JP2005279664A - Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube - Google Patents

Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube Download PDF

Info

Publication number
JP2005279664A
JP2005279664A JP2004093961A JP2004093961A JP2005279664A JP 2005279664 A JP2005279664 A JP 2005279664A JP 2004093961 A JP2004093961 A JP 2004093961A JP 2004093961 A JP2004093961 A JP 2004093961A JP 2005279664 A JP2005279664 A JP 2005279664A
Authority
JP
Japan
Prior art keywords
tube
titanium
joining
titanium alloy
mash seam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004093961A
Other languages
Japanese (ja)
Inventor
Tadayuki Otani
忠幸 大谷
Mitsuo Ishii
満男 石井
Kazutoshi Iwami
和俊 岩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004093961A priority Critical patent/JP2005279664A/en
Publication of JP2005279664A publication Critical patent/JP2005279664A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mash seam joining method of a titanium-made or titanium alloy-made joined tube in which generation of welding defects is suppressed, and a joined part of high quality can be obtained. <P>SOLUTION: In the mash seam joining method of the titanium-made or titanium alloy-made joined tube in which a titanium plate or a titanium alloy plate is formed in a tube, parts of both ends overlap each other, and the overlapped part is joined, a rotary electrode is arranged so as to be brought into contact with an outer surface of a tube, a metal bar whose length is not less than the total length of the tube and whose outside diameter is ≥ 1/2 of the inside diameter of the tube, and below the inside diameter of the tube is arranged so as to be brought into contact with the inner surface of the tube, and the overlapped part is joined by turning and moving the rotary electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンおよびチタン合金板からなる接合管のマッシュシーム接合方法に関するものである。   The present invention relates to a joint pipe made of titanium and a titanium alloy plate that is often used in a condenser of a thermal power / nuclear power plant, a heat transfer pipe of a multi-stage evaporation type seawater desalination plant, a heat exchanger of an oil refining or petrochemical plant, etc. The present invention relates to a mash seam joining method.

一般に火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンおよびチタン合金からなる接合管を製造する方法としてTIG溶接方法が多く用いられている。
チタン板およびチタン合金板を未溶融電極型のTIGアーク溶接して溶接管を製造するとき、図3に示すように、アルゴンガス雰囲気下で被溶接物(試験体1)の端面を突き合わせて、被溶接物(試験体1)に対向するように配置されたタングステン電極6との間にアーク放電8を発生させて、そのとき発生する熱で被溶接物(試験体1)を突合せ溶接する。TIGアーク溶接は、簡易で高品質な溶接継手が得られるため、薄鋼板特にステンレス薄板の溶接に最適であり、いわんや、大気中で高温・酸化雰囲気にさらされると容易に酸化してしまうチタン板およびチタン合金板の溶接にも適合している。
しかし、TIGアーク溶接はあくまで溶融溶接であり、アンダーカットを抑制し良好な溶接を確保するためには溶接速度に上限があり生産性が低く、溶接コストが管のコストを大きく押し上げている。しかも、ギャップ等のくいちがいによる開先変動に敏感でギャップが広すぎると溶け落ちが発生しやすい、また開先性状によってはアルゴンガス起因のブローホールが発生しやすいという欠点があり、歩留まりの悪さがそのまま管のコストを一層高いものにしている。
As a method of manufacturing joint tubes made of titanium and titanium alloys that are commonly used in condensers for thermal power and nuclear power plants, heat transfer tubes for multi-stage evaporation seawater desalination plants, heat exchangers for petroleum refining and petrochemical plants, etc. Many TIG welding methods are used.
When producing a welded pipe by welding an unmelted electrode type TIG arc welding of a titanium plate and a titanium alloy plate, as shown in FIG. 3, the end face of the workpiece (test body 1) is butted in an argon gas atmosphere, An arc discharge 8 is generated between the object to be welded (test body 1) and the tungsten electrode 6 disposed so as to face the object to be welded (test body 1), and the object to be welded (test body 1) is butt welded with the heat generated at that time. TIG arc welding provides a simple and high-quality welded joint, making it ideal for welding thin steel plates, especially stainless steel thin plates. In fact, titanium plates that easily oxidize when exposed to high temperatures and oxidizing atmospheres in the atmosphere. Also suitable for welding titanium alloy plates.
However, TIG arc welding is merely fusion welding, and in order to suppress undercuts and ensure good welding, there is an upper limit on the welding speed, productivity is low, and welding costs greatly increase the cost of pipes. In addition, it is sensitive to groove fluctuations due to gaps such as gaps, and if the gap is too wide, it tends to melt off, and depending on the groove properties, blow holes due to argon gas are likely to occur, resulting in poor yield. As a result, the cost of the pipe is further increased.

