component.

前記目的を達成するため、本発明は、多数のセラミック成形体を所定姿勢で保持した耐火性支持具をトンネル状の焼成炉内を通過させることにより多数のセラミック成形体を一括で焼結し半導体化する焼成工程を備えた電子部品製造方法であって、前記多数のセラミック成形体は支持具を前後方向及び左右方向から見た状態でその前後端及び左右端に位置する全てのセラミック成形体の殆どの部分が露出するように支持具に保持されており、該保持状態を維持したままトンネル状の焼成炉内を通過する、ことをその特徴とする。   In order to achieve the above object, the present invention provides a semiconductor in which a large number of ceramic compacts are sintered together by passing a fire-resistant support holding a large number of ceramic compacts in a predetermined posture through a tunnel-like firing furnace. In the electronic component manufacturing method including the firing step, the large number of ceramic molded bodies are formed of all ceramic molded bodies positioned at the front and rear ends and the left and right ends when the support is viewed from the front and rear directions and the left and right directions. It is characterized in that it is held by a support so that most of the portion is exposed and passes through a tunnel-like firing furnace while maintaining the holding state.

この電子部品製造方法によれば、多数のセラミック成形体は支持具を前後方向及び左右方向から見た状態でその前後端及び左右端に位置する全てのセラミック成形体の殆どの部分が露出するように支持具に保持されているため、セラミック成形体を焼結し降温して半導体化する焼成工程における降温過程では支持具の前後端及び左右端には焼結磁器からの放熱を阻害する要素は殆ど存しないことになる。つまり、前記降温過程における焼結磁器からの放熱を効率良く行って冷却を迅速に行うことが可能となるので、冷却速度が遅くなるを原因として半導体化が不均一になり半導体磁器の電気特性にバラツキを生じることを防止できる。   According to this method of manufacturing an electronic component, a large number of ceramic molded bodies are exposed so that most of the ceramic molded bodies located at the front and rear ends and the left and right ends thereof are exposed in a state in which the support is viewed from the front and rear directions and the left and right directions. Since the ceramic molded body is sintered and cooled to lower the temperature in the firing process, the elements that hinder heat dissipation from the sintered porcelain are the front and rear ends and the left and right ends of the support tool. It will hardly exist. In other words, it is possible to efficiently perform heat dissipation from the sintered porcelain in the temperature lowering process and quickly cool down, so that the semiconductorization becomes non-uniform due to the slow cooling rate and the electrical characteristics of the semiconductor porcelain. Variations can be prevented from occurring.

本発明によれば、焼成工程の降温過程における焼結磁器からの放熱を効率良く行って半導体磁器の電気特性にバラツキを生じることを防止し、高品質な電子部品を得ることができる。   According to the present invention, it is possible to efficiently dissipate heat from the sintered porcelain during the temperature lowering process of the firing process to prevent variation in the electrical characteristics of the semiconductor porcelain, and to obtain a high-quality electronic component.

本発明の前記目的とそれ以外の目的と、構成特徴と、作用効果は、以下の説明と添付図面によって明らかとなる。   The above object and other objects, structural features, and operational effects of the present invention will become apparent from the following description and the accompanying drawings.

[第1実施形態]
以下に、図7〜図15を参照して、本発明に係る製造方法の第1実施形態を、リングバリスタの製造を例に挙げて説明する。
[First Embodiment]
Below, with reference to FIGS. 7-15, 1st Embodiment of the manufacturing method which concerns on this invention is described, taking manufacture of a ring varistor as an example.

まず、第1成分として(SrxBayCaz)ATiO3(0.2<x<0.8/0.2<y<0.8/0.2<z<0.8) x+y+z=1 A=0.800〜1.200 (式中のx,y,z,Aはモル比)で表される酸化物を所定mol%含み、第2成分としてNb,Ta,Wと希土類元素(La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Y)の各酸化物から選択される少なくとも1種を所定mol%含み、第3成分としてSiO2を所定mol%含み、第4成分として遷移元素であるCu,Co,Mn,Fe,Niの各酸化物から選択される少なくとも1種を所定mol%含む混合物を得る。 First, (SrxBayCaz) A TiO 3 (0.2 <x <0.8 / 0.2 <y <0.8 / 0.2 <z <0.8) x + y + z = 1 A = 0.800 to 1.200 (x, y in the formula) , z, and A are molar ratios), and the second component contains Nb, Ta, W and rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb). , Dy, Ho, Er, Tm , Yb, Lu, Sc, at least one member selected from the oxides of Y) containing a predetermined mol%, the SiO 2 comprises a predetermined mol% as a third component, a fourth component A mixture containing a predetermined mol% of at least one selected from transition oxides of Cu, Co, Mn, Fe, and Ni is obtained.

次に、この混合物を乾燥してから空気中で1000〜1500℃,1〜3時間の仮焼を行う。仮焼後は仮焼物を粉砕し、秤量してから溶媒を加えて微粉砕する。そして、この粉末にポリビニルアルコール等のバインダーを加え、スプレードライヤー等によって造粒する。   Next, this mixture is dried and calcined at 1000 to 1500 ° C. for 1 to 3 hours in the air. After calcination, the calcined product is pulverized and weighed, and then added with a solvent and pulverized. Then, a binder such as polyvinyl alcohol is added to this powder and granulated by a spray dryer or the like.

次に、この粒体をリング状のキャビティを有する金型に入れ成形してリング形状のセラミック成形体3(図7〜図11参照)を得る。このセラミック成形体MPは所定の内外径(D2,D1)と肉厚(t)を有する。   Next, this granule is put into a mold having a ring-shaped cavity and molded to obtain a ring-shaped ceramic molded body 3 (see FIGS. 7 to 11). This ceramic molded body MP has a predetermined inner and outer diameter (D2, D1) and wall thickness (t).

次に、多数のセラミック成形体MPを図7〜図11に示す支持具10に所定姿勢で保持させる。   Next, a large number of ceramic molded bodies MP are held in a predetermined posture on the support 10 shown in FIGS.

この支持具10は、平行に配された2つの側片11と、図7中で左右方向に等間隔で平行に配された断面円形の複数の支持棒12とを備える。各側片11は、図7中の左右方向に等間隔で形成された複数の固定溝11aを上面に有し、支持具10を多段に積み重ねるときに用いられる脚片11bを図7中の左右両端に有する。各支持棒12は各々の両端を固定溝11a内に嵌め込まれ、ネジ止めや圧入等の手法によって両端を各側片11に固定されている。   The support 10 includes two side pieces 11 arranged in parallel and a plurality of support rods 12 having a circular cross section arranged in parallel in the left-right direction at equal intervals in FIG. Each side piece 11 has a plurality of fixing grooves 11a formed at equal intervals in the left-right direction in FIG. 7 on the upper surface, and leg pieces 11b used when stacking the support 10 in multiple stages are arranged on the left and right sides in FIG. Have at both ends. Each support rod 12 is fitted into the fixing groove 11a at both ends, and both ends are fixed to each side piece 11 by a method such as screwing or press fitting.

前記支持具10の側片11及び支持棒12と後述の錘棒13は耐火性材料、好ましくはアルミナ,ムライト,シリコンカーバイド,ジルコニア,マグネシア等によって形成される。また、支持棒12及び錘棒13はセラミック成形体MPに接触するものであるので、接触箇所に不要な化学反応が焼成過程に生じることを防止するため、各々の表面にジルコニア等から成る反応防止膜を100〜400μm程度の厚さで形成しておくことが望ましい。   The side piece 11 and the support rod 12 of the support 10 and the later-described weight rod 13 are formed of a refractory material, preferably alumina, mullite, silicon carbide, zirconia, magnesia or the like. Further, since the support bar 12 and the weight bar 13 are in contact with the ceramic molded body MP, in order to prevent an unnecessary chemical reaction from occurring at the contact point in the firing process, reaction prevention composed of zirconia or the like on each surface is performed. It is desirable to form the film with a thickness of about 100 to 400 μm.

