JP2005283430A - Method for analyzing structure of biological sample - Google Patents

Method for analyzing structure of biological sample Download PDF

Info

Publication number
JP2005283430A
JP2005283430A JP2004099863A JP2004099863A JP2005283430A JP 2005283430 A JP2005283430 A JP 2005283430A JP 2004099863 A JP2004099863 A JP 2004099863A JP 2004099863 A JP2004099863 A JP 2004099863A JP 2005283430 A JP2005283430 A JP 2005283430A
Authority
JP
Japan
Prior art keywords
deuterium
amino acid
peak
mass
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099863A
Other languages
Japanese (ja)
Other versions
JP4407349B2 (en
Inventor
Takashi Nakazawa
隆 中澤
Eiji Ando
英治 安藤
Minoru Yamaguchi
実 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004099863A priority Critical patent/JP4407349B2/en
Publication of JP2005283430A publication Critical patent/JP2005283430A/en
Application granted granted Critical
Publication of JP4407349B2 publication Critical patent/JP4407349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate the interpretation of mass spectral data at the determination of the amino acid sequences of proteins and peptides through the use of mass spectrometry. <P>SOLUTION: Hydrogen atoms capable of replacing proteins and peptides are substituted into deuterium atoms in heavy water of 50% to analyze the proteins and the peptides in a mass spectroscope. A series of peak groups are formed in an acquired mass spectrum according to a ratio of deuterium substitution. By selecting a peak of 50% deuterium substitution at the center of the peak groups and performing MS/MS analysis, product ions form an isotope pattern due to the polymerization degree of deuterium. The spectral data is interpreted by considering the isotope pattern to identify the amino acid sequences. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、質量分析法を用いて、タンパク質、ペプチド、糖鎖などの生体試料の構造情報を解析する方法に関する。   The present invention relates to a method for analyzing structural information of biological samples such as proteins, peptides, sugar chains, etc. using mass spectrometry.

タンパク質は遺伝情報によって規定される一定のアミノ酸配列を有する。しかし、実際に発現されるタンパク質は、翻訳後に様々な修飾を受けているため、特定の遺伝情報とタンパク質とを1対1に対応させるには、発現されたタンパク質のアミノ酸配列を実験的に決定しなければならない。   A protein has a certain amino acid sequence defined by genetic information. However, since the protein that is actually expressed has undergone various modifications after translation, the amino acid sequence of the expressed protein is determined experimentally in order to have a one-to-one correspondence between specific genetic information and the protein. Must.

近年、このようなタンパク質のアミノ酸配列を決定する方法として、質量分析装置を用いた解析が広く行われるようになってきており、PSD(Post-source decay:ポストソース分解)やQIT(quadrupole ion trap:四重極型イオントラップ)などによって特定のピークの捕捉と二次的開裂を行う、いわゆるMS/MS分析(またはMSn分析)が威力を発揮している。
このような手法によって得られたプリカーサイオンやプロダクトイオンのスペクトルパターンからアミノ酸配列を求める方法としては、得られたプロダクトイオンのスペクトルパターンを配列データベース検索に供することによって被検ペプチドを同定する方法や、コンピュータソフトウェアを用いてスペクトルパターンを数理的に解析することで、構造を推定する方法などがある。
In recent years, as a method for determining the amino acid sequence of such a protein, analysis using a mass spectrometer has been widely performed, such as PSD (Post-source decay) and QIT (quadrupole ion trap). : MS / MS analysis (or MS n analysis) that captures a specific peak and secondary cleavage by a quadrupole ion trap) is effective.
As a method for obtaining an amino acid sequence from a precursor ion or product ion spectrum pattern obtained by such a method, a method for identifying a test peptide by subjecting the obtained product ion spectrum pattern to a sequence database search, There is a method for estimating a structure by mathematically analyzing a spectral pattern using computer software.

しかし、データベース検索を用いた方法は、データベースに登録されていないタンパク質に関しては同定を行うことができないという問題がある。また、コンピュータソフトウェアによる配列の解析には以下のような問題点がある。   However, the method using database search has a problem that identification cannot be performed for proteins that are not registered in the database. In addition, sequence analysis by computer software has the following problems.