現在、溶け落ちについては目視で外観検査を行い、ブローホールについてはX線透過試験を行うことで、不良品を選別し除外して良品のみを出荷することで対応している。しかし、100%不良品を除外できるかといえば確定的ではない。検査精度を上げようとすると検査費用がかさむ等の問題があり、製品の品質保証のために何らかの方策が求められている。
一方、図2に示すように、従来から飲料スティール缶などの直径:約50mm以上、缶長さ:約200mm以下、板厚約0.3mm程度のブリキ接合缶を接合する方法として、マッシュシーム接合方法が多く用いられている。このマッシュシーム接合方法は、ある間隔で重ねあわされた接合缶1を一対の電極輪(上電極輪2、下電極輪3)で挟み込むことで通電路を確保し、抵抗発熱で温度上昇させて塑性流動により圧潰させる固相接合である。この際、抵抗発熱を司る電流密度と塑性流動を司る加圧力密度が接合を左右するパラメータとなるが、一定の溶接電流、加圧力のもとでこれらのパラメータをともに支配するのが重ね代である。この重ね代および電極輪の加圧力の管理がマッシュシーム接合現象を左右する。
Currently, visual inspection is performed for burn-through, and X-ray transmission tests are performed for blowholes, so that defective products are selected and excluded, and only non-defective products are shipped. However, it is not definitive if 100% defective products can be excluded. There is a problem such as increasing the inspection cost when trying to increase the inspection accuracy, and some measures are required for quality assurance of the product.
On the other hand, as shown in FIG. 2, mash seam joining is conventionally used as a method for joining tin cans having a diameter of about 50 mm or more, a can length: about 200 mm or less, and a plate thickness of about 0.3 mm, such as a beverage steel can. Many methods are used. This mash seam joining method secures an energizing path by sandwiching a joining can 1 overlapped at a certain interval between a pair of electrode wheels (upper electrode wheel 2 and lower electrode wheel 3), and raises the temperature by resistance heating. This is solid phase bonding that is crushed by plastic flow. At this time, the current density governing resistance heat generation and the pressure density governing plastic flow are parameters that affect the joining, but it is the overlap that governs both these parameters under a constant welding current and force. is there. The superposition allowance and the control of the pressure applied to the electrode wheel influence the mash seam joining phenomenon.

また、特許文献1および2等で、チタン板およびチタン合金板をマッシュシーム接合する方法も知られているが、これらの方法はいずれも鋼板を突合せ溶接して作製した接合継手をプレス成形加工する、自動車用テーラードブランク材の接合に関するものである。
しかし、火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンおよびチタン合金板からなる接合管は、内径が30mm程度と小さく、かつ管長さが15mm程度と長い。このような接合管へのマッシュシーム溶接方法の適用を考えたとき、接合管の内部に、少なくとも接合管内径より小さな下電極輪3を挿入する必要があるが、良好な接合を行なうためには下電極3を小さくするのには限界があった。例えば、下電極3を小さくなるほど都合時の加圧力不十分となり十分な圧接がされず、最悪、接合できない事態となる。したがって、このような管内径の小さい熱交換器用チタン管等の接合に従来のマッシュシーム溶接方法を適用することは困難であった。
特願2002−111968号公報 特願2000−290879号公報
Also, in Patent Documents 1 and 2, etc., a method of mash seam joining a titanium plate and a titanium alloy plate is also known, but these methods both press-mold a joint joint produced by butt welding a steel plate. The present invention relates to joining of tailored blank materials for automobiles.
However, joint pipes made of titanium and titanium alloy plates, which are often used in condensers for thermal power and nuclear power plants, heat transfer tubes for multi-stage evaporation seawater desalination plants, heat exchangers for oil refining and petrochemical plants, etc. Is as small as about 30 mm and the tube length is as long as about 15 mm. When considering the application of the mash seam welding method to such a joined pipe, it is necessary to insert the lower electrode ring 3 smaller than the inner diameter of the joined pipe at least inside the joined pipe. There is a limit to making the lower electrode 3 small. For example, the smaller the lower electrode 3 is, the more insufficient the pressurizing force becomes at a convenient time. Therefore, it has been difficult to apply the conventional mash seam welding method to such a heat exchanger titanium tube having a small tube inner diameter.
Japanese Patent Application No. 2002-111968 Japanese Patent Application No. 2000-290879

本発明は、火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンおよびチタン合金からなる接合管のマッシュシーム接合方法として、従来に比べて溶接欠陥の発生を抑止し、高品質な接合部が得られるチタンおよびチタン合金の接合管のマッシュシーム接合方法を提供することを目的とする。   The present invention relates to a mash of titanium and titanium alloys that are often used in condensers for thermal power and nuclear power plants, heat transfer tubes for multi-stage evaporation seawater desalination plants, heat exchangers for petroleum refining and petrochemical plants, etc. As a seam joining method, it is an object to provide a mash seam joining method for titanium and titanium alloy joining pipes, which can suppress the occurrence of welding defects as compared with conventional seam and can obtain a high-quality joint.

本発明は、上記課題を解決するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)チタン板またはチタン合金板を管状に成形し、両端部の一部を重ね合わせた後、該重ね合わせ部を接合するマッシュシーム接合方法において、管外面に接触するように回転型電極を配置し、管内面に接触するように、長さが管全長以上で、かつ外径が管内径の1/2以上、管内径未満である金属棒を配置し、前記回転型電極を回転移動させて前記重ね合わせ部を接合することを特徴とするチタンまたはチタン合金管のマッシュシーム接合方法。
(2)前記金属棒が銅からなることを特徴とする(1)に記載のチタンまたはチタン合金管のマッシュシーム接合方法。
(3)前記管内径が10mm以上、50mm以下であることを特徴とする(1)または(2)に記載のチタンまたはチタン合金管のマッシュシーム接合方法。
(4)前記管全長が0.2m以上、30m以下であることを特徴とする(1)乃至(3)の何れかに記載のチタンまたはチタン合金管のマッシュシーム接合方法。
This invention solves the said subject, and the place made into the summary is the following content as described in the claim.
(1) In a mash seam joining method in which a titanium plate or a titanium alloy plate is formed into a tubular shape and part of both end portions are overlapped, and then the overlapped portion is joined, a rotary electrode is provided so as to contact the outer surface of the tube. A metal rod having a length that is equal to or greater than the entire length of the tube and that has an outer diameter that is 1/2 or more of the inner diameter of the tube and less than the inner diameter of the tube so that the inner surface of the tube is in contact with the inner surface of the tube; A method for joining mash seams of titanium or titanium alloy tubes, wherein the overlapping portions are joined together.
(2) The mash seam joining method for titanium or titanium alloy tubes according to (1), wherein the metal rod is made of copper.
(3) The mash seam joining method for a titanium or titanium alloy tube according to (1) or (2), wherein the inner diameter of the tube is 10 mm or more and 50 mm or less.
(4) The mash seam joining method for a titanium or titanium alloy tube according to any one of (1) to (3), wherein the total length of the tube is 0.2 m or more and 30 m or less.

本発明によれば、火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンおよびチタン合金からなる接合管をマッシュシーム接合方法を用いて接合する際に、溶接欠陥の発生を抑止し、高品質の接合部が安定して得られる。   According to the present invention, a condenser tube of a thermal power / nuclear power plant, a heat transfer tube of a multi-stage evaporation type seawater desalination plant, a joint tube made of titanium and a titanium alloy often used for a heat exchanger of an oil refining or petrochemical plant, etc. When using the mash seam joining method, generation of welding defects is suppressed, and a high-quality joint can be stably obtained.

