JP2005283502A - Method for analyzing sample - Google Patents

Method for analyzing sample Download PDF

Info

Publication number
JP2005283502A
JP2005283502A JP2004101357A JP2004101357A JP2005283502A JP 2005283502 A JP2005283502 A JP 2005283502A JP 2004101357 A JP2004101357 A JP 2004101357A JP 2004101357 A JP2004101357 A JP 2004101357A JP 2005283502 A JP2005283502 A JP 2005283502A
Authority
JP
Japan
Prior art keywords
sample
film
model
ellipsometer
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004101357A
Other languages
Japanese (ja)
Other versions
JP4435298B2 (en
Inventor
Natalia Nabatova-Gabain
ナバトバ−ガバイン,ナタリア
Seiichi Hirakawa
誠一 平川
Yoko Wasai
容子 和才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2004101357A priority Critical patent/JP4435298B2/en
Priority to TW093141341A priority patent/TWI278617B/en
Priority to KR1020050004686A priority patent/KR100822419B1/en
Priority to US11/089,783 priority patent/US7167242B2/en
Publication of JP2005283502A publication Critical patent/JP2005283502A/en
Application granted granted Critical
Publication of JP4435298B2 publication Critical patent/JP4435298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/04Shores or struts; Chocks telescopic
    • E04G25/06Shores or struts; Chocks telescopic with parts held together by positive means
    • E04G25/061Shores or struts; Chocks telescopic with parts held together by positive means by pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G7/00Connections between parts of the scaffold
    • E04G7/30Scaffolding bars or members with non-detachably fixed coupling elements
    • E04G7/302Scaffolding bars or members with non-detachably fixed coupling elements for connecting crossing or intersecting bars or members
    • E04G7/306Scaffolding bars or members with non-detachably fixed coupling elements for connecting crossing or intersecting bars or members the added coupling elements are fixed at several bars or members to connect
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G7/00Connections between parts of the scaffold
    • E04G7/30Scaffolding bars or members with non-detachably fixed coupling elements
    • E04G7/32Scaffolding bars or members with non-detachably fixed coupling elements with coupling elements using wedges
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G2025/006Heads therefor, e.g. pivotable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G25/00Shores or struts; Chocks
    • E04G25/04Shores or struts; Chocks telescopic
    • E04G2025/045Shores or struts; Chocks telescopic which telescoping action effected by a lever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/213Spectrometric ellipsometry

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a sample which has a dielectric film whose dielectric constant is not less than 50 on the basis of an electrical measurement, to be analyzed over the entire optical range, based on a measurement result of an ellipsometer. <P>SOLUTION: The sample, wherein on a substrate the dielectric film is formed, whose dielectric constant is not less than 50 on the basis of the electrical measurement, is measured by the ellipsometer, and a model according to the sample is created, based on an effective medium approximation (EMA). In the model, a film corresponding to the dielectric film is formed so as to have the void ratio in the range of 60% to 90%. A value, calculated from the model, is compared to a value measured by the ellipsometer, and a fitting process is carried out so that the difference between both values becomes small, thereby specifying the film thickness and the optical constants of the sample. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は強誘電体又は高誘電体で形成された誘電体膜を有する試料をエリプソメータを利用して解析する際に、有効媒質近似に基づく空隙を多量に含むモデルを作成して全光学範囲で試料を解析できるようにした試料解析方法に関する。   In the present invention, when a sample having a dielectric film formed of a ferroelectric material or a high-dielectric material is analyzed using an ellipsometer, a model including a large amount of voids based on the effective medium approximation is created to cover the entire optical range. The present invention relates to a sample analysis method capable of analyzing a sample.

従来、試料に関する情報を解析するためにエリプソメータを使用することがある。エリプソメータは試料に偏光状態の光を入射させ、入射光及び反射光の偏光状態の変化を測定することで、位相差(Δデルタ)及び振幅比(Ψプサイ)を求めるものである。解析対象の試料には、基板単体のもの、基板上に膜が形成されたもの等がある。   Conventionally, an ellipsometer is sometimes used to analyze information about a sample. The ellipsometer obtains a phase difference (Δ delta) and an amplitude ratio (Ψ psi) by making light in a polarized state incident on a sample and measuring changes in the polarization state of incident light and reflected light. Samples to be analyzed include those with a single substrate and those with a film formed on the substrate.

図9は、シリコン基板上に酸化シリコン膜が形成された試料をエリプソメータで測定した結果を示すグラフである。横軸は試料への入射光の波長(nmナノメートル)、右縦軸は測定した位相差(Δデルタ)、左縦軸は測定した振幅比(Ψプサイ)を夫々示したものである。なお、入射される光の波長が633nmのときで、酸化シリコン膜の光学的な測定に基づいた複素誘電率(static dielectric constant)は、約2.1である。   FIG. 9 is a graph showing the results of measuring a sample having a silicon oxide film formed on a silicon substrate with an ellipsometer. The horizontal axis represents the wavelength of light incident on the sample (nm nanometer), the right vertical axis represents the measured phase difference (Δdelta), and the left vertical axis represents the measured amplitude ratio (Ψ psi). In addition, when the wavelength of the incident light is 633 nm, the complex dielectric constant (static dielectric constant) based on the optical measurement of the silicon oxide film is about 2.1.

また、上述したエリプソメータの測定により求められた位相差及び振幅比からでは、試料に対する唯一の組で膜の屈折率(n)、消衰係数(k)、及び膜厚(d)を直接求めることができない。そのため、唯一の組で膜の屈折率、消衰係数、及び膜厚を求めるためには、エリプソメータによる測定に加えて、試料に応じたモデルを作成し、このモデルから理論的に求められる位相差及び振幅比と、エリプソメータの測定で求められた位相差及び振幅比との比較を行う。なお、モデルの作成には、試料の物性に応じた条件を設定することで行われ、設定される条件の項目には基板及び膜の材質、各膜層の膜厚、基板及び膜の光学定数がある。また、各項目の設定には試料に応じた既知のリファレンス、誘電率の波長依存性を示し且つ複数のパラメータを有する所要の分散式等が通常用いられる。   In addition, from the phase difference and amplitude ratio obtained by the above-described ellipsometer measurement, the refractive index (n), extinction coefficient (k), and film thickness (d) of the film can be directly obtained with only one set for the sample. I can't. Therefore, in order to obtain the refractive index, extinction coefficient, and film thickness of the film with only one set, in addition to the measurement by the ellipsometer, a model corresponding to the sample is created, and the phase difference theoretically obtained from this model is obtained. Then, the amplitude ratio is compared with the phase difference and amplitude ratio obtained by the ellipsometer measurement. The model is created by setting the conditions according to the physical properties of the sample. The conditions to be set include the substrate and film material, the film thickness of each film layer, and the optical constants of the substrate and film. There is. For setting each item, a known reference corresponding to the sample, a required dispersion formula showing the wavelength dependence of the dielectric constant and having a plurality of parameters, and the like are usually used.

さらに、上記比較に対して、両者の相異する程度が最小となるように分散式のパラメータ及びモデルの各膜層の膜厚等を変更するプロセスを行う(フィッティングと称す)。両者の相異は通常、最小二乗法を用いた演算で求めており、フィッティングにより最小二乗法で得られた結果がある程度小さくなったと判断された場合、そのときの分散式のパラメータの値から膜の屈折率及び消衰係数を求めると共に、そのときの膜厚を試料が有する膜の膜厚として特定する。なお、モデルの作成、最小二乗法による演算、フィッティング等はコンピュータを用いて所要のプログラムに基づき手動又は自動で行うことが一般的である(特許文献1、2参照)。   Further, for the above comparison, a process of changing the parameters of the dispersion formula and the thickness of each film layer of the model so as to minimize the difference between the two (referred to as fitting) is performed. The difference between the two is usually obtained by calculation using the least square method, and if it is determined that the result obtained by the least square method has been reduced to some extent by fitting, the value of the parameter of the dispersion equation at that time The refractive index and extinction coefficient are determined, and the film thickness at that time is specified as the film thickness of the film of the sample. In general, model creation, least squares calculation, fitting, and the like are performed manually or automatically based on a required program using a computer (see Patent Documents 1 and 2).

上述した解析方法は、図10(a)に示すように試料Sを構成する基板S1及び膜S2の境界が平面であり、膜S2が平行膜であると共に膜S2を構成する物質が均質かつ連続している場合、支障なく行える。しかし、図10(b)に示すように、実際の試料Sは、膜S2の表面に凹凸(ラフネス)が存在するため、ラフネスの程度によっては、上述した解析方法をそのまま行っても良好な結果が得られないことがある。   In the analysis method described above, as shown in FIG. 10A, the boundary between the substrate S1 and the film S2 constituting the sample S is a flat surface, the film S2 is a parallel film, and the material constituting the film S2 is homogeneous and continuous. If it is, it can be done without any problems. However, as shown in FIG. 10B, since the actual sample S has irregularities (roughness) on the surface of the film S2, good results can be obtained even if the above-described analysis method is performed as it is depending on the degree of roughness. May not be obtained.

