JP2005279735A - Method for reducing edge seam of ultra low carbon steel - Google Patents

Method for reducing edge seam of ultra low carbon steel Download PDF

Info

Publication number
JP2005279735A
JP2005279735A JP2004098661A JP2004098661A JP2005279735A JP 2005279735 A JP2005279735 A JP 2005279735A JP 2004098661 A JP2004098661 A JP 2004098661A JP 2004098661 A JP2004098661 A JP 2004098661A JP 2005279735 A JP2005279735 A JP 2005279735A
Authority
JP
Japan
Prior art keywords
carbon steel
rolling
transformation
low carbon
edge seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098661A
Other languages
Japanese (ja)
Other versions
JP2005279735A5 (en
Inventor
Takaaki Hiromi
敬明 広海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004098661A priority Critical patent/JP2005279735A/en
Publication of JP2005279735A publication Critical patent/JP2005279735A/en
Publication of JP2005279735A5 publication Critical patent/JP2005279735A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing an edge seam of ultralow carbon steel by which the edge seam can be reduced even when the temperature is dropped below the Ar<SB>3</SB>transformation point when a slab corner part is at a first stage of the width press to the rough rolling, and a continuous casting step is not affected. <P>SOLUTION: In the method for reducing the edge seam of ultra low carbon steel, transformation of a slab corner part is started after starting the second stage of the rough rolling by increasing the Mn content of steel when performing the hot rolling of ultralow carbon steel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極低炭素鋼のエッジシーム削減方法に関する。極低炭素鋼とは、C含有量が0.005%以下の鋼を指す。なお、成分含有量の単位は質量%であり、%と略記する。   The present invention relates to a method for reducing edge seams of ultra-low carbon steel. Extremely low carbon steel refers to steel having a C content of 0.005% or less. In addition, the unit of component content is mass% and is abbreviated as%.

エッジシームは、熱間圧延工程のスラブ幅プレス〜粗圧延前段の過程において、スラブコーナ部の温度が他部よりも低下して、この部位がγからαへと変態し、変形抵抗が急減することから、幅圧下および水平圧延により他部よりも大きく延伸して、被圧延材の幅端部の表面または端面に大きな段差を形成し、これがその後の水平圧延で表面に倒れ込んで圧延方向に伸びた筋状の疵となったものである。このエッジシームは特に極低炭素鋼で発生しやすい。   In the edge seam, in the process from the slab width press in the hot rolling process to the pre-rough rolling stage, the temperature of the slab corner part is lower than that of the other part, and this part is transformed from γ to α, and the deformation resistance decreases rapidly. Stretched larger than the other parts by width reduction and horizontal rolling to form a large step on the surface or end face of the width end of the material to be rolled, and the stripes that fell into the surface in the subsequent horizontal rolling and extended in the rolling direction. It became a trap of the shape. This edge seam is particularly likely to occur in very low carbon steel.

上記エッジシームは、原理的には幅プレス〜粗圧延前段過程において、スラブコーナ部を変態させないようにすれば防止できるとされており、そのための方法として、1)粗圧延の脱スケール水を当てる箇所を減らす(特許文献1)、搬送ピッチを上げる、加熱温度を上げる、などにより、幅プレス〜粗圧延過程でのスラブコーナ部の温度低下を抑制する方法や、2)成分変更によりスラブのAr変態点を幅プレス〜粗圧延過程の操業温度域よりも低温側に移行させる方法が知られている。また、変態させないようにするのとは別の対策として、変態α部と未変態γ部との境界での段差を軽減するために、3)幅プレスでの幅殺し量(幅圧下量)を規制する方法が知られている。
特開2002−248516号公報
In principle, the edge seam can be prevented if the slab corner is not transformed in the process from the width press to the pre-rough rolling stage. As a method for that purpose, 1) a place to which the descaling water of the rough rolling is applied. (Patent Document 1) Method of suppressing temperature drop of slab corner part in width press to rough rolling process by increasing transport pitch, increasing heating temperature, etc. 2) Ar 3 transformation point of slab by changing component There is known a method of shifting the temperature to a lower temperature side than the operating temperature range of the width press to rough rolling process. Also, as a measure different from preventing transformation, in order to reduce the step at the boundary between the transformation α part and the untransformed γ part, 3) the width killing amount (width reduction amount) in the width press is reduced. Methods to regulate are known.
JP 2002-248516 A

しかし、1)の方法では、鋼のAr変態点温度が高い場合、スラブコーナ部がAr変態点温度を下回らないようにその部位の温度低下を抑制するのは、非常に困難である。また、2)の方法では、例えばTi、Nb、あるいはBを添加するとAr変態点温度が低下するが、これらの元素は微量添加で強度を大きく上昇させるため、高強度鋼以外の鋼種に対し、エッジシーム削減手段としてTi、Nb、Bを添加すると、強度が高くなりすぎるという問題がある。また、3)の方法では、少数に統合されている所定スラブ幅の何れとも一致しない幅のスラブを別途用意する必要が生じる場合があって、連続鋳造工程の負荷が大きくなる。 However, in the method 1), when the Ar 3 transformation point temperature of the steel is high, it is very difficult to suppress the temperature drop of the portion so that the slab corner portion does not fall below the Ar 3 transformation point temperature. In addition, in the method 2), for example, when Ti, Nb, or B is added, the Ar 3 transformation point temperature decreases. However, since these elements greatly increase the strength when added in a small amount, When Ti, Nb, and B are added as edge seam reduction means, there is a problem that the strength becomes too high. In the method 3), it may be necessary to separately prepare a slab having a width that does not match any of the predetermined slab widths integrated into a small number, and the load of the continuous casting process increases.

そこで、本発明は、スラブコーナ部が幅プレス〜粗圧延前段においてAr変態点温度を下回ってもエッジシームを削減でき、連続鋳造工程にも影響しない極低炭素鋼のエッジシーム削減方法を提供することを目的とする。 Therefore, the present invention provides an edge seam reduction method for ultra-low carbon steel that can reduce edge seam even if the slab corner portion falls below the Ar 3 transformation point temperature in the width press to rough rolling pre-stage, and does not affect the continuous casting process. Objective.

本発明者は、上記目的を達成するために鋭意検討し、その結果、以下の知見を得た。   The inventor has intensively studied to achieve the above object, and as a result, has obtained the following knowledge.

まず、実績調査により、極低炭素鋼のエッジシームの発生率は、Mn含有量が高くなると低減することがわかった。そこで、この原因を調べるために、Mn含有量を変えたサンプルについて恒温変態実験によりTTT図を求めたところ、例えば図1に示すように、Mn含有量が増えると、Ar変態点はほとんど変わらないが、FS(フェライト変態開始)曲線が長時間側にずれることがわかった。 First, it has been found from the results investigation that the incidence of edge seams in ultra-low carbon steel decreases as the Mn content increases. Therefore, in order to investigate this cause, a TTT diagram was obtained by a constant temperature transformation experiment for a sample with a changed Mn content. As shown in FIG. 1, for example, when the Mn content is increased, the Ar 3 transformation point is almost changed. However, it was found that the FS (ferrite transformation start) curve shifted to the long time side.

すなわち、Mn含有量が高いと、スラブコーナ部の変態開始が粗圧延の後段側まで遅延し、それ以降においてスラブコーナ部が変態しても、水平圧延のみが行われるため、γ/α界面に生じる段差が表面に倒れ込む位置が、板幅端部の通常切り捨てられる範囲(トリミングによる切り捨て代)内に限定されやすくなり、その結果、エッジシームの発生率が低減することがわかった。   That is, if the Mn content is high, the start of transformation of the slab corner portion is delayed to the latter stage side of the rough rolling, and even if the slab corner portion is transformed thereafter, only horizontal rolling is performed, so that the step generated at the γ / α interface It has been found that the position at which the plate falls to the surface is easily limited to the range where the edge of the plate width is normally cut off (the cutting allowance by trimming), and as a result, the occurrence rate of edge seams is reduced.

本発明は、上記知見に基いてなされたものである。   The present invention has been made based on the above findings.

すなわち、本発明は、極低炭素鋼を熱間圧延するにあたり、粗後段圧延開始以降でスラブコーナ部の変態を開始させることを特徴とする極低炭素鋼のエッジシーム削減方法である。本発明では、鋼のMn含有量を増やすことにより、粗後段圧延開始以降でスラブコーナ部の変態を開始させることが好ましい。   That is, the present invention is an edge seam reduction method for ultra-low carbon steel, characterized in that the transformation of the slab corner portion is started after the start of rough post-rolling in hot rolling of ultra-low carbon steel. In the present invention, it is preferable to start the transformation of the slab corner portion after the start of rough post-rolling by increasing the Mn content of the steel.

本発明によれば、スラブコーナ部の変態を粗後段圧延開始以降で開始させるから、スラブコーナ部は幅プレス〜粗圧延前段においてAr変態点温度を下回っても、粗圧延後段入側までは変態が遅延されて未変態のままであり、それ以降において変態しても、水平圧延のみが行われるため、γ/α界面に生じる段差の程度が小さく、表面に倒れ込む位置が、板幅端部の通常切り捨てられる範囲(トリミングによる切り捨て代)内に限定され、その結果、エッジシームの発生率が低減する。 According to the present invention, since the transformation of the slab corner portion is started after the start of rough post-rolling, even if the slab corner portion is lower than the Ar 3 transformation point temperature in the width press to the pre-rough rolling stage, the transformation is performed up to the ingress side after the rough rolling. Even if it is delayed and remains untransformed, even if it is transformed after that, only horizontal rolling is performed, so the level of the step that occurs at the γ / α interface is small, and the position where it falls to the surface is usually at the end of the plate width As a result, the occurrence rate of edge seams is reduced.

また、Mn増量は、強度への影響が比較的小さく、変態開始を有効に遅延させる程度まで増量しても強度が高くなりすぎることはないので好ましい。なお、Mnの増量以外には、例えばスラブコーナ部を保熱又は加熱して温度降下を抑えることにより、変態を遅延させてもよい。   Further, the increase in Mn is preferable because the influence on the strength is relatively small, and even if the amount is increased to such an extent that the start of transformation is effectively delayed, the strength does not become too high. In addition to the increase in Mn, the transformation may be delayed by, for example, keeping or heating the slab corner portion to suppress the temperature drop.

スラブコーナ部は、幅プレス〜粗圧延前段での加工中は未変態のままであるから、幅プレスでの幅殺し量を規制する必要もなく、そのため少数に統合された所定幅以外の幅のスラブを用意する必要はないから、連続鋳造工程には影響しない。   The slab corner part remains untransformed during processing from the width press to the rough rolling pre-stage, so there is no need to regulate the width killing amount in the width press, so a slab with a width other than the predetermined width integrated into a small number Since it is not necessary to prepare, the continuous casting process is not affected.

本発明は、極低炭素鋼の熱間圧延工程に適用される。極低炭素鋼以外に適用しても効果が判然としない。鋼のMn含有量(略してMn量)は、0.05〜0.15%の範囲が好適であり、この範囲内でMn量の0.01%増分あたり、例えば900℃におけるフェライト変態開始が略20s遅延する。   The present invention is applied to a hot rolling process for ultra-low carbon steel. The effect is unclear even when applied to other than ultra-low carbon steel. The Mn content of steel (Mn for short) is preferably in the range of 0.05 to 0.15%, and within this range, for example, the ferrite transformation start at 900 ° C. per 0.01% increment of the Mn amount. Delay about 20s.

スラブ加熱温度は、1100〜1230℃の範囲が好適である。スラブコーナ部の範囲は、スラブ幅端の角から約30mm幅の表面部分と同角から約30mm幅の幅端面部分とを二側面とする三角柱の内部領域とみておけばよい。本発明にいう粗後段圧延開始とは、粗圧延において、同一被圧延材の入側厚が初めてスラブ初期厚の80%以下になるスタンドでの圧延開始のことである。   The range of 1100-1230 degreeC is suitable for slab heating temperature. The range of the slab corner may be regarded as an internal region of a triangular prism having two side surfaces, a surface portion having a width of about 30 mm from the corner of the slab width end and a width end surface portion having a width of about 30 mm from the same angle. The term “rough post-stage rolling start” as used in the present invention refers to the start of rolling at a stand where the entry side thickness of the same material to be rolled is 80% or less of the initial slab thickness for the first time in rough rolling.

加熱炉で1120℃に加熱した極低炭素鋼スラブ(0.002%C−0.01%Si−0.08%Mn)を幅プレスにより幅圧下し、次いで5スタンドタンデム配列構成の粗圧延機の第1〜第3スタンドでスラブ初期厚の35%の厚みになるまで圧延(粗前段圧延)し、次いで粗圧延機の第4、第5スタンドで圧延(粗後段圧延)してシートバーとなし、これを7スタンドタンデム配列構成の仕上圧延機で圧延(仕上圧延)し、巻き取るという工程A(比較例)で製造された熱延鋼板を素材とする冷延鋼板では、エッジシームによる格落ち率が0.02%程度であった。粗後段圧延開始前の被圧延材から採取したサンプルの組織調査によると、工程Aでは粗後段圧延開始前の時点で、スラブコーナ部が変態を開始してから推定で約30sが経過していた。   An ultra-low carbon steel slab (0.002% C-0.01% Si-0.08% Mn) heated to 1120 ° C in a heating furnace is reduced in width by a width press, and then a rough rolling mill having a 5-stand tandem arrangement configuration The first to third stands are rolled to a thickness of 35% of the initial slab thickness (rough pre-stage rolling), and then rolled (rough post-stage rolling) on the fourth and fifth stands of the roughing mill, None, cold rolled steel sheet made of hot-rolled steel sheet manufactured in Step A (comparative example), rolled (finish rolled) with a finishing mill with a 7-stand tandem arrangement, and wound up The rate was about 0.02%. According to the structure investigation of the sample taken from the material to be rolled before the start of rough post-rolling, in process A, about 30 s had elapsed from the start of the transformation of the slab corner portion before the start of rough post-rolling.

そこで、被圧延材の変態開始を工程Aにおける変態開始からの推定経過時間以上に遅延させるべく、工程AにおいてスラブのMn量を0.14%に増量し、これ以外の条件は工程Aと同一にした工程B(実施例)を採用した。工程Bで製造した熱延鋼板を素材とする冷延鋼板では、エッジシームによる格落ち率が0.01%程度へと低減した。粗後段圧延開始前の被圧延材から採取したサンプルの組織調査によると、工程Bでは粗後段圧延開始前の時点で、スラブコーナ部は未変態のままであった。   Therefore, in order to delay the start of transformation of the material to be rolled more than the estimated elapsed time from the transformation start in step A, the amount of Mn of the slab is increased to 0.14% in step A, and the other conditions are the same as in step A. Step B (Example) was adopted. In the cold-rolled steel sheet made of the hot-rolled steel sheet manufactured in the process B, the rate of degradation due to edge seams was reduced to about 0.01%. According to the structure inspection of the sample taken from the material to be rolled before the start of the rough post-rolling, the slab corner portion remained untransformed at the time before the start of the rough post-rolling in the process B.

本発明は、極低炭素鋼の熱間圧延工程に利用することができる。   The present invention can be used for a hot rolling process of ultra-low carbon steel.

極低炭素鋼の恒温変態挙動に及ぼすMnの影響の1例を示すTTT図である。It is a TTT figure which shows an example of the influence of Mn which has on the isothermal transformation behavior of an ultra-low carbon steel.