さらに、支持棒12として中空のもの(円筒状のもの)を使用すれば、繰り返しの焼成によっても支持棒12自体に曲がりが生じることを抑制できる。支持棒12として両端に少なくとも1つの平面を有するものを使用すれば支持棒12が回転することを防止できるし、両端にMP以上の平面を有するもの(断面が多角形のもの)を使用すれば支持棒12自体に曲がりが生じた場合でも支持棒12の向きを変えることで曲がりを修正する操作も可能である。   Furthermore, if a hollow thing (cylindrical thing) is used as the support bar 12, it can suppress that the support bar 12 itself bends by repeated baking. If the support rod 12 having at least one flat surface at both ends is used, the support rod 12 can be prevented from rotating, and if both ends have a plane larger than MP (polygonal cross section). Even when the support rod 12 itself bends, it is possible to correct the bend by changing the direction of the support rod 12.

さらに、図面には各側片11と各支持棒12を別部品で構成しこれらを組み合わせることで支持具10を構成したが、各側片11と各支持棒12を1つの部品として形成して支持具10を構成するようにしても構わない。   Further, in the drawing, each side piece 11 and each support bar 12 are configured as separate parts, and these are combined to form the support 10. However, each side piece 11 and each support bar 12 are formed as one part. You may make it comprise the support tool 10. FIG.

多数のセラミック成形体MPを前記支持具10に所定姿勢で保持させるときには、多数のセラミック成形体MPを互いの環状面が接触するように重ねたものを横向きにして、これを各セラミック成形体MPの円弧状外面MPaが隣接する2本の支持棒12の外面に接触するようにそれぞれ載せて複数の列を形成し、そして、各列のセラミック成形体MPの内孔に該内孔よりも直径が小さな断面円形の錘棒13をそれぞれ挿入して該錘棒13をセラミック成形体MPの円弧状内面MPbに接触するように載せる(図7〜図10参照)。   When a large number of ceramic molded bodies MP are held in a predetermined posture by the support 10, a large number of ceramic molded bodies MP stacked such that their annular surfaces are in contact with each other are turned sideways, and each ceramic molded body MP is placed. A plurality of rows are formed by placing each of the arc-shaped outer surfaces MPa so as to be in contact with the outer surfaces of the two adjacent support rods 12, and the inner holes of the ceramic molded bodies MP in each row have a diameter larger than that of the inner holes. Are inserted so that they are in contact with the arc-shaped inner surface MPb of the ceramic molded body MP (see FIGS. 7 to 10).

または、錘棒13に多数のセラミック成形体MPを装着して多数のセラミック成形体MPを互いの環状面が接触するように重ねたものを横向きして、各セラミック成形体MPの円弧状外面MPaが隣接する2本の支持棒12の外面に接触するように列毎に一括で載せ、そして、各列のセラミック成形体MPの内孔に挿入されている錘棒13をセラミック成形体MPの円弧状内面MPbに接触するように載せる(図7〜図10参照)。   Alternatively, a large number of ceramic molded bodies MP are mounted on the spindle 13 and a large number of ceramic molded bodies MP are stacked so that their annular surfaces are in contact with each other, and the arc-shaped outer surface MPa of each ceramic molded body MP. Are placed together in each row so as to be in contact with the outer surfaces of the two adjacent support rods 12, and the weight bar 13 inserted in the inner hole of the ceramic molded body MP in each row is placed in a circle of the ceramic molded body MP. It mounts so that it may contact arc-shaped inner surface MPb (refer FIGS. 7-10).

これにより、図10(A)及び図10(B)に示すように、隣接する2本の支持棒12の外面にその円弧状外面MPaが接触するように載せられた多数のセラミック成形体MPそれぞれに錘棒13の重さが作用し、各列を構成する多数のセラミック成形体MPはその環状面が隣接する2本の支持棒12の長さ方向と略直交する向きで直立状態で保持される。   Accordingly, as shown in FIGS. 10 (A) and 10 (B), each of a large number of ceramic molded bodies MP placed so that the arc-shaped outer surface MPa is in contact with the outer surfaces of two adjacent support rods 12. The weight of the weight bar 13 is acted on, and a large number of ceramic molded bodies MP constituting each row are held in an upright state in a direction in which the annular surface is substantially perpendicular to the length direction of the two adjacent support bars 12. The

各列を構成する多数のセラミック成形体MPはそれぞれ円弧状外面MPaのセラミック成形体MPの重心よりも低い位置を2つの接触箇所SPで支えられ、且つ、円弧状内面MPbのセラミック成形体MPの重心よりも低い位置に接触する錘棒13の重さによって2つの接触箇所SPに押さえ付けられた状態となるため、各列を構成する多数のセラミック成形体MPはより安定した状態で保持されることになる。   A large number of ceramic molded bodies MP constituting each row are supported by two contact points SP at positions lower than the center of gravity of the ceramic molded body MP having the arc-shaped outer surface MPa, and the ceramic molded bodies MP having the arc-shaped inner surface MPb are supported. Since the weight bar 13 that is in contact with a position lower than the center of gravity is pressed against the two contact points SP by the weight of the weight bar 13, a large number of ceramic molded bodies MP constituting each row are held in a more stable state. It will be.

ここで、図11を参照して支持具10の隣接する2本の支持棒12の間隔Aの設定に関する補足説明をする。   Here, with reference to FIG. 11, the supplementary description regarding the setting of the space | interval A of the two support rods 12 which the support tool 10 adjoins is demonstrated.

セラミック成形体MPの外径をD1,内径をD2,肉厚をtとし、錘棒13の直径をDMPとし、錘棒13に対してセラミック成形体MPが最も傾いた状態におけるセラミック成形体MPと錘棒13の成す角度をθとし、支持棒12と錘棒13との間隔をA1としたとき、錘棒13が挿通されたセラミック成形体MPが隣接する2本の支持棒12から落下しないようにするには、A<2A1+DMPとする必要がある。この場合、A1=((D1+D2)/2)cosθ−DMP、θ=arctan(1/DMP×√(D22+t2+DMP2))−arctan(t/D2)で表せることから、前記のA<2A1+DMPはA<2×(D1+D2)/2×cosθ−DMP=2×(D1+D2)/2×cos(arctan(1/DMP×√(D22+t2+DMP2))−arctan(t/D2))−DMPとなり、セラミック成形体MPの外径D1,内径D2と錘棒13の直径DMPから隣接する2本の支持棒12の間隔Aを求めることができる。この間隔Aを隣り合うセラミック成形体MPの列が相互に干渉しない範囲でより小さく設定することで、セラミック成形体MPの保持数を増やすことができる。 The outer diameter of the ceramic molded body MP is D1, the inner diameter is D2, the wall thickness is t, the diameter of the weight bar 13 is DMP, and the ceramic molded body MP in the state where the ceramic molded body MP is most inclined with respect to the weight bar 13 When the angle formed by the weight bar 13 is θ and the distance between the support bar 12 and the weight bar 13 is A1, the ceramic molded body MP through which the weight bar 13 is inserted does not fall from the two adjacent support bars 12. To achieve this, it is necessary to satisfy A <2A1 + DMP. In this case, since A1 = ((D1 + D2) / 2) cos θ−DMP, θ = arctan (1 / DMP × √ (D2 2 + t 2 + DMP 2 )) − arctan (t / D2), A < 2A1 + DMP is A <2 × (D1 + D2) / 2 × cos θ−DMP = 2 × (D1 + D2) / 2 × cos (arctan (1 / DMP × √ (D2 2 + t 2 + DMP 2 )) − arctan (t / D2)) −DMP, and the distance A between two adjacent support rods 12 can be determined from the outer diameter D1 and inner diameter D2 of the ceramic molded body MP and the diameter DMP of the spindle 13. By setting the distance A to be smaller within a range where adjacent rows of ceramic molded bodies MP do not interfere with each other, the number of ceramic molded bodies MP held can be increased.