以下に本発明の実施形態を図を用いて説明する。
本発明では、火力・原子力発電プラントの復水器、多段蒸発式海水淡水化プラントの伝熱管、石油精製や石油化学プラントの熱交換器等に多く用いられるチタンまたはチタン合金からなる接合管のように、内径50mm以下で長さが200mm以上の小径・長尺の接合管を高品質で接合するために、図1に示すように、従来のマッシュシーム接合方法で下電極5に用いられていた回転型電極を固定型棒状電極(下電極棒5)に変えることにより給電と剛性の確保を両立させることを考案した。つまり、本発明では、チタン板またはチタン合金板を管状に成形(試験体1)し、両端部の一部を重ね合わせた後、該重ね合わせ部を接合するマッシュシーム接合方法において、管外面に接触するように回転型電極(上電極輪1)を配置し、管内面に接触するように、長さが管全長以上で、かつ外径が管内径の1/2以上、管内径未満である金属棒(下電極棒5)を配置し、前記回転型電極を回転移動させて前記重ね合わせ部を接合することを特徴とする。なお、図1中の溶接電源は、上電極輪1と下電極棒5に接続され、接合時に上電極輪1と下電極棒5と接触している試験体1間に通電し、加圧された状態で重ね合わせ部を加熱し圧接するために用いられる。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, a condenser of a thermal power / nuclear power plant, a heat transfer pipe of a multi-stage evaporation type seawater desalination plant, a joined pipe made of titanium or a titanium alloy often used for a heat exchanger of an oil refinery or a petrochemical plant, etc. In addition, in order to join a small diameter and long joining tube having an inner diameter of 50 mm or less and a length of 200 mm or more with high quality, as shown in FIG. 1, it has been used for the lower electrode 5 by the conventional mash seam joining method. It has been devised to achieve both power feeding and ensuring rigidity by changing the rotary electrode to a fixed rod electrode (lower electrode rod 5). That is, according to the present invention, in a mash seam joining method in which a titanium plate or a titanium alloy plate is formed into a tubular shape (test body 1), a part of both ends are overlapped, and then the overlapped part is joined. The rotary electrode (upper electrode ring 1) is arranged so as to be in contact, and the length is not less than the entire length of the tube and the outer diameter is not less than 1/2 of the tube inner diameter and less than the tube inner diameter so as to contact the inner surface of the tube. A metal bar (lower electrode bar 5) is disposed, and the rotary electrode is rotated to join the overlapping portions. The welding power source in FIG. 1 is connected to the upper electrode wheel 1 and the lower electrode rod 5, and is energized and pressurized between the specimens 1 that are in contact with the upper electrode wheel 1 and the lower electrode rod 5 at the time of joining. It is used to heat and press the overlapped part in a heated state.

本発明において、固定型電極である金属棒の長さは、溶接時に回転型電極(上電極輪1)と金属棒(下電極棒5)に接触している管の重ね合わせ部に安定して通電し、良好な加圧接合を行なうためには、その長さを管全長以上とする必要がある。
また、上記金属棒の外径は、管内径の1/2未満となると、マッシュシーム接合時に上電極からの加圧時に管の溶接変形を弾性範囲内に収めることができなくなるので、上記金属棒の(下電極棒5)の外径の下限を実質上の限界である管内径の1/2とした。一方、金属棒(下電極棒5)の外径の上限は、製造する管内径に応じてきめられ、管内部に挿入でききる金属棒の最大外径として、管内径未満とした。
従来のマッシュシームにおいて回転型電極を下電極として用いて管径が小さい管を接合する場合には、下電極としての回転型電極の回転半径が小さくなるために、管の全長が200mm以上となると、片持ち梁方式で接合するためには充分な剛性が得られず、下電極としての回転型電極を支える片持ち梁が撓んでマッシュシーム接合が不可能になる。
In the present invention, the length of the metal rod, which is a fixed electrode, is stable in the overlapping portion of the tube that is in contact with the rotating electrode (upper electrode ring 1) and the metal rod (lower electrode rod 5) during welding. In order to energize and perform good pressure bonding, the length needs to be equal to or greater than the total length of the pipe.
Also, if the outer diameter of the metal rod is less than 1/2 of the inner diameter of the tube, the weld deformation of the tube cannot be accommodated within the elastic range when pressurized from the upper electrode during mash seam joining. The lower limit of the outer diameter of (lower electrode bar 5) was set to ½ of the inner diameter of the tube, which is a practical limit. On the other hand, the upper limit of the outer diameter of the metal rod (lower electrode rod 5) is determined according to the inner diameter of the tube to be manufactured, and the maximum outer diameter of the metal rod that can be inserted into the tube is less than the inner diameter of the tube.
In a conventional mash seam, when a rotary electrode is used as a lower electrode and a pipe having a small pipe diameter is joined, the rotation radius of the rotary electrode as the lower electrode is reduced, so that the total length of the pipe is 200 mm or more. However, sufficient rigidity cannot be obtained for joining by the cantilever method, and the cantilever supporting the rotating electrode as the lower electrode is bent, and mash seam joining becomes impossible.

これに対して、上記の本発明方法により、たとえば最小内径10mm、最大長さ30mの小径・長尺接合管を溶接する際に従来に比べて溶接欠陥の発生や溶接変形を抑止し、高品質な接合部が得られるチタンまたはチタン合金管の製造が可能となる。
本発明方法において接合の対象とする管内径の下限は、工業的に製造可能な最小サイズを考慮して10mmとした。一方、管内径の上限は、従来のマッシュシーム溶接方法では接合部の品質向上効果が期待できず、本発明法により接合部の品質向上効果が十分に発揮されるサイズの上限として50mmとした。
本発明方法において接合の対象とする管全長の上限は特に無いが工業的に意味のあるものとして30mを設定した。一方、管全長の下限は工業的に製造可能な最小サイズと、従来のマッシュシーム溶接方法では接合部の品質向上効果が期待できず、本発明法により接合部の品質向上効果が十分に発揮されるい最小サイズを考慮して、管全長の下限を200mmとした。
また、本発明において上記金属棒(下電極棒5)の素材としてはマッシュシーム溶接用の電極としての通電加熱の機能上、熱伝導率が高く、高温強度な特性と有する銅が好ましい。
On the other hand, the above-described method of the present invention suppresses generation of welding defects and welding deformation as compared with the conventional case when welding a small-diameter / long-sized joining pipe having a minimum inner diameter of 10 mm and a maximum length of 30 m, for example. It is possible to manufacture a titanium or titanium alloy tube that can provide a simple joint.
In the method of the present invention, the lower limit of the pipe inner diameter to be joined is set to 10 mm in consideration of the minimum size that can be manufactured industrially. On the other hand, the upper limit of the inner diameter of the pipe is set to 50 mm as the upper limit of the size at which the quality improvement effect of the joint cannot be fully expected by the method of the present invention by the conventional mash seam welding method.
In the method of the present invention, there is no particular upper limit on the total length of the pipes to be joined, but 30 m is set as industrially meaningful. On the other hand, the lower limit of the total pipe length is the minimum size that can be manufactured industrially, and the conventional mash seam welding method cannot be expected to improve the quality of the joint. Considering the minimum size, the lower limit of the total length of the pipe was set to 200 mm.
In the present invention, the material of the metal bar (lower electrode bar 5) is preferably copper having high thermal conductivity and high-temperature strength characteristics in terms of the function of current heating as an electrode for mash seam welding.

以下に実施例により本発明法の効果を説明する。
表1に示される板厚0.5mmのチタン板を管状に成形した後、表1および2に示される接合条件で本発明および従来の各マッシュシーム接合、TIG溶接をおこなった。なお、各マッシュシーム接合は表1に示す重ね代で重ね合わせ接合を行い、TIG溶接は突合せ溶接をおこなった。表2には接合時の溶け落ちの発生数および接合管の接合部中のブローホール欠陥発生率および管形状不良発生状況を測定した結果も示す。

Figure 2005279664
The effects of the method of the present invention will be described below with reference to examples.
After forming a 0.5 mm thick titanium plate shown in Table 1 into a tubular shape, the present invention and conventional mash seam joining and TIG welding were performed under the joining conditions shown in Tables 1 and 2. In addition, each mash seam joining performed overlap joining with the overlap shown in Table 1, and TIG welding performed butt welding. Table 2 also shows the results of measuring the number of burn-outs during joining, the occurrence rate of blowhole defects in the joints of the joined pipes, and the occurrence of tube shape defects.
Figure 2005279664