よって、このような場合には有効媒質近似と云う考え方を用いて、図10(b)のラフネスを有する膜S2を、図10(c)に示すように、膜S2に係る物質が均質かつ連続し、膜厚がd1であると云う第1膜S2aと、膜S2に係る物質Mの中に空隙Vが所要の率(空隙率、以下ボイドと称す)で存在し、膜厚がd2である第2膜S2bとに置き換えたモデルを形成する。このように形成したモデルに対して第1膜S2aの膜厚d1、第2膜S2bの膜厚d2、第2膜S2b中の物質M及び空隙の混合比(void fraction)、及び試料に応じた分散式のパラメータをフィッティングして試料の解析を行う。   Therefore, in such a case, using the concept of effective medium approximation, the film S2 having the roughness shown in FIG. 10B is made uniform and continuous as shown in FIG. 10C. In the first film S2a whose film thickness is d1 and the substance M related to the film S2, voids V are present at a required rate (void ratio, hereinafter referred to as void), and the film thickness is d2. A model replaced with the second film S2b is formed. According to the model thus formed, the film thickness d1 of the first film S2a, the film thickness d2 of the second film S2b, the mixing ratio (void fraction) of the substance M and the voids in the second film S2b, and the sample The sample is analyzed by fitting the parameters of the dispersion formula.

モデルに対して設定するボイドの数値は、ラフネスの大きさに基づき決められるが、膜の成立が可能な範囲を考慮するとボイドの最大値は一般的には約40〜55%と考えられており、通常は50%と云う数値が用いられることが多い。なお、試料の膜表面にラフネスが存在するか否かが不明な場合は、上述した有効媒質近似を用いた解析方法と、有効媒質近似を用いない解析方法の両方を行い、いずれの解析結果の方が実際の試料に対し適合性が高いかを最小二乗法の演算結果等を用いて見極め、ラフネスの有無を判断することが一般的である。   The number of voids set for the model is determined based on the roughness, but the maximum value for voids is generally considered to be about 40-55% considering the range where the film can be formed. Usually, a numerical value of 50% is often used. If it is unclear whether roughness exists on the film surface of the sample, both the analysis method using the effective medium approximation described above and the analysis method not using the effective medium approximation are performed. It is common to determine whether or not there is roughness by determining whether the actual sample is more compatible by using the least squares calculation result or the like.

また、有効媒質近似は試料の膜表面にラフネスが存在する場合だけでなく、基板と膜との間の界面又は膜層間の界面にラフネスが存在する場合における界面層に対し適用されることがある。さらに、有効媒質近似はラフネスの存在には関係なく、解析を実際に行う上でのテクニックとして屈折率の値を下げるために用いられることもある。この場合も有効媒質近似を用いるか否かは、有効媒質近似に基づく空隙を有するモデルによる解析結果を判断して、有効媒質近似を用いるか否かを判断することになる。   The effective medium approximation may be applied not only to the case where roughness exists on the film surface of the sample, but also to the interface layer where roughness exists at the interface between the substrate and the film or between the film layers. . Further, the effective medium approximation is used to lower the refractive index as a technique for actually performing the analysis regardless of the presence of roughness. Also in this case, whether or not to use the effective medium approximation is determined based on an analysis result of a model having a gap based on the effective medium approximation and whether or not the effective medium approximation is used.

例えば、ガラス基板にアモルファスシリコンの第1膜が形成されると共に、この第1膜の上に自然酸化膜の第2膜が形成された試料を解析する場合を考える。この試料に対して先ず、第1膜の膜厚を2000オングストローム、第2膜の膜厚を20オングストロームに設定すると共に既知のアモルファスシリコンのリファレンスを用いてモデルを作成し、このモデルに対してフィッティングを行った場合、最小二乗法の演算結果(平均二乗誤差χ2に相当)が16.6になったとする。 For example, consider the case of analyzing a sample in which a first film of amorphous silicon is formed on a glass substrate and a second film of a natural oxide film is formed on the first film. For this sample, first, the first film thickness is set to 2000 angstroms, the second film thickness is set to 20 angstroms, and a model is created using a known amorphous silicon reference. , It is assumed that the calculation result of the least square method (corresponding to the mean square error χ 2 ) is 16.6.

次に、第1膜及び第2膜の膜厚を上記と同じにし、ラフネスに関係無く有効媒質近似を用いて第1膜のアモルファスシリコンの占有率を50%、第1膜のボイドを50%に設定すると共に既知のアモルファスシリコンのリファレンスを用いてモデルを作成し、上記と同様にフィッティングを行った場合、最小二乗法の演算結果が10.6になると共に、第1膜のアモルファスシリコンの占有率が約86%になったとする。最小二乗法の演算結果は数値が小さい方が良好であるため、既知のリファレンスを用いると共に有効媒質近似に基づく空隙を設けたモデルを作成して解析を行うことにより、最初の場合に比べて解析結果(フィッティング結果)は良好になったことが分かる。   Next, the film thicknesses of the first film and the second film are made the same as described above, and the amorphous silicon occupancy of the first film is 50% and the void of the first film is 50% using the effective medium approximation regardless of the roughness. When a model is created using a known amorphous silicon reference and fitting is performed in the same manner as described above, the calculation result of the least square method is 10.6, and the amorphous silicon occupied in the first film Assume that the rate is about 86%. Since the calculation result of the least squares method is better when the numerical value is smaller, analysis is performed compared to the first case by creating a model using a known reference and providing a void based on the effective medium approximation. It turns out that a result (fitting result) became favorable.

最後に、第1膜及び第2膜の膜厚を最初の場合と同じにし、ラフネスに関係なく有効媒質近似を用いると共に2回目の場合のアモルファスシリコンの占有率を考慮して第1膜のアモルファスシリコンの占有率を86%、第1膜のボイドを14%に設定し、リファレンスではなく分散式を用いてモデルを作成して、上記と同様にフィッティングを行ったとする。その結果、最小二乗法の演算結果が0.14になると共に、第1膜のアモルファスシリコンの占有率が約99.16%になったとすれば、最小二乗法の演算結果は非常に良好になったが、ボイドがほぼ0%に近くなることから、空隙を設けてモデルを作成したことに意味がなくなったことが分かる。よって、このようなときは、一般的に空隙を形成しないモデルを分散式を用いて作成し解析を行うことになる。
特開2002−340789号公報 特開2002−340528号公報
Finally, the film thicknesses of the first film and the second film are made the same as in the first case, the effective medium approximation is used regardless of the roughness, and the amorphous silicon occupancy in the second case is taken into consideration. Assume that the silicon occupation rate is set to 86%, the void of the first film is set to 14%, a model is created using a dispersion formula instead of a reference, and fitting is performed in the same manner as described above. As a result, if the calculation result of the least square method is 0.14 and the occupation ratio of the amorphous silicon of the first film is about 99.16%, the calculation result of the least square method becomes very good. However, since the void is close to 0%, it can be seen that it has become meaningless to create a model with voids. Therefore, in such a case, generally, a model that does not form voids is created using a dispersion formula and analyzed.
JP 2002-340789 A JP 2002-340528 A

従来のエリプソメータを用いた光学的な測定に基づいた解析方法では、電気的な測定に基づいた誘電率が50以上である高誘電体膜又は強誘電体膜を試料が有する場合、所要の光学範囲で複素誘電率を求めることができないため、複素誘電率に基づいて試料の物性を解析できなかったと云う問題がある。   In an analysis method based on optical measurement using a conventional ellipsometer, when a sample has a high dielectric film or a ferroelectric film having a dielectric constant of 50 or more based on electrical measurement, a required optical range is obtained. Therefore, there is a problem that the physical properties of the sample cannot be analyzed based on the complex dielectric constant.

即ち、従来のエリプソメータを用いた解析方法では、光の波長に係る全光学範囲(DUV(Deep Ultraviolet)〜NIR(Near Infrared):190nm〜1700nm、光子エネルギー範囲では0.75eV〜6.5eVに相当)中の248nm〜826nmを一般に解析範囲としている。高誘電体及び強誘電体は、電子分極率として電子分極率、イオン分極率、及び双極子分極率の3部分が存在する。400nm以下の光学範囲では高誘電体及び強誘電体に対し光学的に屈折率及び消衰係数を測定して急激なピークを有する測定結果が得られることが分かっている。しかし、このような測定結果に対応し得る分散式及びリファレンスは、現状では見つけられていないと一般には考えられている。そのため400nm以下の光学範囲(248nm〜400nmの範囲)で高誘電体及び強誘電体を解析できず、400nm以下の光学範囲で高誘電体及び強誘電体の屈折率及び消衰係数が、どのように変化するかを正確に記した書籍、文献等が見当たらないのが実情である。なお、電気的測定は、光学的な測定範囲に含まれる近赤外線範囲を外れた100kHz〜1MHzの周波数範囲で誘電率の測定行うものであり、電気的測定と光学的測定との両者の測定範囲は全く相異している。   That is, in the analysis method using the conventional ellipsometer, the total optical range relating to the wavelength of light (DUV (Deep Ultraviolet) to NIR (Near Infrared): 190 nm to 1700 nm, the photon energy range corresponds to 0.75 eV to 6.5 eV). 248 nm to 826 nm in general) is the analysis range. High dielectrics and ferroelectrics have three parts as electronic polarizabilities: electronic polarizability, ionic polarizability, and dipole polarizability. It has been found that in the optical range of 400 nm or less, the refractive index and extinction coefficient are optically measured for high dielectrics and ferroelectrics, and a measurement result having a sharp peak is obtained. However, it is generally considered that a dispersion formula and a reference that can correspond to such a measurement result have not been found at present. For this reason, high dielectrics and ferroelectrics cannot be analyzed in the optical range of 400 nm or less (248 nm to 400 nm), and how the refractive index and extinction coefficient of the high dielectrics and ferroelectrics are in the optical range of 400 nm or less. The actual situation is that there are no books, documents, etc. that accurately describe whether or not it changes. The electrical measurement is for measuring the dielectric constant in the frequency range of 100 kHz to 1 MHz outside the near-infrared range included in the optical measurement range, and the measurement range of both the electrical measurement and the optical measurement. Are completely different.

