JP2005281861A - METHOD FOR FORMING Al-DIFFUSED COATING LAYER, AND HEAT RESISTANT MEMBER HAVING Al-DIFFUSED COATING LAYER - Google Patents

METHOD FOR FORMING Al-DIFFUSED COATING LAYER, AND HEAT RESISTANT MEMBER HAVING Al-DIFFUSED COATING LAYER Download PDF

Info

Publication number
JP2005281861A
JP2005281861A JP2005055946A JP2005055946A JP2005281861A JP 2005281861 A JP2005281861 A JP 2005281861A JP 2005055946 A JP2005055946 A JP 2005055946A JP 2005055946 A JP2005055946 A JP 2005055946A JP 2005281861 A JP2005281861 A JP 2005281861A
Authority
JP
Japan
Prior art keywords
coating layer
powder
forming
diffusion coating
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005055946A
Other languages
Japanese (ja)
Other versions
JP4986402B2 (en
Inventor
Taichi Nagashima
太一 長嶋
Michio Saito
道雄 斉藤
Shinichi Kawasaki
真一 川崎
Mitsuaki Yamada
光昭 山田
Shinichiro Okada
慎一郎 岡田
Hiroyuki Okazaki
博行 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005055946A priority Critical patent/JP4986402B2/en
Publication of JP2005281861A publication Critical patent/JP2005281861A/en
Application granted granted Critical
Publication of JP4986402B2 publication Critical patent/JP4986402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a thin and uniform Al-diffused coating layer on the surface of a Ni base material, and to provide a heat resistant member obtained by the method. <P>SOLUTION: The method for forming the Al-diffused coating layer comprises burying the Ni base material in a packing agent containing 4 to 10 wt.% Al powder, and heating it to a temperature between 530 and 620°C from 460°C at a heating rate of 1 to 20°C/hour; or alternatively comprises burying the Ni base material in the packing agent containing 4 to 10 wt.% Al powder, and heating it in a temperature range between 450 and 550°C for 15 to 90 hours. The heat resistant member has the Al-diffused coating layer with a thickness of 1 nm to 1 mm uniformly formed on the surface of the Ni base material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、Ni基材にAl拡散コーティング層を形成する方法及びAl拡散コーティング層を有する耐熱部材に関する。   The present invention relates to a method for forming an Al diffusion coating layer on a Ni substrate and a heat resistant member having the Al diffusion coating layer.

Niめっき被膜やNi材料からなる基材に対し、その耐酸化性・耐食性を高めるために、クロムメッキなどを施すことがあるが、環境問題の面からクロムを利用することが難しくなってきた。   In order to improve the oxidation resistance and corrosion resistance of a Ni plating film or a base material made of a Ni material, chromium plating or the like may be applied, but it has become difficult to use chromium from the viewpoint of environmental problems.

一方、金属基材の表面にAl拡散コーティング層を形成して、耐酸化性・耐食性を高める表面処理方法として、Alパック法が開発されている(特許文献1及び特許文献2)。Alパック法とは、金属基材をパック剤(通常、Al粉末、アルミナ粉末及びハロゲン化活力剤からなる)に埋め込み、不活性ガス中で高温処理して、金属基材表面にAl拡散コーティング層を形成する方法である。   On the other hand, an Al pack method has been developed as a surface treatment method for improving oxidation resistance and corrosion resistance by forming an Al diffusion coating layer on the surface of a metal substrate (Patent Document 1 and Patent Document 2). In the Al pack method, a metal base material is embedded in a pack agent (usually made of Al powder, alumina powder and a halogenated activator), treated at a high temperature in an inert gas, and an Al diffusion coating layer is formed on the metal base surface. It is a method of forming.

しかしながら、従来のAlパック処理は、金属基材を埋め込むパック剤に含まれる活性種のAl粉末量が20〜30重量%程度と多いので、非常に反応速度が速い。従って、基材の厚さが数十mm以上であれば問題ないが、厚さが数十mm以下、特に数mm以下の微細基材や薄膜基材の場合には、基材に含まれるAl含有率が高くなることにより脆くなるため、適用することができなかった。
特開昭56−81668号公報 特開昭62−17165号公報
However, the conventional Al pack treatment has a very high reaction rate because the amount of active species Al powder contained in the pack agent for embedding the metal substrate is as large as about 20 to 30 wt%. Therefore, there is no problem if the thickness of the substrate is several tens mm or more, but in the case of a fine substrate or a thin film substrate having a thickness of several tens mm or less, particularly several mm or less, Al contained in the substrate. Since it became brittle when the content rate increased, it could not be applied.
JP 56-81668 A JP-A-62-17165

本発明の課題は、Ni基材の表面に薄くて均一なAl拡散コーティング層を形成する方法及び該方法によって得られる耐熱部材を提供することにある。   An object of the present invention is to provide a method for forming a thin and uniform Al diffusion coating layer on the surface of a Ni substrate and a heat-resistant member obtained by the method.

本発明者らは、鋭意検討した結果、Alパック処理における、パック剤中のAl粉末含有量及び処理温度が互いに影響し合って、反応速度に大きく寄与することを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the Al powder content in the pack agent and the treatment temperature in the Al pack treatment influence each other and greatly contribute to the reaction rate, and complete the present invention. It came.

すなわち、本発明は、下記に示すとおりのAl拡散コーティング層の形成方法及びAl拡散コーティング層を有する耐熱部材を提供するものである。
項1. Ni基材を、4〜10重量%のAl粉末を含有するパック剤中に埋め込み、460℃から、1〜20℃/時間の昇温速度で、530〜620℃の範囲まで昇温することにより加熱処理することを特徴とするAl拡散コーティング層の形成方法。
項2. Ni基材を、4〜10重量%のAl粉末を含有するパック剤中に埋め込み、450〜550℃の範囲で15〜90時間保持することにより加熱処理することを特徴とするAl拡散コーティング層の形成方法。
項3. Ni基材が多孔体状であることを特徴とする項1または2に記載のAl拡散コーティング層の形成方法。
項4. 項1〜3のいずれかに記載の方法によって得られる、Ni基材の表面に1nm〜1mmの厚さで均一にAl拡散コーティング層が形成されていることを特徴とする耐熱部材。
That is, the present invention provides a method for forming an Al diffusion coating layer and a heat resistant member having the Al diffusion coating layer as described below.
Item 1. By embedding a Ni base material in a pack containing 4 to 10% by weight of Al powder, the temperature is increased from 460 ° C. to a range of 530 to 620 ° C. at a temperature increase rate of 1 to 20 ° C./hour. A method of forming an Al diffusion coating layer, characterized by heat treatment.
Item 2. An Al diffusion coating layer, characterized in that a Ni base material is embedded in a pack containing 4 to 10% by weight of Al powder and heat-treated by holding at 450 to 550 ° C. for 15 to 90 hours. Forming method.
Item 3. Item 3. The method for forming an Al diffusion coating layer according to Item 1 or 2, wherein the Ni substrate is porous.
Item 4. Item 4. A heat-resistant member obtained by the method according to any one of Items 1 to 3, wherein an Al diffusion coating layer is uniformly formed with a thickness of 1 nm to 1 mm on the surface of a Ni substrate.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のAl拡散コーティング層の形成方法は、Ni基材をAlパック剤中に埋め込み、加熱処理することにより行われる。   The Al diffusion coating layer forming method of the present invention is performed by embedding a Ni base material in an Al pack agent and heat-treating it.

本発明に用いるNi基材の形状としては、多孔体状、繊維状、中空形状などが挙げられ、特に限定されないが、金属骨格の太さが100〜500μmの三次元網状構造多孔体や、直径が1nm〜500μmで長さが10nm〜1mの繊維などのような微細な形状の場合には、本発明の方法が特に効果的である。また、Ni基材は、FeやCrなどの元素を含んでいてもよい。   Examples of the shape of the Ni base material used in the present invention include a porous body shape, a fiber shape, a hollow shape, and the like, and are not particularly limited, but a three-dimensional network structure porous body having a metal skeleton thickness of 100 to 500 μm, Is a fine shape such as a fiber having a length of 1 nm to 500 μm and a length of 10 nm to 1 m, the method of the present invention is particularly effective. In addition, the Ni base material may contain elements such as Fe and Cr.

本発明に用いるパック剤は、Al粉末、不活性耐火材料(例えば、アルミナ)の粉末、及びハロゲン化活力剤(例えば、NH4Cl、NH4I、NH4F、NaCl、NaFなど)の粉末からなる。パック剤中のAl粉末の含有量は、4〜10重量%であり、5〜7重量%であるのが好ましい。パック剤中のAl粉末量が多すぎると、Alパック処理におけるAlの拡散速度が速すぎてAl拡散が広がり、処理後のNi基材が脆くなる。逆に、Al粉末量が少なすぎると、Alの拡散にばらつきを生じ、均一なAl拡散コーティング層が形成されない。 The pack agent used in the present invention is a powder of Al powder, a powder of inert refractory material (for example, alumina), and a powder of halogenated activator (for example, NH 4 Cl, NH 4 I, NH 4 F, NaCl, NaF, etc.) Consists of. The content of the Al powder in the pack agent is 4 to 10% by weight, and preferably 5 to 7% by weight. If the amount of Al powder in the pack agent is too large, the diffusion rate of Al in the Al pack treatment is too fast and Al diffusion spreads, and the Ni substrate after treatment becomes brittle. On the other hand, if the amount of Al powder is too small, variation in Al diffusion occurs, and a uniform Al diffusion coating layer is not formed.

加熱処理は、N2、H2、Ar及びこれらの混合ガスなどの非酸化雰囲気中で行う。 The heat treatment is performed in a non-oxidizing atmosphere such as N 2 , H 2 , Ar, and a mixed gas thereof.

加熱処理の際には、任意の昇温速度で室温から460℃まで昇温した後、1〜20℃/時間の昇温速度で、530〜620℃の範囲まで昇温する。目的物の品質と作業性のバランスを考慮すると、460℃からの昇温は、5〜10℃/時間の昇温速度で行うのが好ましい。   In the heat treatment, the temperature is raised from room temperature to 460 ° C. at an arbitrary rate of temperature rise, and then raised to a range of 530 to 620 ° C. at a rate of 1 to 20 ° C./hour. Considering the balance between the quality of the object and workability, it is preferable to raise the temperature from 460 ° C. at a rate of 5 to 10 ° C./hour.

また、上記方法以外に、450〜550℃の範囲で15〜90時間保持することにより加熱処理することもできる。この場合、温度が低すぎたり時間が短すぎると反応が不十分である。一方、温度が高すぎると脆化が促進され、時間が長すぎると脆化の促進だけでなく生産に支障をきたす。450〜490℃の範囲で20〜30時間保持することが好ましい。   In addition to the above method, heat treatment can be performed by holding at 450 to 550 ° C. for 15 to 90 hours. In this case, if the temperature is too low or the time is too short, the reaction is insufficient. On the other hand, if the temperature is too high, embrittlement is promoted, and if the time is too long, not only the embrittlement is promoted but also production is hindered. It is preferable to hold in the range of 450 to 490 ° C. for 20 to 30 hours.

以上のようにして、Alパック処理における、パック剤中のAl粉末含有量及び処理温度を特定することにより、Alパック処理の反応速度を好適に制御することができる。そして、Ni基材の表面に1nm〜1mmの厚さで均一にAl拡散コーティング層が形成されるので、耐熱性、耐酸化性、耐食性に優れた耐熱部材を得ることができる。   As described above, the reaction rate of the Al pack treatment can be suitably controlled by specifying the Al powder content in the pack agent and the treatment temperature in the Al pack treatment. And since an Al diffusion coating layer is uniformly formed in the thickness of 1 nm-1 mm on the surface of Ni base material, the heat-resistant member excellent in heat resistance, oxidation resistance, and corrosion resistance can be obtained.

本発明のAl拡散コーティング層の形成方法は、比較的低温で、且つ活性のあるAl粉末の使用を少量に抑えた状態で実施されるため、Ni基材の脆化を抑制し、微細基材や薄膜基材にも均一に表面処理を施すことが可能である。   The method for forming an Al diffusion coating layer of the present invention is performed at a relatively low temperature and in a state where the use of active Al powder is suppressed to a small amount. It is also possible to uniformly treat the surface of a thin film substrate.

本発明の耐熱部材は、Ni基材の表面に1nm〜1mmの厚さで均一にAl拡散コーティング層が形成されているので、耐熱性、耐酸化性、耐食性、耐衝撃性、強度(硬度)、耐摩耗性、耐傷付き性、耐熱衝撃性、耐変色性等に優れている。また、Al成分が表層に存在しているため、更に表面をAl由来の化合物(例えば、アルミナ)等で被覆する場合に、親和性を高め、密着性を良好にする効果もある。   Since the Al diffusion coating layer is uniformly formed on the surface of the Ni base material with a thickness of 1 nm to 1 mm, the heat resistant member of the present invention has heat resistance, oxidation resistance, corrosion resistance, impact resistance, and strength (hardness). Excellent wear resistance, scratch resistance, thermal shock resistance, discoloration resistance, etc. In addition, since the Al component is present in the surface layer, when the surface is further coated with an Al-derived compound (for example, alumina) or the like, there is an effect of increasing the affinity and improving the adhesion.

以下に実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the examples.

実施例1
150×150×300mmの蓋付るつぼの中で、75×75×11mmの三次元網状構造Ni多孔体(大阪ガスケミカル(株)製「グリスフィルター」、金属骨格の太さ400μm)2個を、アルミナ粉末87.0重量%、Al粉末5.0重量%及びNH4Cl粉末8.0重量%からなるAlパック剤中に埋め込み、窒素希釈の水素雰囲気下で、電気炉にて480℃まで4時間かけて昇温し、その後、7℃/時間の昇温速度で620℃まで20時間かけて昇温した(Alパック処理)。EPMA(電子プローブマイクロ分析)により測定したAl拡散コーティング層の厚さは90μmであった。
Example 1
In a crucible with a lid of 150 × 150 × 300 mm, two 75 × 75 × 11 mm three-dimensional network structure Ni porous body (“Gris filter” manufactured by Osaka Gas Chemical Co., Ltd., 400 μm thick metal skeleton) It was embedded in an Al pack agent composed of 87.0% by weight of alumina powder, 5.0% by weight of Al powder, and 8.0% by weight of NH 4 Cl powder, and up to 480 ° C. in an electric furnace under a hydrogen atmosphere diluted with nitrogen. The temperature was raised over time, and then the temperature was raised to 620 ° C. over 20 hours at a rate of 7 ° C./hour (Al pack treatment). The thickness of the Al diffusion coating layer measured by EPMA (electron probe microanalysis) was 90 μm.

実施例2
150×150×300mmの蓋付るつぼの中で、75×75×11mmの三次元網状構造Ni多孔体(大阪ガスケミカル(株)製「グリスフィルター」、金属骨格の太さ400μm)2個を、アルミナ粉末87.0重量%、Al粉末5.0重量%及びNH4Cl粉末8.0重量%からなるAlパック剤中に埋め込み、Ar雰囲気下で、電気炉にて450℃で20時間保持した(Alパック処理)。EPMAにより測定したAl拡散コーティング層の厚さは2μmであった。
Example 2
In a crucible with a lid of 150 × 150 × 300 mm, two 75 × 75 × 11 mm three-dimensional network structure Ni porous body (“Gris filter” manufactured by Osaka Gas Chemical Co., Ltd., 400 μm thick metal skeleton) It was embedded in an Al pack agent consisting of 87.0% by weight of alumina powder, 5.0% by weight of Al powder, and 8.0% by weight of NH 4 Cl powder, and kept in an electric furnace at 450 ° C. for 20 hours in an Ar atmosphere. (Al pack treatment). The thickness of the Al diffusion coating layer measured by EPMA was 2 μm.

比較例1
Alパック剤の組成を、アルミナ粉末72.0重量%、Al粉末20.0重量%及びNH4Cl粉末8.0重量%に変えた以外は実施例1と同様にしてAlパック処理を施した。骨格の全体にAlが拡散し、Al拡散コーティング層の厚さの測定ができなかった。
Comparative Example 1
Al pack treatment was performed in the same manner as in Example 1 except that the composition of the Al pack agent was changed to 72.0 wt% alumina powder, 20.0 wt% Al powder, and 8.0 wt% NH 4 Cl powder. . Al diffused throughout the skeleton, and the thickness of the Al diffusion coating layer could not be measured.

比較例2
480℃からの昇温速度を次のように変えた以外は実施例1と同様にしてAlパック処理を施した。すなわち、窒素希釈の水素雰囲気下で、電気炉にて480℃まで4時間かけて昇温し、その後、70℃/時間の昇温速度で620℃まで2時間かけて昇温した。EPMAにより測定したAl拡散コーティング層の厚さは、40〜150μmの範囲でばらつきがあった。
Comparative Example 2
Al pack treatment was performed in the same manner as in Example 1 except that the rate of temperature increase from 480 ° C was changed as follows. That is, in a hydrogen atmosphere diluted with nitrogen, the temperature was increased to 480 ° C. over 4 hours in an electric furnace, and then heated to 620 ° C. over 2 hours at a temperature increase rate of 70 ° C./hour. The thickness of the Al diffusion coating layer measured by EPMA varied in the range of 40 to 150 μm.

比較例3
処理温度を次のように変えた以外は実施例1と同様にしてAlパック処理を施した。すなわち、窒素希釈の水素雰囲気下で、電気炉にて480℃まで4時間かけて昇温し、その後、7℃/時間の昇温速度で500℃まで3時間かけて昇温した。EPMAにより測定したAl拡散コーティング層の厚さは5μmであった。
Comparative Example 3
Al pack treatment was performed in the same manner as in Example 1 except that the treatment temperature was changed as follows. That is, in a hydrogen atmosphere diluted with nitrogen, the temperature was raised to 480 ° C. over 4 hours in an electric furnace, and then the temperature was raised to 500 ° C. over 3 hours at a rate of 7 ° C./hour. The thickness of the Al diffusion coating layer measured by EPMA was 5 μm.

実施例1、2及び比較例1〜3で得られたサンプルについて、以下の外観検査、脆性評価及び耐酸化性評価を行った。
外観検査:著しい色むらの有無
脆性評価:20kg重/cmの荷重をかけたときの破壊の有無
耐酸化性評価:空気雰囲気下で700℃にて50時間焼成したときの重量変化。増加量が少ない方が耐酸化性に優れる。
The samples obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to the following appearance inspection, brittleness evaluation and oxidation resistance evaluation.
Appearance inspection: Presence / absence of significant color unevenness Evaluation of brittleness: Presence / absence of destruction when a load of 20 kg weight / cm is applied. The smaller the increase, the better the oxidation resistance.

その結果を表1に示す。   The results are shown in Table 1.

Figure 2005281861
Figure 2005281861

表1から明らかなように、実施例1及び2で得られたサンプルは、外観、脆性、耐酸化性の全ての特性において優れていた。
As is clear from Table 1, the samples obtained in Examples 1 and 2 were excellent in all the characteristics of appearance, brittleness and oxidation resistance.

Claims (4)

Ni基材を、4〜10重量%のAl粉末を含有するパック剤中に埋め込み、460℃から、1〜20℃/時間の昇温速度で、530〜620℃の範囲まで昇温することにより加熱処理することを特徴とするAl拡散コーティング層の形成方法。   By embedding a Ni base material in a pack containing 4 to 10% by weight of Al powder, the temperature is increased from 460 ° C. to a range of 530 to 620 ° C. at a temperature increase rate of 1 to 20 ° C./hour. A method for forming an Al diffusion coating layer, characterized by heat treatment. Ni基材を、4〜10重量%のAl粉末を含有するパック剤中に埋め込み、450〜550℃の範囲で15〜90時間保持することにより加熱処理することを特徴とするAl拡散コーティング層の形成方法。   An Al diffusion coating layer, characterized in that a Ni base material is embedded in a pack containing 4 to 10% by weight of Al powder and heat-treated by holding at 450 to 550 ° C. for 15 to 90 hours. Forming method. Ni基材が多孔体状であることを特徴とする請求項1または2に記載のAl拡散コーティング層の形成方法。   The method for forming an Al diffusion coating layer according to claim 1 or 2, wherein the Ni substrate is in the form of a porous body. 請求項1〜3のいずれかに記載の方法によって得られる、Ni基材の表面に1nm〜1mmの厚さで均一にAl拡散コーティング層が形成されていることを特徴とする耐熱部材。
A heat-resistant member obtained by the method according to any one of claims 1 to 3, wherein an Al diffusion coating layer is uniformly formed with a thickness of 1 nm to 1 mm on the surface of a Ni substrate.
JP2005055946A 2004-03-03 2005-03-01 Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer Active JP4986402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055946A JP4986402B2 (en) 2004-03-03 2005-03-01 Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004059654 2004-03-03
JP2004059654 2004-03-03
JP2005055946A JP4986402B2 (en) 2004-03-03 2005-03-01 Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer

Publications (2)

Publication Number Publication Date
JP2005281861A true JP2005281861A (en) 2005-10-13
JP4986402B2 JP4986402B2 (en) 2012-07-25

Family

ID=35180569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055946A Active JP4986402B2 (en) 2004-03-03 2005-03-01 Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer

Country Status (1)

Country Link
JP (1) JP4986402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517472A (en) * 2008-03-14 2011-06-09 スネクマ Method for forming protective coatings containing aluminum and zirconium on metal parts
JP2016160490A (en) * 2015-03-02 2016-09-05 国立大学法人 大分大学 Method for surface-treating metal base material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983757A (en) * 1982-11-01 1984-05-15 タ−ビン・コンポ−ネンツ・コ−ポレイシヨン Formation of protective diffusion layer
JPS6217168A (en) * 1985-07-13 1987-01-26 Mazda Motor Corp Sliding contact member having self-lubricity
JPH04235271A (en) * 1990-06-06 1992-08-24 Daido Steel Co Ltd High temperature corrosion resistant member and its manufacture
JPH0813129A (en) * 1994-06-28 1996-01-16 Sumitomo Electric Ind Ltd High corrosion resistant metal porous body and its production
JPH09260030A (en) * 1996-03-21 1997-10-03 Japan Metals & Chem Co Ltd Porous metal of ni-cr-al
JPH1055811A (en) * 1996-05-31 1998-02-24 Samsung Heavy Ind Co Ltd Corrosion resistance treatment method for separator of fused carbonate fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983757A (en) * 1982-11-01 1984-05-15 タ−ビン・コンポ−ネンツ・コ−ポレイシヨン Formation of protective diffusion layer
JPS6217168A (en) * 1985-07-13 1987-01-26 Mazda Motor Corp Sliding contact member having self-lubricity
JPH04235271A (en) * 1990-06-06 1992-08-24 Daido Steel Co Ltd High temperature corrosion resistant member and its manufacture
JPH0813129A (en) * 1994-06-28 1996-01-16 Sumitomo Electric Ind Ltd High corrosion resistant metal porous body and its production
JPH09260030A (en) * 1996-03-21 1997-10-03 Japan Metals & Chem Co Ltd Porous metal of ni-cr-al
JPH1055811A (en) * 1996-05-31 1998-02-24 Samsung Heavy Ind Co Ltd Corrosion resistance treatment method for separator of fused carbonate fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517472A (en) * 2008-03-14 2011-06-09 スネクマ Method for forming protective coatings containing aluminum and zirconium on metal parts
JP2016160490A (en) * 2015-03-02 2016-09-05 国立大学法人 大分大学 Method for surface-treating metal base material

Also Published As

Publication number Publication date
JP4986402B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
Azimi et al. Effects of silicon content on the microstructure and corrosion behavior of Fe–Cr–C hardfacing alloys
JP6068158B2 (en) Cast products having an alumina barrier layer
Tang et al. Characterization and oxidation behavior of silicide coating on multiphase Mo–Si–B alloy
Madanipour et al. Investigation of the formation of Al, Fe, N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel
Rossi et al. Microstructural analysis and surface modification of a vitreous enamel modified with corundum particles
JP4986402B2 (en) Method for forming Al diffusion coating layer and heat resistant member having Al diffusion coating layer
Cammarota et al. Effect of Ni, Si and Cr in the structural formation of diffusion aluminide coatings on commercial-purity titanium
NO984240L (en) Corrosion resistance of high-temperature alloys
US6197436B1 (en) Method and composition for diffusion alloying of ferrous materials
Lu‐Steffes et al. Mo–Si–B coating for improved oxidation resistance of niobium
Kochmańska Hot corrosion resistance properties of Al-Si coatings obtained by slurry method
Sancakoglu et al. Fabrication of Cr‐Cr23C6/Cr2N composite coatings: change in the phase structure and effect on the corrosion properties
US3342628A (en) Alloy diffusion process
JP2002371383A (en) Heat resistant coated member
Buscail et al. Role of Na2CO3 on an AISI 330 austenitic stainless steels oxidation at 900° C
RU2008128399A (en) METHOD FOR INCREASING HEAT RESISTANCE OF POROUS BODIES CONTAINING STAINLESS STEEL OR ALLOY
JP2021080570A (en) Heat-resistant alloy member, method for manufacturing the same, alloy coating, method for manufacturing the same, high temperature device and method for manufacturing the same
JPS61110758A (en) Method for carburizing wc-co sintered hard alloy at low temperature
JPH0525635A (en) Manufacture of dry ti series plated stainless steel
JP2018204085A (en) Carburization method of steel part, steel part and carburizing agent
JP2004115906A (en) METHOD FOR COATING Al-Si ALLOY ON SUBSTRATE OF Ti OR Ti ALLOY
Wei et al. The effect of a coating heat-treatment on Cr–Si and heat-treatment on the mechanical properties of Cr17Ni2 stainless steel
KR100312134B1 (en) Spray coating material having superior corrosion resistance to molten zinc in zinc pot
JP5366571B2 (en) Iron-based alloy surface modification material, iron-based alloy surface modification method, and casting mold
JP2005179696A (en) Thermal spraying powder material, and thermal spray coating covered member having excellent high-temperature corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Ref document number: 4986402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3