符号の説明Explanation of symbols

1 0.002%C−0.01%Si−0.08%Mn鋼のAr変態点温度
2 0.002%C−0.01%Si−0.08%Mn鋼のFS(フェライト変態開始)曲線
3 0.002%C−0.01%Si−0.14%Mn鋼のAr変態点温度
4 0.002%C−0.01%Si−0.14%Mn鋼のFS(フェライト変態開始)曲線
1 0.002% C-0.01% Si-0.08% Mn steel Ar 3 transformation temperature 2 0.002% C-0.01% Si-0.08% Mn steel FS (ferrite transformation start ) Curve 3 Ar 3 transformation temperature of 0.002% C-0.01% Si-0.14% Mn steel 4 002% C-0.01% Si-0.14% Mn steel FS (ferrite Transformation start) curve

Claims (2)

極低炭素鋼を熱間圧延するにあたり、粗後段圧延開始以降でスラブコーナ部の変態を開始させることを特徴とする極低炭素鋼のエッジシーム削減方法。   An edge seam reduction method for ultra-low carbon steel, characterized by starting transformation of a slab corner portion after the start of rough post-rolling in hot rolling of ultra-low carbon steel. 鋼のMn含有量を増やすことにより、粗後段圧延開始以降で、スラブコーナ部の変態を開始させることを特徴とする請求項1に記載のエッジシーム削減方法。   2. The edge seam reduction method according to claim 1, wherein the transformation of the slab corner portion is started after the start of rough post-rolling by increasing the Mn content of the steel.
JP2004098661A 2004-03-30 2004-03-30 Method for reducing edge seam of ultra low carbon steel Pending JP2005279735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098661A JP2005279735A (en) 2004-03-30 2004-03-30 Method for reducing edge seam of ultra low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098661A JP2005279735A (en) 2004-03-30 2004-03-30 Method for reducing edge seam of ultra low carbon steel

Publications (2)

Publication Number Publication Date
JP2005279735A true JP2005279735A (en) 2005-10-13
JP2005279735A5 JP2005279735A5 (en) 2007-05-17

Family

ID=35178668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098661A Pending JP2005279735A (en) 2004-03-30 2004-03-30 Method for reducing edge seam of ultra low carbon steel

Country Status (1)

Country Link
JP (1) JP2005279735A (en)

Similar Documents

Publication Publication Date Title
JP5068573B2 (en) Manufacturing method of high grade non-oriented electrical steel sheet
WO2016152678A1 (en) Method for manufacturing rolled sheet for cold-rolling and method for manufacturing pure titanium sheet
JP6471807B2 (en) Oriented electrical steel sheet and hot rolled steel sheet for grain oriented electrical steel sheet
JP2005279735A (en) Method for reducing edge seam of ultra low carbon steel
JP2009007660A (en) Hot-rolled steel plate and manufacturing method therefor
JP2001334306A (en) Method of manufacturing hot-rolled steel strip
JP4415914B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP5057624B2 (en) Hot rolling method to suppress the occurrence of ear cracks in ferritic stainless steel
JP2011189394A (en) Method for manufacturing hot rolled steel sheet having excellent surface property
JPH1112686A (en) Steel sheet for can having excellent homogeneity and its manufacture
JP4305207B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP5907352B2 (en) Hot rolling method for steel slabs
JP5854177B1 (en) Hot rolling method for high carbon steel
JP5152791B2 (en) Method for producing Cr-Ni type stainless steel strip capable of preventing occurrence of ear cracks in hot rolling
JP3796209B2 (en) Hot rolling method for austenitic stainless steel pieces
JP3806172B2 (en) Manufacturing method of hot-rolled steel sheet with good surface properties and pickling properties by continuous hot-rolling process
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method
JP4670538B2 (en) Method for producing hot-rolled steel sheet having fine ferrite structure
JP6646672B2 (en) Method of manufacturing aluminum material for electrolytic capacitor electrode, method of manufacturing electrode material for aluminum electrolytic capacitor, and method of manufacturing aluminum electrolytic capacitor
JP4681476B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent surface properties
JP3872537B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties
JP2001323324A (en) Method for producing hot rolled steel sheet excellent in surface property
JP3446512B2 (en) Manufacturing method of tapered steel plate
JP3872538B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties
JP6131553B2 (en) Manufacturing method of hot-rolled steel strip

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20070322

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20070322

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Effective date: 20090721

Free format text: JAPANESE INTERMEDIATE CODE: A02