プリカーサイオンの開裂パターンには種々の様式があり、開裂によって得られるプロダクトイオンのイオン種を予測することは非常に困難である。例えば、ペプチド結合周辺で起こる断片化は、便宜上、図1のように定義される。ここで、rはこのペプチドの全アミノ酸残基数、nはN末端から数えた残基番号を示す。一般的にはy-イオンとb-イオンの系列が最もよく観測されるが、実際には、これに側鎖のいずれかで断片化した生成物や脱水した生成物も加わるため、得られるマススペクトルは更に複雑なものとなる。従って、上記のようなコンピュータソフトウェアによる解析では、ピークの帰属が難しく、正確な配列決定が行うことができなかった。また、試料を化学的に処理して特定の系列のピーク強度を増大させたり、消去させたりする方法も行われているが、このような化学修飾を行う場合は、修飾反応、脱塩などの煩雑な操作が必要であった。   There are various patterns of precursor ion cleavage patterns, and it is very difficult to predict the ion species of product ions obtained by cleavage. For example, fragmentation that occurs around peptide bonds is defined as shown in FIG. 1 for convenience. Here, r represents the total number of amino acid residues of this peptide, and n represents the residue number counted from the N-terminus. In general, the y-ion and b-ion series are best observed, but in practice, the product obtained by fragmentation or dehydration of one of the side chains is added to this, so that the resulting mass is obtained. The spectrum becomes even more complicated. Therefore, in the analysis by the computer software as described above, it is difficult to assign peaks, and accurate sequencing cannot be performed. In addition, a method of chemically treating a sample to increase or eliminate a specific series of peak intensities has been performed. However, when such chemical modification is performed, a modification reaction, desalting, etc. A complicated operation was required.

更に、MS/MSスペクトルデータの解釈を容易にするための方法として、非特許文献1及び非特許文献2に記載のように、タンパク質やペプチドの交換可能な水素原子を、重水素で100%置換する方法が提案されている。これは、交換可能な水素原子の数がアミノ酸によって決まっており、重水素置換を行うことによって、試料の分子量がアミノ酸組成に依存してシフトすることを利用したものである。   Furthermore, as a method for facilitating interpretation of MS / MS spectral data, as described in Non-Patent Document 1 and Non-Patent Document 2, 100% replacement of exchangeable hydrogen atoms of proteins and peptides with deuterium. A method has been proposed. This utilizes the fact that the number of exchangeable hydrogen atoms is determined by the amino acid, and that the molecular weight of the sample shifts depending on the amino acid composition by deuterium substitution.

タンパク質を構成する窒素、酸素、及びイオウ原子に共有結合した全ての水素原子は、水溶液中で容易に水の水素原子と交換反応を起こす。このような水素原子を交換可能であるといい、具体的には、R-NH2(アミノ基)、R-OH(水酸基)、R-C00H(カルボキシル基)、R-SH(チオール基)、R-CO-NH2及びR-NH-CO-R'(1級及び2級アミド基)、R-NH-R'(イミノ基)、R-NH-C(=NH)NH2(グアニジノ基)などの水素原子が挙げられる。 All hydrogen atoms covalently bonded to nitrogen, oxygen and sulfur atoms constituting the protein easily exchange with water hydrogen atoms in an aqueous solution. It is said that such a hydrogen atom can be exchanged. Specifically, R-NH 2 (amino group), R-OH (hydroxyl group), R-C00H (carboxyl group), R-SH (thiol group), R—CO—NH 2 and R—NH—CO—R ′ (primary and secondary amide groups), R—NH—R ′ (imino group), R—NH—C (═NH) NH 2 (guanidino group) ) And the like.

ペプチド鎖の主鎖にはアミノ酸1残基あたりプロリンを除いて必ず1つの交換可能な水素原子が存在する。そのため分子量M,アミノ酸残基数r、各アミノ酸(j)の側鎖の交換可能な水素原子数がδjのペプチドを重水(100% D20)に溶解することによって、全ての交換可能な水素原子を重水素で置換すると、分子イオンピークの位置は、
[M+D+r+Σδj]+−[M+H]+=r+Σδj+1 (1)
だけ、すなわち交換可能な水素原子の数だけ高質量側に移動する。ここで[M+H]+は天然存在比の分子イオンピークのm/z比であり、各アミノ酸側鎖の交換可能な水素原子数(δj)は、
δj=-1;Pro
δj=0;Gly,Ala,Val,Leu,Ile,Met,Cys/2,Phe
δj=1;Ser,Thr,Asp,Glu,Cys,Tyr,Trp,His
δj=2;Asn,Gln,Lys
δj=4;Arg
である。Argは、プロトン化したArg+(δj=5)が化学的には安定なのであるが、質量分析ではイオン全体に電荷に応じて1〜数個のプロトンを割り当てるので、Argを始め、Lys、Hisなどの塩基性アミノ酸の側鎖は、電気的に中性と考える。
There is always one exchangeable hydrogen atom in the main chain of the peptide chain, excluding proline, per amino acid residue. Therefore, all exchanges are possible by dissolving a peptide with molecular weight M, number of amino acid residues r, and the number of exchangeable hydrogen atoms of each amino acid (j) δ j in heavy water (100% D 2 0). When a hydrogen atom is replaced with deuterium, the position of the molecular ion peak is
[M + D + r + Σδ j ] + − [M + H] + = r + Σδ j +1 (1)
Only, ie, the number of exchangeable hydrogen atoms moves to the higher mass side. Here, [M + H] + is the m / z ratio of the molecular ion peak of the natural abundance ratio, and the number of exchangeable hydrogen atoms (δ j ) of each amino acid side chain is
δ j = -1; Pro
δ j = 0; Gly, Ala , Val, Leu, Ile, Met, Cys / 2, Phe
δ j = 1; Ser, Thr, Asp, Glu, Cys, Tyr, Trp, His
δ j = 2; Asn, Gln, Lys
δ j = 4; Arg
It is. In Arg, protonated Arg +j = 5) is chemically stable, but in mass spectrometry, 1 to several protons are assigned to the entire ion according to the electric charge, so Arg, Lys, Side chains of basic amino acids such as His are considered electrically neutral.

上記重水素で標識した試料と標識しない試料から得られる(1)式の結果と、やはりアミノ酸組成によって決まる分子量Mの値を用いて、データベース上のアミノ酸配列から分子イオンがどのタンパク質に相当するかを検索する方法などが考えられている。
しかし、上記の方法では、タンパク質やペプチドの交換可能な水素原子を全て重水素で置換するため、ピークのシフトは起こるものの、得られるスペクトルパターンは本質的には重水素置換していないものと同じであるため、ピークの帰属が飛躍的に容易になることは期待できない。
Spengler, B., Luetzenkirchen, F., and Kaufmann, R. On target deuteration for peptide sequencing by laser mass spectrometry. Org. Mass Spectrom. 28, 1482-1490 (1993). Sepetov, N.F., Issakova, O.L., Lebl, M., Swiderek, K., Stahl, D.C., and Lee, T.D. The use of hydrogen-deuterium exchange to facilitate peptide sequencing by electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 7, 58-62 (1993).
Which protein corresponds to the molecular ion from the amino acid sequence on the database using the result of the formula (1) obtained from the sample labeled with deuterium and the sample not labeled with the value of molecular weight M, which is also determined by the amino acid composition A method of searching for is considered.
However, in the above method, all exchangeable hydrogen atoms of proteins and peptides are substituted with deuterium, so although peak shift occurs, the obtained spectral pattern is essentially the same as that without deuterium substitution. Therefore, it cannot be expected that the attribution of the peak will be greatly facilitated.
Spengler, B., Luetzenkirchen, F., and Kaufmann, R. On target deuteration for peptide sequencing by laser mass spectrometry. Org. Mass Spectrom. 28, 1482-1490 (1993). Sepetov, NF, Issakova, OL, Lebl, M., Swiderek, K., Stahl, DC, and Lee, TD The use of hydrogen-deuterium exchange to facilitate peptide sequencing by electrospray tandem mass spectrometry.Rapid Commun. Mass Spectrom. 7 , 58-62 (1993).

本発明が解決しようとする課題は、質量分析によって得られるマススペクトルのピークの帰属が容易であり、正確な構造決定を行うことのできる生体試料の構造解析方法を提供することである。   The problem to be solved by the present invention is to provide a method for analyzing the structure of a biological sample, in which assignment of a peak of a mass spectrum obtained by mass spectrometry is easy and accurate structure determination can be performed.

上記課題を解決するために成された本発明に係る生体試料の構造解析方法は、所定の割合でD2Oを含む水の中で、生体試料の交換可能な水素原子を重水素原子に置換し、該生体試料を質量分析装置で分析することによって、その構造情報を得ることを特徴とする。 The structure analysis method of a biological sample according to the present invention, which has been made to solve the above problems, replaces a replaceable hydrogen atom of a biological sample with a deuterium atom in water containing D 2 O at a predetermined ratio. The structural information is obtained by analyzing the biological sample with a mass spectrometer.

上記のように、タンパク質やペプチドの交換可能な水素原子を、所定の割合でD2Oを含む水の中で重水素原子に置換し、MS/MS分析を行うことにより、プロダクトイオンはアミノ酸配列に特有の同位体パターンを示す。このプロダクトイオンの同位体パターンを加味することにより、MS/MSスペクトルデータの解釈が容易となり、データベースに登録されていないタンパク質やペプチドであっても、そのアミノ酸配列を正確に決定することが可能となる。 As described above, the exchangeable hydrogen atoms of proteins and peptides are replaced with deuterium atoms in water containing D 2 O at a predetermined ratio, and MS / MS analysis is performed. Shows a peculiar isotope pattern. By taking into account the isotope pattern of this product ion, it is possible to easily interpret MS / MS spectral data, and it is possible to accurately determine the amino acid sequence of proteins and peptides that are not registered in the database. Become.

始めに、本発明に係る生体試料の構造解析方法の原理を説明する。   First, the principle of the structure analysis method for a biological sample according to the present invention will be described.