また、試料の誘電率は測定範囲に応じて変動することから、光学的な測定範囲中の400nm以下で上述した問題が生じている。そのため、400nm以下の光学測定範囲における高誘電体又は強誘電体の物性の解析は、高価且つ解析時間の要する他の装置を用いて行う必要がある。   In addition, since the dielectric constant of the sample varies depending on the measurement range, the above-described problem occurs at 400 nm or less in the optical measurement range. Therefore, it is necessary to analyze the physical properties of a high dielectric material or a ferroelectric material in an optical measurement range of 400 nm or less using another device that is expensive and requires analysis time.

本発明は斯かる問題に鑑み、本発明者が高誘電体及び強誘電体の解析に対して鋭意研究を続けた結果の末になされたものであり、ラフネスの存在に関係なく有効媒質近似を用いたモデルを作成すると共にボイドの数値を通常考えられる範囲を超えた値に設定することで、400nm以下の光学測定範囲でも高誘電体又は強誘電体を解析できるようにした試料解析方法を提供することを目的とする。   In view of such a problem, the present invention was made as a result of the inventor's earnest research on the analysis of high dielectrics and ferroelectrics, and effective medium approximation was performed regardless of the presence of roughness. Providing a sample analysis method that enables analysis of high dielectrics or ferroelectrics even in the optical measurement range of 400 nm or less by creating the model used and setting the value of the void to a value exceeding the normal range. The purpose is to do.

上記課題を解決するために、第1発明に係る試料解析方法は、エリプソメータで、基板上に電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料へ偏光状態の光を入射するステップと、前記試料に対する入射光及び反射光の偏光状態の変化値を測定するステップと、前記試料に応じた条件を設定して、有効媒質近似に基づく空隙が60%以上90%以下の範囲で存在するモデルを作成するステップと、作成されたモデルに基づき前記エリプソメータで測定した偏光状態の変化値に対応した値を算出するステップと、算出した値と前記エリプソメータで測定した変化値とを比較するステップと、比較した両値の相異が小さくなるように前記有効媒質近似に係る演算式及び前記モデルに係る分散式による演算を行うステップと、前記演算の結果に基づき試料の解析を行うステップとを備えることを特徴とする。   In order to solve the above-described problems, a sample analysis method according to the first invention is an ellipsometer that applies polarized light to a sample in which a dielectric film having a dielectric constant of 50 or more based on electrical measurement is formed on a substrate. An incident step, a step of measuring a change value of a polarization state of incident light and reflected light with respect to the sample, and a condition corresponding to the sample are set, and a gap based on an effective medium approximation is 60% or more and 90% or less A step of creating a model existing in a range; a step of calculating a value corresponding to a change value of a polarization state measured by the ellipsometer based on the created model; and a calculated value and a change value measured by the ellipsometer. A step of comparing, a step of performing an operation according to an arithmetic expression related to the effective medium approximation and a dispersion expression related to the model so that a difference between the compared two values is small; Characterized in that it comprises the steps of analyzing a sample based on the result of the operation.

第1発明にあっては、電気的な測定に基づいた誘電率が50以上の高誘電体膜又は強誘電体膜を有する試料をエリプソメータで測定すると共に、有効媒質近似に基づき空隙が誘電体膜に応じた膜に60%以上90%以下で存在するモデルを作成して試料を解析する。このような60%以上90%以下の空隙は、物理的な観点に基づけば膜の形成が困難となり通常設定されない値である。しかし、敢えて上述した範囲の数値を設定することで、高誘電体膜又は強誘電体膜を有する試料に対して、急激なピークを有する測定結果に対応し得るフィッティングを数学的に行うことが可能となり、フィッティングの結果より従来不可能であった400nm以下の光学的な測定範囲でも試料を解析できるようになる。   In the first invention, a sample having a high dielectric film or a ferroelectric film having a dielectric constant of 50 or more based on electrical measurement is measured with an ellipsometer, and the voids are dielectric films based on the effective medium approximation. A model that exists at 60% or more and 90% or less in the film corresponding to the above is created and the sample is analyzed. Such a void of 60% or more and 90% or less is a value that is not normally set because it is difficult to form a film based on a physical viewpoint. However, it is possible to mathematically fit a sample having a high dielectric film or a ferroelectric film that can correspond to a measurement result having a sharp peak by setting a numerical value in the above-mentioned range. Thus, the sample can be analyzed even in an optical measurement range of 400 nm or less, which has been impossible in the past from the result of fitting.

本発明者の研究によれば、65%以上75%以下の範囲で空隙が存在するように設定すると、最小二乗法により得られる差が小さくなりやすいことが判明しており、本発明者は、特に70%前後となる67%以上73%以下の範囲で空隙を設定することがフィッティングを効率的に行えることから好適であると判断している。   According to the inventor's research, it has been found that if the void is set in a range of 65% or more and 75% or less, the difference obtained by the least squares method is likely to be small. In particular, it is determined that it is preferable to set the air gap in the range of 67% or more and 73% or less, which is around 70%, because the fitting can be performed efficiently.

第2発明に係る試料解析方法は、前記分散式は、光学的な測定範囲に対する誘電率に係るパラメータを含み、該誘電率に係るパラメータの数値に基づき試料の誘電体膜の光学的な測定範囲に対する誘電率を解析することを特徴とする。   In the sample analysis method according to the second invention, the dispersion formula includes a parameter related to a dielectric constant with respect to an optical measurement range, and an optical measurement range of a dielectric film of the sample based on a numerical value of the parameter related to the dielectric constant The dielectric constant is analyzed.

第2発明にあっては、分散式が有する誘電率に係るパラメータに対して設定された値を参照することで電気的な測定に基づいた誘電率が50以上の誘電体膜の400nm以下の光学的な測定範囲での誘電率を特定できる。その結果、従来のように高価且つ時間の要する他の装置を用いて物性の解析を行うことが不要になり、特定した誘電率に基づき高誘電体又は強誘電体に対する物性の解析を、従来に比べて迅速且つ容易に行えるようになる。   In the second aspect of the invention, an optical film having a dielectric constant of 50 nm or more based on electrical measurement with a dielectric constant of 50 nm or less is referred to a value set for a parameter relating to a dielectric constant of the dispersion formula. The dielectric constant in a specific measurement range. As a result, it is no longer necessary to analyze the physical properties using other expensive and time-consuming apparatuses as in the past, and the conventional analysis of physical properties for high dielectrics or ferroelectrics based on the specified dielectric constant. Compared to this, it can be performed quickly and easily.

第1発明にあっては、電気的な測定に基づいた誘電率が50以上である誘電体膜を有する試料に対して有効媒質近似に基づき空隙が60%以上90%以下で存在するモデルを作成し、エリプソメータで測定した値に対してフィッティングを行うことで、従来不可能であった400nm以下の光学測定範囲でも試料を解析できる。
また、第2発明にあっては、電気的な測定に基づいた誘電率が50以上である誘電体膜を有する試料に対し400nm以下の光学的な測定範囲で誘電率を求めて物性を解析でき、誘電率に基づいた試料の物性解析に係るコスト、時間及び手間等を従来に比べて大幅に低減できる。
In the first invention, a model is created in which a void exists between 60% and 90% based on the effective medium approximation for a sample having a dielectric film having a dielectric constant of 50 or more based on electrical measurement. In addition, by performing fitting on the value measured by the ellipsometer, the sample can be analyzed even in an optical measurement range of 400 nm or less, which has been impossible in the past.
In the second invention, the physical property can be analyzed by obtaining the dielectric constant within the optical measurement range of 400 nm or less for a sample having a dielectric film having a dielectric constant of 50 or more based on electrical measurement. In addition, the cost, time, labor and the like related to the physical property analysis of the sample based on the dielectric constant can be greatly reduced as compared with the conventional case.

図1は本発明の実施形態に係る試料解析方法で使用されるエリプソメータ1及びコンピュータ10の全体的な構成を示す概略図である。エリプソメータ1は、図2(a)に示すように基板S1に膜S2を形成した試料Sに偏光状態の光を入射させて、入射光の偏光状態と反射光の偏光状態の変化より、各光の位相差Δ及び振幅比Ψを測定する。本発明は、電気的な測定に基づいた誘電率が50以上の強誘電体又は高誘電体の膜S2を形成した試料Sを解析対象にしており、図2(a)に示す構造以外にも、基板S1上に複数の膜が形成され且つそれらの膜の少なくとも一つが前記強誘電体又は高誘電体である試料も解析の対象とする。   FIG. 1 is a schematic diagram showing the overall configuration of an ellipsometer 1 and a computer 10 used in a sample analysis method according to an embodiment of the present invention. As shown in FIG. 2 (a), the ellipsometer 1 makes light in a polarized state incident on a sample S having a film S2 formed on a substrate S1, and changes each light according to a change in the polarization state of incident light and the polarization state of reflected light. The phase difference Δ and the amplitude ratio Ψ are measured. In the present invention, a sample S on which a ferroelectric or high-dielectric film S2 having a dielectric constant of 50 or more based on electrical measurement is formed is analyzed, and the structure other than the structure shown in FIG. A sample in which a plurality of films are formed on the substrate S1 and at least one of these films is the ferroelectric substance or the high dielectric substance is also an object of analysis.

