JP2005282361A - Power producing device - Google Patents

Power producing device Download PDF

Info

Publication number
JP2005282361A
JP2005282361A JP2002383071A JP2002383071A JP2005282361A JP 2005282361 A JP2005282361 A JP 2005282361A JP 2002383071 A JP2002383071 A JP 2002383071A JP 2002383071 A JP2002383071 A JP 2002383071A JP 2005282361 A JP2005282361 A JP 2005282361A
Authority
JP
Japan
Prior art keywords
ice
heat
heat source
power
ice container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383071A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimizu
洋志 清水
Midori Shimizu
緑 清水
Akihiko Shimizu
明彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEI SOGO KENKYUSHO KK
Original Assignee
MEI SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEI SOGO KENKYUSHO KK filed Critical MEI SOGO KENKYUSHO KK
Priority to JP2002383071A priority Critical patent/JP2005282361A/en
Publication of JP2005282361A publication Critical patent/JP2005282361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power producing device for taking out a power from a heat source with room temperature such as the sun. <P>SOLUTION: This power producing device comprises the systems of a heat engine in which a peripheral fluid with room temperature is used as the heat source, the heat of fusion of ice is used as a cooling source, and refrigerants (ammonia, propane, CFC 21) are used as working fluids. A thermal efficiency is increased by the cogeneration of cooling and the use of solar heat, namely, by adding a double effective system of a cold heat source in which approx. 50% of a latent heat in temperatures between 0°C after the melting of the ice to the temperature of the heat source is used again for power generation. The power producing device is mounted on the marine engine of a hull apparatus. Ice consumed in the power producing device is taken from a sea water in arctic region into an ice container and transported to consuming sites by a tow ship. The ice container can easily transport the ice at low cost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は発電所や舶用エンジン等の熱機関に関する。
【0002】
【従来の技術】
発電所等で用いられるクローズサイクルでは熱源と冷却源を必要とする熱サイクルが用いられる。しかし、冷却源はほとんど注目されず、主に熱源の温度を高めることにより熱効率を向上させる方法が行われていた。
【0003】
エンジン等で用いられるオープンサイクルでは燃焼ガスを排気する熱サイクルが用いられ、主に熱源の温度を高めることにより熱効率を向上させる方法が行われていた。
【0004】
【発明が解決しようとする課題】
従来の技術は高温の熱源を必要とするため燃料が必要となる。しかし、燃焼ガスによる環境汚染の問題や将来的な燃料不足の問題がある。
【0005】
【課題を解決するための手段】
熱機関では冷却源の温度を下げることは、熱源の温度を上げることと同じ効果がある。本発明では、冷却源に氷の融解熱を用いて冷却温度を下げることにより、常温を熱源とする熱機関を可能とする。
【0006】
すなわち本発明によれば、熱源の温度は常温であり太陽熱等により自然に供給されるから燃料は不要になる。
【0007】
【発明の実施の形態】
本発明の実施の一形態について、図1にその系統図を示し説明する。
熱源系1の流体(周囲の海水、河川水、あるいは空気等)は、ポンプ(あるいはブロワー)2により蒸発器3に送られ、作動流体を蒸発させる。
この蒸気はタービン4に入り、蒸気の運動量によりタービン軸12が回転し、それに連結する動力出力13を生じる。タービンの排気は、氷の融解熱を用いた凝縮器5で凝縮し、再循環ポンプ10により加圧され、配管系11を再循環しクローズサイクルが形成される。
氷は、氷スラリーポンプ7により氷供給源6から凝縮器に送られ、凝縮器において氷の大部分は融解し、分離器8で氷スラリーと水に分離され、氷スラリーは再循環し、水は貯水槽9に排水される。
【0008】
主な設計因子である、作動流体、蒸発器、凝縮器の決め方を説明する。
熱源側は海水とし、冷却側は氷スラリーとする。
作動流体については、アンモニア(NH3)、フロン21(R21)、プロパン(C3H8)についてそれぞれの使い方をまとめる。
蒸発器は、水平置きのシェルチューブ形熱交換器とし、作動流体の保有量を少なくするために、管外を作動流体、管内を海水とする。この蒸発器の沸騰熱流束と加熱面の温度差の関係を図2に示す。沸騰熱流束は過熱度の約2乗に比例して増加するため、加熱面の温度差が大きくなると、熱流束が放物線状に増加する。この3種類の流体は、アンモニア、プロパン、フロン21の順に沸騰熱流束が大きいが、それらの相違は比較的小さい。
凝縮器は、同様に水平置きのシェルチューブ形熱交換器とし、氷濃度分布を一様に近くするために管内を氷スラリーとし、管外を作動流体の凝縮流とする。
この凝縮器の凝縮熱流束と冷却面の温度差の関係を図3に示す。凝縮熱流束は温度差にほぼ比例して増加している。この3種類の流体は、アンモニアが他の2種類に比べて凝縮熱流束が約6倍大きい。
伝熱管はアンモニアの場合は平滑管を用い、プロパンおよびフロン21の場合はフィン管(面積拡大率約10倍、フィン効率約0.7)を用いると、伝熱管内面の熱流束はほぼ同程度になり、装置も全体的に同程度になる。従って、以下ではアンモニアについてのみ示す。
伝熱面積を大きくしたとき、氷の消費率が減少する関係を図4に示す。図中の伝熱面積率は、熱源温度が28℃のときのタービン出力1(Kw)に対する蒸発器と凝縮器の伝熱面積の合計であり、各々約50%の割合である。伝熱面積率(m/Kw at28℃)は約4から約12の範囲が妥当である。発電所向けでは、熱源温度が安定して高くとれるから、資本効率を良くするために伝熱面積率を小さくとる。しかし、舶用エンジン向けでは、海水表面温度が10℃以上で運転可能とするために、伝熱面積率を大きくとる。このように、伝熱面積率を2種類選んで、熱源温度による冷熱効率(=タービン出力/氷の融解熱)の変化を図5に示す。
以上により、主な設計因子である、作動流体の選択と、そのときの蒸発器、凝縮器の大きさの決め方を、発電所向けと舶用エンジン向けについて、定量的に示した。
【0009】
氷の融解後の0℃から約20℃までの顕熱を冷房に利用することができる。この冷熱量を、熱源温度が28℃の発電量(冷熱効率0.07)と比較すると、エネルギー量では約3倍(冷熱の利用効率80%として、0.8*20/(80*0.07)=2.8)、電気量換算では、約40%(=2.8/7、COP=7として)の増加となる。
【0010】
太陽熱利用や各種の廃熱利用等により熱源温度を周囲の海水温度より高くすれば冷熱効率が図5に示すように増加する。例えば熱源温度が10℃増加すれば、冷熱効率は約3%増加し、電気出力では約40%(=0.03/0.07)の増加となる。
【0011】
冷房および太陽熱利用等とのコージェネレーションの基本的な一形態についての系統図を、基本的な系統図の図1にコージェネレーションの部分を追加して図6に示す。熱源系の流体1は、太陽熱吸収保温槽16により周囲の温度より高い輻射平衡温度に保温され、ポンプ2により蒸発器3に送られ、作動流体を蒸発させる。この蒸気はタービン4に入り、蒸気の運動量によりタービン軸12が回転し、それに連結する動力出力13を生じる。タービンの排気は、氷の融解熱を用いた凝縮器5で凝縮し液相になる。液相はポンプ10により加圧され、配管11を再循環しクローズサイクルが形成される。
氷は、氷スラリーポンプ7により氷供給源6から凝縮器に送られ、凝縮器において氷の大部分は融解し、分離器8で氷スラリーと水に分離され、氷スラリーは再循環する。
水は送水ポンプ15により冷房負荷系14へ送水され、約0℃から約20℃までの顕熱を冷房に利用し、その後貯水槽9に貯水される。この貯水槽の水は海氷が融けた水であるから、必要な処理を加えた後に飲料水や工業用水に利用できる可能性がある。
【0012】
氷の融解後の0℃から熱源温度までの顕熱の約50%を再び発電に利用することができる。この二重効用による発電量の増加率は、熱源温度10℃のときには約3%から、熱源温度40℃のときには約12%と熱源温度により増加する。
この二重効用の系統は、基本的な系統図の図1に二重効用の部分を追加して図7に示す。作動流体は蒸発器の出口で分岐し、小形のタービン17、
小形の凝縮器18、小形のポンプ19を流れ、蒸発器の入口で合流する。このタービンには小形の動力出力20が連結する。冷却系の水は、分離器8から送水ポンプ15により凝縮器18へ送水され、顕熱の約50%を利用し、その後貯水槽9に排水される。
【0013】
大きな氷の重量・体積は、海中で支える必要がある。氷の貯蔵は、円筒形の断熱層の容器に入れる。氷の比重が0.92であるから、体積の約90%が海中に、約10%が海上に現れる。容器壁の応力は水面上の約10%の重量を支えるため海面付近で大きくなるが、容器壁はプラスチック系の材料で耐える。
【0014】
氷の貯蔵と輸送を兼ねる氷コンテナに関する基本的な一形態について図8に概念図を示す。
氷コンテナ21は、両端に鏡板を有した円筒形の容器である。壁面22は、強度部材と断熱材からなる。断熱材は、強度部材の片側あるいは両側に設ける。強度部材は繊維強化プラスチック(FRP)系(厚さ10mmから50mm)、断熱材は発泡体プラスチック系(厚さ約150mmから300mm)を用いる。
氷を粉砕して海水に混ぜて氷スラリーとしてポンプで吸引し氷コンテナの上部の主ノズル23から流し込み、氷コンテナの下部の補助ノズル25から別のポンプにより液を排出し、氷コンテナをほぼ氷で満たす。容器内で氷スラリーを水平方向に移動させるために上部の補助ノズル24を用い、垂直方向に移動させるために下部の補助ノズル25を用いる。
氷コンテナ船に氷が積載されると、氷の消費地まで輸送するため、曳航用ロープ28のロープ集結部29を別の曳航船により牽引する。
氷の消費地において、氷コンテナ船の氷がなくなると、氷の積載地点まで輸送する動力を低減するため、氷コンテナ船を解体する。このため、両端の鏡板を分離線26で分離し、中央の円筒部を軸に平行の分離線27で分離し、分解・組立て可能な構造とする。
現状の造船ドックで建造可能な氷コンテナ船の1例としては、船体直径36m、船体長さ300m、容積30万立方メートル程度である。
【0015】
電気出力1万Kwの設備における、氷の消費量は、冷熱効率を6%として、月間約130万トン(140万m3)になる。氷の貯蔵量を1月分の消費量とすれば、容積30万立方メートルの氷コンテナ船が約5基必要になり、その海面の表面積は、約6万平方メートルとなる。氷貯蔵の基本的な一形態を図9に示すように、海上設備30は、海中に複数の氷コンテナ21を繋留し、その海面上に太陽熱吸収保温槽16を設ける。太陽熱を受ける面積は、熱消費量より太陽熱の受熱量を大きくするために、約25万平方メートル必要となる。熱源流体には純水が用いられ、太陽熱吸収保温槽内を流れるとき、太陽熱による液温上昇が短時間で輻射平衡温度に達するように、その流れの厚さを薄く(約2mmから約20mm)とる。
【0016】
図1の系統図により舶用エンジンを構成することができる。このような舶用エンジンにおける機器の配置に関する基本的な一形態について図10に概念図を示す。
船本体31の底部に氷コンテナ21が格納され、その上部に蒸発器3、凝縮器5、がある。タービン4は底部に対称に2基設け、それぞれのタービン軸にはスクリュウ32が連結される。
熱源には周囲の海水を用いる。船が前進しているとき、船の速度による海水の動圧を失わないようにしながら海水をポンプで吸込み、蒸発器で熱交換したあと、船の後方に向けて放出し、ポンプ吸込みによる流れの運動エネルギーを船の推力に利用する。
【0017】
氷の積載地点は、極寒冷地の海洋であり、気候は陸地に比べると厳しくなく、年降水量も少ない。従って、その氷は主に海氷(海水が凍結してできた氷)であり、ブライン(塩分濃度が大きく凍結しない液相、約20%重量)が含まれている。
氷の積載方法は、スタート時には氷コンテナを満液状態にしてノズルの高さを低くしておき、砕氷船により氷原等の中に進入し、氷を粉砕して海水に混ぜて氷スラリーとしてポンプで吸引し氷コンテナの上部の主ノズルから流し込み、氷コンテナの底部の補助ノズルから別のポンプにより液を排出し、氷コンテナをほぼ氷で満たす。
【0018】
【発明の効果】
本発明の動力産出装置は、周囲の常温の熱源から動力を取り出すから燃料が不要になる。
【0019】
本発明の動力産出装置は、発電、冷房、太陽熱利用のコージェネレーションを組むことにより、等価電気出力が増加し、プラントの経済的効率が向上する。
【0020】
本発明の動力産出装置は、冷熱源の二重効用の系統を組むことにより、発電量の増加率は、熱源温度10℃のときには約3%から、熱源温度40℃のときには約12%と熱源温度により増加し、プラントの経済的効率が向上する。
【0021】
本発明の動力産出装置を、舶用エンジンに適用することができる。海水表面温度が高い方とき冷熱効率が高くなるが、10℃以上で運転が可能とみなせる。
【0022】
本発明の氷コンテナは、複数基を直列に連結して曳航船により牽引するから、氷の輸送が簡易かつ低コストに行える。
【0023】
本発明の氷コンテナは、分解・組立てが可能であるから、氷の消費地において、氷がなくなると分解して占有体積を小さくして、氷の積載地点までの輸送を低コストに行える。
【0024】
本発明の氷コンテナは、分解・組立てが可能であり、円筒部を複数連結し体積を大きくし、輸送を低コストに行える。
【0025】
本発明の氷コンテナは、上部の主ノズル、下部の補助ノズル、上部の補助ノズルを備えているから、氷スラリーや海水をポンプに吸込み必要な場所に吐出し、氷の出し入れを、簡易かつ低コストに行える。
【図面の簡単な説明】
【図1】本発明の実施の基本的な一形態を説明する系統図である。
【図2】本発明の実施における作動流体の選択方法を説明する特性値(沸騰熱流束と加熱面の温度差の関係)の計算結果を示す。
【図3】本発明の実施における作動流体の選択方法を説明する特性値(凝縮熱流束と冷却面の温度差の関係)の計算結果を示す。
【図4】本発明の実施における伝熱面積の選択方法を説明する特性値(氷消費率と伝熱面積率の関係)の計算結果を示す。
【図5】本発明の実施における伝熱面積の選択方法を説明する特性値(冷熱効率と、熱源温度の関係)の計算結果を示す。
【図6】本発明の実施の冷房および太陽熱利用等とのコージェネレーションの基本的な一形態を説明する系統図である。
【図7】本発明の実施の発電設備における海上設備の主要な一部分の基本的な一形態を説明する概念図である。
【図8】本発明の実施の氷コンテナ船に関する基本的な一形態を説明する概念図である。
【図9】本発明の実施の舶用エンジンにおける機器の配置に関する基本的な一形態を説明する概念図である。
【符号の説明】
1:熱源、 2:熱源系ポンプ、
3:蒸発器、 4:タービン、
5:凝縮器、 6:氷供給源、
7:氷スラリーポンプ、 8:氷スラリーと水の分離器、
9:貯水槽、 10:再循環ポンプ、
11:配管系、 12:タービン回転軸、
13:動力出力(発電機等) 14:冷房負荷系、
15:送水ポンプ 16:太陽熱吸収保温槽、
17:二重効用系統のタービン 18:二重効用系統の凝縮器
19:二重効用系統の再循環ポンプ 20:二重効用系統の動力出力
21:氷コンテナ本体 22:氷コンテナ壁面
23:氷コンテナ主ノズル 24:氷コンテナ上部補助ノズル
25:氷コンテナ下部補助ノズル 26:氷コンテナ鏡板分解線
27:氷コンテナ円筒部分解線 28:氷コンテナ曳航用ロープ
29:氷コンテナ曳航用ロープ集結部 30:海上設備
31:船本体 32:スクリュウ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat engine such as a power plant or a marine engine.
[0002]
[Prior art]
A closed cycle used in a power plant or the like uses a heat cycle that requires a heat source and a cooling source. However, little attention has been paid to the cooling source, and a method of improving the thermal efficiency mainly by increasing the temperature of the heat source has been performed.
[0003]
In an open cycle used in an engine or the like, a thermal cycle for exhausting combustion gas is used, and a method for improving thermal efficiency mainly by increasing the temperature of a heat source has been performed.
[0004]
[Problems to be solved by the invention]
Since the conventional technology requires a high-temperature heat source, fuel is required. However, there are problems of environmental pollution due to combustion gases and future fuel shortages.
[0005]
[Means for Solving the Problems]
In a heat engine, lowering the temperature of the cooling source has the same effect as raising the temperature of the heat source. In the present invention, a heat engine having a normal temperature as a heat source is made possible by lowering the cooling temperature using the melting heat of ice as a cooling source.
[0006]
That is, according to the present invention, the temperature of the heat source is normal temperature and is naturally supplied by solar heat or the like, so no fuel is required.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
The fluid of the heat source system 1 (surrounding seawater, river water, air, etc.) is sent to the evaporator 3 by the pump (or blower) 2 to evaporate the working fluid.
This steam enters the turbine 4, and the turbine shaft 12 rotates due to the momentum of the steam and generates a power output 13 connected thereto. The exhaust from the turbine is condensed by the condenser 5 using the heat of melting of ice, pressurized by the recirculation pump 10, and recirculated through the piping system 11 to form a closed cycle.
The ice is sent from the ice supply source 6 to the condenser by the ice slurry pump 7, where most of the ice melts and is separated into ice slurry and water by the separator 8, and the ice slurry is recirculated to the water. Is drained into the water tank 9.
[0008]
Explain how to determine the main design factors, working fluid, evaporator and condenser.
The heat source side is seawater and the cooling side is ice slurry.
Regarding the working fluid, how to use each of ammonia (NH3), Freon 21 (R21), and propane (C3H8) will be summarized.
The evaporator is a horizontally placed shell tube heat exchanger, and in order to reduce the amount of working fluid retained, the outside of the tube is a working fluid and the inside of the tube is seawater. The relationship between the boiling heat flux of this evaporator and the temperature difference between the heating surfaces is shown in FIG. Since the boiling heat flux increases in proportion to the square of the superheat degree, when the temperature difference on the heating surface increases, the heat flux increases in a parabolic shape. These three types of fluids have large boiling heat fluxes in the order of ammonia, propane, and Freon 21, but the difference between them is relatively small.
Similarly, the condenser is a horizontally placed shell tube heat exchanger, in order to make the ice concentration distribution nearly uniform, the inside of the tube is made of ice slurry, and the outside of the tube is made of the condensed flow of the working fluid.
FIG. 3 shows the relationship between the condensation heat flux of this condenser and the temperature difference between the cooling surfaces. The condensation heat flux increases almost in proportion to the temperature difference. These three types of fluids have a condensation heat flux of about 6 times larger than that of the other two types of ammonia.
When the heat transfer tube is ammonia, a smooth tube is used, and in the case of propane and chlorofluorocarbon 21, fin tubes (approximately 10 times the area expansion rate and fin efficiency approximately 0.7) are used. Therefore, the apparatus is generally the same level. Therefore, only ammonia is shown below.
FIG. 4 shows the relationship in which the ice consumption rate decreases when the heat transfer area is increased. The heat transfer area ratio in the figure is the sum of the heat transfer areas of the evaporator and the condenser with respect to the turbine output 1 (Kw) when the heat source temperature is 28 ° C., and each is a ratio of about 50%. A range of about 4 to about 12 is appropriate for the heat transfer area ratio (m 2 / Kw at 28 ° C.). For power plants, the heat source temperature is stable and high, so the heat transfer area ratio is made small to improve capital efficiency. However, for marine engines, the heat transfer area ratio is increased to enable operation at seawater surface temperatures of 10 ° C. or higher. Thus, FIG. 5 shows changes in the cooling efficiency (= turbine output / heat of melting of ice) depending on the heat source temperature by selecting two types of heat transfer area ratios.
Based on the above, the selection of the working fluid, which is the main design factor, and how to determine the size of the evaporator and condenser at that time were quantitatively shown for power plants and marine engines.
[0009]
Sensible heat from 0 ° C. to about 20 ° C. after melting of ice can be used for cooling. Compared with the amount of power generated at a heat source temperature of 28 ° C. (cooling efficiency 0.07), this amount of cooling is approximately three times as much energy (0.8 * 20 / (80 * 0. 07) = 2.8), in terms of electricity, the increase is about 40% (= 2.8 / 7, assuming COP = 7).
[0010]
If the heat source temperature is made higher than the surrounding seawater temperature by using solar heat or various waste heat, the cooling efficiency is increased as shown in FIG. For example, if the heat source temperature is increased by 10 ° C., the cooling efficiency is increased by about 3%, and the electrical output is increased by about 40% (= 0.03 / 0.07).
[0011]
FIG. 6 shows a system diagram of a basic form of cogeneration with cooling, solar heat utilization, etc., with the cogeneration part added to FIG. 1 of the basic system diagram. The heat source fluid 1 is kept at a radiation equilibrium temperature higher than the ambient temperature by the solar heat absorption heat insulation tank 16 and sent to the evaporator 3 by the pump 2 to evaporate the working fluid. This steam enters the turbine 4, and the turbine shaft 12 rotates due to the momentum of the steam and generates a power output 13 connected thereto. The turbine exhaust is condensed into a liquid phase by the condenser 5 using the heat of melting of ice. The liquid phase is pressurized by the pump 10 and recirculated through the pipe 11 to form a closed cycle.
Ice is sent from the ice source 6 to the condenser by the ice slurry pump 7, where most of the ice is melted and separated into ice slurry and water by the separator 8, and the ice slurry is recirculated.
Water is sent to the cooling load system 14 by the water pump 15, sensible heat from about 0 ° C. to about 20 ° C. is used for cooling, and then stored in the water tank 9. Since the water in this water tank is melted sea ice, it may be used for drinking water and industrial water after the necessary treatment.
[0012]
About 50% of the sensible heat from 0 ° C. to the heat source temperature after melting of ice can be used again for power generation. The rate of increase in the amount of power generated by this double effect increases from about 3% at a heat source temperature of 10 ° C. to about 12% at a heat source temperature of 40 ° C., depending on the heat source temperature.
This double effect system is shown in FIG. 7 with the double effect part added to FIG. 1 of the basic system diagram. The working fluid branches off at the outlet of the evaporator, and a small turbine 17,
It flows through a small condenser 18 and a small pump 19 and joins at the inlet of the evaporator. A small power output 20 is connected to the turbine. Water in the cooling system is fed from the separator 8 to the condenser 18 by the water feed pump 15, uses about 50% of the sensible heat, and is then drained into the water tank 9.
[0013]
Large ice weight and volume must be supported underwater. Ice storage is placed in a cylindrical insulating container. Since the specific gravity of ice is 0.92, about 90% of the volume appears in the sea and about 10% appears on the sea. The stress on the container wall increases near the sea surface to support about 10% of the weight on the water surface, but the container wall is made of plastic material.
[0014]
FIG. 8 shows a conceptual diagram of a basic form relating to an ice container that also serves as storage and transportation of ice.
The ice container 21 is a cylindrical container having end plates at both ends. The wall surface 22 is made of a strength member and a heat insulating material. The heat insulating material is provided on one side or both sides of the strength member. The strength member is a fiber reinforced plastic (FRP) system (thickness 10 mm to 50 mm), and the heat insulating material is a foam plastic system (thickness about 150 mm to 300 mm).
Ice is pulverized, mixed with seawater, sucked with a pump as ice slurry, poured from the main nozzle 23 at the top of the ice container, discharged from the auxiliary nozzle 25 at the bottom of the ice container with another pump, and the ice container is almost iced. Fill with. An upper auxiliary nozzle 24 is used to move the ice slurry in the horizontal direction in the container, and a lower auxiliary nozzle 25 is used to move the ice slurry in the vertical direction.
When ice is loaded on the ice container ship, the rope collecting portion 29 of the tow rope 28 is pulled by another tow ship in order to transport to the ice consuming area.
When ice in the ice container ship runs out of ice, the ice container ship is dismantled to reduce the power to transport it to the ice loading point. For this reason, the end plates at both ends are separated by a separation line 26, and the central cylindrical portion is separated by a separation line 27 parallel to the axis so that the structure can be disassembled and assembled.
As an example of an ice container ship that can be built with the current shipbuilding dock, the hull diameter is 36 m, the hull length is 300 m, and the volume is about 300,000 cubic meters.
[0015]
The consumption of ice in a facility with an electrical output of 10,000 Kw is about 1.3 million tons (1.4 million m3) per month with a cooling efficiency of 6%. If the amount of ice stored in January is consumed, about 5 ice container ships with a capacity of 300,000 cubic meters are required, and the sea surface area is about 60,000 square meters. As shown in FIG. 9 as one basic form of ice storage, the offshore facility 30 has a plurality of ice containers 21 tethered in the sea, and a solar heat absorption heat insulation tank 16 is provided on the sea surface. The area receiving solar heat requires about 250,000 square meters in order to increase the amount of solar heat received from the amount of heat consumed. Pure water is used as the heat source fluid, and when flowing in the solar heat absorption heat insulation tank, the flow thickness is reduced (about 2 mm to about 20 mm) so that the liquid temperature rise due to solar heat reaches the radiation equilibrium temperature in a short time. Take.
[0016]
The marine engine can be configured by the system diagram of FIG. FIG. 10 shows a conceptual diagram of a basic form relating to the arrangement of equipment in such a marine engine.
An ice container 21 is stored at the bottom of the ship body 31, and an evaporator 3 and a condenser 5 are provided at the top thereof. Two turbines 4 are provided symmetrically at the bottom, and a screw 32 is connected to each turbine shaft.
Surrounding seawater is used as a heat source. When the ship is moving forward, the seawater is pumped in while keeping the dynamic pressure of the seawater due to the speed of the ship, heat exchanged by the evaporator, and then discharged toward the rear of the ship. Use kinetic energy for ship thrust.
[0017]
The ice-loading point is the ocean in the extremely cold region, the climate is not as severe as the land, and the annual precipitation is low. Therefore, the ice is mainly sea ice (ice formed by freezing seawater), and contains brine (liquid phase having a high salinity concentration and not frozen, approximately 20% by weight).
The ice loading method is as follows. At the start, the ice container is full, the nozzle height is lowered, the ice breaker is entered into the ice field, etc., the ice is crushed, mixed with seawater, and pumped as ice slurry. Then, the liquid is discharged from the auxiliary nozzle at the bottom of the ice container by another pump, and the ice container is almost filled with ice.
[0018]
【The invention's effect】
Since the power producing apparatus of the present invention takes out power from a surrounding normal temperature heat source, no fuel is required.
[0019]
In the power production apparatus of the present invention, by combining power generation, cooling, and cogeneration using solar heat, the equivalent electrical output is increased and the economic efficiency of the plant is improved.
[0020]
In the power production apparatus of the present invention, the rate of increase in power generation is about 3% when the heat source temperature is 10 ° C. and about 12% when the heat source temperature is 40 ° C. It increases with temperature, improving the economic efficiency of the plant.
[0021]
The power production apparatus of the present invention can be applied to a marine engine. When the seawater surface temperature is higher, the cooling efficiency becomes higher, but it can be considered that operation is possible at 10 ° C or higher.
[0022]
Since the ice container of the present invention connects a plurality of units in series and is towed by a towed ship, ice can be transported easily and at low cost.
[0023]
Since the ice container of the present invention can be disassembled and assembled, it can be disassembled when the ice is exhausted to reduce the occupied volume and transport to the ice loading point at a low cost.
[0024]
The ice container of the present invention can be disassembled and assembled, and a plurality of cylindrical portions can be connected to increase the volume, so that transportation can be performed at low cost.
[0025]
The ice container of the present invention includes an upper main nozzle, a lower auxiliary nozzle, and an upper auxiliary nozzle. Therefore, ice slurry and seawater are sucked into a pump and discharged to a necessary place, and ice can be taken in and out easily. It can be done at cost.
[Brief description of the drawings]
FIG. 1 is a system diagram illustrating a basic embodiment of the present invention.
FIG. 2 shows calculation results of characteristic values (relationship between boiling heat flux and temperature difference of heating surface) for explaining a method of selecting a working fluid in the practice of the present invention.
FIG. 3 shows calculation results of characteristic values (relationship between condensation heat flux and cooling surface temperature) for explaining a method of selecting a working fluid in the embodiment of the present invention.
FIG. 4 shows calculation results of characteristic values (relationship between ice consumption rate and heat transfer area rate) for explaining a method for selecting a heat transfer area in the practice of the present invention.
FIG. 5 shows calculation results of characteristic values (relationship between cooling efficiency and heat source temperature) for explaining a method for selecting a heat transfer area in the embodiment of the present invention.
FIG. 6 is a system diagram illustrating one basic form of cogeneration with cooling and solar heat utilization according to the present invention.
FIG. 7 is a conceptual diagram illustrating a basic form of a main part of the offshore facility in the power generation facility according to the present invention.
FIG. 8 is a conceptual diagram for explaining a basic form regarding an ice container ship according to an embodiment of the present invention.
FIG. 9 is a conceptual diagram illustrating a basic form regarding the arrangement of devices in a marine engine according to the present invention.
[Explanation of symbols]
1: heat source, 2: heat source system pump,
3: Evaporator, 4: Turbine,
5: condenser, 6: ice source,
7: Ice slurry pump, 8: Ice slurry and water separator,
9: Water tank, 10: Recirculation pump,
11: piping system, 12: turbine rotating shaft,
13: Power output (generator, etc.) 14: Cooling load system,
15: Water pump 16: Solar heat absorption thermal insulation tank,
17: Double-effect system turbine 18: Double-effect system condenser 19: Double-effect system recirculation pump 20: Double-effect system power output 21: Ice container body 22: Ice container wall 23: Ice container Main nozzle 24: Ice container upper auxiliary nozzle 25: Ice container lower auxiliary nozzle 26: Ice container end plate decomposition line 27: Ice container cylindrical part decomposition line 28: Ice container tow rope 29: Ice container tow rope concentrator 30: Sea Equipment 31: Ship body 32: Screw

Claims (11)

周囲の常温の流体を熱源とし、氷の融解熱を冷却源とし、冷媒(アンモニア、プロパン、フロン21等)を作動流体として、熱機関の系統を構成することを特徴とする動力産出装置。A power generating apparatus comprising a heat engine system using a surrounding normal temperature fluid as a heat source, ice melting heat as a cooling source, and a refrigerant (ammonia, propane, Freon 21 or the like) as a working fluid. 請求項1記載の動力産出装置の系統において、作動流体をアンモニアとしたとき、熱源温度が28℃のときのタービン出力1(Kw)に対する蒸発器と凝縮器の伝熱面積の合計を伝熱面積率(m/Kw at28℃)と呼び、各々約50%の割合であり、この伝熱面積率を約4から約7(m/Kw at28℃)の範囲とすることを特徴とする発電用の動力産出装置。The system of the power production apparatus according to claim 1, wherein when the working fluid is ammonia, the total heat transfer area of the evaporator and the condenser with respect to the turbine output 1 (Kw) when the heat source temperature is 28 ° C is the heat transfer area. Power generation (m 2 / Kw at 28 ° C.), each at a ratio of about 50%, and the heat transfer area ratio being in the range of about 4 to about 7 (m 2 / Kw at 28 ° C.) Power production equipment for use. 請求項2記載の動力産出装置の系統において、伝熱面積率を約8から約12(m/Kw at28℃)の範囲とすることを特徴とする舶用エンジン用の動力産出装置。The power production apparatus for a marine engine according to claim 2, wherein the heat transfer area ratio is in the range of about 8 to about 12 (m 2 / Kw at 28 ° C). 請求項1または2記載の動力産出装置の系統において、氷の融解後の約0℃から約20℃までの顕熱を冷房に利用する系統を追加することを特徴とする動力産出装置。3. The power production apparatus according to claim 1, further comprising a system that uses sensible heat from about 0 ° C. to about 20 ° C. after cooling of ice for cooling. 請求項1または2記載の動力産出装置の系統において、太陽熱吸収保温槽等により熱源の温度を高くすることを特徴とする動力産出装置。3. The power production apparatus according to claim 1, wherein the temperature of the heat source is increased by a solar heat absorption heat insulating tank or the like. 4. 請求項1、2、3のいずれか一項記載の動力産出装置の系統において、氷の融解後の約0℃から熱源温度までの顕熱の約50%を再び発電等に利用し、冷熱源の二重効用の系統を追加することを特徴とする動力産出装置。4. The power generation apparatus system according to claim 1, wherein about 50% of sensible heat from about 0 ° C. to the heat source temperature after melting of ice is used again for power generation, etc. A power production system characterized by adding a dual-effect system. 形状は両端に鏡板を有した円筒形の容器であり、壁は強度部材と断熱材からなり、断熱材は強度部材の片側あるいは両側に設けることを特徴とする氷コンテナ装置。An ice container device characterized in that the shape is a cylindrical container having end plates at both ends, the wall is made of a strength member and a heat insulating material, and the heat insulating material is provided on one side or both sides of the strength member. 請求項7記載の氷コンテナ装置において、両端の鏡板を分離し、中央の円筒部を軸に平行な面で分離し、分解・組立てが可能であることを特徴とする氷コンテナ装置。8. The ice container device according to claim 7, wherein the end plates at both ends are separated, the central cylindrical portion is separated by a plane parallel to the axis, and disassembly / assembly is possible. 請求項7記載の氷コンテナ装置において、垂直対称面の上部に主ノズルを1基および補助ノズルを1基から2基設け、下部に補助ノズルを1基から3基設ける構造からなることを特徴とする氷コンテナ装置。8. The ice container device according to claim 7, wherein one main nozzle and one or two auxiliary nozzles are provided in the upper part of the vertical symmetry plane, and one to three auxiliary nozzles are provided in the lower part. Ice container equipment. 請求項7記載の氷コンテナ装置において、両端の鏡板付近に円周上に複数の曳航用ロープを取り付け、それらのロープの集結部を別の曳航船により牽引することを特徴とする氷コンテナ装置。8. The ice container apparatus according to claim 7, wherein a plurality of tow ropes are attached on the circumference in the vicinity of the end plates at both ends, and a concentrated portion of these ropes is pulled by another tow ship. 請求項1または3記載の動力産出装置の系統を搭載し、船底部に請求項10記載の氷コンテナを配置し、その上部に蒸発器、凝縮器等の機器を配置し、船底部の氷コンテナの両側に対称にタービ2基を配置し、各タービン軸にはスクリュウが連結される構造からなることを特徴とする船体装置。The system of the power production apparatus according to claim 1 or 3 is mounted, the ice container according to claim 10 is arranged on the bottom of the ship, and an apparatus such as an evaporator or a condenser is arranged on the top thereof, and the ice container at the bottom of the ship is arranged. A hull device characterized in that two turbines are arranged symmetrically on both sides of the turbine and a screw is connected to each turbine shaft.
JP2002383071A 2002-06-14 2002-12-06 Power producing device Pending JP2005282361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383071A JP2005282361A (en) 2002-06-14 2002-12-06 Power producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004514210 2002-06-14
JP2002383071A JP2005282361A (en) 2002-06-14 2002-12-06 Power producing device

Publications (1)

Publication Number Publication Date
JP2005282361A true JP2005282361A (en) 2005-10-13

Family

ID=35181051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383071A Pending JP2005282361A (en) 2002-06-14 2002-12-06 Power producing device

Country Status (1)

Country Link
JP (1) JP2005282361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785774A (en) * 2011-09-21 2012-11-21 颜维直 Method for pushing boat to advance and power system of boat
WO2016173389A1 (en) * 2015-04-29 2016-11-03 林溪石 Cold fusion reaction device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785774A (en) * 2011-09-21 2012-11-21 颜维直 Method for pushing boat to advance and power system of boat
WO2013040860A1 (en) * 2011-09-21 2013-03-28 Yan Weizhi Method for driving ship and power system for ship
CN102785774B (en) * 2011-09-21 2015-10-07 颜维直 Promote the method for ship advance and the power system of ship
WO2016173389A1 (en) * 2015-04-29 2016-11-03 林溪石 Cold fusion reaction device

Similar Documents

Publication Publication Date Title
US8544275B2 (en) Apparatus and method for storing heat energy
US20120319410A1 (en) System and method for thermal energy storage and power generation
US9903272B2 (en) Method and apparatus for integrating on-shore green and other on-shore power sources with a compressed air energy storage system on a floating power plant
US20090211249A1 (en) Installation for generating electrical energy from solar energy
US20160363114A1 (en) Thermal gradient hydroelectric power system and method
US10533776B2 (en) Heat storage device
JP2006181516A (en) Fresh water generator utilizing solar power generation
WO2018214231A1 (en) Multifunctional lng floating power generation unit using gas-steam combined cycle
WO2007136765A9 (en) Wind turbine system
CN101392729B (en) Wind power generator cooled by solar injection
JP7061133B2 (en) Natural gas liquefiers located on the surface of water bodies and related cooling methods
WO2007136731A2 (en) Wind turbine system
JP2005282361A (en) Power producing device
JP2020504258A (en) Systems and methods for sustainable generation of energy
RU2180305C2 (en) Complex for natural gas-field development
CN113898547A (en) Concealed ocean thermoelectric power generation system
CN102840112A (en) Novel seawater desalination temperature difference electricity generation combination device
WO2018105166A1 (en) System for producing renewable energy using deep water (deep sea water), and hydrogen and water obtained by system
CN114087147B (en) Full-submersible type ocean temperature difference energy underwater energy supply system
JP2010059803A (en) Temperature difference power generating device
CN115059952B (en) Ice source heat pump system and device utilizing phase change density difference for heat exchange
RU2129213C1 (en) Thermal power plant
EP4227498B1 (en) Cold recovery facility and marine vessel
WO2024048754A1 (en) Wind-power/buoyancy hybrid power generation device and wind-power/buoyancy hybrid power generation method
CN202645902U (en) Direct heat transfer heat seawater temperature difference power generation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105