あるタンパク質の交換可能な水素原子を所定の割合、例えば50%で置換すると、上記(1)式の交換可能な水素原子をs=r+Σδj+1個含む分子イオンピークは、r+Σδj+2=s+1本に分裂する。この時ピークの強度比はパスカルの三角形あるいは(p+q)sの二項係数で表されるので、強度1の天然存在比のピーク1本に対応するイオンに含まれる交換可能な水素原子の半数が重水素で置換されると、分裂して生じるs+1本のうちt番目のピークの強度は
st(p)s-t(q)tst(1/2)s (t=0,1,2,…,s-1,s) (2)
となる。
When a replaceable hydrogen atom of a protein is replaced with a predetermined ratio, for example, 50%, the molecular ion peak containing s = r + Σδ j +1 in the above formula (1) is r + Σδ j + 2 = s + 1 Split into two. At this time the peak intensity ratio of is represented by the binomial coefficient of Pascal's triangle, or (p + q) s, it is half of the exchangeable hydrogen atoms contained in the ion corresponding to one peak in natural abundance of strength 1 When replaced with deuterium, the intensity of the t-th peak of s + 1 produced by splitting is
s C t (p) st (q) t = s C t (1/2) s (t = 0,1,2, ..., s-1, s) (2)
It becomes.

ここで重水素置換の割合を50%としたため、p=q=1/2となり、一連のピークはt=s/2(sは偶数)、又はt=(s+1)/2(sは奇数)を中心に対称的でベル型の輪郭を示す。その結果、sが大きくなってもベル型曲線の裾にあたる両端付近では(1/2)s≒0となるため、観測されるピークの範囲が不必要に広がることはない。中心極限定理(central limit theorem)によれば、これらのピークがベル型曲線でガウス分布を示すとき、この曲線の線幅(w1/2)はsが十分に大きければ、
w1/2=s1/2/2 (3)
となると見積もられる。
Here, since the ratio of deuterium substitution is 50%, p = q = 1/2, and a series of peaks is t = s / 2 (s is an even number), or t = (s + 1) / 2 (s is an odd number) Symmetrical and bell-shaped contours are shown. As a result, even if s increases, (1/2) s ≈ 0 near both ends corresponding to the bottom of the bell-shaped curve, so that the observed peak range does not unnecessarily widen. According to the central limit theorem, when these peaks show a Gaussian distribution with a bell-shaped curve, the line width (w 1/2 ) of this curve is
w 1/2 = s 1/2 / 2 (3)
It is estimated that

例えばs=200の場合、主なピークはたかだか±7質量単位の中に収まることになり、ピーク群の対称性からその中心を特定することができる。しかも、その中心のピークの強度I(t=s/2)、すなわち(2)式の二項係数は、
I(t)=st(1/2)s≒1/(πs)-1/2 (4)
と近似されるので、s=10の時には単一ピークの約25%、更に、s=200となっても4%にまでしか減少しない。もとの1%になるのはs>3000,すなわちアミノ酸残基数にして約2000を超えるかなり大きなタンパク質となるので、このような感度の低下はあまり問題にならない。
For example, when s = 200, the main peak is at most ± 7 mass units, and the center can be specified from the symmetry of the peak group. Moreover, the intensity I (t = s / 2) of the peak at the center, that is, the binomial coefficient of the equation (2) is
I (t) = s C t (1/2) s ≒ 1 / (πs) -1/2 (4)
Therefore, when s = 10, it is about 25% of the single peak, and even when s = 200, it is reduced only to 4%. Since the original 1% is s> 3000, that is, a considerably large protein exceeding about 2000 amino acid residues, such a decrease in sensitivity is not a problem.

あるペプチドの交換可能な水素原子の50%を重水素で置換すると、そのマススペクトルは、ほとんど重水素を含まないものから、ほぼ完全に重水素で置換されたものまでの、(2)式で表される様々な同位体含有量を持つ分子種の存在比を反映する。そのピーク群の中心の最大ピークは、交換可能な水素原子が、正確に50%の割合で重水素に置換された分子種に対応する。但し、この最大強度のピークには、質量は正確に同じであっても、水素と重水素の分布が異なる種々の分子種が含まれており、その分布は交換可能な水素原子の数がs個であればss/2通りとなる。 When 50% of the exchangeable hydrogen atoms of a peptide are replaced with deuterium, the mass spectrum is expressed by the following formula (2), from those containing almost no deuterium to those almost completely substituted with deuterium. Reflects the abundance ratio of molecular species with various isotope contents represented. The maximum peak at the center of the peak group corresponds to a molecular species in which exchangeable hydrogen atoms are replaced with deuterium at exactly 50%. However, this peak of maximum intensity includes various molecular species with different distributions of hydrogen and deuterium even though the masses are exactly the same, and the distribution shows that the number of exchangeable hydrogen atoms is s. If there are pcs, s C s / 2 .