また、コンピュータ10は、試料に応じたモデルを分散式及びリファレンス等を用いて作成すると共に、そのモデルから位相差及び振幅比を求め、エリプソメータ1で測定された位相差及び振幅比との比較によりフィッティングを行い、膜厚、膜の光学定数として屈折率、消衰係数及び複素誘電率を解析するものである。本実施形態のコンピュータ10は、モデルの作成に有効媒質近似(EMA:Effective Medium Approximation)を用いて、60%以上90%以下の範囲で空隙を誘電体膜に設けたモデルを作成してフィッティングを行う。   Further, the computer 10 creates a model corresponding to the sample using a dispersion formula and a reference, obtains a phase difference and an amplitude ratio from the model, and compares the phase difference and the amplitude ratio measured by the ellipsometer 1 with each other. Fitting is performed to analyze the refractive index, extinction coefficient, and complex dielectric constant as the film thickness and optical constant of the film. The computer 10 of the present embodiment uses an effective medium approximation (EMA) to create a model, creates a model in which voids are provided in a dielectric film in a range of 60% to 90%, and performs fitting. Do.

最初に、本発明で使用可能なエリプソメータの一例である図1に示すエリプソメータ1の構造を説明する。エリプソメータ1は、キセノンランプ2及び光照射器3を第1光ファイバケーブル15aで接続し、ステージ4上に載置した試料Sへ偏光した状態の光を入射させると共に、試料Sで反射した光を光取得器5で取り込むようにしている。光取得器5は第2光ファイバケーブル15bを介して分光器7に接続されており、光取得器5で取り込んだ光の偏光状態を分光器7で測定する。分光器7は測定した偏光状態をアナログ信号としてデータ取込機8へ伝送し、データ取込機8でアナログ信号を所要値に変換して、エリプソメータ1の測定値をコンピュータ10へ伝送する。   First, the structure of the ellipsometer 1 shown in FIG. 1 as an example of an ellipsometer usable in the present invention will be described. The ellipsometer 1 connects a xenon lamp 2 and a light irradiator 3 with a first optical fiber cable 15a, and makes polarized light incident on the sample S placed on the stage 4 and also reflects the light reflected by the sample S. The light acquisition unit 5 captures the light. The light acquisition unit 5 is connected to the spectroscope 7 via the second optical fiber cable 15b, and the spectroscope 7 measures the polarization state of the light captured by the light acquisition unit 5. The spectroscope 7 transmits the measured polarization state as an analog signal to the data acquisition device 8, converts the analog signal into a required value by the data acquisition device 8, and transmits the measurement value of the ellipsometer 1 to the computer 10.

また、ステージ4、光照射器3、光取得器5及び分光器7には、第1モータM1〜第6モータM6が夫々設けられており、各モータM1〜M6の駆動は、コンピュータ10と接続されたモータ制御機9により制御される。なお、モータ制御機9は、コンピュータ10のCPU11aから出力される指示に基づき各モータM1〜M6の制御を行う。   The stage 4, the light irradiator 3, the light acquirer 5, and the spectrometer 7 are provided with a first motor M <b> 1 to a sixth motor M <b> 6, respectively, and the driving of each motor M <b> 1 to M <b> 6 is connected to the computer 10. The motor controller 9 is controlled. The motor controller 9 controls each of the motors M1 to M6 based on an instruction output from the CPU 11a of the computer 10.

エリプソメータ1のキセノンランプ2は多数の波長成分を含む白色光源であり、発生させた白色光を光照射器3へ送る。
光照射器3は円弧状のレール6上に配置され、内部には偏光子3aを有しており、白色光を偏光子3aで偏光し試料Sへ入射させる。また、光照射器3は、第4モータM4が駆動されることでレール6に沿って移動し、入射光の試料Sの表面Saの垂線Hに対する角度(入射角度φ)が調節される。
The xenon lamp 2 of the ellipsometer 1 is a white light source including a large number of wavelength components, and sends the generated white light to the light irradiator 3.
The light irradiator 3 is disposed on the arc-shaped rail 6 and has a polarizer 3 a inside. The white light is polarized by the polarizer 3 a and is incident on the sample S. Further, the light irradiator 3 moves along the rail 6 when the fourth motor M4 is driven, and the angle of the incident light with respect to the perpendicular H of the surface Sa of the sample S (incident angle φ) is adjusted.

ステージ4は、第1モータM1〜第3モータM3の駆動により試料Sを載置する載置面4aにおいて90度相異する方向であるX、Y方向(図1参照)及び高さ方向となるZ方向へ夫々移動可能にしている。このようにステージ4を移動させることで、試料Sの所要箇所に光を入射させて試料Sの複数箇所を測定できるようにしている。   The stage 4 is in the X, Y direction (see FIG. 1) and the height direction, which are directions different by 90 degrees on the placement surface 4a on which the sample S is placed by driving the first motor M1 to the third motor M3. Each can be moved in the Z direction. By moving the stage 4 in this way, light is made incident on a required portion of the sample S so that a plurality of portions of the sample S can be measured.

光取得器5は光照射器3と同様にレール6上に配置されており、PEM(Photo Elastic Modulator:光弾性変調器)5a及び検光子5bを内蔵し、試料Sで反射された光をPEM5aを介して検光子5bへ導いている。また、光取得器5は、第5モータM5によりレール6に沿って移動可能であり、試料Sで反射した光を確実に捉えられるようにしている。光取得器5の移動は光照射器3の移動に連動するようにモータ制御機9で制御されており、反射角度φと入射角度φとが同角度になる。なお、光取得器5に内蔵されたPEM5aは、取り込んだ光を所要周波数(例えば50kHz)で位相変調することにより直線偏光から楕円偏光を得ており、このような偏光を得ることで測定速度及び測定精度の向上を図っている。また、検光子5bは、PEM5aで位相変調された各種偏光の中から特定の偏光を透過させている。   Similar to the light irradiator 3, the light acquirer 5 is disposed on the rail 6, and includes a PEM (Photo Elastic Modulator) 5a and an analyzer 5b, and the light reflected by the sample S is converted into the PEM 5a. To the analyzer 5b. The light acquisition unit 5 can be moved along the rail 6 by the fifth motor M5 so that the light reflected by the sample S can be reliably captured. The movement of the light acquisition device 5 is controlled by the motor controller 9 so as to be interlocked with the movement of the light irradiation device 3, and the reflection angle φ and the incident angle φ are the same angle. The PEM 5a incorporated in the light acquisition unit 5 obtains elliptically polarized light from linearly polarized light by phase-modulating the captured light at a required frequency (for example, 50 kHz). By obtaining such polarized light, the measurement speed and The measurement accuracy is improved. The analyzer 5b transmits a specific polarized light from among various polarized lights phase-modulated by the PEM 5a.

分光器7は、図3に示すように反射ミラー7a、回折格子7b、フォトマルチプライヤー(PMT:光電子倍増管)7c及び制御ユニット7dを備えており、光取得器5より第2光ファイバケーブル15bを通じて送られた光を反射ミラー7aで反射して回折格子7bへ導いている。回折格子7bは図1で示す第6モータM6により角度を変更できるようにされており、角度変更により導かれた光の回折方向が変わるため、回折格子7bで出射する光の波長を変更できるようにしている。なお、図3では図示していないが、回折格子7bの変更した角度に対応した波長を数字的に示せるように、回折格子7bの角度を機械的にsin変換してダイヤル表示を行うサインバー機構が連携されている。また、分光器7は、フォトマルチプライヤー7cとフォトダイオードアレイ(PDA)とを組み合わせて用いることも可能である。   As shown in FIG. 3, the spectroscope 7 includes a reflection mirror 7a, a diffraction grating 7b, a photomultiplier (PMT: photomultiplier tube) 7c, and a control unit 7d, and a second optical fiber cable 15b from the light acquisition unit 5. The light transmitted through is reflected by the reflection mirror 7a and guided to the diffraction grating 7b. The angle of the diffraction grating 7b can be changed by the sixth motor M6 shown in FIG. 1, and since the diffraction direction of the light guided by the angle change changes, the wavelength of the light emitted from the diffraction grating 7b can be changed. I have to. Although not shown in FIG. 3, a sine bar mechanism that performs dial display by mechanically converting the angle of the diffraction grating 7b so that the wavelength corresponding to the changed angle of the diffraction grating 7b can be numerically indicated. Are linked. The spectroscope 7 can also be used in combination with a photomultiplier 7c and a photodiode array (PDA).

