JP2005285390A - Lighting device and display device using the same - Google Patents

Lighting device and display device using the same Download PDF

Info

Publication number
JP2005285390A
JP2005285390A JP2004094099A JP2004094099A JP2005285390A JP 2005285390 A JP2005285390 A JP 2005285390A JP 2004094099 A JP2004094099 A JP 2004094099A JP 2004094099 A JP2004094099 A JP 2004094099A JP 2005285390 A JP2005285390 A JP 2005285390A
Authority
JP
Japan
Prior art keywords
light
light incident
light source
film
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004094099A
Other languages
Japanese (ja)
Inventor
Takayasu Sado
貴康 佐土
Tadashi Yamauchi
直史 山内
Shin Kurihara
慎 栗原
Katsunori Honma
克則 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004094099A priority Critical patent/JP2005285390A/en
Publication of JP2005285390A publication Critical patent/JP2005285390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the thickness of a sidelight type lighting device. <P>SOLUTION: The lighting device is composed of a light guide body having a light irradiation part irradiating light from a light source as illumination light, a light-incident body having a light-incident face on which the light from a light source is incident, and a light conducting part conducting the light to a light guide body. The light-incident body is formed so as to gradually reduce its thickness as it is headed from a light-incident side to a light conducting part side, and the light guide body composed of a pair of films is formed so as to interpose the light conducting part. Further, a light reflection layer is formed on the surface of the light-incident body, excluding the light-incident face, a light-emitting face, and a stepped part adjacent to the light-emitting face at its light source side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、時計、携帯電話、オーディオ、電子機器等に使用される表示装置、及び表示装置に用いられる照明装置に関する。   The present invention relates to a display device used in a watch, a mobile phone, an audio, an electronic device, and the like, and a lighting device used in the display device.

近年、携帯機器等には、薄型軽量という特徴をもつ液晶表示素子が広く使われている。特に、携帯電話で用いる表示装置には、小型軽量が要求されるため、ほとんどの携帯電話に液晶表示装置が使われている。しかし、液晶表示装置は受光型のため、携帯電話に要求される暗い場所での視認性に問題がある。そこで、液晶表示装置の前面または背面に照明装置を設置することが多い。   In recent years, liquid crystal display elements having a thin and light feature have been widely used in portable devices and the like. In particular, since a display device used in a mobile phone is required to be small and light, a liquid crystal display device is used in most mobile phones. However, since the liquid crystal display device is a light receiving type, there is a problem in visibility in a dark place required for a mobile phone. Therefore, an illuminating device is often installed on the front or back of the liquid crystal display device.

この薄型軽量を実現するため照明装置としては、光源としてLEDを導光板の側面に配したサイドライト型の照明装置が多用されている(例えば、特許文献1参照)。
特許第3301752号(第1頁〜第3頁、図1)
In order to realize this thin and light weight, a sidelight type lighting device in which an LED is arranged on the side surface of the light guide plate as a light source is often used (for example, see Patent Document 1).
Japanese Patent No. 3301752 (page 1 to page 3, FIG. 1)

しかしながら、従来のサイドライト型照明装置においては、導光板の厚みをLED光源の大きさよりも薄くすると、LED光源からの光を効率良く導光板内部に導くことができないために、それ以上の薄型化ができないという課題を有していた。   However, in the conventional sidelight type illumination device, if the thickness of the light guide plate is made thinner than the size of the LED light source, the light from the LED light source cannot be efficiently guided to the inside of the light guide plate. Had the problem of not being able to.

本発明は、光源側から順次薄く構成されている透明な入光体を採用すると共に、導光体を一対の透明フィルム基板で入光体の出光部分を挟持するように構成し、入光体の厚みが入光面側から出光部分側に向かって順次薄くなるようにした。   The present invention employs a transparent light receiving body that is sequentially thinned from the light source side, and the light guide is configured to sandwich the light exit portion of the light incident body with a pair of transparent film substrates. The thickness of the light-emitting device is made to gradually decrease from the light incident surface side toward the light exiting portion side.

さらに、入光体は光源側から階段状に順次薄く構成した。さらに、出光部分と入光面側で隣接する段部の高さを、透明フィルム1枚当たりの厚みとほぼ等しくなるようにした。
さらに、入光体の入光面と反対側の先端は、側面から見て凸形状、円形形状に形成されている。
Furthermore, the light incident body was formed to be thin step by step from the light source side. Further, the height of the step portion adjacent to the light exiting portion on the light incident surface side was made substantially equal to the thickness per transparent film.
Furthermore, the tip of the light incident body opposite to the light incident surface is formed in a convex shape or a circular shape when viewed from the side surface.

本発明によれば、良好な輝度と輝度分布を有する薄型軽量の照明装置を提供できる。さらに、導光板厚みを200μm程度以下にすることで、フレキシブルな導光板とすることが可能となる。従って、これを用いた液晶表示装置の表示品質が向上するのみならず、液晶表示装置の薄型軽量化をも実現できるという効果を有する。また、フィルム導光板厚みを200μm程度以下とすることによって、フレキシブルな導光板になるため、照明装置を配する場所が曲面であっても適用が可能となる効果を有する。また、電気泳動などを利用したフレキシブルなフィルム表示装置などの照明装置としても利用することができるという効果も有する。   ADVANTAGE OF THE INVENTION According to this invention, the thin and lightweight illuminating device which has favorable brightness | luminance and brightness distribution can be provided. Furthermore, by setting the thickness of the light guide plate to about 200 μm or less, a flexible light guide plate can be obtained. Therefore, not only the display quality of the liquid crystal display device using the same is improved, but also the liquid crystal display device can be reduced in thickness and weight. Moreover, since it becomes a flexible light-guide plate by making film light-guide plate thickness into about 200 micrometers or less, even if the place which arrange | positions an illuminating device is a curved surface, it has an effect which can be applied. Moreover, it has the effect that it can utilize also as illumination apparatuses, such as a flexible film display apparatus using electrophoresis.

本発明の照明装置は、光源と、光源からの光を照明光として照射する光照射部を有する導光体と、光源からの光が入る入光面と導光体に光を伝える伝光部を有する入光体と、光照明部の裏側に設けられた反射構造体と、を備え、入光体の厚みが入光面側から伝光部側に向かって順次薄く構成されるとともに、導光体は一対の透明フィルム基板で構成され、伝光部を挟持するような構成である。   The illumination device of the present invention includes a light source, a light guide having a light irradiation unit that emits light from the light source as illumination light, a light incident surface into which light from the light source enters, and a light transmission unit that transmits light to the light guide And a reflective structure provided on the back side of the light illuminating unit, and the thickness of the light incident member is sequentially reduced from the light incident surface side toward the light transmitting unit side, The light body is composed of a pair of transparent film substrates and is configured to sandwich the light transmitting portion.

さらに、その入光体のうち、光源側端面(入光面)、光出射面(伝光部)、およびその光出射面に光源側で隣接する段部を除いた表面に光反射層が形成されている。そして、この入光体の光出射面を挟持するように一対の透明フィルムが互いに接合されている。この一対の透明フィルムが導光板として用いている。これら透明フィルムの光源側の端面と上下面とを除く3つの側面に光反射層を形成し、また一対の透明フィルムの光照明部とは反対側の表面に反射構造体が形成されている。   Furthermore, a light reflecting layer is formed on the surface of the light incident body excluding the light source side end surface (light incident surface), the light emitting surface (light transmitting portion), and the step adjacent to the light emitting surface on the light source side. Has been. And a pair of transparent films are mutually joined so that the light-projection surface of this light incident body may be clamped. This pair of transparent films is used as a light guide plate. A light reflecting layer is formed on three side surfaces excluding the light source side end surface and the upper and lower surfaces of these transparent films, and a reflecting structure is formed on the surface of the pair of transparent films opposite to the light illumination portion.

このような構成にすることによって、光源からの光を効率良くフィルム導光板内部に導入することができ、また、導光板の厚みを1mm以下とすることが可能となった。   With this configuration, light from the light source can be efficiently introduced into the film light guide plate, and the thickness of the light guide plate can be 1 mm or less.

以下に本発明の照明装置を図面に基づいて説明する。図1に本発明のフィルム型照明装置の構成断面図を模式的に示す。本発明のフィルム型照明装置は、光源としてのLED光源1と楔形入光部2と一対の透明フィルム3,4とから構成されている。透明フィルム3と4とは、導光板の光照明部であるフィルム導光板を形成している。   Hereinafter, an illumination device of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a cross-sectional view of the configuration of the film type illumination device of the present invention. The film-type illumination device of the present invention includes an LED light source 1 as a light source, a wedge-shaped light incident portion 2 and a pair of transparent films 3 and 4. The transparent films 3 and 4 form a film light guide plate that is a light illumination part of the light guide plate.

LED光源1から出射した光は、楔形入光部2で絞られて、透明フィルム3と4の内部を導波し、照明装置の光照射面である透明フィルム3の上面側から図示されていない被照明体に面状一様に照射される。被照明体として、液晶表示素子を用いることによって、輝度が均一で明るい薄型の液晶表示装置とすることができる。   The light emitted from the LED light source 1 is narrowed down by the wedge-shaped light incident part 2, guided in the transparent films 3 and 4, and is not shown from the upper surface side of the transparent film 3 that is the light irradiation surface of the illumination device. The object to be illuminated is irradiated uniformly in a planar shape. By using a liquid crystal display element as the object to be illuminated, a thin liquid crystal display device with uniform brightness and brightness can be obtained.

図1では1つしか描画されていないが、LED光源1は3から5個といった複数用いられるのが通常である。また、図示していないが、LED光源1に対向する楔形入光部2の光源側端面である光入射面には、LED光源1から出射した光の楔形入光部2内部での面内方向の広がり角を制御するための微小プリズムが形成されている。この微小プリズムは図1紙面内の上下方向の稜線を持っており、広がり角は微小プリズムの頂角および高さによって制御することができる。   Although only one is drawn in FIG. 1, a plurality of LED light sources 1 such as 3 to 5 are usually used. Although not shown, the light incident surface that is the light source side end surface of the wedge-shaped light incident portion 2 facing the LED light source 1 has an in-plane direction inside the wedge-shaped light incident portion 2 of the light emitted from the LED light source 1. A small prism is formed to control the spread angle. The microprism has a vertical ridgeline in the plane of FIG. 1, and the spread angle can be controlled by the apex angle and height of the microprism.

楔形入光部2は、階段状で複数の段を有しており、光出射端面に向かって順次薄くなっている。これらの段部はほぼ垂直な角度をもって形成されている。図を見やすくするためここでは段数が2段の場合を示してあるが、実際は20〜100段程度の段を形成する。   The wedge-shaped light incident part 2 is stepped and has a plurality of steps, and is gradually thinner toward the light emitting end face. These step portions are formed with a substantially vertical angle. In order to make the figure easy to see, the case where the number of stages is two is shown here, but in reality, about 20 to 100 stages are formed.

また、楔形光入光部2の光源側端面と光出射端面および光出射端面に隣接する段部を除いて光反射層が形成されている。この光反射層は、AlやAgあるいはAgとPdとの化合物を100nm以上の膜厚、望ましくは1μm程度の膜厚で積層して形成されている。この光反射層の形成は真空蒸着などの気相成長法や、無電解メッキと電解メッキとを組み合わせた方法で容易に行うことができる。   Further, a light reflecting layer is formed except for the end face on the light source side of the wedge-shaped light incident portion 2, the light exit end face, and the step adjacent to the light exit end face. This light reflecting layer is formed by laminating Al, Ag, or a compound of Ag and Pd with a film thickness of 100 nm or more, preferably about 1 μm. The light reflecting layer can be easily formed by a vapor phase growth method such as vacuum deposition or a method in which electroless plating and electrolytic plating are combined.

透明フィルム3および4は、アクリル系樹脂やポリカーボネート系樹脂またはポリエチレン系樹脂あるいはシクロオレフィン系樹脂などの透明な高分子で作られている。これらの透明フィルムは楔形入光部2側の端部を除いて、光学接着剤で互いに接合されている。光学接着剤を用いないでこれらの透明フィルムを互いに熱圧着で接合しても良い。また、透明フィルム3と4の光源側端面は、楔形入光部2を狭持して楔形入光部2と接合されている。   The transparent films 3 and 4 are made of a transparent polymer such as an acrylic resin, a polycarbonate resin, a polyethylene resin, or a cycloolefin resin. These transparent films are bonded to each other with an optical adhesive except for the end on the wedge-shaped light incident portion 2 side. These transparent films may be joined to each other by thermocompression bonding without using an optical adhesive. Further, the light source side end surfaces of the transparent films 3 and 4 are joined to the wedge-shaped light incident portion 2 while sandwiching the wedge-shaped light incident portion 2.

透明フィルム3と4の光源側と上下面を除く3側面には光反射層5が形成されている。この光反射層は、AlやAgあるいはAgとPdとの化合物を100nm以上の膜厚、望ましくは1μm程度の膜厚で積層して形成されている。この光反射層の形成は真空蒸着などの気相成長法や無電解メッキと電解メッキとを組み合わせた方法で容易に行うことができる。   A light reflecting layer 5 is formed on the side surfaces of the transparent films 3 and 4 except the light source side and the upper and lower surfaces. This light reflecting layer is formed by laminating Al, Ag, or a compound of Ag and Pd with a film thickness of 100 nm or more, preferably about 1 μm. The light reflecting layer can be easily formed by a vapor phase growth method such as vacuum deposition or a method in which electroless plating and electrolytic plating are combined.