例えば、簡単にs=6の場合については、
H-H-H-D-D-D H-H-D-H-D-D H-H-D-D-H-D H-H-D-D-D-H
H-D-H-H-D-D H-D-H-D-H-D H-D-H-D-D-H H-D-D-H-H-D
H-D-D-H-D-H H-D-D-D-H-H D-H-H-H-D-D D-H-H-D-H-D
D-H-H-D-D-H D-H-D-H-H-D D-H-D-H-D-H D-H-D-D-H-H
D-D-H-H-H-D D-D-H-H-D-H D-D-H-D-H-H D-D-D-H-H-H
63=20種類のイオン種が単一で同一質量のイオンのピークに含まれる。
For example, if s = 6 simply,
HHHDDD HHDHDD HHDDHD HHDDDH
HDHHDD HDHDHD HDHDDH HDDHHD
HDDHDH HDDDHH DHHHDD DHHDHD
DHHDDH DHDHHD DHDHDH DHDDHH
DDHHHD DDHHDH DDHDHH DDDHHH
6 C 3 = 20 kinds of ion species are included in the peak of the same mass of ions in single.

上記のピークをイオントラップによって取り出し、MS/MSによって、交換可能な水素原子を2個含むN末端側の部分と、残りのC末端側の部分とに開裂させたとすると、N末端側は、
H-H(4); H-D,D-H(12); D-D(4)
の存在確率から、強度比が1:3:1のトリプレット(triplet:三つ組)となり、C末端側も、
3H+1D(4); 2H+2D(12); 1H+3D(4)
の強度比が1:3:1のトリプレットとして観測される。このとき、MS/MSピークの開裂後の本数と強度比は(2)式の対称性により、小さい方の断片の交換可能な水素原子の数によって簡単に予測できる。上記の例ではN末端の交換可能な水素原子が2個であるから、生じるピークの本数は2+1=3本となり、このトリプレットの強度比は、204321422241=4:12:4=1:3:1と確率的に予想できる。
If the above peak is taken out by an ion trap and cleaved into an N-terminal part containing two exchangeable hydrogen atoms and the remaining C-terminal part by MS / MS, the N-terminal side is
HH (4); HD, DH (12); DD (4)
From the existence probability, the strength ratio is 1: 3: 1 triplet (triplet: triplet)
3H + 1D (4); 2H + 2D (12); 1H + 3D (4)
Is observed as a triplet with an intensity ratio of 1: 3: 1. At this time, the number of MS / MS peaks after cleavage and the intensity ratio can be easily predicted by the number of exchangeable hydrogen atoms of the smaller fragment due to the symmetry of the equation (2). In the above example, since there are two exchangeable hydrogen atoms at the N-terminal, the number of peaks generated is 2 + 1 = 3, and the intensity ratio of this triplet is 2 C 0 · 4 C 3 : 2 C 1 · 4 C 2: 2 C 2 · 4 C 1 = 4: 12: 4 = 1: 3: 1 and can be stochastically predicted.

イオントラップした最初のピークに含まれる交換可能な水素原子の数をs、小さい方の断片の交換可能な水素原子数をu、残りをv(=s−u)として、これらの数値と式を一般化すると、開裂によって生じるピークの本数はu+1,それぞれのピーク強度Ijは、
Ijujv(s/2-j) (j=0,1,…,u) (5)
となる。なお、sは偶数として考えたが、sが奇数の場合には、イオントラップすべきピークは理論上、ピーク群の中心に現れる強度の等しい2本のピークの両方になる。しかし、sが十分に1よりも大きければ、s>>uとなり、(5)式の積の2項目は、jの変化に殆ど影響されないため、ピーク強度Ijは単なる二項係数だけで決まり、例えばu=2ならばI0:I1:I2=1:2:1のトリプレットが観測される。
These numbers and equations are expressed as follows: s is the number of exchangeable hydrogen atoms in the first ion trapped peak, s is the number of exchangeable hydrogen atoms in the smaller fragment, and v is the rest (vs = u). When generalized, the number of peaks generated by cleavage is u + 1, and each peak intensity I j is
I j = u C j · v C (s / 2-j) (j = 0,1,…, u) (5)
It becomes. Although s is considered as an even number, when s is an odd number, theoretically, the peaks to be ion trapped are both two peaks of equal intensity appearing at the center of the peak group. However, if s is sufficiently larger than 1, s >> u, and the two items in the product of Eq. (5) are almost unaffected by changes in j, so the peak intensity I j is determined only by the binomial coefficient. For example, if u = 2, a triplet of I 0 : I 1 : I 2 = 1: 2: 1 is observed.

片方の断片をb-イオン、もう一方の断片をy-イオンとすると、同じ結合の開裂で同時に生じた一対のb-イオンとy-イオンは、図2のように、マススペクトル上で全く同じパターンを示す。そのため、複数の結合が開裂して多くのピークが現れた複雑なスペクトルの中からこうしたb-イオンとy-イオン(あるいはa-イオンとz-イオン)の対を見つけ出すことが極めて容易になる。   If one fragment is a b-ion and the other fragment is a y-ion, the pair of b-ions and y-ions generated simultaneously by the same bond cleavage are exactly the same on the mass spectrum as shown in FIG. Indicates a pattern. This makes it very easy to find such b-ion and y-ion (or a-ion and z-ion) pairs from a complex spectrum in which multiple bonds are cleaved and many peaks appear.

一般にアミノ酸残基数r、分子量Mのペプチドにこの方法を適用し、MS/MSによって理想的にb-イオンとy-イオンの系列が観測されたとすると、同じ開裂パターンを示し、各対の質量数の和がプリカーサイオンの質量と同じになるb1-イオン(m/z=M(b1))とyr-1-イオン(m/z=M(yr-1))、b2-イオン(m/z=M(b2))とyr-2-イオン(m/z=M(yr-2))(ただし、M(b1)+M(yr-1)=M(b2)+M(yr-2)=M)などをスペクトル上で辿っていけば、容易にアミノ酸配列を読むことができ、当然、これを自動化するピークの帰属のためのコンピュータによるデータ処理アルゴリズムの精度の向上も見込まれる。なお、上記の質量数Mは、交換可能な水素原子の1/2が重水素で置換されたものを意味することは言うまでもない。 In general, if this method is applied to a peptide with the number of amino acid residues r and molecular weight M, and a series of b-ions and y-ions is ideally observed by MS / MS, it shows the same cleavage pattern and the mass of each pair. B 1 -ion (m / z = M (b 1 )) and y r-1 -ion (m / z = M (y r-1 )), b 2 , whose number is the same as the mass of the precursor ion -Ion (m / z = M (b 2 )) and y r-2 -Ion (m / z = M (y r-2 )) (where M (b 1 ) + M (y r-1 ) = M By tracing (b 2 ) + M (y r-2 ) = M) on the spectrum, you can easily read the amino acid sequence and, of course, computer data processing for peak assignment that automates this The algorithm accuracy is also expected to improve. Needless to say, the above-mentioned mass number M means that one half of exchangeable hydrogen atoms are replaced by deuterium.

また、もちろんy-イオンのみといった、一つのイオンの系列からだけでも、次第に質量が減少するごとに分裂の度を増してゆくピークを順に辿れば、やはりアミノ酸配列が比較的容易に推定できる。   Moreover, even from only one ion series, such as only y-ions, the amino acid sequence can be estimated relatively easily by following the peaks that increase the degree of division as the mass gradually decreases.

さらに、ピークの多重度は、(1)式で与えられる各アミノ酸残基に固有の交換可能な水素原子数に1を加えた、δj+2となるので、この点からもピークの帰属結果の検証ができる。例えば、グルタミン酸(Glu)とグルタミン(Gln)は、それぞれ分子量が129と128であり、1質量単位の違いしかないが、50%重水素置換を行うことにより、Gluが脱離したピークはトリプレット、Glnが脱離したピークはカルテット(quartet:四つ組)となるので、両者の違いが明確になる。 Furthermore, since the multiplicity of the peak is δ j +2, which is obtained by adding 1 to the number of exchangeable hydrogen atoms unique to each amino acid residue given by the equation (1), the peak assignment result also from this point Can be verified. For example, glutamic acid (Glu) and glutamine (Gln) have molecular weights of 129 and 128, respectively, but only 1 mass unit, but by performing 50% deuterium substitution, the peak from which Glu is eliminated is a triplet, Since the peak from which Gln is eliminated becomes a quartet, the difference between the two becomes clear.

以上のように、上記50%重水素置換に基づくタンパク質やペプチドのアミノ酸配列決定法の特色は、交換可能な水素原子の50%が重水素で置換されたピークをPSDやQIT等により特異的に捕捉すると共に、MS/MSあるいはMSnによって生じる、互いに対を成すピークに、開裂のパターン、または多重度で目印を付けて、アミノ酸配列の決定を容易且つ確実にする点にある。 As described above, the feature of the amino acid sequencing method for proteins and peptides based on the above 50% deuterium substitution is that a peak in which 50% of exchangeable hydrogen atoms are substituted with deuterium is specifically detected by PSD or QIT. with capture caused by MS / MS or MS n, a peak pairs from each other, with the mark in the cleavage pattern or multiplicity, lies in that to facilitate and ensure the determination of the amino acid sequence.

なお、一回のMS/MS分析で末端から離れた断片について、多重度が大きくなりすぎるような場合には、適当な2次イオンのうち、特定のイオン群の中心ピーク1本を再びトラップしてMS3分析を行ってもよい。 If the multiplicity of a fragment far from the end in one MS / MS analysis is too large, one central peak of a specific ion group is trapped again among appropriate secondary ions. MS 3 analysis may be performed.

上記のような生体試料の所定割合での重水素置換は、所定の割合でD2Oを含む水(H2O/D2O)の中に生体試料を溶解することによって行うことができる。質量分析用のサンプルとしては、該重水素置換を行った生体試料を凍結乾燥させたものを使用する。解析に使用する質量分析装置は特に限定しないが、イオントラップ型質量分析装置を用いることが望ましい。 Deuterium substitution at a predetermined ratio of the biological sample as described above can be performed by dissolving the biological sample in water (H 2 O / D 2 O) containing D 2 O at a predetermined ratio. As a sample for mass spectrometry, a lyophilized biological sample subjected to the deuterium substitution is used. The mass spectrometer used for the analysis is not particularly limited, but it is desirable to use an ion trap mass spectrometer.

本発明の所定の割合での重水素置換に基づく生体試料の構造解析法は、タンパク質・ペプチドの他に、糖鎖の構造解析に用いることもできる。特に、糖には多数の交換可能な水素原子が存在することから、糖鎖のついたペプチドの同定や分子量の決定に、この方法が威力を発揮する。   The structure analysis method of a biological sample based on deuterium substitution at a predetermined ratio of the present invention can be used for structure analysis of sugar chains in addition to proteins and peptides. In particular, since there are a large number of exchangeable hydrogen atoms in sugars, this method is effective in identifying peptides with sugar chains and determining molecular weight.

また、重水素による置換の割合は、上記の50%に限定するものではなく、例えば、純粋な多糖類の場合、H2OとD2Oの混合比を4:1に変えて、分岐しないピラノース環1個あたり重水素原子1個が対応するようにすると、ピラノース環のおおよその数を見積もることができる。 The ratio of substitution with deuterium is not limited to the above 50%. For example, in the case of a pure polysaccharide, the mixing ratio of H 2 O and D 2 O is changed to 4: 1 so as not to branch. If one deuterium atom corresponds to one pyranose ring, the approximate number of pyranose rings can be estimated.

以下、図3のようなアミノ酸配列を有するインスリンB鎖(アミノ酸残基数30、分子量3496、交換可能な水素原子の数49)に対し、交換可能な水素原子の50%を重水素で置換し、質量分析を行った例を以下に示す。   Hereinafter, 50% of exchangeable hydrogen atoms are substituted with deuterium for insulin B chain (amino acid residue number 30, molecular weight 3496, exchangeable hydrogen atom number 49) having the amino acid sequence as shown in FIG. Examples of mass spectrometry are shown below.

まず、2mgのインスリンB鎖を0.5mlの50%重水に溶解した後、凍結乾燥させることにより、交換可能な水素原子の50%が重水素置換されたインスリンB鎖サンプルを得た。
上記50%重水素置換されたインスリンB鎖サンプルと、重水素置換を行わなかったインスリンB鎖サンプルをMS/MS分析したところ、重水素置換を行わなかったもの(図4上段)では天然の同位体存在比により8本に分かれたピークの中心(m/z=3496.71)が、50%重水素置換を行ったもの(図4下段)では、およそ2倍ほどに広がったピーク群の中心(m/z=3521.78)に移動した。これは(1)式から期待される質量の増加(r+Σδj+1=49+1)の50%
3521.78−3496.71=25.07≒(49+1)/2
と正確に一致することがわかった。
First, 2 mg of insulin B chain was dissolved in 0.5 ml of 50% heavy water and then freeze-dried to obtain an insulin B chain sample in which 50% of exchangeable hydrogen atoms were deuterated.
MS / MS analysis of the insulin B chain sample with 50% deuterium substitution and the insulin B chain sample with no deuterium substitution was performed. The center of the peak group (m / z = 3496.71) divided into eight according to the body abundance ratio is 50% deuterium substituted (lower part of Fig. 4). /z=3521.78). This is 50% of the increase in mass expected from equation (1) (r + Σδ j +1 = 49 + 1)
3521.78−3496.71 = 25.07 ≒ (49 + 1) / 2
Was found to match exactly.

ペプチド結合周辺で生じる開裂のパターンを示す図。The figure which shows the pattern of the cleavage which arises around a peptide bond. 本発明の構造解析法におけるプロダクトイオンの同位体パターンを示す概略図。Schematic which shows the isotope pattern of the product ion in the structural analysis method of this invention. インスリンB鎖のアミノ酸配列。Amino acid sequence of insulin B chain. インスリンB鎖の50%重水素置換によるマススペクトル。Mass spectrum by 50% deuterium substitution of insulin B chain.

Claims (5)

所定の割合でD2Oを含む水の中で、生体試料の交換可能な水素原子を重水素原子に置換し、該生体試料を質量分析装置で分析することによって、その構造情報を得ることを特徴とする生体試料の構造解析法。 Substituting deuterium atoms for exchangeable hydrogen atoms in a biological sample in water containing D 2 O at a predetermined ratio, and analyzing the biological sample with a mass spectrometer to obtain structural information thereof Structural analysis method for biological samples. 所定の割合でD2Oを含む水の中で、タンパク質やペプチドの交換可能な水素原子を重水素原子に置換し、該タンパク質やペプチドを質量分析装置で分析することによって、そのアミノ酸配列を決定することを特徴とするアミノ酸配列決定法。 Determining the amino acid sequence of a protein or peptide by substituting deuterium atoms for exchangeable hydrogen atoms in water containing D 2 O at a predetermined ratio and analyzing the protein or peptide with a mass spectrometer A method for determining an amino acid sequence. 所定の割合でD2Oを含む水の中で、タンパク質やペプチドの交換可能な水素原子を重水素原子に置換し、該タンパク質やペプチドを質量分析装置でMS/MS(PSD)分析を行い、プロダクトイオンの同位体の存在比からアミノ酸配列を決定することを特徴とするアミノ酸配列決定法。 In a water containing D 2 O at a predetermined ratio, a replaceable hydrogen atom of a protein or peptide is replaced with a deuterium atom, and the protein or peptide is subjected to MS / MS (PSD) analysis with a mass spectrometer, An amino acid sequence determination method characterized by determining an amino acid sequence from the abundance ratio of product ion isotopes. 所定の割合でD2Oを含む水の中で、糖鎖の交換可能な水素原子を重水素原子に置換し、該糖鎖を質量分析装置で分析することによって、その構造を決定することを特徴とする糖鎖構造解析法。 In a water containing D 2 O at a predetermined ratio, the exchangeable hydrogen atom of a sugar chain is replaced with a deuterium atom, and the structure is determined by analyzing the sugar chain with a mass spectrometer. Characteristic method for analyzing sugar chain structure. 上記所定の割合が50%であることを特徴とする請求項1〜4のいずれかに記載の生体試料の構造解析法。   5. The method for analyzing a structure of a biological sample according to claim 1, wherein the predetermined ratio is 50%.
JP2004099863A 2004-03-30 2004-03-30 Structural analysis of biological samples Expired - Fee Related JP4407349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099863A JP4407349B2 (en) 2004-03-30 2004-03-30 Structural analysis of biological samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099863A JP4407349B2 (en) 2004-03-30 2004-03-30 Structural analysis of biological samples

Publications (2)

Publication Number Publication Date
JP2005283430A true JP2005283430A (en) 2005-10-13
JP4407349B2 JP4407349B2 (en) 2010-02-03

Family

ID=35181971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099863A Expired - Fee Related JP4407349B2 (en) 2004-03-30 2004-03-30 Structural analysis of biological samples

Country Status (1)

Country Link
JP (1) JP4407349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128923A (en) * 2006-11-24 2008-06-05 Taiyo Nippon Sanso Corp Pretreatment method of measurement by fabms
JP2010256104A (en) * 2009-04-23 2010-11-11 Kao Corp Evaluation method
WO2017047580A1 (en) * 2015-09-14 2017-03-23 株式会社島津製作所 Peptide assignment method and peptide assignment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128923A (en) * 2006-11-24 2008-06-05 Taiyo Nippon Sanso Corp Pretreatment method of measurement by fabms
JP2010256104A (en) * 2009-04-23 2010-11-11 Kao Corp Evaluation method
WO2017047580A1 (en) * 2015-09-14 2017-03-23 株式会社島津製作所 Peptide assignment method and peptide assignment system
JPWO2017047580A1 (en) * 2015-09-14 2018-05-31 株式会社島津製作所 Peptide assignment method and peptide assignment system

Also Published As

Publication number Publication date
JP4407349B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
Calderón‐Celis et al. Standardization approaches in absolute quantitative proteomics with mass spectrometry
Zhang et al. Overview of peptide and protein analysis by mass spectrometry
Breuker et al. Top-down identification and characterization of biomolecules by mass spectrometry
Griffin et al. Direct database searching with MALDI‐PSD spectra of peptides
Kim et al. Electron transfer dissociation mass spectrometry in proteomics
Zhurov et al. Principles of electron capture and transfer dissociation mass spectrometry applied to peptide and protein structure analysis
JP3766391B2 (en) Mass spectrometry spectrum analysis system
Ashcroft Protein and peptide identification: the role of mass spectrometry in proteomics
EP2912470B1 (en) Neutron encoded mass tags for analyte quantification
US8278115B2 (en) Methods for processing tandem mass spectral data for protein sequence analysis
CA2908962A1 (en) Mass labels
WO1998053323A2 (en) A method for de novo peptide sequence determination
JP5003274B2 (en) Mass spectrometry system and mass spectrometry method
Sepetov et al. The use of hydrogen‐deuterium exchange to facilitate peptide sequencing by electrospray tandem mass spectrometry
Liao et al. Shotgun proteomics in neuroscience
AU2001273568A1 (en) Methods and kits for sequencing polypeptides
Hop et al. An introduction to electrospray ionization and matrix‐assisted laser desorption/ionization mass spectrometry: Essential tools in a modern biotechnology environment
Nogueira et al. Survey of shotgun proteomics
US8507285B2 (en) Methods and devices for identifying biopolymers using mass spectroscopy
Bakhtiar et al. Mass spectrometry of the proteome
EP1145012A2 (en) Methods and kits for sequencing polypeptides
JP4407349B2 (en) Structural analysis of biological samples
Bailey et al. Mechanistic insights into intramolecular phosphate group transfer during collision induced dissociation of phosphopeptides
Paizs et al. Focus issue on peptide fragmentation
Flad et al. Primary structure and peptide mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees