JP2005279619A - Rotary reaction apparatus and rotatively reacting method - Google Patents

Rotary reaction apparatus and rotatively reacting method Download PDF

Info

Publication number
JP2005279619A
JP2005279619A JP2004127356A JP2004127356A JP2005279619A JP 2005279619 A JP2005279619 A JP 2005279619A JP 2004127356 A JP2004127356 A JP 2004127356A JP 2004127356 A JP2004127356 A JP 2004127356A JP 2005279619 A JP2005279619 A JP 2005279619A
Authority
JP
Japan
Prior art keywords
magnetic field
coaxial double
cylinders
reaction
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004127356A
Other languages
Japanese (ja)
Inventor
Hironari Kikura
宏成 木倉
Masanori Aritomi
正憲 有冨
Hideki Kawai
秀樹 河合
Shingo Kishikawa
真吾 岸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004127356A priority Critical patent/JP2005279619A/en
Publication of JP2005279619A publication Critical patent/JP2005279619A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary reaction apparatus which can be made compact and in which a flowing mode of a group of fine particles in a liquid can be set freely by gathering the group of fine particles on a fixed whirling orbit and to provide a rotatively reacting method. <P>SOLUTION: A reactive fluid 4 and a magnetic fine particle 5 are injected into a gap of a coaxial double-cylinder vessel 3 having the height being several times of the gap to be formed between two cylinders different in diameter when they are arranged concentrically. The side faces of both or one of two cylinders of the double-cylinder vessel 3 are formed into permeation membrane walls 6 each having a porous membrane through which the magnetic fine particle 5 or a reactive substance can be permeated. The temperature of the reactive fluid is managed by a thermostatic unit 7. Both or one of two cylinders of the coaxial double-cylinder vessel 3 are rotated by a rotation mechanism 8 and a rotation controlling unit 9 for controlling the rotational speed of the rotation mechanism 8. An electromagnet 10 is arranged outside the coaxial double-cylinder vessel 3 for forming a magnetic field in the gap between two cylinders and the magnetic field distribution and magnetic field intensity of the electromagnet are controlled by a magnetic field controlling unit 11. A circulation unit 12 is arranged for making the reactive fluid 4 permeated through one of the permeation membrane walls 6 flow in the other cylinder through the wall. The indicated values of the magnetic field controlling unit, the rotation controlling unit and the thermostatic unit are displayed on a display unit 13. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アスペクト比の小さい同軸二重円筒のテイラー渦流れを用いた回転反応装置および回転反応方法に関する。  The present invention relates to a rotary reaction apparatus and a rotary reaction method using a Taylor vortex flow of a coaxial double cylinder having a small aspect ratio.

従来、テイラー渦流れを利用した反応装置には、微生物培養、バイオリアクター、攪拌・混合、微粒子製造、懸濁重合などの装置がある。  Conventionally, reaction apparatuses using Taylor vortex flow include apparatuses such as microbial culture, bioreactor, stirring / mixing, fine particle production, and suspension polymerization.

ここにテイラー渦流れとは、同軸に配置した二重円筒の隙間に流体を満たし、外円筒を固定し内円筒をある臨界値以上の回転数で回転させたときにその流体に現れるドーナツ状の渦流である。そして、二重円筒隙間に対して容器長さが長い、すなわちアスペクト比の大きい同軸二重円筒を用いた緩やかな渦流れを利用して、均一な液滴を得る方法が報告されている。(例えば、特許文献1参照。)。  Here, the Taylor vortex flow is a donut-like shape that appears in the fluid when the outer cylinder is fixed and the inner cylinder is rotated at a rotation speed exceeding a certain critical value by filling the gap between the coaxially arranged double cylinders. It is a vortex. A method of obtaining uniform droplets using a gentle vortex flow using a coaxial double cylinder having a long container length, that is, a large aspect ratio with respect to the double cylinder gap has been reported. (For example, refer to Patent Document 1).

また、このようなアスペクト比の大きいテイラー渦流れを利用し、生体触媒を蛋白分解溶液に混合して分解作用を効率化したバイオリアクターなどがある。(例えば、特許文献2、特許文献3参照。)。  In addition, there is a bioreactor that utilizes the Taylor vortex flow having such a large aspect ratio and mixes a biocatalyst with a proteolytic solution to improve the decomposition effect. (For example, refer to Patent Document 2 and Patent Document 3.)

また、動物細胞を付着させたマイクロキャリアを用いてテイラー渦流れの中で細胞培養を行う方法が開示されている(例えば、特許文献4参照。)。  In addition, a method is disclosed in which cell culture is performed in a Taylor vortex flow using a microcarrier to which animal cells are attached (see, for example, Patent Document 4).

上述のアスペクト比の大きいテイラー渦流れに対して、二重円筒隙間に対して容器長さが短い、すなわちアスペクト比の小さい同軸二重円筒の渦流れでは、流れを安定させながら回転数をゆっくり増加させたときに得られる主モードと呼ばれる流動状態と、回転数を急激に加速して得られる二次モードと呼ばれる流動状態があり、さらにこの二次モードには発生する渦数が偶数で両端の渦の流れが主モードと同じ正規モードと、一方もしくは両端において内円筒から外円筒へ向かう流れになる変異モードがある。  In contrast to the above-mentioned Taylor vortex flow with a large aspect ratio, the container length is short with respect to the gap between the double cylinders, that is, the vortex flow of a coaxial double cylinder with a small aspect ratio increases the rotation speed slowly while stabilizing the flow. There is a flow state called the main mode that is obtained when it is applied, and a flow state called the secondary mode that is obtained by rapidly accelerating the rotation speed. In addition, this secondary mode has an even number of vortices and both ends. There is a normal mode in which the flow of the vortex is the same as the main mode, and a variant mode in which the flow from the inner cylinder toward the outer cylinder is at one or both ends.

このようなアスペクト比の小さいテイラー渦流れでは、上述の様に円筒の回転条件によっていくつもの流れ場モードが存在する。たとえば、アスペクト比が3の場合、すなわち同軸二重円筒隙間の3倍の高さをもつ容器を用いた場合は、渦が二つ現れる上述の主モードとしての正規2セルモードと、二次モードとしての渦が4つの正規4セルモード、渦が3つの変異3セルモード、渦が4つで正規4セルモードの渦の流れ方向とは反対の流れである変異4セルモードの合計4種類の流れ場モードが存在する。  In such a Taylor vortex flow having a small aspect ratio, there are several flow field modes depending on the rotation condition of the cylinder as described above. For example, when the aspect ratio is 3, that is, when a container having a height three times that of the coaxial double cylindrical gap is used, the normal two-cell mode as the above-mentioned main mode in which two vortices appear and the secondary mode There are a total of four types of 4 vortex modes: 4 normal 4 cell modes, 3 vortex variations 3 cell modes, 4 vortex flow variations and 4 variability flow modes opposite to the normal 4 cell mode vortex flow direction. There is a flow field mode.

また、上述の様なアスペクトの小さいテイラー渦流れの流れ場モードは、内円筒の初期回転角速度や回転数の変化に伴って流れ場モードの出現率が異なる場合があり、また、モード変化が起きる場合がある。低アスペクト比のテイラー渦流れにおける流れ場モードの変化については、たとえば非特許文献1や非特許文献2に開示されている。  In addition, the flow field mode of Taylor vortex flow with a small aspect as described above may have different appearance rates of the flow field mode with changes in the initial rotational angular velocity and rotation speed of the inner cylinder, and mode change occurs. There is a case. For example, Non-Patent Document 1 and Non-Patent Document 2 disclose changes in the flow field mode in a low aspect ratio Taylor vortex flow.

また、磁性粒子を利用したカオス的混合法が、マイクロ流の混合方法として開示されている。(例えば、非特許文献3参照。)。  Further, a chaotic mixing method using magnetic particles is disclosed as a micro-flow mixing method. (For example, refer nonpatent literature 3.).

特開昭56−139122号公報 (第1−2頁、第1図)JP-A-56-139122 (page 1-2, FIG. 1) 特開平7−123972号公報 (第2−6頁、第3図)JP-A-7-123972 (page 2-6, FIG. 3) 特開平7−298871号公報 (第2−7頁、第5図)JP-A-7-298871 (page 2-7, FIG. 5) 特開平8−308560号公報 (第2−5頁、第1図)JP-A-8-308560 (Page 2-5, Fig. 1) 大村直人、他3名、”アスペクト比の小さいテイラー・クエット流の渦発生機構と乱流遷移特性”、1997年、化学工学論文集第23巻第6号、p741−748Naoto Omura and three others, “Vortex generation mechanism and turbulent transition characteristics of Taylor Couette flow with small aspect ratio”, 1997, Chemical Engineering Vol. 23, No. 6, p741-748 古川裕之、他2名、”アスペクト比が小さい場合のテイラー渦流れ(変異・正規モード間の流動形態変化と非定常モードの遷移過程)”、2002年、日本機械学会論文集(B偏)69巻674号、p2671−2678Hiroyuki Furukawa and two others, “Taylor vortex flow with small aspect ratio (change of flow shape between mutation and normal mode and transition process of unsteady mode)”, 2002, Transactions of the Japan Society of Mechanical Engineers (B-bias) 69 Volume 674, p2671-2678 鈴木宏明、他2名、”磁性粒子を利用したカオス的マイクロ混合器”、2003年、日本機械学会論文集(B偏)69巻688号、p2626−2632Hiroaki Suzuki and two others, “A Chaotic Micromixer Using Magnetic Particles”, 2003, Japan Society of Mechanical Engineers, Vol. 69, No. 688, p 2626-2632

しかしながら、従来のテイラー渦を利用したアスペクト比の大きい同軸二重円筒容器を利用した反応方法では、渦流れのモードが大きく変化しないため、流れ場モードによる効率的な反応を選択できないという問題がある。  However, in the conventional reaction method using a coaxial double cylinder container with a large aspect ratio using Taylor vortex, the mode of vortex flow does not change greatly, so there is a problem that an efficient reaction by flow field mode cannot be selected. .

また、アスペクト比の大きい同軸二重円筒容器では、反応層が助長になり、設置場所やコンパクト化への障害がある。  In addition, in the coaxial double cylindrical container having a large aspect ratio, the reaction layer is promoted, and there is an obstacle to the installation place and compactness.

また、コンパクト化のためにアスペクト比の小さい同軸二重円筒容器に上述した微生物の培養方法を適用すると、培養進行過程において微生物濃度の変化から流れ場モードが変化し、培養効率の良い流れ場モードへの変更が困難になるという問題がある。  In addition, when the above-described microorganism cultivation method is applied to a coaxial double cylindrical container having a small aspect ratio for compactness, the flow field mode changes due to the change in the microorganism concentration during the cultivation process, and the flow field mode with good culture efficiency. There is a problem that it becomes difficult to change to.

本発明は、このような課題に鑑みてなされたものであり、
装置を小さくでき、液体中の微粒子群を一定の周回軌道に集め、流れ場モードを自由に設定できる回転反応装置および回転反応方法を提供することを目的とする。
The present invention has been made in view of such problems,
It is an object of the present invention to provide a rotary reaction device and a rotary reaction method in which the apparatus can be made small, a group of fine particles in a liquid can be collected in a fixed orbit, and a flow field mode can be set freely.

本発明の回転反応装置は、直径の異なる二つの円筒を同心になるように配置したときにおいて両円筒隙間の数倍の高さを有する同軸二重円筒容器と、同軸二重円筒容器の隙間を満たす反応流体と、反応流体中に混入する磁性微粒子と、反応流体の温度管理を行う恒温装置と、同軸二重円筒容器において双方あるいはいずれか一方の円筒を回転させる回転機構と、回転機構の回転を制御する回転制御装置と、同軸二重円筒容器において双方あるいはいずれか一方の円筒の側面を磁性微粒子あるいは反応物質が透過できる多孔質膜を有する透過膜壁と、透過膜壁を透過した反応液を他方の円筒壁から流入する循環装置と、同軸二重円筒容器の外側に配置した円筒隙間内に磁場を形成する電磁石と、電磁石の磁場分布および磁場強度を制御する磁場制御装置と、磁場制御装置と回転制御装置の指示値を示す表示装置を有するものである。  The rotary reaction apparatus of the present invention comprises a coaxial double cylindrical container having a height several times the clearance between both cylinders when two cylinders having different diameters are arranged concentrically, and a gap between the coaxial double cylindrical containers. The reaction fluid to be filled, the magnetic fine particles mixed in the reaction fluid, the thermostat that controls the temperature of the reaction fluid, the rotation mechanism that rotates both or any one of the cylinders in the coaxial double cylinder container, and the rotation of the rotation mechanism , A permeation membrane wall having a porous membrane through which magnetic fine particles or reactants can permeate the side surfaces of both or one of the cylinders in a coaxial double cylindrical container, and a reaction liquid that permeates the permeation membrane wall A circulation device that flows in from the other cylindrical wall, an electromagnet that forms a magnetic field in a cylindrical gap disposed outside the coaxial double cylindrical vessel, and a magnetic field that controls the magnetic field distribution and strength of the electromagnet And control device, and has a display device that shows an indication of the magnetic field control device and a rotation control device.

また、本発明の回転反応装置および回転反応方法は、直径の異なる二つの円筒を同心になるように配置したときにおいて両円筒隙間の数倍の高さを有する同軸二重円筒容器を設置する工程と、同軸二重円筒容器の隙間に反応流体を満たす工程と、反応流体中に磁性微粒子を混入する工程と、反応流体の温度を管理する工程と、同軸二重円筒容器において双方あるいはいずれか一方の円筒を回転させる工程と、円筒の回転角速度や回転数を制御する工程と、同軸二重円筒容器において双方あるいはいずれが一方の円筒の側面を磁性微粒子あるいは反応物質が透過できる工程と、透過した溶液および物質を他方の円筒壁から流入し循環する工程と、同軸二重円筒容器の外側に配置した円筒隙間内に磁場を形成する工程と、磁場分布および磁場強度を制御する工程と、磁場分布、磁場強度、回転角速度、回転数、温度等のパラメータの値を示す工程を有するものである。  Further, the rotational reaction apparatus and the rotational reaction method of the present invention are a process of installing a coaxial double cylindrical container having a height several times the clearance between both cylinders when two cylinders having different diameters are arranged concentrically. And a step of filling the reaction fluid in the gap between the coaxial double cylindrical containers, a step of mixing magnetic fine particles in the reaction fluid, a step of managing the temperature of the reaction fluid, and / or one of the coaxial double cylindrical containers. The step of rotating the cylinder, the step of controlling the rotational angular velocity and the number of rotations of the cylinder, the step of allowing the magnetic fine particles or the reactant to permeate the side of one of the cylinders in the coaxial double cylindrical container, The step of circulating the solution and the substance from the other cylindrical wall, the step of forming a magnetic field in a cylindrical gap arranged outside the coaxial double cylindrical vessel, the magnetic field distribution and the magnetic field strength And controlling the magnetic field distribution, the magnetic field strength, the rotational angular velocity, rotational speed, and has a step of indicating the value of a parameter such as temperature.

本発明は、以下に記載されるような効果を奏する。
請求項1記載の発明の回転反応装置および回転反応方法によれば、アスペクト比の小さい同軸二重円筒容器の流れ場を有するので、装置を小さくでき、液体中の微粒子群を一定の周回軌道に集めて、反応に最適な流れ場モードを容易に形成することができる。
The present invention has the following effects.
According to the rotary reaction device and the rotary reaction method of the first aspect of the present invention, since the flow field of the coaxial double cylindrical container having a small aspect ratio is provided, the device can be made small, and the group of fine particles in the liquid can be in a constant orbit. Collectively, the flow field mode optimal for the reaction can be easily formed.

また、請求項2記載の発明の回転反応装置および回転反応方法によれば、アスペクト比の小さい同軸二重円筒流れと流れ場の磁場制御の工程を有するので、磁場の印加と解除を制御することにより、必要な流れ場モードを選択することができる。  In addition, according to the rotary reaction device and the rotary reaction method of the second aspect of the present invention, since the coaxial double cylindrical flow having a small aspect ratio and the magnetic field control process of the flow field are included, the application and release of the magnetic field are controlled. Thus, a necessary flow field mode can be selected.

以下、本発明を実施するための最良の形態について図面に基づいて説明する。
まず、回転反応装置および回転反応方法にかかる第1の発明を実施するための最良の形態について説明する。図1は、本発明の装置を説明するものである。
The best mode for carrying out the present invention will be described below with reference to the drawings.
First, the best mode for carrying out the first invention according to the rotary reaction device and the rotary reaction method will be described. FIG. 1 illustrates the apparatus of the present invention.

本発明は、アスペクト比の小さい同軸二重円筒のテイラー渦流れを用いることにより、液体中の微粒子群を一定の周回軌道に集め、複雑で緩やかな流れ場を形成することにより反応効率を高くし、反応液体中に磁性微粒子を混入して外部磁場を作用することにより必要な流れ場モードを形成することのできる回転反応装置および回転反応方法を提供するものであるが、この回転反応装置は図1に示すように、測定部1と制御部2から成り立っている。  The present invention uses a coaxial double-cylinder Taylor vortex flow with a small aspect ratio to collect a group of fine particles in a liquid in a fixed orbit and form a complex and gentle flow field, thereby increasing the reaction efficiency. The present invention provides a rotational reaction device and a rotational reaction method capable of forming a necessary flow field mode by mixing magnetic fine particles in a reaction liquid and applying an external magnetic field. As shown in FIG. 1, the measurement unit 1 and the control unit 2 are included.

同軸二重円筒容器3の隙間には反応流体4に磁性微粒子5が混入して注入されている。  In the gap between the coaxial double cylindrical containers 3, magnetic fine particles 5 are mixed and injected into the reaction fluid 4.

反応流体4は恒温装置7にて所定温度に保たれる。  The reaction fluid 4 is kept at a predetermined temperature by the thermostatic device 7.

同軸二重円筒容器3の内円筒は中空円管であり、その壁は透過膜壁6でできている。  The inner cylinder of the coaxial double cylindrical container 3 is a hollow circular tube, and its wall is made of a permeable membrane wall 6.

回転機構8は同軸二重円筒容器3の双方あるいはいずれか一方の円筒に接続され、円筒を回転させることができる。回転機構8の回転角速度および回転数は回転制御装置9にて制御され、ある臨界値の回転数以上のところでテイラー渦流れが形成される様に設定できる。  The rotation mechanism 8 is connected to both or one of the coaxial double cylindrical containers 3 and can rotate the cylinder. The rotation angular velocity and the rotation speed of the rotation mechanism 8 are controlled by the rotation control device 9, and can be set so that a Taylor vortex flow is formed at a rotation speed higher than a certain critical value.

同軸二重円筒容器3の外側には電磁石10を設置し、磁場制御装置11を用いて磁場分布および磁場強度を制御する。  An electromagnet 10 is installed outside the coaxial double cylindrical container 3, and the magnetic field distribution and the magnetic field strength are controlled using the magnetic field control device 11.

循環装置12は、同軸二重円筒隙間の反応液濃度や反応速度を制御するために、反応液の流量を調整するとともに、必要に応じて磁性微粒子の混入・除出を行う。  The circulation device 12 adjusts the flow rate of the reaction solution and controls the mixing and removal of magnetic fine particles as necessary in order to control the reaction solution concentration and reaction rate in the coaxial double cylindrical gap.

回転制御装置9と磁場制御装置11および恒温装置7の指示値および測定値は表示装置13に表示される。  Indication values and measurement values of the rotation control device 9, the magnetic field control device 11, and the constant temperature device 7 are displayed on the display device 13.

以上のことから、本発明を実施するための最良の形態によれば、
アスペクト比の小さい同軸二重円筒容器の流れ場を有するので、装置を小さくでき、液体中の微粒子群を一定の周回軌道に集めて、反応に最適な流れ場モードを容易に形成することができる。
From the above, according to the best mode for carrying out the present invention,
Since it has a flow field of a coaxial double cylindrical container with a small aspect ratio, the apparatus can be made small, and a flow field mode optimal for the reaction can be easily formed by collecting a group of fine particles in a liquid in a fixed orbit. .

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、回転反応装置および回転反応方法にかかる第2の発明を実施するための最良の形態について説明する。図2は、本発明の方法を説明するものである。  Next, the best mode for carrying out the second aspect of the rotary reaction device and the rotary reaction method will be described. FIG. 2 illustrates the method of the present invention.

1に示すように同軸二重円筒の間隔に磁性微粒子と反応液を注入する。
2に示すように同軸二重円筒は温度管理のもと静止状態にして液体を安定させる。
3に示すように磁場制御装置にて所定の磁場分布と磁場強度を設定して電磁石にて磁場を印加する。
4に示すように回転制御装置を用いて回転機構の回転角速度および回転数を設定し、回転機構で同軸二重円筒の双方あるいはどちらか一方の円筒を回転させる。
5に示すように円筒が所定の回転数になり次第、磁場制御装置にて電磁石の磁場を解除する。
6に示すように流れ場が所定の流れ場モードに変位したかを判断する。所定の流れ場モードに変位しない場合は、2にもどる。
7に示すように回転制御装置にて一定回転運転を行い、反応を開始する。
8に示すように反応に磁性微粒子が必要かどうか判断する。
9に示すように反応に磁性微粒子が必要で無い場合は循環装置を用いて磁性粒子を回収する。
10に示すように反応が臨界値に達したかを判断する。臨界値に達していない場合は、続けて一定回転で反応を続ける。
11に示すように循環装置を用いて反応液を回収する。
12で終了する。
As shown in FIG. 1, magnetic fine particles and a reaction liquid are injected into the interval between coaxial double cylinders.
As shown in FIG. 2, the coaxial double cylinder is made stationary under temperature control to stabilize the liquid.
As shown in FIG. 3, a predetermined magnetic field distribution and magnetic field strength are set by a magnetic field control device, and a magnetic field is applied by an electromagnet.
As shown in Fig. 4, the rotation control device is used to set the rotation angular velocity and the rotation speed of the rotation mechanism, and both or one of the coaxial double cylinders is rotated by the rotation mechanism.
As shown in FIG. 5, the magnetic field of the electromagnet is released by the magnetic field control device as soon as the cylinder reaches a predetermined rotational speed.
As shown in FIG. 6, it is determined whether the flow field has been shifted to a predetermined flow field mode. If not displaced to the predetermined flow field mode, return to 2.
As shown in FIG. 7, a constant rotation operation is performed by the rotation control device, and the reaction is started.
As shown in FIG. 8, it is determined whether or not magnetic fine particles are necessary for the reaction.
As shown in FIG. 9, when no magnetic fine particles are required for the reaction, the magnetic particles are recovered using a circulation device.
As shown in FIG. 10, it is judged whether the reaction reaches a critical value. If the critical value is not reached, the reaction is continued at a constant rotation.
As shown in FIG. 11, the reaction solution is recovered using a circulation device.
The process ends at 12.

以上のことから、発明を実施するための最良の形態によれば、
アスペクト比の小さい同軸二重円筒流れと流れ場の磁場制御の工程を有するので、磁場の印加と解除を制御することにより、必要な流れ場モードを選択することができる。
From the above, according to the best mode for carrying out the invention,
Since it has a coaxial double cylindrical flow with a small aspect ratio and a magnetic field control step for the flow field, the required flow field mode can be selected by controlling the application and release of the magnetic field.

なお、本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。  The present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

つぎに、本発明にかかる第1の実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。  Next, the first embodiment according to the present invention will be described in detail. However, it goes without saying that the present invention is not limited to these examples.

ここでは、外円筒を固定して内円筒を回転させたときのテイラー渦流れにおいて、流れ場中の微粒子を一定の周回軌道に集める方法についての例を示す。  Here, an example of a method for collecting fine particles in a flow field in a fixed orbit in a Taylor vortex flow when the outer cylinder is fixed and the inner cylinder is rotated will be shown.

図3の測定部および図4の装置を用いた。同軸二重円筒容器は、外円筒半径40mm、内円筒半径15mm、高さ75mmのアクリル樹脂製ので、グリセリン水溶液中に可視化のため市販のアルミナ粒子を用いて粒子軌跡を撮影した。外円筒と内円筒の隙間は25mmで、隙間と高さの比、すなわちアスペクト比は3である。静止状態から内円筒を100rpmまで急加速したとき、3つの渦が発生する変異3セルモードが発生し、30分間以上一定回転を続けた。図5において右側が内円筒(回転部)であり、左側が外円筒である。混入した微粒子は、テイラー渦に追従して均一な渦状の分布を示すが、時間が経過すると図5の様に粒子群がある一定の周回軌道に集まる。すなわち、粒子の集積軌道は内円筒に接することなく、ある一定の距離を保ちながら周回している。  The measurement part of FIG. 3 and the apparatus of FIG. 4 were used. The coaxial double cylindrical container is made of an acrylic resin having an outer cylinder radius of 40 mm, an inner cylinder radius of 15 mm, and a height of 75 mm, and the particle locus was photographed using commercially available alumina particles for visualization in an aqueous glycerin solution. The gap between the outer cylinder and the inner cylinder is 25 mm, and the ratio between the gap and the height, that is, the aspect ratio is 3. When the inner cylinder was suddenly accelerated to 100 rpm from a stationary state, a mutant 3-cell mode in which three vortices were generated was generated and continued to rotate at a constant speed for 30 minutes or more. In FIG. 5, the right side is the inner cylinder (rotating part), and the left side is the outer cylinder. The mixed fine particles follow the Taylor vortex and show a uniform vortex-like distribution, but as time passes, the particle group gathers in a certain circular orbit as shown in FIG. That is, the particle accumulation trajectory circulates while maintaining a certain distance without contacting the inner cylinder.

以上のことから、本実施の形態によれば、アスペクト比の小さい同軸二重円筒容器の流れ場を有するので、液体中の微粒子群を一定の周回軌道に集めて反応に最適な流れ場モードを容易に形成することができる。
また、液体中の微粒子群を一定の周回軌道に集める事ができるので、効率的な反応を行わせることができる。
また、容器を小さくできるので、装置の簡素化ができ、経済的である。
From the above, according to the present embodiment, since it has a flow field of a coaxial double cylindrical container having a small aspect ratio, a flow field mode optimal for the reaction is obtained by collecting fine particles in a liquid in a fixed orbit. It can be formed easily.
In addition, since the group of fine particles in the liquid can be collected on a fixed orbit, an efficient reaction can be performed.
Further, since the container can be made small, the apparatus can be simplified and economical.

つぎに、本発明にかかる第2の実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。  Next, a second embodiment according to the present invention will be specifically described. However, it goes without saying that the present invention is not limited to these examples.

ここでは、アスペクト比が3のテイラー渦流れにおいて、磁性微粒子として磁性流体の強磁性微粒子を用いて、流れ場モードの磁場制御についての例を示す。  Here, in a Taylor vortex flow with an aspect ratio of 3, an example of magnetic field control in a flow field mode using ferromagnetic fine particles of magnetic fluid as magnetic fine particles is shown.

図3の測定部および図4の装置を用いた。磁性微粒子には、市販の水ベース磁性流体(フェリコロイドW−40)を用いた。同軸二重円筒容器は、外円筒半径40mm、内円筒半径20mm、高さ60mmのアクリル樹脂製のもので、印加磁場には、高さ×幅×厚みが60mm×30mm×30mmの永久磁石を用いて同軸二重円筒容器の外部より水平に設置した。内部流動状態を確認するために、市販の超音波流速分布計(UVP X3 PSi)を用いて速度分布を測定した。得られた速度分布の時間的変化を図5に示した。図5は横軸に時間を縦軸に軸方向位置を示し、プロットは速度値を示している。アスペクト比が3のテイラー渦流れでは、いくつかのセルモードが発生するが、図5では、4つのセルが出現する流れ場モード、すなわち正規4セルモードに磁場を印加して解除することにより、3つのセルが回転する流れ場モード、すなわち変異3セルモードに変化する様子がうかがえる。また、図6は静止状態から磁場を印加し、一定回転になったところで磁場を解除したときの速度分布の時間的変化である。磁場を印加しない場合は、正規2セルモード、正規4セルモード、変異3セルモード、変異4セルモードの四つの流れ場モードが確率的に発生するのに対し、磁場を印加することにより、変異3セルモードのみを発生させることができる。  The measurement part of FIG. 3 and the apparatus of FIG. 4 were used. A commercially available water-based magnetic fluid (ferricolloid W-40) was used as the magnetic fine particles. The coaxial double cylindrical container is made of acrylic resin having an outer cylinder radius of 40 mm, an inner cylinder radius of 20 mm, and a height of 60 mm, and a permanent magnet having a height x width x thickness of 60 mm x 30 mm x 30 mm is used for the applied magnetic field. And installed horizontally from the outside of the coaxial double cylindrical container. In order to confirm the internal flow state, the velocity distribution was measured using a commercially available ultrasonic flow velocity distribution meter (UVP X3 PSi). The time change of the obtained velocity distribution is shown in FIG. In FIG. 5, the horizontal axis indicates time, the vertical axis indicates the axial position, and the plot indicates speed values. In Taylor vortex flow with an aspect ratio of 3, several cell modes occur, but in FIG. 5, by applying a magnetic field to the flow field mode in which four cells appear, that is, the normal 4-cell mode, It can be seen that the flow field mode in which the three cells rotate, that is, the change to the mutated three-cell mode. FIG. 6 shows a temporal change in velocity distribution when a magnetic field is applied from a stationary state and the magnetic field is released when the rotation is constant. When a magnetic field is not applied, four flow field modes of normal 2-cell mode, normal 4-cell mode, mutant 3-cell mode, and mutant 4-cell mode are generated stochastically. Only the 3-cell mode can be generated.

以上のことから、本実施の形態によれば、アスペクト比の小さい同軸二重円筒流れと流れ場の磁場制御の工程を有するので、磁場の印加と解除を制御することにより、必要な流れ場モードを選択することができる。  From the above, according to the present embodiment, since it has a coaxial double cylindrical flow with a small aspect ratio and a magnetic field control process of the flow field, the necessary flow field mode is controlled by controlling the application and release of the magnetic field. Can be selected.

また、同軸二重円筒において双方あるいはいずれか一方の円筒の側面に磁性微粒子あるいは反応物質が透過できる多孔質膜を有するので、反応層に磁性微粒子を残したまま、反応溶液を循環させることができ、広範囲な用途に好ましく使用することができる。
また、測定部と制御部が分かれているので、測定部の遠隔操作が可能である。
In addition, since the coaxial double cylinder has a porous membrane that allows magnetic fine particles or reactants to permeate on the side surfaces of both or one of the cylinders, the reaction solution can be circulated while leaving the magnetic fine particles in the reaction layer. It can be preferably used for a wide range of applications.
Moreover, since the measurement unit and the control unit are separated, the measurement unit can be remotely operated.

測定する対象は、磁性微粒子として磁性流体の強磁性微粒子を用いた流れ場制御と攪拌効果について述べてきたが、これらの攪拌作用に限定されず、攪拌・混合層、超微細微粒子製造、懸濁重合などにも適用できる。  The subject to be measured has been described flow field control and stirring effect using magnetic fine particles of magnetic fluid as magnetic fine particles. It can also be applied to polymerization.

また、対象とする標本体は微粒子ばかりでなく、生きているバクテリヤや藻類などの微生物の挙動解析や微生物培養の効率化、バイオリアクターにも応用できる。
また、非常に小さな装置にも適用できるので、マイクロ流動やナノ流動および微生物の流動解析や微小反応解析を取り扱う次世代の研究に寄与する。
Moreover, the target specimen can be applied not only to fine particles but also to analysis of the behavior of microorganisms such as living bacteria and algae, efficiency of microbial culture, and bioreactor.
It can also be applied to very small devices, contributing to next-generation research that deals with microfluidic and nanofluidic, microbial flow analysis, and microreaction analysis.

本発明の回転反応装置の一実施例を示す概略構成の説明図である。  It is explanatory drawing of schematic structure which shows one Example of the rotation reaction apparatus of this invention. 本発明の回転反応方法の一実施例を示す説明図である。  It is explanatory drawing which shows one Example of the rotation reaction method of this invention. 本発明の回転反応装置および回転反応方法の一実施例の説明図である。  It is explanatory drawing of one Example of the rotation reaction apparatus and rotation reaction method of this invention. 本発明の回転反応装置および回転反応方法の一実施例の説明図である。  It is explanatory drawing of one Example of the rotation reaction apparatus and rotation reaction method of this invention. 本発明の回転反応装置および回転反応方法の一実施例の結果図である。  It is a result figure of one Example of the rotation reaction apparatus and rotation reaction method of this invention. 本発明の回転反応装置および回転反応方法の一実施例の結果図である。  It is a result figure of one Example of the rotation reaction apparatus and rotation reaction method of this invention. 本発明の回転反応装置および回転反応方法の一実施例の結果図である。  It is a result figure of one Example of the rotation reaction apparatus and rotation reaction method of this invention.

符号の説明Explanation of symbols

1 測定部
2 制御部
3 同軸二重円筒容器
4 反応流体
5 磁性微粒子
6 透過膜壁
7 恒温装置
8 回転装置
9 回転制御装置
10 電磁石
11 磁場制御装置
12 循環装置
13 表示装置
DESCRIPTION OF SYMBOLS 1 Measurement part 2 Control part 3 Coaxial double cylindrical container 4 Reaction fluid 5 Magnetic fine particle 6 Permeation membrane wall 7 Constant temperature apparatus 8 Rotation apparatus 9 Rotation control apparatus 10 Electromagnet 11 Magnetic field control apparatus 12 Circulation apparatus 13 Display apparatus

Claims (2)

直径の異なる二つの円筒を同心になるように配置したときにおいて両円筒隙間の数倍の高さを有する同軸二重円筒容器と、
上記同軸二重円筒容器の隙間を満たす反応流体と、
上記反応流体中に混入する磁性微粒子と、
上記反応流体の温度管理を行う恒温装置と、
上記同軸二重円筒容器において双方あるいはいずれか一方の円筒を回転させる回転機構と、
上記回転機構の回転を制御する回転制御装置と、
上記同軸二重円筒容器において双方あるいはいずれか一方の円筒の側面を上記磁性微粒子あるいは反応物質が透過できる多孔質膜を有する透過膜壁と、
上記透過膜壁を透過した反応液を他方の円筒壁から流入する循環装置と、
上記同軸二重円筒容器の外側に配置し、円筒隙間内に磁場を形成する電磁石と、
上記電磁石の磁場分布および磁場強度を制御する磁場制御装置と、
上記磁場制御装置と回転制御装置の指示値を示す表示装置を有する回転反応装置。
A coaxial double-cylindrical container having a height several times the gap between the two cylinders when two cylinders having different diameters are arranged concentrically;
A reaction fluid that fills the gap between the coaxial double cylindrical containers;
Magnetic fine particles mixed in the reaction fluid;
A thermostat for controlling the temperature of the reaction fluid;
A rotating mechanism that rotates both or any one of the cylinders in the coaxial double cylindrical container;
A rotation control device for controlling the rotation of the rotation mechanism;
A permeable membrane wall having a porous membrane that allows the magnetic fine particles or reactants to pass through the side surfaces of both or one of the cylinders in the coaxial double cylindrical container;
A circulation device for flowing the reaction liquid that has permeated through the permeable membrane wall from the other cylindrical wall;
An electromagnet disposed outside the coaxial double cylindrical container and forming a magnetic field in the cylindrical gap;
A magnetic field control device for controlling the magnetic field distribution and magnetic field intensity of the electromagnet;
A rotary reaction device having a display device indicating the indicated values of the magnetic field control device and the rotation control device.
直径の異なる二つの円筒を同心になるように配置したときにおいて両円筒隙間の数倍の高さを有する同軸二重円筒容器を設置する工程と、
同軸二重円筒容器の隙間に反応流体を満たす工程と、
反応流体中に磁性微粒子を混入する工程と、
反応流体の温度を管理する工程と、
同軸二重円筒容器において双方あるいはいずれか一方の円筒を回転させる工程と、
円筒の回転角速度や回転数を制御する工程と、
同軸二重円筒容器において双方あるいはいずれか一方の円筒の側面を磁性微粒子あるいは反応物質が透過できる工程と、
透過した溶液および物質を他方の円筒壁から流入し循環する工程と、
同軸二重円筒容器の外側に配置し、円筒隙間内に磁場を形成する工程と、
磁場分布および磁場強度を制御する工程と、
磁場分布、磁場強度、回転角速度、回転数、温度等のパラメータの値を示す工程を有する回転反応方法。
A step of installing a coaxial double cylindrical container having a height several times the clearance between both cylinders when two cylinders having different diameters are arranged concentrically;
Filling the reaction fluid into the gap between the coaxial double cylindrical containers;
Mixing magnetic fine particles into the reaction fluid;
Managing the temperature of the reaction fluid;
Rotating both or any one of the cylinders in the coaxial double cylindrical container;
A process for controlling the rotational angular velocity and the rotational speed of the cylinder,
A step of allowing magnetic fine particles or reactants to permeate the side surfaces of both or one of the cylinders in the coaxial double cylindrical container;
Circulating the permeated solution and substance from the other cylindrical wall; and
A step of arranging outside the coaxial double cylindrical container and forming a magnetic field in the cylindrical gap;
Controlling the magnetic field distribution and the magnetic field strength;
A rotational reaction method comprising a step of indicating values of parameters such as magnetic field distribution, magnetic field strength, rotational angular velocity, rotational speed, temperature, and the like.
JP2004127356A 2004-03-26 2004-03-26 Rotary reaction apparatus and rotatively reacting method Pending JP2005279619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127356A JP2005279619A (en) 2004-03-26 2004-03-26 Rotary reaction apparatus and rotatively reacting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127356A JP2005279619A (en) 2004-03-26 2004-03-26 Rotary reaction apparatus and rotatively reacting method

Publications (1)

Publication Number Publication Date
JP2005279619A true JP2005279619A (en) 2005-10-13

Family

ID=35178564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127356A Pending JP2005279619A (en) 2004-03-26 2004-03-26 Rotary reaction apparatus and rotatively reacting method

Country Status (1)

Country Link
JP (1) JP2005279619A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083768A (en) * 2009-09-18 2011-04-28 Nippon Chem Ind Co Ltd Continuous crystallizer
WO2020138387A1 (en) * 2018-12-26 2020-07-02 エム・テクニック株式会社 Method for producing organic compound
JP6783494B1 (en) * 2018-12-26 2020-11-11 エム・テクニック株式会社 Method for producing organic compounds

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083768A (en) * 2009-09-18 2011-04-28 Nippon Chem Ind Co Ltd Continuous crystallizer
WO2020138387A1 (en) * 2018-12-26 2020-07-02 エム・テクニック株式会社 Method for producing organic compound
JP2020163389A (en) * 2018-12-26 2020-10-08 エム・テクニック株式会社 Method for producing organic compounds
JP6783494B1 (en) * 2018-12-26 2020-11-11 エム・テクニック株式会社 Method for producing organic compounds
CN113227027A (en) * 2018-12-26 2021-08-06 M技术株式会社 Method for producing organic compound
EP3904321A4 (en) * 2018-12-26 2022-08-31 M. Technique Co., Ltd. Method for producing organic compound
JP7442186B2 (en) 2018-12-26 2024-03-04 エム・テクニック株式会社 Method for producing organic compounds

Similar Documents

Publication Publication Date Title
Kung et al. Microfluidic synthesis control technology and its application in drug delivery, bioimaging, biosensing, environmental analysis and cell analysis
JP6263592B2 (en) Single-use mixing / bioreactor system
Kaminski et al. Controlled droplet microfluidic systems for multistep chemical and biological assays
Shang et al. Emerging droplet microfluidics
US10717959B2 (en) Methods for controlling the growth of prokaryotic and eukaryotic cells
Wang et al. Enhancement of mixing and mass transfer performance with a microstructure minireactor for controllable preparation of CaCO3 nanoparticles
Himstedt et al. Magnetically activated micromixers for separation membranes
KR100817632B1 (en) Methods and apparatus for materials processing
JP6752472B2 (en) Shaft-mounted fluid transfer assembly for disposable bioreactors
CN101432062B (en) Process and apparatus for introduction of gas into and degassing of liquids, in particular in biotechnology and especially of cell cultures
US4973165A (en) Method of generating precisely-defined wall shearing stresses
JP2013163183A (en) Reactor
Jin et al. Dynamic sessile‐droplet habitats for controllable cultivation of bacterial biofilm
Grzybowski et al. Materials, assemblies and reaction systems under rotation
JP2005279619A (en) Rotary reaction apparatus and rotatively reacting method
JP2008501365A5 (en)
US20210230532A1 (en) Systems and methods for scalable manufacturing of therapeutic cells in bioreactors
Xu et al. Liquid–gas dual phase microfluidic system for biocompatible CaCO 3 hollow nanoparticles generation and simultaneous molecule doping
Ogawa et al. Development of hydrogel microtubes for microbe culture in open environment
KR20230009359A (en) cell culture bioreactor
Ogawa et al. Microbial production inside microfabricated hydrogel microtubes
Zhang et al. Bent-capillary-centrifugal-driven monodisperse droplet generator with its application for digital LAMP assay
Kim et al. PDMS-based Screw-wall Microfluidic Channel Forming a Turbulent Flow at Low Reynold Number
Chauhan et al. Emerging microfluidic platforms for crystallization process development
Wu et al. High-Throughput Microfluidic Production of Droplets and Hydrogel Microspheres through Monolithically Integrated Microchannel Plates