透明フィルム4の接合されていない側の表面には、微小反射構造体が形成されている。微細反射構造体としては、図1の紙面に垂直な方向に稜線を持った微細プリズム群や、透明フィルム4の内部に向かって凸または凹の互いに離間した微小三角柱群、あるいはシボ構造体を用いることができる。これらの微細反射構造体の形成方法としては、透明フィルムを軟化点以上に加熱した状態で、微細反射構造体パターンが形成された成形型で圧力を印加する方法を用いることができる。   A micro-reflection structure is formed on the surface of the transparent film 4 on which the transparent film 4 is not bonded. As the fine reflection structure, a fine prism group having a ridge line in a direction perpendicular to the paper surface of FIG. 1, a minute triangular prism group that is convex or concave toward the inside of the transparent film 4, or a texture structure is used. be able to. As a method for forming these fine reflective structures, a method can be used in which pressure is applied with a molding die on which a fine reflective structure pattern is formed in a state where the transparent film is heated to a softening point or higher.

透明フィルム3と4の内部を導波する光がこれらのフィルム表面で反射される回数は、通常の5〜10mm程度の厚みを有する導光板に比較しておよそ10倍程度以上多くなるために、上記微細反射構造体の形成密度は前記通常の導光板のおよそ1/10程度以下で良い。   The number of times that the light guided inside the transparent films 3 and 4 is reflected on the surface of these films is about 10 times more than a normal light guide plate having a thickness of about 5 to 10 mm. The formation density of the fine reflective structures may be about 1/10 or less of the normal light guide plate.

図2は他の構成の照明装置を模式的に示す断面図である。ここでは、透明フィルム4の微細反射構造体が形成されている表面に光反射層6が形成されている。このように、透明フィルム6の表面に光反射層6を形成することによって、透明フィルム4の裏面に抜けようとする光を効率良く光照射面すなわち透明フィルム3の表面側である光照射面に戻すことができる。このような、構造とすることで、薄さとフレキシビリティを保持したまま、照明効率を良くすることができる。   FIG. 2 is a cross-sectional view schematically showing an illumination device having another configuration. Here, the light reflection layer 6 is formed on the surface of the transparent film 4 on which the fine reflection structure is formed. In this way, by forming the light reflecting layer 6 on the surface of the transparent film 6, light that is about to escape to the back surface of the transparent film 4 is efficiently applied to the light irradiation surface, that is, the light irradiation surface that is the surface side of the transparent film 3. Can be returned. With such a structure, illumination efficiency can be improved while maintaining thinness and flexibility.

もちろん、図2に示す構造以外にも、図1に示す構成において透明フィルム4に対向して反射板を配しても良い。   Of course, in addition to the structure shown in FIG. 2, a reflecting plate may be arranged facing the transparent film 4 in the configuration shown in FIG. 1.

図3は、本発明の照明装置に用いた楔形入光部を模式的に示す斜視図である。ここで示す楔形入光部は、上下両面に段が形成されており、入射端10から出射端13に向かうに従って細くなった楔形をしている。出射端13に隣接した段12の高さは、透明フィルムの厚みとほぼ同じに形成されている。それ以外の段、例えば段11の高さには制限がないが、段の高さはできる限り低くするのが望ましい。具体的には、出射端13に隣接した段12を除き、各段の高さは50〜1000μmの範囲で任意に設定できる。   FIG. 3 is a perspective view schematically showing a wedge-shaped light incident portion used in the illumination device of the present invention. The wedge-shaped light incident portion shown here has steps formed on both upper and lower surfaces, and has a wedge shape that becomes thinner from the incident end 10 toward the emission end 13. The height of the step 12 adjacent to the emission end 13 is formed to be approximately the same as the thickness of the transparent film. There is no restriction on the height of the other steps, for example, the step 11, but it is desirable to make the height of the steps as low as possible. Specifically, the height of each step can be arbitrarily set in the range of 50 to 1000 μm except for the step 12 adjacent to the emission end 13.

図4に照明装置に用いる楔形入光部の他の構成を示す。この構成では、楔形入光部に形成されている段は片面だけである。このような、構成にすることによって、入射端10から出射端13までの長さが図3で示したものよりも長くなるが、楔形入光部と透明フィルム4の底面とを一致させることができるために、照明配置がし易くなるという長所を持っている。   FIG. 4 shows another configuration of the wedge-shaped light incident portion used in the illumination device. In this configuration, the step formed in the wedge-shaped light incident portion is only one side. With such a configuration, the length from the incident end 10 to the emission end 13 is longer than that shown in FIG. 3, but the wedge-shaped light incident portion and the bottom surface of the transparent film 4 can be made to coincide. In order to be able to do it, it has the advantage that it becomes easy to arrange lighting.

図4で示した楔形入光部2の内部における光の挙動を図5に示す。ここでは、楔形入光部2の表面に形成された光反射層を13で示してある。図5において、光源から出た光は楔形入光部の入射端面から楔形入光部2に入る。まず、光路20で示されている光は光入光部の上面に形成された光反射層13で反射されて光出射面12に達し、透明フィルム3と4とで形成されたフィルム導光板側に達する。一方、光路21で示される光は、段部に形成された光反射層13で反射されて一度光入射端面側に戻るが、再び光入射端面で反射されて光出射端面12に達する。ここに示したように、本発明に用いられている楔形入光部2は、垂直な段部で形成されているために、内部で繰り返し光反射を受けても楔形入光部2の側面や上下面への入射角は変化しない。すなわち、光源1からの出射角を実質的に変更させることなく、光出射端面に到達させることができる。   FIG. 5 shows the behavior of light inside the wedge-shaped light incident portion 2 shown in FIG. Here, the light reflecting layer formed on the surface of the wedge-shaped light incident portion 2 is indicated by 13. In FIG. 5, the light emitted from the light source enters the wedge-shaped light incident portion 2 from the incident end face of the wedge-shaped light incident portion. First, the light indicated by the optical path 20 is reflected by the light reflecting layer 13 formed on the upper surface of the light incident portion and reaches the light emitting surface 12, and is on the side of the film light guide plate formed by the transparent films 3 and 4. To reach. On the other hand, the light indicated by the optical path 21 is reflected by the light reflecting layer 13 formed in the step portion and once returns to the light incident end face side, but is reflected again by the light incident end face and reaches the light emitting end face 12. As shown here, the wedge-shaped light incident part 2 used in the present invention is formed of a vertical stepped part, so that the side surface of the wedge-shaped light incident part 2 can be The angle of incidence on the top and bottom surfaces does not change. That is, it is possible to reach the light emitting end face without substantially changing the emission angle from the light source 1.

もし、通常の滑らかなテーパを持った楔形入光部やテーパを持った段部を持った楔形入光部を用いたとすると、そのテーパで反射された光は結果的に光源からの出射角よりも大きな出射角を持った光と同等となり、フィルム導光板内部に入った後、直ちに外部に漏れ出してしまうために微細反射構造体の形成密度は光源から遠ざかるにつれてより高次の関数で変化するようにして照明輝度分布が光源側に偏らないようにすることが重要である。   If a wedge-shaped light incident portion having a normal smooth taper or a wedge-shaped light incident portion having a tapered step is used, the light reflected by the taper will eventually be more than the emission angle from the light source. Is equivalent to light having a large emission angle, and after entering the film light guide plate, it immediately leaks to the outside. Therefore, the formation density of the fine reflective structure changes with a higher order function as the distance from the light source increases. Thus, it is important that the illumination luminance distribution is not biased toward the light source.

光出射端面12は、側面から見て円形で凸形状に形成されている。従って、光出射端面12から出射される光は、図5における上下方向に集光されて出射される。このようにすることによって、フィルム導光板内部表面への光入射角を大きくすることができるため、フィルム導光板による輝度分布をより向上させることができる。   The light emitting end face 12 is formed in a circular and convex shape when viewed from the side. Therefore, the light emitted from the light emitting end face 12 is condensed and emitted in the vertical direction in FIG. By doing in this way, since the light incident angle to the film light-guide plate internal surface can be enlarged, the luminance distribution by a film light-guide plate can be improved more.

もちろん、光出射端面12を平面で構成しても、上記したように、光源からの出射角が保存されて光出射されるために、フィルム導光板内部では導波光は全反射によって伝達させることができる。   Of course, even if the light emitting end face 12 is formed as a flat surface, as described above, since the emission angle from the light source is preserved and light is emitted, the guided light can be transmitted by total reflection inside the film light guide plate. it can.

また、光出射端面12に隣接する段部11aと11bとは、各々透明フィルム3と4との厚みとほぼ等しい高さとなっている。そのため、この段部11aと11bから外部に出た光は、透明フィルム3と4にその端面から直接入射する。   Further, the step portions 11a and 11b adjacent to the light emitting end face 12 have a height substantially equal to the thickness of the transparent films 3 and 4, respectively. Therefore, the light emitted to the outside from the step portions 11a and 11b is directly incident on the transparent films 3 and 4 from the end surfaces.

次に、フィルム導光板内部における光の挙動に関して図6を用いて説明する。光路23は、透明フィルム3の端面から入射した光の光路の1例である。図6において、楔形入光部2の出射端面12に隣接する段部11aから出射した光は、透明フィルム3の端面からフィルム内に入射する。そして、透明フィルム3の内部を導波した後、透明フィルム3と4との接合部以降の部分では、透明フィルム3と4との表面間を繰り返し反射して導波する。透明フィルム4の表面には微細反射構造体が形成されており、その微細反射構造体に入射した導波光は光路に偏向を受けて臨界角よりも小さな入射角で透明フィルム3の表面に入射し、その結果23で示されるように透明フィルム3の表面から出射し、被照明体を照射する。一方、出射端12から出た光は光路22で示されるように、透明フィルム3と4の対向する面から透明フィルム内に入る。図6で示す例では、透明フィルム4に入射する。この光は、23で示した光路と同様に透明フィルム3と4との表面間で繰り返し反射した後、透明フィルム4の表面に形成された微細反射構造体に入射すると、光路を偏向されて透明フィルム3の表面から出射される。   Next, the behavior of light inside the film light guide plate will be described with reference to FIG. The optical path 23 is an example of an optical path of light incident from the end face of the transparent film 3. In FIG. 6, the light emitted from the step portion 11 a adjacent to the emission end surface 12 of the wedge-shaped light incident portion 2 enters the film from the end surface of the transparent film 3. Then, after guiding the inside of the transparent film 3, the portion after the joint between the transparent films 3 and 4 is repeatedly reflected between the surfaces of the transparent films 3 and 4 and guided. A fine reflection structure is formed on the surface of the transparent film 4, and the guided light incident on the fine reflection structure is deflected in the optical path and enters the surface of the transparent film 3 at an incident angle smaller than the critical angle. As shown in the result 23, the light is emitted from the surface of the transparent film 3 to irradiate the object to be illuminated. On the other hand, the light emitted from the emission end 12 enters the transparent film from the opposing surfaces of the transparent films 3 and 4 as indicated by the optical path 22. In the example shown in FIG. 6, the light enters the transparent film 4. This light is repeatedly reflected between the surfaces of the transparent films 3 and 4 in the same manner as the optical path shown at 23, and then enters the fine reflecting structure formed on the surface of the transparent film 4, so that the optical path is deflected and transparent. The light is emitted from the surface of the film 3.

透明フィルム4の表面に形成されている微細反射構造体は、透明フィルム3の表面から州謝する輝度が均一になるように、光源側から遠ざかるにつれて密に形成されている。また、以上の説明では微細反射構造体を透明フィルム4の裏面に形成した例を説明したが、透明フィルム3の上面に形成しても良いことは言うまでもない。   The fine reflecting structure formed on the surface of the transparent film 4 is formed densely with increasing distance from the light source side so that the brightness of the state from the surface of the transparent film 3 becomes uniform. In the above description, the example in which the fine reflective structure is formed on the back surface of the transparent film 4 has been described, but it goes without saying that the fine reflective structure may be formed on the top surface of the transparent film 3.

以下に、本発明のより具体的な実施例を以下に説明する。   In the following, more specific examples of the present invention will be described.

図1で示される構造のフィルム型照明装置を作製した。楔形入光部2の光源側の厚みは7mmで幅は35mmのものをアクリル樹脂で成形して用いた。楔形入光部の光出射端部の厚みは70μmとした。この楔形入光部の光入射端面と光出射端面とを除く表面にはアルミニウムを約1μmの厚さで蒸着した。また、楔形入光部の各段部の高さは全て80μmとし、段数は上下合わせて76段とした。   A film type lighting apparatus having the structure shown in FIG. 1 was produced. A wedge-shaped light incident portion 2 having a thickness of 7 mm on the light source side and a width of 35 mm was molded from an acrylic resin. The thickness of the light exit end of the wedge-shaped light incident portion was 70 μm. Aluminum was vapor-deposited with a thickness of about 1 μm on the surface of the wedge-shaped light incident part excluding the light incident end face and the light exit end face. The height of each step portion of the wedge-shaped light incident portion was 80 μm, and the number of steps was 76 steps in total.

また、透明フィルム3と4としては、幅35mmで長さ40mm、厚み90μmのアクリルフィルムを用いた。これらの透明フィルムの光源側を除く3側面にはアルミニウム光反射層を約1μmだけ蒸着で形成した。透明フィルム4の裏面には高さ5μmで光源側の底角が30度、光源と反対側の底角が80度のフィルム内に凸の微細三角柱を散在して形成した。その形成密度は、その微細三角柱の底面積が光源からの距離の約二乗に比例するようにした。そして、この透明フィルム3と4とを熱圧着して接合し、片側の端面を楔形入光部にアクリル系接着剤で接合した。   As the transparent films 3 and 4, acrylic films having a width of 35 mm, a length of 40 mm, and a thickness of 90 μm were used. An aluminum light reflecting layer of about 1 μm was formed on the three side surfaces of these transparent films excluding the light source side by vapor deposition. On the back surface of the transparent film 4, convex fine triangular prisms were scattered and formed in a film having a height of 5 μm, a base angle on the light source side of 30 degrees, and a base angle on the opposite side of the light source of 80 degrees. The formation density was such that the bottom area of the fine triangular prism was proportional to the square of the distance from the light source. Then, the transparent films 3 and 4 were bonded by thermocompression bonding, and the end surface on one side was bonded to the wedge-shaped light incident portion with an acrylic adhesive.

光源としては、白色LED光源を3個用いた。   Three white LED light sources were used as the light source.

このようにして作製した照明装置の輝度を測定したところ、1800〜2200cd/mの値が得られ、通常のサイドライト型照明装置と同等の性能が得られた。 When the luminance of the lighting device thus manufactured was measured, a value of 1800 to 2200 cd / m 2 was obtained, and performance equivalent to that of a normal sidelight type lighting device was obtained.

また、照明装置の照明部の厚みを180μmと薄くすることができ、また曲率が小さければ折り曲げても性能を落とさないことが確認できた。   Moreover, the thickness of the illumination part of the illumination device can be reduced to 180 μm, and if the curvature is small, it has been confirmed that the performance is not deteriorated even if it is bent.

図2に示すフィルム型照明装置を作製した。ただし、楔形入光部2としては、図4で示す形状のものを用いた。透明フィルム3と4としては、実施例1と同様のものを用いた。ただし、透明フィルム4の裏面には、稜線が光入射端と同方向の微細プリズムを形成した。このプリズムの高さは、5〜50μmであり、頂角は90度とした。また、プリズムのピッチと高さは、プリズム表面積が光源側からの距離の二乗に比例するように増加させた。   The film type lighting device shown in FIG. 2 was produced. However, the wedge-shaped light incident part 2 has the shape shown in FIG. As the transparent films 3 and 4, the same films as in Example 1 were used. However, a fine prism having a ridge line in the same direction as the light incident end was formed on the back surface of the transparent film 4. The prism had a height of 5 to 50 μm and an apex angle of 90 degrees. Also, the prism pitch and height were increased so that the prism surface area was proportional to the square of the distance from the light source.

光反射層6の代わりに、反射面を鏡面にしたアルミニウム板を用いた。さらに、光源としては、白色LED光源を3個用いた。   Instead of the light reflecting layer 6, an aluminum plate having a reflecting surface as a mirror surface was used. Further, three white LED light sources were used as the light source.

このフィルム型照明装置の輝度を測定したところ、1500〜1800Cd/mの輝度が得られた。 When the luminance of this film type illumination device was measured, a luminance of 1500 to 1800 Cd / m 2 was obtained.

また、作製したフィルム型照明装置を折り曲げても、曲率が小さい限り折り曲げない場合と同等の輝度が得られた。   Further, even when the produced film type lighting device was bent, the same luminance as that obtained when the film type lighting device was not bent as long as the curvature was small was obtained.

本発明によるフィルム型照明装置を模式的に示す断面図である。It is sectional drawing which shows the film type illuminating device by this invention typically. 本発明によるフィルム型照明装置を模式的に示す断面図である。It is sectional drawing which shows the film type illuminating device by this invention typically. 本発明によるフィルム型照明装置に用いた楔形入光部を模式的に示す斜視図である。It is a perspective view which shows typically the wedge-shaped light-incidence part used for the film type illuminating device by this invention. 本発明によるフィルム型照明装置に用いた楔形入光部を模式的に示す斜視図である。It is a perspective view which shows typically the wedge-shaped light-incidence part used for the film type illuminating device by this invention. 楔形入光部内の光路の1例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the optical path in a wedge-shaped light incident part. 透明フィルム内の光路の1例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the optical path in a transparent film.

符号の説明Explanation of symbols

1 LED光源
2 楔形入光部
3、4 透明フィルム
5、6 光反射層
10 光入射端面
11 光出射端面
DESCRIPTION OF SYMBOLS 1 LED light source 2 Wedge-shaped light incident part 3, 4 Transparent film 5, 6 Light reflection layer 10 Light incident end surface 11 Light output end surface

Claims (6)

光源と、前記光源からの光を照明光として照射する光照射部を有する導光体と、前記光源からの光が入る入光面と前記導光体に光を伝える伝光部を有する入光体と、前記光照明部の裏側に設けられた反射構造体と、を備え、前記入光体の厚みが前記入光面側から前記伝光部側に向かって順次薄く構成されるとともに、前記導光体は一対の透明フィルム基板で構成され、前記伝光部を挟持するように設けられたことを特徴とする照明装置。   Light input comprising a light source, a light guide having a light irradiating unit that irradiates light from the light source as illumination light, a light incident surface into which light from the light source enters, and a light transmitting unit that transmits light to the light guide And a reflective structure provided on the back side of the light illuminating unit, and the thickness of the light incident body is sequentially reduced from the light incident surface side toward the light transmitting unit side, and The light guide is composed of a pair of transparent film substrates, and is provided so as to sandwich the light transmission part. 前記入光体は光源側から階段状に順次薄く構成されていることを特徴とする請求項1に記載のフィルム型照明装置。   The film-type lighting device according to claim 1, wherein the light incident body is configured to be thin stepwise from the light source side. 前記伝光部と前記入光面側で隣接する段部の高さは、前記一対の透明フィルム1枚当たりの厚みと略等しいことを特徴とする請求項2に記載のフィルム型照明装置。   The film-type lighting device according to claim 2, wherein a height of a step portion adjacent to the light transmitting portion on the light incident surface side is substantially equal to a thickness per pair of the transparent films. 前記入光体の前記入光面と反対側の先端は、側面から見て凸形状に形成されていることを特徴とする請求項1から3のいずれか一項に記載の照明装置。   The lighting device according to any one of claims 1 to 3, wherein a tip of the light incident body opposite to the light incident surface is formed in a convex shape when viewed from a side surface. 前記凸形状は円形形状であることを特徴とする請求項4に記載の照明装置。   The lighting device according to claim 4, wherein the convex shape is a circular shape. 請求項1〜5のいずれか一項に記載の照明装置と、前記照明装置の光照射面側に設けられた非自発光型の表示素子とを備えることを特徴とする表示装置。   A display device comprising: the illumination device according to claim 1; and a non-self-luminous display element provided on a light irradiation surface side of the illumination device.
JP2004094099A 2004-03-29 2004-03-29 Lighting device and display device using the same Pending JP2005285390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094099A JP2005285390A (en) 2004-03-29 2004-03-29 Lighting device and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094099A JP2005285390A (en) 2004-03-29 2004-03-29 Lighting device and display device using the same

Publications (1)

Publication Number Publication Date
JP2005285390A true JP2005285390A (en) 2005-10-13

Family

ID=35183563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094099A Pending JP2005285390A (en) 2004-03-29 2004-03-29 Lighting device and display device using the same

Country Status (1)

Country Link
JP (1) JP2005285390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123202A1 (en) * 2006-04-20 2007-11-01 Fujikura Ltd. Display device and its manufacturing method, pattern displaying method, and blind device and blind method
JP2017219803A (en) * 2016-06-10 2017-12-14 凸版印刷株式会社 Display device and display method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123202A1 (en) * 2006-04-20 2007-11-01 Fujikura Ltd. Display device and its manufacturing method, pattern displaying method, and blind device and blind method
JPWO2007123202A1 (en) * 2006-04-20 2009-09-03 株式会社フジクラ Display device and manufacturing method thereof, pattern display method, blind device and blind method
JP2017219803A (en) * 2016-06-10 2017-12-14 凸版印刷株式会社 Display device and display method

Similar Documents

Publication Publication Date Title
TWI362510B (en)
US7911700B2 (en) Light guiding film
US7703969B2 (en) Backlight unit having multilayer light deflecting film
WO2004076917A1 (en) Area light source
TW201418628A (en) Light source module and manufacturing method thereof
CN100405165C (en) Backlight system and reflecting shade for same
JP2010050064A (en) Light guide plate, planar light unit, display apparatus, and light guide plate manufacturing method
TW201219922A (en) Planar light source device
JP2009043565A (en) Light guide plate, planar light unit, and display device
JP2006114239A (en) Planar light source, light guide body for planar light source and manufacturing method therefor, lighting device, signboard and liquid crystal display
TW201215965A (en) Edge lighting back light module
TW201219926A (en) Backlight unit
JP2009123361A (en) Light guide plate, and backlight unit for liquid crystal display device
JP2003187620A (en) Planar luminous device and liquid crystal display device equipped with the same
JP2005285389A (en) Lighting device and display device using the same
JP2005243259A (en) Double-screen image display device and surface light source device
JP4544182B2 (en) Illumination device, electro-optical device, and manufacturing method thereof
JP2012048914A (en) Lighting device and liquid crystal display using the same
JP2005285390A (en) Lighting device and display device using the same
JP2005135815A (en) Planar light source device and display device using the same
TWM276217U (en) Backlight module and liquid crystal display
JP2010015833A (en) Optical functional member
JP4473035B2 (en) Illumination device and display device including the same
JP2001108835A (en) Light guide plate and plane lighting device
TW201202770A (en) Light guide device and back light module having the same