多数のセラミック成形体MPが保持された支持具10を前後方向(図7の左右方向)及び左右方向(図7の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPはその下端部分を前後端の支持棒12で隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には3/4以上の部分が露出し、また、その左右端に位置する全てのセラミック成形体MPはその下端部分を側辺11で隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には3/4以上の部分が露出している。   When the support 10 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 7) and the left-right direction (up-down direction in FIG. 7), all the ceramic molded bodies positioned at the front-rear ends. Although the lower end portion of the MP is concealed by the support rods 12 at the front and rear ends, most portions of all the ceramic molded bodies MP, specifically, more than 3/4 portions are exposed, and all the portions located at the left and right ends thereof are exposed. Although the lower end portion of the ceramic molded body MP is hidden by the side 11, most of the ceramic molded body MP, specifically 3/4 or more, is exposed.

次に、支持具10及び錘棒13によって多数のセラミック成形体MPを保持したまま、且つ、該支持具10を図12に示すように多段に積み重ねた状態で、脱バインダ領域と昇温領域と高温保持領域と降温領域とを順に備えたトンネル状の還元焼成炉内を通過させる。因みに、図12中の白抜き矢印は還元焼成炉内における支持具10の移動方向を示す。   Next, in a state where a large number of ceramic molded bodies MP are held by the support tool 10 and the spindle bar 13 and the support tool 10 is stacked in multiple stages as shown in FIG. It passes through a tunnel-like reduction firing furnace having a high temperature holding region and a temperature decreasing region in order. Incidentally, the white arrow in FIG. 12 indicates the moving direction of the support 10 in the reduction firing furnace.

この通過過程では、まず、脱バインダ領域においてセラミック成形体MPを加熱することにより含有バインダーの分解,除去を行い、次いで、昇温領域において脱バインダ後のセラミック成形体MPの昇温を行い、次いで、高温保持領域においてN2+H2(H2=1.0〜5.0%)の還元性雰囲気下で約1350℃で約4時間保持してセラミック成形体MPの焼結を行い、次いで、降温領域において焼結磁器の冷却を行う。 In this passing process, first the ceramic binder MP is decomposed and removed by heating the ceramic molded body MP in the binder removal region, then the ceramic molded body MP after the binder removal is heated in the temperature rising region, and then In the high temperature holding region, the ceramic molded body MP is sintered by holding at about 1350 ° C. for about 4 hours under a reducing atmosphere of N 2 + H 2 (H 2 = 1.0 to 5.0%). Cool the sintered porcelain.

次に、焼成工程によって得られた半導体磁器を空気中または酸化性雰囲気下で700〜1000℃,約4時間の再酸化熱処理を行う。   Next, the semiconductor ceramic obtained by the firing process is subjected to re-oxidation heat treatment in air or in an oxidizing atmosphere at 700 to 1000 ° C. for about 4 hours.

次に、再酸化熱処理後の半導体磁器の一側面または円弧状外面の所定領域にAg等の金属粉末を含有した電極ペーストを塗布し、400〜900℃,約50分間の焼き付け処理を行って電極を形成する。   Next, an electrode paste containing a metal powder such as Ag is applied to a predetermined region of one side surface or arcuate outer surface of the semiconductor porcelain after the reoxidation heat treatment, followed by baking at 400 to 900 ° C. for about 50 minutes. Form.

先に述べたように、多数のセラミック成形体MPが保持された支持具10を前後方向(図7の左右方向)及び左右方向(図7の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPはその下端部分を前後端の支持棒12で隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には3/4以上の部分が露出し、また、その左右端に位置する全てのセラミック成形体MPはその下端部分を側辺11で隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には3/4以上の部分が露出している。   As described above, when the support 10 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 7) and the left-right direction (up-down direction in FIG. 7), Although all the ceramic molded bodies MP positioned are concealed at the lower end portions by the support rods 12 at the front and rear ends, most of all the ceramic molded bodies MP, specifically, 3/4 or more are exposed, Although all the ceramic molded bodies MP located at the left and right ends are concealed at the lower end portion 11 by the side 11, most of all the ceramic molded bodies MP, specifically 3/4 or more are exposed. .

換言すれば、前記焼成工程における降温過程では支持具10の前後端及び左右端には焼結磁器からの放熱を阻害する要素は殆ど存しないことになる。つまり、降温過程における焼結磁器からの放熱を効率良く行って冷却を迅速に行うことが可能となるので、冷却速度が遅くなるを原因として半導体化が不均一になり半導体磁器の電気特性にバラツキを生じることを防止して、高品質でα値が向上したリングバリスタを得ることができる。   In other words, in the temperature lowering process in the firing step, there are almost no elements hindering heat radiation from the sintered porcelain at the front and rear ends and the left and right ends of the support 10. In other words, heat can be efficiently radiated from the sintered porcelain during the temperature-falling process, and cooling can be performed quickly. Therefore, the semiconductor becomes non-uniform due to the slow cooling rate, and the electrical characteristics of the semiconductor porcelain vary. It is possible to obtain a ring varistor having a high quality and an improved α value.

因みに、前記α値とは、製造後のリングバリスタの電極に1mAの電流が流れたときの電圧をE1とし10mAの電流が流れたときの電圧をE10としたときにα=1/(log(E10/E1))で算出される非直線係数である。   Incidentally, the α value is expressed by α = 1 / (log () when a voltage when a current of 1 mA flows through the electrode of the manufactured ring varistor is E1 and a voltage when a current of 10 mA flows is E10. E10 / E1)) is a nonlinear coefficient calculated.

また、実験によれば、前記の冷却速度は「支持具10(錘棒13を含む)の熱容量」と「支持具10に保持された全セラミック成形体MPの熱容量」との比率、代替的には各々の重量の比率に関係することが確認されている。具体的には、「全セラミック成形体MPの重量」/「支持具10(錘棒13を含む)の重量」≧0.3、好ましくは「全セラミック成形体MPの重量」/「支持具10(錘棒13を含む)の重量」≧1.0となるように予め各々の重量を設定しておけば、前記の冷却速度をより迅速化してより一層品質の高いリングバリスタを得ることができる。   Further, according to experiments, the cooling rate is a ratio of “the heat capacity of the support 10 (including the weight bar 13)” and “the heat capacity of the all ceramic molded body MP held on the support 10”, alternatively Is related to the ratio of the respective weights. Specifically, “weight of all ceramic molded body MP” / “weight of support 10 (including weight bar 13)” ≧ 0.3, preferably “weight of all ceramic molded body MP” / “support 10 If the respective weights are set in advance such that the weight of the weight bar 13 (including the weight bar 13) is equal to or greater than 1.0, it is possible to obtain a higher-quality ring varistor by speeding up the cooling rate. .

尚、前述の実施形態では、独立した複数の錘棒13を用いたものを示したが、図13に示すように、複数の錘棒13をその一端側に設けた連結片14によって一体化してもよい。また、図14(A)と図14(B)に示すように錘棒13として軽量なものを使用する場合にはその両端に錘15または錘16を着脱自在に取り付るようにしてもよい。各錘15,16は上部に取付孔15a,16aを有し、該取付孔15a,16aに錘棒13の端部を挿入してネジ止め等を行うことで着脱自在に取り付けることができる。後者の錘16は取付孔16aの下側に重量部16bを有する低重心タイプのものである。   In the above-described embodiment, the one using a plurality of independent weight bars 13 is shown. However, as shown in FIG. 13, the plurality of weight bars 13 are integrated by a connecting piece 14 provided on one end side thereof. Also good. 14A and 14B, when a light weight bar 13 is used, the weight 15 or the weight 16 may be detachably attached to both ends thereof. . Each of the weights 15 and 16 has attachment holes 15a and 16a in the upper part, and can be detachably attached by inserting the ends of the weight bar 13 into the attachment holes 15a and 16a and screwing them. The latter weight 16 is of a low center of gravity type having a weight portion 16b below the mounting hole 16a.

また、前述の実施形態では、セラミック成形体MPとしてリング状のものを示したが、図15(A)に示すC字形状のもの(MP1)や図15(B)に示すU字形状のもの(MP2)をセラミック成形体として用いることもできる。C字形状のセラミック成形体MP1を前記支持具10で保持するときには、図15(A)に示すように、多数のセラミック成形体MP1を互いのC字状面が接触するように重ねたものを横向きにして、これを各セラミック成形体MP1の円弧状外面MP1aが隣接する2本の支持棒1dの外面に接触するように載せて複数の列を形成し、そして、各列のセラミック成形体MP1の内側に錘体2をそれぞれ挿入して該錘体2をセラミック成形体MP1の円弧状内面MP1bに接触するように載せればよい。また、U字形状のセラミック成形体MP2を前記支持具10で保持するときには、図15(B)に示すように、多数のセラミック成形体MP2を互いのU字状面が接触するように重ねたものを横向きにして、これを各セラミック成形体MP2の円弧状外面MP2aが隣接する2本の支持棒1dの外面に接触するように載せて複数の列を形成し、そして、各列のセラミック成形体MP2の内側に錘体2をそれぞれ挿入して該錘体2をセラミック成形体MP2の円弧状内面MP2bに接触するように載せればよい。   Moreover, in the above-mentioned embodiment, although the ring-shaped thing was shown as the ceramic molded body MP, the C-shaped thing (MP1) shown to FIG. 15 (A) and the U-shaped thing shown to FIG. 15 (B). (MP2) can also be used as a ceramic molded body. When the C-shaped ceramic molded body MP1 is held by the support 10, as shown in FIG. 15A, a large number of ceramic molded bodies MP1 are stacked so that their C-shaped surfaces are in contact with each other. A plurality of rows are formed by placing them sideways so that the arcuate outer surface MP1a of each ceramic molded body MP1 is in contact with the outer surfaces of the two adjacent support rods 1d, and the ceramic molded bodies MP1 of each row. Each of the weights 2 may be inserted into the inner side of the ceramic body, and the weights 2 may be placed in contact with the arcuate inner surface MP1b of the ceramic molded body MP1. Further, when the U-shaped ceramic molded body MP2 is held by the support 10, as shown in FIG. 15B, a large number of ceramic molded bodies MP2 are stacked so that their U-shaped surfaces are in contact with each other. A plurality of rows are formed by placing the product in a horizontal direction so that the arc-shaped outer surface MP2a of each ceramic molded body MP2 is in contact with the outer surfaces of two adjacent support rods 1d, and ceramic molding of each row. The weights 2 may be inserted inside the body MP2, and the weights 2 may be placed in contact with the arcuate inner surface MP2b of the ceramic molded body MP2.

[第2実施形態]
以下に、図16〜図22を参照して、本発明に係る製造方法の第2実施形態を、リングバリスタの製造を例に挙げて説明する。
[Second Embodiment]
Below, with reference to FIGS. 16-22, 2nd Embodiment of the manufacturing method which concerns on this invention is described, taking manufacture of a ring varistor as an example.

まず、第1実施形態と同様にして混合物を得て、次に、第1実施形態と同様にして造粒を行い、次に、第1実施形態と同様にして所定の内外径と肉厚を有するセラミック成形体MPを得る。   First, a mixture is obtained in the same manner as in the first embodiment. Next, granulation is performed in the same manner as in the first embodiment. Next, predetermined inner and outer diameters and wall thicknesses are obtained in the same manner as in the first embodiment. A ceramic molded body MP is obtained.

次に、多数のセラミック成形体MPを図16〜図20に示す支持具20に所定姿勢で保持させる。   Next, a large number of ceramic molded bodies MP are held in a predetermined posture by the support 20 shown in FIGS.

この支持具20は、矩形状の台板21と、台板21に取り付けられた複数の櫛形支持体22とを備える。台板21は、図17中の左右方向に等間隔で形成された取付穴21aを上面中央に有する。各櫛形支持体22は、縦長の板状部22aと、板状部22aの一面に上下方向に等間隔で設けられた断面円形の複数の支持棒22bと、板状部22aの下端に形成された差込片22cとを一体に有する。各支持棒22bは板状部22aと一体で形成する他、板状部22aとは別体で形成した各支持棒22bの一端を板状部22aに設けた穴に嵌め込んで固定するようにしてもよい。   The support 20 includes a rectangular base plate 21 and a plurality of comb-shaped supports 22 attached to the base plate 21. The base plate 21 has mounting holes 21a formed at equal intervals in the left-right direction in FIG. Each comb-shaped support 22 is formed on a vertically long plate-like portion 22a, a plurality of support rods 22b having a circular cross section provided at equal intervals in the vertical direction on one surface of the plate-like portion 22a, and a lower end of the plate-like portion 22a. And the insertion piece 22c. Each support rod 22b is formed integrally with the plate-like portion 22a, and one end of each support rod 22b formed separately from the plate-like portion 22a is fitted into a hole provided in the plate-like portion 22a and fixed. May be.

この支持具20は、図19に示すように、2つの櫛形支持体22を互いの板状部22aの他面が向き合うように重ねた後に両者の差込片22cを台板1の取付穴21aに差し込んで圧入やネジ止め等の手法によって取り付ける作業を繰り返すことにより組み立てられている。図16〜図18に示すように、複数の櫛形支持体22を台板21に取り付けた状態では、隣接する櫛形支持体22の支持棒22bが存しない側の面は実質的に接する。万が一、台板21に取り付けた複数の櫛形支持体22にぐらつきを生じる場合には、各板状部22aの動きを制限するようなキャップ(図示省略)を全ての板状部22aの上端を覆うように被せるようにしてもよい。   As shown in FIG. 19, the support 20 has two comb-shaped support bodies 22 stacked on each other so that the other surfaces of the plate-like portions 22 a face each other. It is assembled by repeating the work of inserting it in and attaching it by techniques such as press fitting and screwing. As shown in FIGS. 16-18, in the state which attached the several comb-shaped support body 22 to the base plate 21, the surface of the side in which the support bar 22b of the adjacent comb-shaped support body 22 does not exist substantially touches. If wobbling occurs in the plurality of comb-shaped supports 22 attached to the base plate 21, a cap (not shown) that restricts the movement of each plate-like portion 22a covers the upper ends of all the plate-like portions 22a. You may make it cover.

前記支持具20の台板21及び櫛形支持体22は耐火性材料、好ましくはアルミナ,ムライト,シリコンカーバイド,ジルコニア,マグネシア等によって形成される。また、櫛形支持体22を構成する板状部22a及び支持棒22bと後述のキャップ23はセラミック成形体MPに接触するものであるので、接触箇所に不要な化学反応が焼成過程に生じることを防止するため、各々の表面にジルコニア等から成る反応防止膜を100〜400μm程度の厚さで形成しておくことが望ましい。さらに、支持棒22bとして中空のもの(円筒状のもの)を使用すれば、繰り返しの焼成によっても支持棒22b自体に曲がりが生じることを抑制できる。   The base plate 21 and the comb-shaped support 22 of the support 20 are formed of a refractory material, preferably alumina, mullite, silicon carbide, zirconia, magnesia or the like. Further, since the plate-like portion 22a and the support rod 22b constituting the comb-shaped support body 22 and the cap 23 which will be described later are in contact with the ceramic molded body MP, an unnecessary chemical reaction is prevented from occurring at the contact portion in the firing process. Therefore, it is desirable to form a reaction prevention film made of zirconia or the like with a thickness of about 100 to 400 μm on each surface. Furthermore, if a hollow thing (cylindrical thing) is used as the support bar 22b, it can suppress that bending will arise in support bar 22b itself by repeated baking.

多数のセラミック成形体MPを前記支持具20に所定姿勢で保持させるときには、多数のセラミック成形体MPを互いの環状面が接触するように重ねたものを横向きにしてその内孔に支持棒22bが挿入されるように各支持棒22bに装着する作業を繰り返し、装着後は各支持棒22bの開放端に脱落防止用のキャップ23を嵌合する(図16〜図20参照)。   When a large number of ceramic molded bodies MP are held in the support tool 20 in a predetermined posture, a large number of ceramic molded bodies MP stacked such that their annular surfaces are in contact with each other are turned sideways and support rods 22b are formed in the inner holes thereof. The operation of attaching the support rods 22b so as to be inserted is repeated. After the attachment, caps 23 for preventing the drop-off are fitted to the open ends of the support rods 22b (see FIGS. 16 to 20).

これにより、図20(A)及び図20(B)に示すように、各支持棒22に装着された多数のセラミック成形体MPは支持棒22にぶら下がった状態、即ち、円弧状内面MPbの1つの接触箇所SPで支えられた状態で保持される。   As a result, as shown in FIGS. 20A and 20B, a large number of ceramic molded bodies MP mounted on the support rods 22 are hung on the support rods 22, that is, one of the arc-shaped inner surfaces MPb. It is held in a state supported by two contact points SP.

多数のセラミック成形体MPが保持された支持具20を前後方向(図16の左右方向)及び前後方向(図16の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPはこれを隠すものが存在しないため100%の部分が露出し、また、その左右端に位置する全てのセラミック成形体MPはその上端部分をキャップ23によって隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には7/8以上の部分が露出している。   When the support 20 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 16) and the front-rear direction (up-down direction in FIG. 16), all ceramic molded bodies positioned at the front-rear ends. Since MP does not hide anything, 100% of the portion is exposed, and all ceramic molded bodies MP located on the left and right ends of all ceramic molded bodies MP whose upper end portions are hidden by the cap 23 Most parts, specifically 7/8 or more, are exposed.

次に、支持具20によって多数のセラミック成形体MPを保持したまま、多段に積み重ねることなくそのままの状態で、脱バインダ領域と昇温領域と高温保持領域と降温領域とを順に備えたトンネル状の還元焼成炉内を通過させる。因みに、図18中の白抜き矢印は還元焼成炉内における支持具20の移動方向を示す。   Next, while holding a large number of ceramic molded bodies MP by the support 20, a tunnel-like shape including a binder removal region, a temperature rising region, a high temperature holding region, and a temperature decreasing region in that order without being stacked in multiple stages. Pass through the reduction firing furnace. Incidentally, the white arrow in FIG. 18 indicates the moving direction of the support 20 in the reduction firing furnace.

この通過過程では、まず、脱バインダ領域においてセラミック成形体MPを加熱することにより含有バインダーの分解,除去を行い、次いで、昇温領域において脱バインダ後のセラミック成形体MPの昇温を行い、次いで、高温保持領域においてN2+H2(H2=1.0〜5.0%)の還元性雰囲気下で約1350℃で約4時間保持してセラミック成形体MPの焼結を行い、次いで、降温領域において焼結磁器の冷却を行う。 In this passing process, first the ceramic binder MP is decomposed and removed by heating the ceramic molded body MP in the binder removal region, then the ceramic molded body MP after the binder removal is heated in the temperature rising region, and then In the high temperature holding region, the ceramic molded body MP is sintered by holding at about 1350 ° C. for about 4 hours under a reducing atmosphere of N 2 + H 2 (H 2 = 1.0 to 5.0%). Cool the sintered porcelain.

次に、焼成工程によって得られた半導体磁器を空気中または酸化性雰囲気下で700〜1000℃,約4時間の再酸熱化処理を行う。   Next, the re-acid heat treatment is performed on the semiconductor ceramic obtained by the firing process in air or in an oxidizing atmosphere at 700 to 1000 ° C. for about 4 hours.

次に、再酸化熱処理後の半導体磁器の一側面または円弧状外面の所定領域にAg等の金属粉末を含有した電極ペーストを塗布し、400〜900℃,約50分間の焼き付け処理を行って電極を形成する。   Next, an electrode paste containing a metal powder such as Ag is applied to a predetermined region of one side surface or arcuate outer surface of the semiconductor porcelain after the reoxidation heat treatment, followed by baking at 400 to 900 ° C. for about 50 minutes. Form.

先に述べたように、多数のセラミック成形体MPが保持された支持具20を前後方向(図16の左右方向)及び前後方向(図16の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPはこれを隠すものが存在しないため100%の部分が露出し、また、その左右端に位置する全てのセラミック成形体MPはその上端部分をキャップ23によって隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には7/8以上の部分が露出している。   As described above, when the support 20 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 16) and the front-rear direction (up-down direction in FIG. 16), Since all the ceramic molded bodies MP that are positioned do not have anything to hide, 100% of the parts are exposed, and all the ceramic molded bodies MP that are positioned at the left and right ends of the ceramic molded bodies MP are hidden by the cap 23. Most parts of all the ceramic molded bodies MP, specifically, 7/8 or more are exposed.

換言すれば、前記焼成工程における降温過程では支持具20の前後端及び左右端には焼結磁器からの放熱を阻害する要素は殆ど存しないことになる。つまり、降温過程における焼結磁器からの放熱を効率良く行って冷却を迅速に行うことが可能となるので、冷却速度が遅くなるを原因として半導体化が不均一になり半導体磁器の電気特性にバラツキを生じることを防止して、高品質でα値が向上したリングバリスタを得ることができる。α値については第1実施形態で述べた通りであるのでここでの説明を割愛する。   In other words, in the temperature lowering process in the firing step, there are almost no elements hindering heat radiation from the sintered porcelain at the front and rear ends and the left and right ends of the support tool 20. In other words, heat can be efficiently radiated from the sintered porcelain during the temperature-falling process, and cooling can be performed quickly. Therefore, the semiconductor becomes non-uniform due to the slow cooling rate, and the electrical characteristics of the semiconductor porcelain vary. It is possible to obtain a ring varistor having a high quality and an improved α value. Since the α value is as described in the first embodiment, description thereof is omitted here.

また、実験によれば、前記の冷却速度は「支持具20(キャップ23を含む)の熱容量」と「支持具20に保持された全セラミック成形体MPの熱容量」との比率、代替的には各々の重量の比率に関係することが確認されている。具体的には、「全セラミック成形体MPの重量」/「支持具20(キャップ23を含む)の重量」≧0.3、好ましくは「全セラミック成形体MPの重量」/「支持具20(キャップ23を含む)の重量」≧1.0となるように予め各々の重量を設定しておけば、前記の冷却速度をより迅速化してより一層品質の高いリングバリスタを得ることができる。   Further, according to experiments, the cooling rate is a ratio of “the heat capacity of the support 20 (including the cap 23)” and “the heat capacity of the all ceramic molded body MP held by the support 20”, alternatively It has been confirmed that it is related to the ratio of each weight. Specifically, “weight of all ceramic molded body MP” / “weight of support 20 (including cap 23)” ≧ 0.3, preferably “weight of all ceramic molded body MP” / “support 20 ( If the respective weights are set in advance so that the "weight of the cap 23 (including the cap 23)" ≧ 1.0, the cooling rate can be further increased to obtain a ring varistor with higher quality.

尚、前述の実施形態では、板状部22aとその片面に複数の支持棒22bを備えたものを櫛形支持体22として示したが、2つの櫛形支持体22を合体させたような形状を有する図21に示すような櫛形支持体22’、即ち、板状部22a’とその両面に設けられた複数の支持棒22bと板状部22a’の下端に形成された差込片22c’を有する櫛形支持体22a’を前記櫛形支持体22の代わりに用いてもよい。   In the above-described embodiment, the plate-like portion 22a and the one provided with a plurality of support rods 22b are shown as the comb-shaped support body 22, but the two comb-shaped support bodies 22 are combined. 21 has a comb-shaped support 22 ′, that is, a plate-like portion 22a ′, a plurality of support bars 22b provided on both sides thereof, and a plug 22c ′ formed at the lower end of the plate-like portion 22a ′. A comb support 22 a ′ may be used instead of the comb support 22.

また、前述の実施形態では、セラミック成形体MPとしてリング状のものを示したが、図22(A)に示すC字形状のもの(MP1)や図22(B)に示すU字形状のもの(MP2)をセラミック成形体として用いることもできる。C字形状のセラミック成形体MP1を前記支持具20で保持するときには、図22(A)に示すように、多数のセラミック成形体MP1を互いのC字状面が接触するように重ねたものを横向きにして、これを各セラミック成形体MP1の円弧状内面MP1bが支持棒22bの外面に接触するように載せればよい。また、U字形状のセラミック成形体MP2を前記支持具20で保持するときには、図22(B)に示すように、多数のセラミック成形体MP2を互いのU字状面が接触するように重ねたものを横向きにし、これを各セラミック成形体MP2の円弧状内面MP2bが支持棒22bの外面に接触するように載せればよい。   Moreover, in the above-mentioned embodiment, although the ring-shaped thing was shown as the ceramic molded body MP, the C-shaped thing (MP1) shown in FIG. 22 (A) and the U-shaped thing shown in FIG. 22 (B). (MP2) can also be used as a ceramic molded body. When the C-shaped ceramic molded body MP1 is held by the support 20, as shown in FIG. 22 (A), a large number of ceramic molded bodies MP1 stacked so that their C-shaped surfaces are in contact with each other. What is necessary is just to mount in the horizontal direction so that the arc-shaped inner surface MP1b of each ceramic molded body MP1 contacts the outer surface of the support rod 22b. When the U-shaped ceramic molded body MP2 is held by the support 20, as shown in FIG. 22B, a large number of ceramic molded bodies MP2 are stacked so that their U-shaped surfaces are in contact with each other. What is necessary is just to mount a thing sideways and this so that the circular arc-shaped inner surface MP2b of each ceramic molded body MP2 may contact the outer surface of the support bar 22b.

[第3実施形態]
以下に、図23〜図25を参照して、本発明に係る製造方法の第3実施形態を、リングバリスタの製造を例に挙げて説明する。
[Third Embodiment]
Below, with reference to FIGS. 23-25, 3rd Embodiment of the manufacturing method based on this invention is described, taking manufacture of a ring varistor as an example.

まず、第1実施形態と同様にして混合物を得て、次に、第1実施形態と同様にして造粒を行い、次に、第1実施形態と同様にして所定の内外径と肉厚を有するセラミック成形体MPを得る。   First, a mixture is obtained in the same manner as in the first embodiment. Next, granulation is performed in the same manner as in the first embodiment. Next, predetermined inner and outer diameters and wall thicknesses are obtained in the same manner as in the first embodiment. A ceramic molded body MP is obtained.

次に、多数のセラミック成形体MPを図23〜図25に示す支持具20に所定姿勢で保持させる。   Next, a large number of ceramic molded bodies MP are held in a predetermined posture on the support 20 shown in FIGS.

この支持具30は、矩形状の台板31と、台板31に立設された断面円形の複数の支持棒32とを備える。各支持棒32は下部に大径部32aを有し、大径部32aの上端に環状の支持面32bを有する。各支持棒32は台板31と一体で形成されていてもよく、台板31に設けた穴に各支持棒32の下端を差し込んで固定するようにしてもよい。各支持棒32は、セラミック成形体MPを互いの環状面が接するように重ねた縦向きのものを3本の支持棒32で囲み、且つ、最下位のセラミック成形体MPを3本の支持棒32の支持面32bで支えられるような配列を有する。   The support 30 includes a rectangular base plate 31 and a plurality of support bars 32 having a circular cross section provided on the base plate 31. Each support bar 32 has a large-diameter portion 32a at the lower portion, and an annular support surface 32b at the upper end of the large-diameter portion 32a. Each support bar 32 may be formed integrally with the base plate 31 or may be fixed by inserting the lower end of each support bar 32 into a hole provided in the base plate 31. Each support bar 32 is formed by surrounding the ceramic molded body MP with three support bars 32 in a vertically oriented manner so that their annular surfaces are in contact with each other, and the lowermost ceramic molded body MP is surrounded by three support bars. It has an arrangement which is supported by 32 support surfaces 32b.

前記支持具30の台板31及び支持棒32は耐火性材料、好ましくはアルミナ,ムライト,シリコンカーバイド,ジルコニア,マグネシア等によって形成される。また、支持棒32はセラミック成形体MPに接触するものであるので、接触箇所に不要な化学反応が焼成過程に生じることを防止するため、各々の表面にジルコニア等から成る反応防止膜を100〜400μm程度の厚さで形成しておくことが望ましい。さらに、支持棒32として中空のもの(円筒状のもの)を使用すれば、繰り返しの焼成によっても支持棒32自体に曲がりが生じることを抑制できる。   The base plate 31 and the support bar 32 of the support 30 are formed of a refractory material, preferably alumina, mullite, silicon carbide, zirconia, magnesia or the like. Further, since the support bar 32 is in contact with the ceramic molded body MP, in order to prevent an unnecessary chemical reaction from occurring at the contact portion in the firing process, a reaction preventing film made of zirconia or the like is formed on each surface 100 to 100. It is desirable to form with a thickness of about 400 μm. Furthermore, if a hollow thing (cylindrical thing) is used as the support bar 32, it can suppress that the support bar 32 itself bends by repeated baking.

多数のセラミック成形体MPを前記支持具30に所定姿勢で保持させるときには、多数のセラミック成形体MPを互いの環状面が接触するように重ねたものを縦向きにして3本の支持棒32の間に挿入し、最下位のセラミック成形体MPを3本の支持棒32の支持面32bに載置する作業を繰り返す(図23〜図24参照)。   When holding a large number of ceramic molded bodies MP on the support 30 in a predetermined posture, the three support rods 32 are arranged in a vertical orientation in which a large number of ceramic molded bodies MP are stacked so that their annular surfaces are in contact with each other. It inserts in between and repeats the operation | work which mounts the lowest ceramic molded object MP on the support surface 32b of the three support rods 32 (refer FIGS. 23-24).

これにより、3本の支持棒32の間に挿入された多数のセラミック成形体MPは3本の支持棒32の支持面32bによって最下位のセラミック成形体MPの3箇所を支えられ、且つ、3本の支持棒32によって縦向き状態で保持され傾きや倒れ等を防止される。   As a result, a large number of ceramic molded bodies MP inserted between the three support rods 32 are supported at three locations of the lowest ceramic molded body MP by the support surfaces 32b of the three support rods 32, and 3 It is held in a vertical state by the support rod 32 of the book and is prevented from tilting or falling.

多数のセラミック成形体MPが保持された支持具30を前後方向(図23の左右方向)及び前後方向(図23の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPは支持棒32によってその一部を隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には1/2以上の部分が露出し、また、左右端に位置する全てのセラミック成形体MPは支持棒32によってその一部を隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には1/2以上の部分が露出している。   When the support 30 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 23) and the front-rear direction (up-down direction in FIG. 23), all ceramic molded bodies positioned at the front-rear ends. Although the MP is partially hidden by the support rod 32, most of the ceramic molded body MP, specifically, more than half of the ceramic molded body is exposed, and all the ceramic molded bodies located at the left and right ends are exposed. Although part of the MP is hidden by the support bar 32, most part of all the ceramic molded bodies MP, specifically, a part of 1/2 or more is exposed.

次に、支持具30によって多数のセラミック成形体MPを保持したまま、多段に積み重ねることなくそのままの状態で、脱バインダ領域と昇温領域と高温保持領域と降温領域とを順に備えたトンネル状の還元焼成炉内を通過させる。因みに、図25中の白抜き矢印は還元焼成炉内における支持具30の移動方向を示す。   Next, while holding a large number of ceramic molded bodies MP by the support 30, without removing them in multiple stages, the tunnel-like structure is provided with a binder removal region, a temperature rising region, a high temperature holding region, and a temperature decreasing region in this order. Pass through the reduction firing furnace. Incidentally, the white arrow in FIG. 25 indicates the moving direction of the support 30 in the reduction firing furnace.

この通過過程では、まず、脱バインダ領域においてセラミック成形体MPを加熱することにより含有バインダーの分解,除去を行い、次いで、昇温領域において脱バインダ後のセラミック成形体MPの昇温を行い、次いで、高温保持領域においてN2+H2(H2=1.0〜5.0%)の還元性雰囲気下で約1350℃で約4時間保持してセラミック成形体MPの焼結を行い、次いで、降温領域において焼結磁器の冷却を行う。 In this passing process, first the ceramic binder MP is decomposed and removed by heating the ceramic molded body MP in the binder removal region, then the ceramic molded body MP after the binder removal is heated in the temperature rising region, and then In the high temperature holding region, the ceramic molded body MP is sintered by holding at about 1350 ° C. for about 4 hours under a reducing atmosphere of N 2 + H 2 (H 2 = 1.0 to 5.0%). Cool the sintered porcelain.

次に、焼成工程によって得られた半導体磁器を空気中または酸化性雰囲気下で700〜1000℃,約4時間の再酸化熱処理を行う。   Next, the semiconductor ceramic obtained by the firing process is subjected to re-oxidation heat treatment in air or in an oxidizing atmosphere at 700 to 1000 ° C. for about 4 hours.

次に、再酸化熱処理後の半導体磁器の一側面または円弧状外面の所定領域にAg等の金属粉末を含有した電極ペーストを塗布し、400〜900℃,約50分間の焼き付け処理を行って電極を形成する。   Next, an electrode paste containing a metal powder such as Ag is applied to a predetermined region of one side surface or arcuate outer surface of the semiconductor porcelain after the reoxidation heat treatment, followed by baking at 400 to 900 ° C. for about 50 minutes. Form.

先に述べたように、多数のセラミック成形体MPが保持された支持具30を前後方向(図23の左右方向)及び前後方向(図23の上下方向)から見た状態では、その前後端に位置する全てのセラミック成形体MPは支持棒32によってその一部を隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には1/2以上の部分が露出し、また、左右端に位置する全てのセラミック成形体MPは支持棒32によってその一部を隠されるものの全てのセラミック成形体MPの殆どの部分、具体的には1/2以上の部分が露出している。   As described above, when the support 30 holding a large number of ceramic molded bodies MP is viewed from the front-rear direction (left-right direction in FIG. 23) and the front-rear direction (up-down direction in FIG. 23), Although all the ceramic molded bodies MP located are partially hidden by the support rod 32, most of the ceramic molded bodies MP, specifically, more than 1/2 are exposed, and the left and right ends are exposed. Although all of the ceramic molded bodies MP that are positioned are partially hidden by the support rod 32, most of all the ceramic molded bodies MP, specifically, more than half of the ceramic molded bodies MP are exposed.

換言すれば、前記焼成工程における降温過程では支持具30の前後端及び左右端には焼結磁器からの放熱を阻害する要素は殆ど存しないことになる。つまり、降温過程における焼結磁器からの放熱を効率良く行って冷却を迅速に行うことが可能となるので、冷却速度が遅くなるを原因として半導体化が不均一になり半導体磁器の電気特性にバラツキを生じることを防止して、高品質でα値が向上したリングバリスタを得ることができる。α値については第1実施形態で述べた通りであるのでここでの説明を割愛する。   In other words, in the temperature lowering process in the firing step, there are almost no elements that obstruct heat dissipation from the sintered porcelain at the front and rear ends and the left and right ends of the support 30. In other words, heat can be efficiently radiated from the sintered porcelain during the temperature-falling process, and cooling can be performed quickly. Therefore, the semiconductor becomes non-uniform due to the slow cooling rate, and the electrical characteristics of the semiconductor porcelain vary. It is possible to obtain a ring varistor having a high quality and an improved α value. Since the α value is as described in the first embodiment, description thereof is omitted here.

また、実験によれば、前記の冷却速度は「支持具30の熱容量」と「支持具30に保持された全セラミック成形体MPの熱容量」との比率、代替的には各々の重量の比率に関係することが確認されている。具体的には、「全セラミック成形体MPの重量」/「支持具30の重量」≧0.3、好ましくは「全セラミック成形体MPの重量」/「支持具30の重量」≧1.0となるように予め各々の重量を設定しておけば、前記の冷却速度をより迅速化してより一層品質の高いリングバリスタを得ることができる。   Further, according to experiments, the cooling rate is a ratio of “the heat capacity of the support tool 30” and “the heat capacity of the entire ceramic molded body MP held by the support tool 30”, alternatively, the ratio of the respective weights. It has been confirmed that it is related. Specifically, “weight of all ceramic molded body MP” / “weight of support tool 30” ≧ 0.3, preferably “weight of all ceramic molded body MP” / “weight of support tool 30” ≧ 1.0. If the respective weights are set so as to satisfy the above, it is possible to obtain a ring varistor with higher quality by further increasing the cooling rate.

焼成工程で用いられる従来の支持具の段積み状態の側面図である。It is a side view of the stacking state of the conventional support tool used at a baking process. 図1に示した支持具に依るセラミック成形体の他の保持形態を示す図である。It is a figure which shows the other holding | maintenance form of the ceramic molded body by the support tool shown in FIG. 焼成工程で用いられる従来の他の支持具の上面図である。It is a top view of the other conventional support tool used at a baking process. 図3のa1−a1線断面図である。It is the a1-a1 sectional view taken on the line of FIG. 図3のa2−a2線矢視図である。It is an a2-a2 line arrow directional view of FIG. 図3に示した支持具の段積み状態の側面図である。It is a side view of the stacked state of the support shown in FIG. 本発明の第1実施形態に係る支持具の上面図である。It is a top view of the support tool concerning a 1st embodiment of the present invention. 図7のb1−b1線断面図である。It is the b1-b1 sectional view taken on the line of FIG. 図7のb2−b2線矢視図である。It is a b2-b2 line arrow line view of FIG. 図7に示した支持具に依るセラミック成形体の保持状態の説明図である。It is explanatory drawing of the holding state of the ceramic molded body by the support tool shown in FIG. 図7に示した支持具の隣接する2本の支持棒の間隔設定に関する補足説明図である。It is a supplementary explanatory drawing regarding the space | interval setting of two support rods adjacent to the support tool shown in FIG. 図7に示した支持具の段積み状態の側面図である。It is a side view of the stacked state of the support shown in FIG. 図7に示した錘棒の変形例を示す斜視図である。FIG. 8 is a perspective view showing a modified example of the weight bar shown in FIG. 7. 図7に示した錘棒の他の変形例を示す斜視図である。It is a perspective view which shows the other modification of the weight bar shown in FIG. セラミック成形体の他の形状例及び保持状態を示す図である。It is a figure which shows the other example of a shape and holding | maintenance state of a ceramic molded body. 本発明の第2実施形態に係る支持具の上面図である。It is a top view of the support tool concerning a 2nd embodiment of the present invention. 図16のc1−c1線断面図である。It is the c1-c1 sectional view taken on the line of FIG. 図16のc2−c2線矢視図である。It is a c2-c2 arrow directional view of FIG. 図16に示した支持具の構成を示す斜視図である。It is a perspective view which shows the structure of the support tool shown in FIG. 図16に示した支持具に依るセラミック成形体の保持状態の説明図である。It is explanatory drawing of the holding state of the ceramic molded body by the support tool shown in FIG. 図16に示した櫛形支持体の変形例を示す斜視図である。It is a perspective view which shows the modification of the comb-shaped support body shown in FIG. セラミック成形体の他の形状例及び保持状態を示す図である。It is a figure which shows the other example of a shape and holding | maintenance state of a ceramic molded body. 本発明の第3実施形態に係る支持具の上面図である。It is a top view of the support tool concerning a 3rd embodiment of the present invention. 図23のd1−d1線断面図である。FIG. 24 is a sectional view taken along line d1-d1 of FIG. 図23のd2−d2線矢視図である。It is a d2-d2 line arrow directional view of FIG.

符号の説明Explanation of symbols

MP,MP1,MP2…セラミック成形体、10…支持具、11…側片、12…支持棒、13…錘棒、20…支持具、21…台板、22,22’…櫛形支持体、22b…支持棒、23…キャップ、30…支持具、31…台板、32…支持棒、32b…支持面。
MP, MP1, MP2 ... ceramic molded body, 10 ... support, 11 ... side piece, 12 ... support bar, 13 ... weight bar, 20 ... support, 21 ... base plate, 22, 22 '... comb support, 22b ... support rod, 23 ... cap, 30 ... support, 31 ... base plate, 32 ... support rod, 32b ... support surface.

Claims (5)

多数のセラミック成形体を所定姿勢で保持した耐火性支持具をトンネル状の焼成炉内を通過させることにより多数のセラミック成形体を一括で焼結し半導体化する焼成工程を備えた電子部品製造方法であって、
前記多数のセラミック成形体は支持具を前後方向及び左右方向から見た状態でその前後端及び左右端に位置する全てのセラミック成形体の殆どの部分が露出するように支持具に保持されており、該保持状態を維持したままトンネル状の焼成炉内を通過する、
ことを特徴とする電子部品製造方法。
An electronic component manufacturing method comprising a firing step in which a large number of ceramic compacts are sintered together to form a semiconductor by passing a fireproof support holding a large number of ceramic compacts in a predetermined posture through a tunnel-like firing furnace. Because
The large number of ceramic molded bodies are held by the support so that most of the ceramic molded bodies located at the front and rear ends and the left and right ends thereof are exposed when the support is viewed from the front-rear direction and the left-right direction. , Passing through the tunnel-like firing furnace while maintaining the holding state,
An electronic component manufacturing method characterized by the above.
前後端及び左右端に位置する全てのセラミック成形体は各方向から見た状態でその1/2以上の部分が露出している、
ことを特徴とする請求項1に記載の電子部品製造方法。
All ceramic molded bodies located at the front and rear ends and the left and right ends are exposed at a half or more when viewed from each direction.
The electronic component manufacturing method according to claim 1.
前記支持具は円弧状外面を有するセラミック成形体の円弧状外面を2箇所で支えることによりセラミック成形体を直立状態で保持可能な複数の支持棒を前後方向に備え、該支持具は多段に積み重ねられた状態で焼成炉内を通過する、
ことを特徴とする請求項1または2に記載の電子部品製造方法。
The support is provided with a plurality of support bars capable of holding the ceramic molded body in an upright state by supporting the arc-shaped outer surface of the ceramic molded body having an arc-shaped outer surface at two locations, and the support is stacked in multiple stages. Passed through the firing furnace in a
The electronic component manufacturing method according to claim 1, wherein the electronic component manufacturing method is an electronic component manufacturing method.
前記支持具は円弧状内面を有するセラミック成形体の円弧状内面を1箇所で支えることによりセラミック成形体をぶら下がった状態で保持可能な複数の支持棒を上下方向と前後方向に所定配列で備え、該支持具はそのままの状態で焼成炉内を通過する、
ことを特徴とする請求項1または2に記載の電子部品製造方法。
The support is provided with a plurality of support bars in a predetermined arrangement in the vertical direction and the front-rear direction that can be held in a state where the ceramic molded body is suspended by supporting the arc-shaped inner surface of the ceramic molded body having an arc-shaped inner surface in one place. The support passes through the firing furnace as it is,
The electronic component manufacturing method according to claim 1, wherein the electronic component manufacturing method is an electronic component manufacturing method.
前記支持具はリング状を成すセラミック成形体を互いの環状面が接するように重ねた縦向きのものの最下位のセラミック成形体の3箇所を支えることによりセラミック成形体を縦向き状態で保持可能な複数の支持棒を前後方向と左右方向に所定配列で備え、該支持具はそのままの状態で焼成炉内を通過する、
ことを特徴とする請求項1または2に記載の電子部品製造方法。
The support is capable of holding the ceramic molded body in a vertical state by supporting three places of the lowest ceramic molded body of the vertical one in which the ring-shaped ceramic molded bodies are overlapped so that their annular surfaces are in contact with each other. A plurality of support rods are provided in a predetermined arrangement in the front-rear direction and the left-right direction, and the support passes through the firing furnace as it is.
The electronic component manufacturing method according to claim 1, wherein the electronic component manufacturing method is an electronic component manufacturing method.
JP2004096055A 2004-03-29 2004-03-29 Electronic component manufacturing method Expired - Lifetime JP4480438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096055A JP4480438B2 (en) 2004-03-29 2004-03-29 Electronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096055A JP4480438B2 (en) 2004-03-29 2004-03-29 Electronic component manufacturing method

Publications (2)

Publication Number Publication Date
JP2005286002A true JP2005286002A (en) 2005-10-13
JP4480438B2 JP4480438B2 (en) 2010-06-16

Family

ID=35184071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096055A Expired - Lifetime JP4480438B2 (en) 2004-03-29 2004-03-29 Electronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP4480438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082881A (en) * 2007-10-03 2009-04-23 Nok Corp Manufacturing method for glass-sealed porous ceramic hollow thread
JP2011099708A (en) * 2009-11-04 2011-05-19 Horiba Ltd Crucible baking apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082881A (en) * 2007-10-03 2009-04-23 Nok Corp Manufacturing method for glass-sealed porous ceramic hollow thread
JP2011099708A (en) * 2009-11-04 2011-05-19 Horiba Ltd Crucible baking apparatus

Also Published As

Publication number Publication date
JP4480438B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP5722897B2 (en) Rack for baking
JP5897827B2 (en) Heating element / coil support structure
CN102473516B (en) The manufacture method of R-Fe-B rare-earth sintering magnet and vapour control parts
US6536608B2 (en) Single cast vertical wafer boat with a Y shaped column rack
JP6891991B2 (en) Manufacturing method of silicon nitride sintered substrate
EP2978000A1 (en) Grain boundary diffusion process jig, and container for grain boundary diffusion process jig
JP2005286002A (en) Manufacturing method of electronic component
KR20150099749A (en) Thermal shielding system
JP2016065270A (en) Tungsten wire material
KR101571230B1 (en) Sintered mo part for heat sink plate for semiconductor device and semiconductor device including same
JP6766509B2 (en) Manufacturing method of silicon nitride sintered substrate
JP2020535311A (en) Equipment and methods for continuous grain boundary diffusion and heat treatment
CN103341630A (en) Micro-channel core manufacturing process
JP2020203829A (en) Temperature control method in calcination vessel
JP2009235436A (en) Fixture for sintering, and sintering method for object for sintering using the same
JP6343234B2 (en) Silicon carbide sintered body, method for manufacturing silicon carbide sintered body, firing jig, firing furnace, and molten metal holding furnace
JP2005056725A (en) Heating element made of mosi2 and its manufacturing method
JPH06163440A (en) Jig for vertical semiconductor diffusion furnace
JP4625654B2 (en) Ceramic cover for setter
JPH11211363A (en) Sheath supporting structure used for continuous heat treatment furnace, and continuous heat treatment method
JP2005251802A (en) Method of manufacturing electronic component
KR200244111Y1 (en) Togar
JP6314231B2 (en) Glossite ceramics, kiln tool using the same, and method for producing globite ceramics
JP5212291B2 (en) Method for firing molded body and holder for firing the molded body
JP2003314970A (en) Tubular electric furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100316

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150