なお、ブローホールについては、X線透過写真から発生状況とサイズを判別し、そのサイズがほぼ0.1mmであることが確認できたので、接合線単位長さあたりの発生個数で評価した。また、溶け落ちについては、外観試験で発生状況を把握し、接合線単位長さあたりの発生個数で評価した。
実施No.1、2、6、7、11および12は、本発明で規定する条件を満足する条件でマッシュシーム接合をしたため、いずれの場合も接合時の溶け落ちの発生はなく、接合部のブローホール欠陥の発生もなく、良好な接合部を有するチタン管がえられた。
一方、実施No.3、8および13は、本発明で規定する下電極である金属棒の外径の下限から低く外れた条件でマッシュシーム接合をしたため、いずれの場合も接合時の溶け落ちや接合部のブローホール欠陥は発生しなかったが、管が塑性変形したまま戻らず真円度を確保できず形状不良となった。
実施No.4、9および14は、従来の下電極として回転型電極を用いて(金属棒を用いない)マッシュシーム接合をしたため、都合時に片持ち梁が撓んで電極との接触不良となり十分な通電路を確保できず、圧着接合が不可能となった。
実施No.5、10および15は、従来のTIG溶接法を用いて接合をしたため、溶接部の溶け落ちおよび接合部のブローホール欠陥発生率が高くなり、接合部の品質不良が生じた。

Figure 2005279664
In addition, about the blowhole, since the generation | occurrence | production condition and size were discriminate | determined from the X-ray transmission photograph and it confirmed that the size was about 0.1 mm, it evaluated by the generation | occurrence | production number per unit line length. Moreover, about the burn-through, the occurrence state was grasped by an appearance test, and the occurrence number per unit length of the joining line was evaluated.
Implementation Nos. 1, 2, 6, 7, 11 and 12 were mash seam joined under the conditions satisfying the conditions defined in the present invention. There was no occurrence of blowhole defects, and a titanium tube having a good joint was obtained.
On the other hand, in Examples Nos. 3, 8 and 13, mash seam bonding was performed under conditions that deviated from the lower limit of the outer diameter of the metal rod, which is the lower electrode defined in the present invention. Although no blowhole defect occurred in the joint, the tube did not return while being plastically deformed, and the roundness could not be secured, resulting in a defective shape.
In Examples Nos. 4, 9, and 14, mash seam joining was performed using a rotating electrode as a conventional lower electrode (without using a metal rod), so that the cantilever was bent at a convenient time, resulting in poor contact with the electrode. The energization path could not be secured, and crimping joining became impossible.
Since execution No. 5, 10 and 15 joined using the conventional TIG welding method, the welding part melted down and the blowhole defect incidence rate of the joined part became high, and the quality defect of the joined part arose.
Figure 2005279664

本発明によるチタン板およびチタン合金板のマッシュシーム接合で小径の接合管を製造するため下電極に金属棒を用いる態様を示す図である。It is a figure which shows the aspect which uses a metal bar for a lower electrode in order to manufacture a small diameter joining pipe | tube by the mash seam joining of the titanium plate and titanium alloy plate by this invention. 従来用いられてきたマッシュシーム接合による接合管を製造する態様を示す図である。It is a figure which shows the aspect which manufactures the joining pipe | tube by the mash seam joining conventionally used. 従来用いられてきた溶融接合であるTIGアーク溶接により、チタン板およびチタン合金板の溶接管を製造する態様を示す図である。It is a figure which shows the aspect which manufactures the welded pipe of a titanium plate and a titanium alloy plate by TIG arc welding which is the fusion bonding conventionally used.

符号の説明Explanation of symbols

1 試験体
2 上電極輪
3 下電極輪
4 溶接電源
5 下電極棒
6 タングステン電極
7 溶接電源
8 アーク
1 Test Specimen 2 Upper Electrode Wheel 3 Lower Electrode Wheel 4 Welding Power Supply 5 Lower Electrode Rod 6 Tungsten Electrode 7 Welding Power Supply 8 Arc

Claims (4)

チタン板またはチタン合金板を管状に成形し、両端部の一部を重ね合わせた後、該重ね合わせ部を接合するマッシュシーム接合方法において、管外面に接触するように回転型電極を配置し、管内面に接触するように、長さが管全長以上で、かつ外径が管内径の1/2以上、管内径未満である金属棒を配置し、前記回転型電極を回転移動させて前記重ね合わせ部を接合することを特徴とするチタンまたはチタン合金管のマッシュシーム接合方法。 In a mash seam joining method in which a titanium plate or a titanium alloy plate is formed into a tubular shape and part of both end portions are overlapped, and then the overlapped portion is joined, a rotary electrode is disposed so as to contact the outer surface of the tube, A metal rod having a length not less than the entire length of the tube and having an outer diameter not less than 1/2 of the tube inner diameter and less than the tube inner diameter is disposed so as to contact the inner surface of the tube, and the rotary electrode is rotated to move the overlap. A method for joining mash seams of titanium or titanium alloy pipes, characterized in that joining portions are joined. 前記金属棒が銅からなることを特徴とする請求項1に記載のチタンまたはチタン合金管のマッシュシーム接合方法。   The mash seam joining method for titanium or a titanium alloy tube according to claim 1, wherein the metal rod is made of copper. 前記管内径が10mm以上、50mm以下であることを特徴とする請求項1または請求項2に記載のチタンまたはチタン合金管のマッシュシーム接合方法。   The method for mash seam joining of titanium or titanium alloy tubes according to claim 1 or 2, wherein the inner diameter of the tube is 10 mm or more and 50 mm or less. 前記管全長が0.2m以上、30m以下であることを特徴とする請求項1乃至請求項3の何れかに記載のチタンまたはチタン合金管のマッシュシーム接合方法。   The mash seam joining method for a titanium or titanium alloy tube according to any one of claims 1 to 3, wherein the total length of the tube is 0.2 m or more and 30 m or less.
JP2004093961A 2004-03-29 2004-03-29 Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube Withdrawn JP2005279664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093961A JP2005279664A (en) 2004-03-29 2004-03-29 Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093961A JP2005279664A (en) 2004-03-29 2004-03-29 Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube

Publications (1)

Publication Number Publication Date
JP2005279664A true JP2005279664A (en) 2005-10-13

Family

ID=35178598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093961A Withdrawn JP2005279664A (en) 2004-03-29 2004-03-29 Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube

Country Status (1)

Country Link
JP (1) JP2005279664A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962560A (en) * 2012-10-24 2013-03-13 洛阳双瑞精铸钛业有限公司 Welding method of titanium welded tube for petrochemical engineering
CN110153634A (en) * 2019-05-17 2019-08-23 中国石油天然气集团公司管材研究所 A kind of pipeline girth weld welding repair method again

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962560A (en) * 2012-10-24 2013-03-13 洛阳双瑞精铸钛业有限公司 Welding method of titanium welded tube for petrochemical engineering
CN110153634A (en) * 2019-05-17 2019-08-23 中国石油天然气集团公司管材研究所 A kind of pipeline girth weld welding repair method again

Similar Documents

Publication Publication Date Title
CN103433636B (en) Pressure welding composite algorithm manufactures the method for bimetal metallurgy multiple tube
JP5227154B2 (en) Method for joining tubesheet and tube and friction tool for carrying out this method
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
US6998560B2 (en) Method for metallurgically joining a tube to a member
JPH07214308A (en) Method of joining metal part by melting arc welding
CN103170712A (en) Tube socket fillet weld reheat crack prevention method
CN100569426C (en) A kind of welding method of stainless steel composite pipe
WO2012147213A1 (en) Method for producing laser welded steel pipe
US2837626A (en) Method for producing welded tubing
US3440391A (en) Internal tube welding
US20180229327A1 (en) Method for creating clad structures using resistance seam welding
Kocurek et al. Manufacturing technologies of finned tubes
JP2005279664A (en) Method for joining mash seam joined tube of titanium-made or titanium alloy-made tube
CN102500886A (en) High-strength nickel-iron-chromium alloy and chromium-nickel stainless steel plate welding method and application to preparation of polysilicon cold hydrogenation reactors
CN110405372A (en) A kind of two phase stainless steel heat exchanger plates complex welding method based on residual stress regulation
Shuaib et al. Friction stir seal welding (FSSW) tube-tubesheet joints made of steel
JP5803160B2 (en) Laser welded steel pipe manufacturing method
JPH0623553A (en) Manufacture of welded steel tube
CN204018929U (en) A kind of overall titanium-steel pipe cold exchange device
JPH0252586B2 (en)
JP6054533B2 (en) System for the production of clad materials using resistance seam welding
CN112191999A (en) Fillet weld structure of nickel-based small pipe and alloy steel header and welding process
Hamedi Optimizing tensile strength of low-alloy steel joints in upset welding
WO2004103631A1 (en) Method for resistance welding/brazing a tube to a container
JP2011115852A (en) Method for manufacturing laser welded steel tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605