回折格子7bで出射された光はPMT7cで測定され、制御ユニット7dでは、測定された波長に応じたアナログ信号を生成してデータ取込機8へ送出する。このように分光器7では、回折格子7bの角度を可変にして各波長の測定を行うため、測定精度は良好となる。その結果、分光器7は、試料が有する膜層の膜厚に応じて波長を変更して測定でき、例えば、膜厚が厚いときには細かいステップで波長を変更できる。なお、分光器7には、相異する波長に対応した複数(32個又は64個等)のフォトマルチプライヤーを回折格子に対し扇状に配列した構成のものを適用することも可能である。   The light emitted from the diffraction grating 7b is measured by the PMT 7c, and the control unit 7d generates an analog signal corresponding to the measured wavelength and sends it to the data acquisition unit 8. In this way, the spectroscope 7 measures each wavelength by changing the angle of the diffraction grating 7b, so that the measurement accuracy is good. As a result, the spectroscope 7 can measure by changing the wavelength according to the film thickness of the film layer of the sample. For example, when the film thickness is thick, the wavelength can be changed in fine steps. The spectroscope 7 may have a configuration in which a plurality (32 or 64, etc.) of photomultipliers corresponding to different wavelengths are arranged in a fan shape with respect to the diffraction grating.

データ取込機8は、分光器7からの信号に基づき測定された反射光の偏光状態(p偏光、s偏光)の位相差Δ及び振幅比Ψを算出し、算出した結果をコンピュータ10へ送出する。なお、位相差Δ及び振幅比Ψは、p偏光の振幅反射係数Rp及びs偏光の振幅反射係数Rsに対し以下の数式(1)の関係が成立する。
Rp/Rs=tanΨ・exp(i・Δ)・・・(1)
但し、iは虚数単位である(以下同様)。また、Rp/Rsは偏光変化量ρと云う。
The data acquisition device 8 calculates the phase difference Δ and the amplitude ratio Ψ of the polarization state (p-polarized light, s-polarized light) of the reflected light measured based on the signal from the spectroscope 7, and sends the calculated result to the computer 10. To do. The phase difference Δ and the amplitude ratio Ψ satisfy the following relationship (1) with respect to the amplitude reflection coefficient Rp of p-polarized light and the amplitude reflection coefficient Rs of s-polarized light.
Rp / Rs = tan Ψ · exp (i · Δ) (1)
However, i is an imaginary unit (the same applies hereinafter). Rp / Rs is called the polarization change amount ρ.

一方、コンピュータ10は、コンピュータ本体11、ディスプレイ12、キーボード13及びマウス14等から構成されており、コンピュータ本体11は内部にCPU11a、記憶部11b、RAM11c、ROM11d等を内部バスで接続されている。CPU11aは記憶部11bに記憶された各種コンピュータプログラムに従って後述する種々の処理を行うものである。RAM11cは処理に係る各種データ等を一時的に記憶し、ROM11dにはコンピュータ10の機能に係る内容等を記憶している。なお、記憶部11bには、各種コンピュータプログラムに加えて、試料Sの製造工程に係る既知のデータ、モデルの作成に利用される複数の分散式、各種試料に応じたリファレンスデータ等が記憶されている。   On the other hand, the computer 10 includes a computer main body 11, a display 12, a keyboard 13, a mouse 14, and the like. The computer main body 11 is internally connected to a CPU 11a, a storage unit 11b, a RAM 11c, a ROM 11d, and the like via an internal bus. The CPU 11a performs various processes to be described later according to various computer programs stored in the storage unit 11b. The RAM 11c temporarily stores various data related to the processing, and the ROM 11d stores the contents related to the function of the computer 10 and the like. In addition to various computer programs, the storage unit 11b stores known data related to the manufacturing process of the sample S, a plurality of dispersion formulas used for creating models, reference data corresponding to various samples, and the like. Yes.

コンピュータ10は、データ取込機8から伝送された位相差Δ及び振幅比Ψから、試料Sの周囲と基板S1の複素屈折率を既知とした場合に、記憶部11bに予め記憶されているモデリングプログラムを用いることで図2(a)に示す試料Sの材料構造に応じたモデルを作成して膜S2の膜厚d及び膜S2の複素屈折率Nを求める。本実施形態ではモデル作成に対して、試料Sのラフネスの有無に関係なく有効媒質近似を用いて、図2(b)に示すように、基板S1′上に電気的測定に基づく誘電率が50以上の誘電体の物質M(誘電体成分)の中に空隙V(空気成分)が存在する膜S2′を形成した構造のモデルS′を作成する。   When the complex refractive index of the periphery of the sample S and the substrate S1 is known from the phase difference Δ and the amplitude ratio Ψ transmitted from the data fetcher 8, the computer 10 performs modeling stored in advance in the storage unit 11b. By using the program, a model corresponding to the material structure of the sample S shown in FIG. 2A is created to determine the film thickness d of the film S2 and the complex refractive index N of the film S2. In this embodiment, for model creation, the effective medium approximation is used regardless of the presence or absence of the roughness of the sample S, and the dielectric constant based on electrical measurement is 50 on the substrate S1 ′ as shown in FIG. A model S ′ having a structure in which a film S2 ′ in which a void V (air component) is present in the dielectric substance M (dielectric component) is formed.

なお、複素屈折率Nは、膜に係る屈折率n及び消衰係数kとすると、以下の光学式で表した数式(2)の関係が成立する。
N=n−ik・・・(2)
また、エリプソメータ1の光照射器3が照射する光の波長をλとすると、データ取込機8で算出された位相差Δ及び振幅比Ψは、試料Sの膜に係る膜厚d、屈折率n及び消衰係数kと以下の数式(3)の関係が成立する。
(d,n,k)=F(ρ)=F(Ψ(λ,φ),Δ(λ,φ))・・・(3)
When the complex refractive index N is the refractive index n and the extinction coefficient k of the film, the relationship expressed by the following optical formula (2) is established.
N = n−ik (2)
Further, if the wavelength of the light irradiated by the light irradiator 3 of the ellipsometer 1 is λ, the phase difference Δ and the amplitude ratio Ψ calculated by the data acquisition device 8 are the film thickness d and the refractive index related to the film of the sample S. The relationship of n and the extinction coefficient k and the following formula (3) is established.
(D, n, k) = F (ρ) = F (Ψ (λ, φ), Δ (λ, φ)) (3)

また、コンピュータ10は、試料Sの膜に係る膜厚と複数のパラメータを有する複素誘電率の波長依存性を示す分散式とを用いて、作成したモデルから理論的に得られるモデルスペクトル(ΨM (λi )、ΔM (λi ))と、エリプソメータ1の測定結果に係る測定スペクトル(ΨE (λi )、ΔE (λi ))との差が最小になるように膜厚、分散式のパラメータ等を変化させる処理(フィッティング)を行う。なお、フィッティングの結果、モデルに係る値が変化して定まり、変化する値には設定した空隙の混合比等も含まれる。また、本実施形態の場合では下記の数式(4)を分散式として適用している。 Further, the computer 10 uses a model spectrum (Ψ M) theoretically obtained from the created model by using the film thickness of the film of the sample S and the dispersion formula indicating the wavelength dependence of the complex dielectric constant having a plurality of parameters. (Λ i ), Δ Mi )) and the measurement spectrum (Ψ Ei ), Δ Ei )) related to the measurement result of the ellipsometer 1 A process (fitting) for changing the parameters of the dispersion formula is performed. As a result of the fitting, the value related to the model is changed and determined, and the changed value includes the set mixing ratio of the voids. In the present embodiment, the following formula (4) is applied as a dispersion formula.

Figure 2005283502
Figure 2005283502

数式(4)において左辺のεは複素誘電率を示し、ε、εs は誘電率を示し、Γ0 、ΓD 、γj は粘性力に対する比例係数(damping factor)を示し、ωoj、ωt 、ωp は固有角振動数(oscillator frequency, transverse frequency, plasma frequency)を示す。なお、εは高周波における誘電率(high frequency dielectric constant)であり、εs は低周波における誘電率(static dielectric constant)である。 In Equation (4), ε on the left side represents a complex dielectric constant, ε and ε s represent dielectric constants, Γ 0 , Γ D , and γ j represent damping factors with respect to viscous force, ω oj , ω t and ω p represent natural angular frequencies (oscillator frequency, transverse frequency, plasma frequency). Note that ε is a dielectric constant at a high frequency (high frequency dielectric constant), and ε s is a dielectric constant at a low frequency (static dielectric constant).

本実施形態の場合では、モデルの空隙Vのボイドを60%〜90%の範囲に設定して、数式(4)の分散式で第2項におけるεs、ωt 、Γ0のパラメータをフィッティングし、他のパラメータには既知の値を用いて、第1項のεを「1」に、第3項及び第4項は「0」にして演算を行う。フィッティングの結果、膜厚等が求まり、分散式のパラメータからは材料の複素誘電率εを数式(4)から求めることができる。なお、複素誘電率ε(ε(λ)に相当)と複素屈折率N(N(λ)に相当)とは、下記の数式(5)の関係が成立する。
ε(λ)=N2 (λ)・・・(5)
In the case of this embodiment, the void of the model void V is set in the range of 60% to 90%, and the parameters of ε s , ω t , and Γ 0 in the second term are fitted by the dispersion formula of Formula (4). Then, using known values for the other parameters, the calculation is performed with ε ∞ of the first term set to “1” and the third and fourth terms set to “0”. As a result of the fitting, the film thickness and the like are obtained, and the complex dielectric constant ε of the material can be obtained from Equation (4) from the parameters of the dispersion equation. The complex dielectric constant ε (corresponding to ε (λ)) and the complex refractive index N (corresponding to N (λ)) satisfy the relationship of the following formula (5).
ε (λ) = N 2 (λ) (5)

なお、フィッティングの内容について説明すると、エリプソメータ1による試料Sを測定した場合でT個の測定データ対をExp(i=1,2...,T)とし、T個のモデルの計算データ対をMod(i=1,2...,T)としたとき、測定誤差は正規分布するとして、標準偏差をσi とした際の最小二乗法に係る平均二乗誤差χ2 は下記の数式(6)で求められる。なおPはパラメータの数である。平均二乗誤差χ2 の値が小さいときは、測定結果と形成したモデルの一致度が大きいことを意味するため、複数のモデルについて比較するときに、平均二乗誤差χ2 の値が最も小さいものがベストモデルに相当する。 The contents of the fitting will be described. When the sample S is measured by the ellipsometer 1, T measurement data pairs are represented as Exp (i = 1, 2,..., T), and T model calculation data pairs are represented as When Mod (i = 1, 2,..., T), the measurement error is normally distributed, and the mean square error χ 2 according to the least square method when the standard deviation is σ i is expressed by the following equation (6). ). P is the number of parameters. When the value of the mean square error χ 2 is small, it means that the degree of coincidence between the measurement result and the formed model is large, so when comparing multiple models, the one with the smallest mean square error χ 2 value Corresponds to the best model.

Figure 2005283502
Figure 2005283502

上述したコンピュータ10が行う一連の処理は、記憶部11bに記憶されたコンピュータプログラムに規定されており、このコンピュータプログラムには、図4に示すように、試料の物性に対応して作成するモデルの条件の項目である膜厚、ボイド等を入力して設定するメニュー20をディスプレイ12の画面に表示させる処理もプログラミングされている。なお、本実施形態では、図2(b)の膜S2′に対しボイドを設定すると膜S2′を形成する物質Mの割合も自動的に設定できると共に、膜S2′の物質Mの割合を設定すると膜S2′のボイドも自動的に設定されるようになっている。そのため膜S2′に対してはボイド又は膜を構成する物質Mのいずれかの数値を設定するだけでよい。例えば、膜S2′の物質Mを30%と設定すれば、膜S2′のボイドは自動的に70%と設定される。   A series of processes performed by the computer 10 described above is defined in a computer program stored in the storage unit 11b, and in this computer program, as shown in FIG. Processing for displaying a menu 20 to be set by inputting a film thickness, a void or the like, which is a condition item, is also programmed. In the present embodiment, when a void is set for the film S2 ′ in FIG. 2B, the ratio of the substance M forming the film S2 ′ can be automatically set, and the ratio of the substance M in the film S2 ′ is set. Then, the void of the film S2 ′ is automatically set. Therefore, it is only necessary to set a numerical value of either the void or the substance M constituting the film for the film S2 ′. For example, if the substance M of the film S2 ′ is set to 30%, the void of the film S2 ′ is automatically set to 70%.

次に、上述した構成のエリプソメータ1及びコンピュータ10を用いた本発明の試料解析方法の一連の手順を図5のフローチャートに基づき説明する。
先ず、エリプソメータ1のステージ4に誘電率が50以上の誘電体膜を基板上に形成した試料Sを載置する(S1)。次に、解析に係る項目として試料Sの測定箇所、入射角度φ、試料に応じたモデル作成のための条件(基板の材質、誘電体の膜厚、光学定数等)等をコンピュータ10に入力する(S2)。本発明では、前記条件にボイドの数値も入力されており、本発明では60%以上90%以下の範囲の数値(例えば70%)が入力される。また、このように条件が入力されることで、有効媒質近似に基づく空隙が入力された数値の混合比で存在する誘電体膜を形成したモデル(図2(b)参照)が作成される(S3)。
Next, a series of procedures of the sample analysis method of the present invention using the ellipsometer 1 and the computer 10 having the above-described configuration will be described based on the flowchart of FIG.
First, a sample S in which a dielectric film having a dielectric constant of 50 or more is formed on the substrate is placed on the stage 4 of the ellipsometer 1 (S1). Next, the measurement location of the sample S, the incident angle φ, conditions for creating a model corresponding to the sample (substrate material, dielectric film thickness, optical constant, etc.), etc. are input to the computer 10 as items related to the analysis. (S2). In the present invention, the numerical value of the void is also input to the above condition, and in the present invention, a numerical value in the range of 60% to 90% (for example, 70%) is input. In addition, by inputting the conditions in this way, a model (see FIG. 2B) is formed in which a dielectric film is formed in which a gap based on the effective medium approximation is present at the input numerical mixture ratio (see FIG. 2B). S3).

それから、エリプソメータ1は、入射角度φ及び反射角度φが入力された数値になるように光照射器3及び光取得器5を移動させると共にステージ4を移動して、偏光状態の光を試料に入射させて(S4)、位相差ΔE、振幅比ΨE を測定する(S5)。また、コンピュータ10は、作成されたモデルから位相差ΔM、振幅比ΨMを算出し(S6)、エリプソメータ1の測定値とモデルから得られた算出値とを比較する(S7)。比較された各値の相異が小さくなるように、モデルの誘電体膜における空隙の混合比、誘電体の混合比、膜厚及び分散式のパラメータのフィッティングを行う(S8)。 Then, the ellipsometer 1 moves the light irradiator 3 and the light acquirer 5 and moves the stage 4 so that the incident angle φ and the reflection angle φ become the input numerical values, and the polarized light is incident on the sample. Then, the phase difference Δ E and the amplitude ratio Ψ E are measured (S5). Further, the computer 10 calculates the phase difference Δ M and the amplitude ratio Ψ M from the created model (S6), and compares the measured value of the ellipsometer 1 with the calculated value obtained from the model (S7). Fitting of the void mixing ratio, the dielectric mixing ratio, the film thickness, and the dispersion formula parameters in the model dielectric film is performed so that the difference between the compared values becomes small (S8).

フィッティングにより最小二乗法で求めた差が所要の値に収まれば(十分小さくなれば)、そのときの膜厚、分散式のパラメータ、ボイド、混合比の数値等から試料の膜厚及び光学定数等を求める(S9)。このように膜厚及び光学定数を求めることで本発明は試料を解析している。なお、分散式中の各パラメータは、誘電体膜中の誘電体成分に係るものであり、誘電体成分の誘電率を前記各パラメータより求め、誘電体膜の全体に係る誘電率は、誘電体成分の誘電率及び空気成分の誘電率を用いて有効媒質近似に係る演算式で求めている。   If the difference obtained by the least square method by fitting falls within the required value (if it is sufficiently small), the film thickness, optical constant, etc. of the sample from the film thickness, dispersion parameters, voids, numerical values of the mixing ratio, etc. Is obtained (S9). Thus, this invention analyzes the sample by calculating | requiring a film thickness and an optical constant. Each parameter in the dispersion formula relates to a dielectric component in the dielectric film, and the dielectric constant of the dielectric component is obtained from each parameter. Using the dielectric constant of the component and the dielectric constant of the air component, it is obtained by an arithmetic expression related to the effective medium approximation.

次に、上述した本発明の試料解析方法を用いて強誘電体膜を形成した試料に対して行った解析例を説明する。先ず、試料としては、Pt(白金)膜を蒸着により表面に設けたSi(シリコン)基板の上にPZT膜を形成したものを用いた。なお、PZTとは、チタン酸鉛(PbTiO3 )とジルコン酸鉛(PbZrO3)とを混合した物質であり、強誘電体に属するものである。 Next, an example of analysis performed on a sample on which a ferroelectric film is formed using the above-described sample analysis method of the present invention will be described. First, a sample in which a PZT film was formed on a Si (silicon) substrate provided with a Pt (platinum) film on the surface by vapor deposition was used. PZT is a substance in which lead titanate (PbTiO 3 ) and lead zirconate (PbZrO 3 ) are mixed, and belongs to a ferroelectric.

また、本解析例では、図2(b)に示すような構造で前記試料に応じたモデルS′として、有効媒質近似に基づきPZT(物質M)が30%(混合比は0.3)、空隙Vが70%(混合比は0.7)存在する膜S2′がSi基板のPt膜S1′の上に形成されたモデルS′を作成し、膜S2′の膜厚d′を900オングストロームに設定した。なお、モデル作成にあたり、基板上のPt膜に関しては既知のリファレンスを用いると共に、PZT膜の複素誘電率εに対しては、下記の有効媒質近似に係る演算式である数式(7)及び上述した数式(4)の分散式を用いた。また、空隙は屈折率に空気と同等の数値(約1.003)を用いた。   Further, in this analysis example, as a model S ′ corresponding to the sample with the structure shown in FIG. 2B, PZT (substance M) is 30% (mixing ratio is 0.3) based on the effective medium approximation. A model S ′ in which a film S2 ′ having a void V of 70% (mixing ratio is 0.7) is formed on the Pt film S1 ′ of the Si substrate is created, and the film thickness d ′ of the film S2 ′ is set to 900 angstroms. Set to. In creating the model, a known reference is used for the Pt film on the substrate, and for the complex permittivity ε of the PZT film, Equation (7), which is an arithmetic expression related to the following effective medium approximation, and the above-described formula The dispersion formula of Formula (4) was used. For the air gap, a numerical value (about 1.003) equivalent to that of air was used for the refractive index.

Figure 2005283502
Figure 2005283502

なお、数式(7)において、εはPZT膜(膜S2′)の有効複素誘電率であり、εa はPZT膜中のPZT(物質M:PZT成分)の誘電率、εb はPZT膜中の空隙(空気成分)Vの誘電率であり、fa はPZTの混合比、fb は空隙の混合比であり、PZT膜の全体的な有効複素誘電率を数式(7)に基づき求めた。 In Equation (7), ε is the effective complex dielectric constant of the PZT film (film S2 ′), ε a is the dielectric constant of PZT (substance M: PZT component) in the PZT film, and ε b is in the PZT film. Is the dielectric constant of the void (air component) V, f a is the mixing ratio of PZT, f b is the mixing ratio of the void, and the overall effective complex dielectric constant of the PZT film was obtained based on Equation (7). .

図6(a)のグラフは、上述した試料に対するエリプソメータ1による測定値と、最初に作成したモデルから理論的に算出した算出値とを示すものである。図6(a)のグラフに示すように、測定値及び算出値を比較すると、位相差Δ及び振幅比Ψに係る測定値と算出値との間には明確な相異が存在している。このような状態から、膜S2′の膜厚d′、空隙の混合比、PZTの混合比、及び数式(4)の分散式のパラメータのフィッティングを行った。なお、本解析例の場合、分散式に対しては数式(4)のパラメータの中でεs 、ωt 、Γ0 だけをフィッティングした。 The graph of FIG. 6A shows the measured value of the above-described sample by the ellipsometer 1 and the calculated value theoretically calculated from the model created first. As shown in the graph of FIG. 6A, when the measured value and the calculated value are compared, there is a clear difference between the measured value and the calculated value related to the phase difference Δ and the amplitude ratio Ψ. From such a state, the film thickness d ′ of the film S2 ′, the mixing ratio of the voids, the mixing ratio of PZT, and the parameters of the dispersion formula of Expression (4) were fitted. In the case of this analysis example, only ε s , ω t , and Γ 0 were fitted to the dispersion formula among the parameters of the formula (4).

図6(b)はフィッティング後のグラフであり、図7はフィッティングに係る結果を示す図表である。図6(b)のグラフに示すように、フィッティング後のモデルから算出した算出値は、約250nm〜400nmの範囲でもエリプソメータ1の測定値とほぼ一致した状態になっており、図7の表中の平均二乗誤差χ2 の値も約6.57となって、十分に小さい値になった。また、この状態で膜S2′にPZTが占める割合は約28.7%であることから、空隙が約71.3%存在することが分かる。さらに、膜S2′のPZT成分の低周波における誘電率(εs)は約372.79であった。 FIG. 6B is a graph after fitting, and FIG. 7 is a chart showing the results of fitting. As shown in the graph of FIG. 6 (b), the calculated value calculated from the model after the fitting is in a state substantially in agreement with the measured value of the ellipsometer 1 even in the range of about 250 nm to 400 nm. The value of the mean square error χ 2 was about 6.57, which was a sufficiently small value. In this state, the ratio of PZT to the film S2 ′ is about 28.7%, which indicates that there are about 71.3% of voids. Further, the dielectric constant (ε s ) at a low frequency of the PZT component of the film S2 ′ was about 372.79.

図8は、上述したフィッティングにより特定された値から、算出したPZT膜の屈折率n及び消衰係数kを示すグラフである。このように、本発明の試料解析方法を用いることで、従来解析が不可能であった、400nm以下の範囲においても解析できるようになり、248nm〜826nmの範囲で安定した解析を実現できる。なお、図8のグラフの横軸は波長から変換できる光子エネルギーを単位に用いている(5eV=約248nm)。   FIG. 8 is a graph showing the refractive index n and extinction coefficient k of the PZT film calculated from the values specified by the fitting described above. As described above, by using the sample analysis method of the present invention, analysis can be performed even in the range of 400 nm or less, which has been impossible in the past, and stable analysis can be realized in the range of 248 nm to 826 nm. The horizontal axis of the graph of FIG. 8 uses photon energy that can be converted from the wavelength as a unit (5 eV = about 248 nm).

また、本発明の試料解析方法は、電気的な測定に基づいた誘電率が50以上の誘電体膜を基板上に形成している試料を解析できるため、上述したPZT膜を有する試料以外にもSrBi4 Ti4 15膜を有する試料も好適に解析でき、複数の誘電体膜(電気的な測定に基づいた誘電率が50以上)を有する試料に対しては、図2(b)に示すようなモデル構造を各誘電体の膜層毎に適用すると共に上記と同様な演算を行うことにより支障無く解析できる。さらに、分散式に係る数式(4)及び有効媒質近似に係る数式(7)は、あくまで一例であり、解析を行う試料に適した周知の数式を適宜用いるようにしてもよい。 In addition, since the sample analysis method of the present invention can analyze a sample in which a dielectric film having a dielectric constant of 50 or more based on electrical measurement is formed on a substrate, in addition to the sample having the PZT film described above. A sample having a SrBi 4 Ti 4 O 15 film can also be suitably analyzed. For a sample having a plurality of dielectric films (dielectric constant based on electrical measurement is 50 or more), it is shown in FIG. By applying such a model structure to each dielectric film layer and performing the same calculation as described above, analysis can be performed without any problem. Furthermore, the equation (4) related to the dispersion equation and the equation (7) related to the effective medium approximation are merely examples, and a well-known equation suitable for the sample to be analyzed may be appropriately used.

なお、本発明の試料解析方法では、上述したように一度に全てのパラメータをフィッティングする場合以外に、複数の段階毎に各パラメータをフィッティングして試料を解析することも可能である。一度に全てのパラメータをフィッティングする場合は、試料の分散式が判明しているとき、最初に作成したモデルからの算出値とエリプソメータの測定値との相異が少ないとき等に好適である。段階毎にフィッティングを行う場合は、試料の分散式が判明していないとき、作成したモデルからの算出値とエリプソメータの測定値との相異が大きいとき等に好適である。   In the sample analysis method of the present invention, it is also possible to analyze a sample by fitting each parameter for each of a plurality of stages, in addition to fitting all parameters at once as described above. Fitting all the parameters at once is suitable when the dispersion formula of the sample is known, or when the difference between the calculated value from the model created first and the measured value of the ellipsometer is small. The fitting at each stage is suitable when the dispersion formula of the sample is not known or when the difference between the calculated value from the created model and the measured value of the ellipsometer is large.

本発明において段階毎にフィッティングを行うときの一例としては、まず、空隙を形成した膜に対してボイドが60%、70%、80%、90%の4種類のモデルを立てて、各モデルから算出した値とエリプソメータ1の測定結果とを比較し、最小二乗法により差が小さくなるモデル(ボイド)を特定する。次に、この特定したボイドに対して、膜厚及び分散式のパラメータをフィッティングすることで系統立てた解析を行う。さらに、このようにボイドを特定した次に、複数種類の膜厚を設定して同様に相異が小さくなるモデル(膜厚)を特定し、特定したボイド及び膜厚に対して分散式のパラメータのみをフィッティングして解析を行うことも可能である。   In the present invention, as an example when performing fitting at each stage, first, four types of models with voids of 60%, 70%, 80%, and 90% are set for the film in which voids are formed. The calculated value and the measurement result of the ellipsometer 1 are compared, and a model (void) whose difference is reduced by the least square method is specified. Next, systematic analysis is performed on the identified void by fitting the parameters of the film thickness and the dispersion formula. Furthermore, after specifying the voids in this way, a model (film thickness) in which differences are similarly set by setting a plurality of types of film thicknesses is specified, and the parameters of the dispersion formula are specified for the specified voids and film thicknesses. It is also possible to perform analysis by fitting only.

本発明の試料解析方法に使用されるエリプソメータ及びコンピュータの構成を示す概略図である。It is the schematic which shows the structure of the ellipsometer and computer which are used for the sample analysis method of this invention. (a)は試料の断面図であり、(b)は有効媒質近似に基づく空隙を有するモデルの構造を示す概略図である。(A) is sectional drawing of a sample, (b) is the schematic which shows the structure of the model which has the space | gap based on effective medium approximation. 分光器の内部構成を示す概略図である。It is the schematic which shows the internal structure of a spectrometer. 膜厚、ボイド等の設定メニューを示す概略図である。It is the schematic which shows the setting menus, such as a film thickness and a void. 本発明の試料解析方法に係る処理を示すフローチャートである。It is a flowchart which shows the process which concerns on the sample analysis method of this invention. (a)は最初に作成したモデルからの算出値及びエリプソメータによる測定値を示すグラフであり、(b)はフィッティング後の算出値及び測定値を示すグラフである。(A) is a graph which shows the calculated value from the model created initially, and the measured value by an ellipsometer, (b) is a graph which shows the calculated value and measured value after fitting. フィッティングに係る結果を示す図表である。It is a graph which shows the result which concerns on fitting. 屈折率及び消衰係数を示すグラフである。It is a graph which shows a refractive index and an extinction coefficient. 酸化シリコンに対するエリプソメータの測定結果を示すグラフである。It is a graph which shows the measurement result of the ellipsometer with respect to a silicon oxide. (a)は、試料の構造を示す概略図であり、(b)は膜表面にラフネスを有する試料の概略図であり、(c)は有効媒質近似に基づく空隙を有するモデルの構造を示す概略図である。(A) is a schematic diagram showing the structure of a sample, (b) is a schematic diagram of a sample having roughness on the film surface, and (c) is a schematic diagram showing the structure of a model having voids based on the effective medium approximation. FIG.

符号の説明Explanation of symbols

1 エリプソメータ
3 光照射器
4 ステージ
5 光取得器
7 分光器
8 データ取込機
10 コンピュータ
S 試料
S′ モデル
S1 基板
S2、S2′ 膜
M 物質
V 空隙
DESCRIPTION OF SYMBOLS 1 Ellipsometer 3 Light irradiation device 4 Stage 5 Light acquisition device 7 Spectrometer 8 Data acquisition device 10 Computer S Sample S 'Model S1 Substrate S2, S2' Film M Material V Void

Claims (2)

エリプソメータで、基板上に電気的な測定に基づいた誘電率が50以上の誘電体膜を形成した試料へ偏光状態の光を入射するステップと、
前記試料に対する入射光及び反射光の偏光状態の変化値を測定するステップと、
前記試料に応じた条件を設定して、有効媒質近似に基づく空隙が60%以上90%以下の範囲で存在するモデルを作成するステップと、
作成されたモデルに基づき前記エリプソメータで測定した偏光状態の変化値に対応した値を算出するステップと、
算出した値と前記エリプソメータで測定した変化値とを比較するステップと、
比較した両値の相異が小さくなるように前記有効媒質近似に係る演算式及び前記モデルに係る分散式による演算を行うステップと、
前記演算の結果に基づき試料の解析を行うステップと
を備えることを特徴とする試料解析方法。
In an ellipsometer, the step of injecting light in a polarized state onto a sample in which a dielectric film having a dielectric constant of 50 or more based on electrical measurement is formed on a substrate;
Measuring a change in polarization state of incident light and reflected light on the sample;
Setting a condition according to the sample, and creating a model in which the void based on the effective medium approximation exists in the range of 60% to 90%;
Calculating a value corresponding to a change value of the polarization state measured by the ellipsometer based on the created model;
Comparing the calculated value with the change value measured with the ellipsometer;
A step of performing an operation using an arithmetic expression related to the effective medium approximation and a dispersion expression related to the model so that a difference between the two values compared becomes small;
And a step of analyzing the sample based on the result of the calculation.
前記分散式は、光学的な測定範囲に対する誘電率に係るパラメータを含み、
該誘電率に係るパラメータの数値に基づき試料の誘電体膜の光学的な測定範囲に対する誘電率を解析する請求項1に記載の試料解析方法。
The dispersion formula includes a parameter related to a dielectric constant with respect to an optical measurement range,
The sample analysis method according to claim 1, wherein a dielectric constant is analyzed with respect to an optical measurement range of the dielectric film of the sample based on a numerical value of a parameter relating to the dielectric constant.
JP2004101357A 2004-03-30 2004-03-30 Sample analysis method Expired - Fee Related JP4435298B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004101357A JP4435298B2 (en) 2004-03-30 2004-03-30 Sample analysis method
TW093141341A TWI278617B (en) 2004-03-30 2004-12-30 Method for analyzing sample
KR1020050004686A KR100822419B1 (en) 2004-03-30 2005-01-18 Sample analysis method
US11/089,783 US7167242B2 (en) 2004-03-30 2005-03-25 Sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101357A JP4435298B2 (en) 2004-03-30 2004-03-30 Sample analysis method

Publications (2)

Publication Number Publication Date
JP2005283502A true JP2005283502A (en) 2005-10-13
JP4435298B2 JP4435298B2 (en) 2010-03-17

Family

ID=35053911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101357A Expired - Fee Related JP4435298B2 (en) 2004-03-30 2004-03-30 Sample analysis method

Country Status (4)

Country Link
US (1) US7167242B2 (en)
JP (1) JP4435298B2 (en)
KR (1) KR100822419B1 (en)
TW (1) TWI278617B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051604A (en) * 2006-08-23 2008-03-06 Horiba Ltd Sample analysis method, sample analyzer and program
JP2009236900A (en) * 2008-03-05 2009-10-15 Horiba Ltd Spectroscopic ellipsometer
US7688446B2 (en) 2005-11-29 2010-03-30 Horiba, Ltd. Sample analyzing method, sample analyzing apparatus, manufacturing method of organic EL element, manufacturing equipment, and recording medium
WO2011105252A1 (en) * 2010-02-25 2011-09-01 大日本スクリーン製造株式会社 Hydrogen content ratio acquiring apparatus and hydrogen content ratio acquiring method
JP2016128780A (en) * 2015-01-09 2016-07-14 株式会社堀場製作所 Information processing apparatus, information processing method, and program
JP2017028062A (en) * 2015-07-21 2017-02-02 富士フイルム株式会社 Laminate structure and piezoelectric element including the same, manufacturing method, evaluation method of laminate structure
JP2020529009A (en) * 2017-07-25 2020-10-01 ケーエルエー コーポレイション Multilayer film measurement using effective medium approximation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616567B2 (en) * 2004-03-11 2011-01-19 株式会社堀場製作所 Measuring method, analyzing method, measuring device, analyzing device, ellipsometer and computer program
KR101443058B1 (en) 2008-06-25 2014-09-24 삼성전자주식회사 equipment for manufacturing semiconductor device analyzed layered media dimension and used the same
US10663286B2 (en) * 2017-08-22 2020-05-26 Kla-Tencor Corporation Measuring thin films on grating and bandgap on grating
CN110514599B (en) * 2019-08-23 2020-11-03 浙江大学 Optical parameter detection method for fluorine-doped tin oxide coated glass
US11714045B2 (en) * 2021-07-21 2023-08-01 Meta Platforms Technologies, Llc Techniques for characterizing films on optically clear substrates using ellipsometry

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332833A (en) * 1980-02-29 1982-06-01 Bell Telephone Laboratories, Incorporated Method for optical monitoring in materials fabrication
JP3532165B2 (en) 2001-05-22 2004-05-31 株式会社堀場製作所 Thin film measurement method using spectroscopic ellipsometer
JP3556183B2 (en) 2001-05-22 2004-08-18 株式会社堀場製作所 Method for determining composition of compound semiconductor layer on substrate
US6808742B2 (en) * 2002-03-07 2004-10-26 Competitive Technologies, Inc. Preparation of thin silica films with controlled thickness and tunable refractive index

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688446B2 (en) 2005-11-29 2010-03-30 Horiba, Ltd. Sample analyzing method, sample analyzing apparatus, manufacturing method of organic EL element, manufacturing equipment, and recording medium
US8013997B2 (en) 2005-11-29 2011-09-06 Horiba, Ltd. Sample analyzing method, sample analyzing apparatus, manufacturing method of organic EL element, manufacturing equipment, and recording medium
JP2008051604A (en) * 2006-08-23 2008-03-06 Horiba Ltd Sample analysis method, sample analyzer and program
JP2009236900A (en) * 2008-03-05 2009-10-15 Horiba Ltd Spectroscopic ellipsometer
WO2011105252A1 (en) * 2010-02-25 2011-09-01 大日本スクリーン製造株式会社 Hydrogen content ratio acquiring apparatus and hydrogen content ratio acquiring method
JP2016128780A (en) * 2015-01-09 2016-07-14 株式会社堀場製作所 Information processing apparatus, information processing method, and program
JP2017028062A (en) * 2015-07-21 2017-02-02 富士フイルム株式会社 Laminate structure and piezoelectric element including the same, manufacturing method, evaluation method of laminate structure
JP2020529009A (en) * 2017-07-25 2020-10-01 ケーエルエー コーポレイション Multilayer film measurement using effective medium approximation
JP7008792B2 (en) 2017-07-25 2022-01-25 ケーエルエー コーポレイション Multilayer film measurement using effective medium approximation

Also Published As

Publication number Publication date
KR20050096847A (en) 2005-10-06
TWI278617B (en) 2007-04-11
KR100822419B1 (en) 2008-04-16
TW200538715A (en) 2005-12-01
US20050219529A1 (en) 2005-10-06
US7167242B2 (en) 2007-01-23
JP4435298B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
KR100822419B1 (en) Sample analysis method
EP1435517B1 (en) Method for analyzing thin-film layer structure using spectroscopic ellipsometer
US7280210B2 (en) Measuring method, analyzing method, measuring apparatus, analyzing apparatus, ellipsometer, and computer program
US6485872B1 (en) Method and apparatus for measuring the composition and other properties of thin films utilizing infrared radiation
KR101841776B1 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
US8199336B2 (en) Optical measurement apparatus, spectroscopic ellipsometer, recording medium, and measurement method
US7280208B2 (en) Optical characteristic analysis method, sample measuring apparatus and spectroscopic ellipsometer
JP4490777B2 (en) Method for identifying film forming conditions
US7271901B2 (en) Thin-film characteristic measuring method using spectroellipsometer
KR100883876B1 (en) Sample analysis method
JP4136740B2 (en) Analysis method of thin film trilayer structure using spectroscopic ellipsometer
JP3556183B2 (en) Method for determining composition of compound semiconductor layer on substrate
Edwards Status and prospects for VUV ellipsometry (applied to high k and low k materials)
JP3983093B2 (en) Composition determination method for polycrystalline compound semiconductor using spectroscopic ellipsometer
JP3613707B2 (en) Ultrathin film and thin film measurement method
JP2016128780A (en) Information processing apparatus, information processing method, and program
JP2004093436A (en) Analysis method for thin-film multi-layer structure by using spectral ellipsometer
JP4587690B2 (en) Ultrathin film and thin film measurement method
Sinclair et al. Light scattering from sol-gel Pb (Zr, Ti) O3 thin films: Surface versus volume scattering
McGahan et al. Optical characterization of TiN thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees