JP2005279561A - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP2005279561A
JP2005279561A JP2004100108A JP2004100108A JP2005279561A JP 2005279561 A JP2005279561 A JP 2005279561A JP 2004100108 A JP2004100108 A JP 2004100108A JP 2004100108 A JP2004100108 A JP 2004100108A JP 2005279561 A JP2005279561 A JP 2005279561A
Authority
JP
Japan
Prior art keywords
water
regeneration
adsorbent container
heating
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004100108A
Other languages
Japanese (ja)
Inventor
Koji Oshima
功治 大島
Aiko Mitsu
愛子 三津
Satoko Kitsuka
里子 木塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004100108A priority Critical patent/JP2005279561A/en
Publication of JP2005279561A publication Critical patent/JP2005279561A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water purifier constituted so as to efficiently separate and discharge both of a water-compatible hydrophilic substance and a hydrophobic substance, having high regeneration efficiency, having a water purifying capacity as a result and good in heat efficiency at the time of regeneration operation. <P>SOLUTION: The water purifier is equipped with a water inlet for introducing tap water, a water outlet for discharging purified water, an adsorbent container, which has the tap water inlet and the purified water outlet and houses an adsorbent therein, and a heating means for heating the adsorbeent container and constituted so as not only to purify tap water but also to be regenerated by heating. This water purifier is also equipped with a means for measuring the temperature in the adsorbent container and valves provided on the inlet and outlet sides of the adsorbent container to hermetically close the adsorbent container and the adsorbent container is hermetically closed and opened by the valves before boiling during heating regeneration and heating is continued even after the valves are opened and closed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加熱により再生が可能な吸着材を有する浄水器に関する。   The present invention relates to a water purifier having an adsorbent that can be regenerated by heating.

従来、例えば有機物を吸着した吸着材を非通水状態で加熱し、有機物を脱離させ、さらに加熱再生終了後に弁操作または加熱条件を変化させ、脱離のすすんだ水を排水させる方法が知られている(例えば、特許文献1、特許文献2参照。)。   Conventionally, for example, a method is known in which an adsorbent that adsorbs organic matter is heated in a non-water-permeable state, the organic matter is desorbed, and further, the valve operation or heating conditions are changed after completion of heating regeneration to drain the water that has been desorbed. (For example, refer to Patent Document 1 and Patent Document 2).

しかしこの方法では、加熱終了後に弁操作で排水していたため、再生中は水が多量に残存していた。吸着材表面に吸着していた同一物質が、液相に脱離した場合と気相に脱離した場合では、液相中では拡散速度が大幅に遅い。したがって脱離した物質の拡散速度を速めるためには水が少ない方が良く、水が多量に残存している状態では、特に疎水性物質の脱離・排出効率が低くなり再生が不十分または再生に長時間を要する傾向があった。   However, in this method, since water was drained by operating the valve after the heating was completed, a large amount of water remained during regeneration. When the same substance adsorbed on the adsorbent surface is desorbed into the liquid phase and desorbed into the gas phase, the diffusion rate is significantly slow in the liquid phase. Therefore, in order to increase the diffusion rate of the desorbed substance, it is better to use less water. In the state where a large amount of water remains, the desorption / discharge efficiency of the hydrophobic substance is lowered and regeneration is insufficient or regenerated. Tended to take a long time.

また、吸着材中に残留している水を吸引し強制排水した後、加熱し有機物の脱離・再生操作を行なう方法も開示されている(例えば、特許文献3参照。)。さらに別の方法として、吸着材を回転した際の遠心力により吸着材中に残留した水を排水した後、加熱を行なう方法も開示されている(例えば、特許文献4参照。)。   Also disclosed is a method in which water remaining in the adsorbent is sucked and forcibly drained, and then heated to desorb and regenerate organic substances (see, for example, Patent Document 3). As another method, a method of heating after draining water remaining in the adsorbent by centrifugal force when rotating the adsorbent is disclosed (for example, see Patent Document 4).

しかしこれらの方法においては、加熱前に水を抜いているため、親水性物質の脱離性が悪いという問題があった。また、水道水中に含まれる一部の親水性高分子では、もともとは親水性でも水が抜けた後空気と接触することにより、内部にあった疎水基が表面に出ることで、次第に水になじみの悪い物質に形態が変化する変性を起こすことがある。このように表面が疎水性になった高分子有機物は、加熱再生しても容易には脱離せず、このような水がある状態で加熱した方が良い吸着物質については水の存在下で加熱再生することが重要である。さらに、加熱前に水を抜いてしまうことから、空気層が多く形成され断熱材の役割を果たし、ヒータから吸着材内部への伝熱性が低下するとともに外部への放熱比率が高まり、熱効率が低下してしまう、等の欠点があった。   However, in these methods, since water is drained before heating, there is a problem that the hydrophilic substance is poorly detached. In addition, some hydrophilic polymers contained in tap water gradually become familiar with water because the hydrophobic groups that exist inside appear on the surface by contact with the air after the water has been drained even if it is hydrophilic. It may cause denaturation that changes its form to a bad substance. Such a high-molecular organic substance with a hydrophobic surface does not easily desorb even when heated and regenerated. For such adsorbents that should be heated in the presence of water, heat in the presence of water. It is important to play. Furthermore, since water is drained before heating, many air layers are formed, acting as a heat insulating material, the heat transfer from the heater to the inside of the adsorbent decreases, the heat dissipation ratio to the outside increases, and the heat efficiency decreases. There were drawbacks such as.

このように従来技術では、水になじみの良い親水性物質を変性を起こすこともなく脱離・排出させかつ、疎水性物質についても早い拡散速度で再生を行ない、さらにこれらの再生動作を熱効率よく行なうことは不可能であった。
特開平1−51189 特開平1−262984 特開平9−1130 特開平6−182330
As described above, in the prior art, hydrophilic substances that are well-suited to water are desorbed and discharged without causing denaturation, and hydrophobic substances are also regenerated at a high diffusion rate. It was impossible to do.
JP-A-1-511189 JP-A-1-262984 JP-A-9-1130 JP-A-6-182330

本発明は、上記問題を解決するためになされたもので、本発明の課題は、水になじみの良い親水性物質および疎水性物質のいずれも効率よく脱離・排出させ、再生効率が高く結果的に浄水性能が高く、かつ再生動作時の熱効率の良い浄水器を提供することである。   The present invention has been made to solve the above problems, and the object of the present invention is to efficiently desorb / discharge both hydrophilic and hydrophobic substances that are well-suited to water, resulting in high regeneration efficiency. In particular, it is to provide a water purifier having high water purification performance and high thermal efficiency during regeneration operation.

上記目的を達成するために請求項1記載の発明は、水道水を導入する入水口と、浄化された水を吐水する吐水口と、前記水道水の入り口および出口を備え内部に吸着材を収容した吸着材容器と、該吸着材容器を加熱する加熱手段とを備え、水道水の浄化を行なうとともに加熱による再生が可能な浄水器であって、吸着材容器内温度計測手段と前記吸着材容器の入り口側および出口側に吸着材容器を密閉可能な弁を備えるとともに、加熱再生中における沸騰前に前記弁により密閉および開放を行ない、前記弁の開閉後も加熱を継続することを特徴とする。   In order to achieve the above object, an invention according to claim 1 is provided with a water inlet for introducing tap water, a water outlet for discharging purified water, and an inlet and outlet for the tap water, and containing an adsorbent therein. A water purifier comprising the adsorbent container and a heating means for heating the adsorbent container, capable of purifying tap water and regenerating by heating, the adsorbent container temperature measuring means and the adsorbent container Provided with a valve capable of sealing the adsorbent container on the inlet side and the outlet side, and is sealed and opened by the valve before boiling during heating regeneration, and heating is continued even after the valve is opened and closed. .

本発明によれば、水になじみの良い親水性物質を水中にて脱離させた後、沸騰前に水を弁の開閉動作により排出させることで、親水性物質を熱変性させることなく外部に排出でき、また、水の排出後も加熱を継続することで、疎水性物質についても早い拡散速度で脱離・排出することができ、結果的に高い再生効率を実現することが可能となる。   According to the present invention, after desorbing a hydrophilic substance that is well-suited to water in water, the water is discharged by opening and closing the valve before boiling, so that the hydrophilic substance is externally denatured without being thermally denatured. Further, by continuing heating after the water is discharged, the hydrophobic substance can be desorbed and discharged at a high diffusion rate, and as a result, a high regeneration efficiency can be realized.

また、請求項2記載の発明は、加熱再生中における前記温度計測手段により得られた計測値により前記吸着材容器の密閉タイミングを決定し、密閉を開始してからの時間により開放タイミングを決定することを特徴とする。   According to the second aspect of the present invention, the sealing timing of the adsorbent container is determined based on the measured value obtained by the temperature measuring means during heating regeneration, and the opening timing is determined based on the time after the sealing is started. It is characterized by that.

本発明によれば、温度計測地に基づいて制御するため、水道水温度の季節や日による変動に影響されず、安全かつ簡単な機構でに吸着材容器内で親水性物質の脱離がすすんだ残水の排水および加熱再生を行なうことができる。   According to the present invention, since control is performed based on the temperature measurement location, the desorption of the hydrophilic substance in the adsorbent container is facilitated by a safe and simple mechanism without being affected by the seasonal and daily fluctuations in the tap water temperature. Waste water can be drained and regenerated by heating.

また、請求項3記載の発明は、加熱再生中における前記温度計測手段により得られた計測値により前記吸着材容器の密閉タイミングおよび、開放タイミングを決定することを特徴とする   The invention according to claim 3 is characterized in that the sealing timing and the opening timing of the adsorbent container are determined based on the measured value obtained by the temperature measuring means during heating regeneration.

本発明によれば、浄水器の長期使用などによる熱効率の変化の影響を受けずに、より正確に排水のコントロールが可能となる。   According to the present invention, drainage can be controlled more accurately without being affected by changes in thermal efficiency due to long-term use of a water purifier.

また、請求項4記載の発明は、タイマーを有し、該タイマーにより加熱再生の開始を決定することを特徴とする請求項1記載の浄水器   The invention according to claim 4 has a timer, and the start of heating regeneration is determined by the timer.

本発明によれば、毎日または一週間に一回など定期的に確実にかつ、使用者の望む時間帯に加熱再生動作を行なうことが可能となる。   According to the present invention, it is possible to perform the heat regeneration operation reliably and periodically, such as once every week or once a week, and in a time zone desired by the user.

また、請求項5記載の発明は、通水量検知手段を備え、通水量検知手段から推定される前回再生からの通水量により加熱再生の開始を決定することを特徴とする   Further, the invention according to claim 5 is provided with a water flow amount detecting means, wherein the start of heating regeneration is determined by the water flow amount from the previous regeneration estimated from the water flow amount detecting means.

本発明によれば、使用頻度に関わらずより正確なタイミングで再生を行なうことが可能となる。   According to the present invention, it is possible to perform reproduction at a more accurate timing regardless of the frequency of use.

また、請求項6記載の発明は、前記加熱再生中の密閉および開放動作を複数回行うことを特徴とする   The invention according to claim 6 is characterized in that the sealing and opening operations during the heating regeneration are performed a plurality of times.

本発明によれば、脱離物質の液中濃度を低減させ脱離をより促進する効果が得られ、結果的に再生効率の向上が図れるとともに、残水量をより低減することが可能となり、その後の熱効率を向上させることが可能となる。   According to the present invention, the effect of reducing the concentration of the desorbed substance in the liquid and further promoting desorption can be obtained. As a result, the regeneration efficiency can be improved and the amount of residual water can be further reduced. It becomes possible to improve the thermal efficiency.

また、請求項7記載の発明は、前記吸着材容器の出口側から排水を行なう排水流路を備え、前記吸着材容器出口側に前記吐水口への流路と前記排水流路へとを切り替える三方弁を備え、該三方弁により前記吸着材容器からの水を排水流路へ排水可能としたことを特徴とする。   The invention according to claim 7 includes a drainage channel for draining from the outlet side of the adsorbent container, and switches the channel to the water outlet and the drainage channel on the outlet side of the adsorbent container. A three-way valve is provided, and water from the adsorbent container can be drained into the drainage channel by the three-way valve.

本発明によれば、前記吸着材容器出口側から加熱再生中の水を排水流路へ排水することで、吐水口から温度の高い水が排水されることがないため安全性の高い浄水器の提供が可能となる。   According to the present invention, since the water being heated and regenerated from the outlet side of the adsorbent container is drained to the drainage channel, high temperature water is not drained from the water outlet, so that a highly safe water purifier can be used. Provision is possible.

また、請求項8記載の発明は、前記加熱再生中において、前記吸着材容器の出口側弁は閉止し、入り口側弁を開閉することを特徴とする。   The invention according to claim 8 is characterized in that, during the heating regeneration, the outlet side valve of the adsorbent container is closed and the inlet side valve is opened and closed.

本発明によれば、加熱再生中の水および蒸気の排出方向を吸着材の上流側へとすることで、上流側のより高濃度の吸着物質を下流側へ拡散させることなく再生することが可能となり、吸着材の再生率を向上させることが可能となる。   According to the present invention, by setting the discharge direction of water and steam during heat regeneration to the upstream side of the adsorbent, it is possible to regenerate the higher concentration adsorbed material without diffusing downstream. Thus, the regeneration rate of the adsorbent can be improved.

また、請求項9記載の発明は、前記吸着材容器入り口側から排水を行なう排水流路と、前記吸着材容器入り口側に前記入水口への流路と前記排水流路へとを切り替える三方弁を備え、加熱再生中は、前記吸着材容器の出口側弁は閉止し、入り口側弁を開閉するとともに前記三方弁を排水流路側へ切り替えることを特徴とする   The invention according to claim 9 is a three-way valve that switches between a drainage channel for draining from the adsorbent container inlet side, and a channel to the inlet and the drainage channel on the adsorbent container inlet side. And during the heating regeneration, the outlet side valve of the adsorbent container is closed, the inlet side valve is opened and closed, and the three-way valve is switched to the drainage flow path side.

本発明によれば、加熱再生中の水および蒸気の排出方向を吸着材の上流側へとするとともに、排出される水および蒸気を排水流路から排水することで、高温の水や蒸気が排水流路へ排水され、安全性の高い浄水器の提供が可能となる。   According to the present invention, the discharge direction of water and steam during heating regeneration is set to the upstream side of the adsorbent, and the discharged water and steam are drained from the drainage channel, so that high-temperature water and steam are drained. It is possible to provide a highly safe water purifier that is drained to the flow path.

また、請求項10記載の発明は、加熱再生中における前記吸着材容器の密閉タイミングおよび、開放タイミングを、加熱再生中の前記温度計測手段の複数の時間における計測値により決定することを特徴とする   The invention according to claim 10 is characterized in that the sealing timing and the opening timing of the adsorbent container during heating regeneration are determined based on the measured values at a plurality of times of the temperature measuring means during heating regeneration.

本発明によれば、過去の複数の温度データにより現状のより正しい温度を推定することができ、加熱再生中の吸着材容器内の蒸気や水の熱対流さらには結露等による値のぶれに左右されずに、より正確な弁の開閉制御が可能となる。   According to the present invention, a more accurate current temperature can be estimated from a plurality of temperature data in the past, and it is affected by fluctuations in the value due to thermal convection of steam or water in the adsorbent container during heating regeneration, or condensation. Therefore, more accurate valve opening / closing control is possible.

本発明によれば、水になじみの良い親水性物質を水中に極力脱離させた後、沸騰前に水を弁の開閉動作により排出させることで、水になじみの良い親水性物質および疎水性物質のいずれも効率よく脱離・排出させ、再生効率が高く結果的に浄水性能の高い浄水器を提供し、かつ再生動作を熱効率よく行なうことが可能となる。
According to the present invention, a hydrophilic substance that is familiar to water and a hydrophobic substance that are familiar to water can be obtained by desorbing the hydrophilic substance that is familiar to water as much as possible into the water and then draining the water before boiling by opening and closing the valve. Any of the substances can be efficiently desorbed and discharged to provide a water purifier with high regeneration efficiency and high water purification performance, and the regeneration operation can be performed efficiently.

以下に本発明の第一の実施の形態を、添付図面により詳細に説明する。
図1は本発明の浄水器の構成図である。図1において1は浄水器、2は吸着材としての活性炭を収納する活性炭容器、3は水道水の浄水器への通水はされるが逆流を防止する逆止弁であり、4は電源やマイコン等からなる制御部、5は水道水が流入する入水口、6は活性炭再生中および再生後の初期の水を排水する排水口、7は浄化された水を吐水するための吐水口、8は活性炭再生中に活性炭内部を密閉または開放するための開閉弁、9は活性炭再生中に出る排水を温度により切り替える温度切り替え弁、11は吐水の開始、停止の入力をするスイッチ、12は温度切り替え弁9からの排水流路である。また21は活性炭容器2への流入部であり、22は流出部、23は活性炭、24は活性炭および活性炭が含水する水等を加熱する加熱手段としてのヒータ、25は活性炭容器2内の温度を計測するための温度センサである。
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of a water purifier according to the present invention. In FIG. 1, 1 is a water purifier, 2 is an activated carbon container that stores activated carbon as an adsorbent, 3 is a check valve that prevents water from flowing back to the water purifier, but 4 is a power supply or A control unit composed of a microcomputer or the like, 5 is a water inlet through which tap water flows, 6 is a water outlet through which activated water is regenerated and after the regeneration, 7 is a water outlet through which purified water is spouted, 8 Is an open / close valve for sealing or opening the inside of the activated carbon during regeneration of the activated carbon, 9 is a temperature switching valve for switching the waste water discharged during the regeneration of the activated carbon according to temperature, 11 is a switch for inputting start / stop of water discharge, and 12 is a temperature switching It is a drainage channel from the valve 9. Reference numeral 21 denotes an inflow portion into the activated carbon container 2, 22 is an outflow portion, 23 is activated carbon, 24 is a heater as a heating means for heating the activated carbon and water containing the activated carbon, and 25 is a temperature in the activated carbon container 2. It is a temperature sensor for measuring.

浄水器1の動作を図2により説明する。電源が供給されると浄水器は再生タイミングの設定を行い、再生タイマーをスタートさせる。この再生タイミングの設定は例えば電源を入れた後例えば5時間後に毎日加熱再生を開始するというものであり、再生タイマーをスタートし、再生タイマーが前記設定値を越えている場合に再生を行うようにする。このようにタイマーにより再生の開始を決定することで、毎日または一週間に一回など定期的に確実にかつ、使用者の望む時間帯に加熱再生動作を行なうことが可能となる。またこの設定値は、使用者に入力させるようにすることも可能である。次に、使用者吐水スイッチ11の入力待ちの待機状態になり、スイッチ11を押されると再生動作中かどうかの判断を行ない、再生中の場合には吐水動作を行なわずに、吐水スイッチの入力待ちに戻る。再生動作中でなければ、制御部4は開閉弁8を開き、水道水が入水口5から活性炭容器2、開閉弁8を通り吐水口7から清浄な浄水が吐水される。温度作動弁9は加熱再生中の温度の高い水を排水するとともに、浄水器に給湯された温度の高い水が排水されるように作動温度を調整しており、本実施の形態では40℃以上の温度で排水側につながるよう構成されている。   The operation of the water purifier 1 will be described with reference to FIG. When power is supplied, the water purifier sets the regeneration timing and starts the regeneration timer. For example, the regeneration timing is set to start heating regeneration every day, for example, 5 hours after the power is turned on. The regeneration timer is started, and the regeneration is performed when the regeneration timer exceeds the set value. To do. Thus, by determining the start of regeneration by the timer, it is possible to perform the heat regeneration operation reliably and regularly at a time zone desired by the user, such as every day or once a week. The set value can be input by the user. Next, it enters a standby state waiting for an input of the user water discharge switch 11, and when the switch 11 is pressed, it is determined whether or not the regenerating operation is being performed. Return to wait. If the regeneration operation is not in progress, the control unit 4 opens the on-off valve 8, and tap water passes through the activated carbon container 2 and the on-off valve 8 from the water inlet 5, and clean purified water is discharged from the water outlet 7. The temperature operating valve 9 drains high temperature water during heating regeneration and adjusts the operating temperature so that high temperature water supplied to the water purifier is drained. In this embodiment, the temperature operating valve is 40 ° C. or higher. It is configured to connect to the drainage side at a temperature of.

次に、活性炭再生タイミングの判定動作について図3のフローチャートを用いて説明を行なう。浄水器は図2のように吐水スイッチ11がONされるまで待機状態にあるが、定期的にタイマーによる図3の割り込み動作を行なう。割り込み動作では、再生タイマー値が設定値を超えているか判断を行ない、超えている場合には再生フラグをたてておく。次に再生タイマーが24時間を越えているか判定し、超えている場合には再生タイマーをリセットしておく。本実施例では毎日所定の時間に再生を開始する例のため、24時間でリセットしているが、これを168時間に設定すれば1週間に一回所定の時間に再生させることができる。次に再生フラグの状態を判定し、再生フラグが立っておりかつ吐水状態にない場合には、再生サブルーチンにとび再生動作を開始する。再生フラグが立ってない場合や、再生フラグが立っていても吐水中の場合にはそのままメインルーチンへもどる。   Next, the determination operation of the activated carbon regeneration timing will be described using the flowchart of FIG. The water purifier is in a standby state until the water discharge switch 11 is turned on as shown in FIG. 2, but periodically performs the interruption operation of FIG. 3 by a timer. In the interrupt operation, it is determined whether or not the regeneration timer value exceeds the set value, and if it exceeds, a regeneration flag is set. Next, it is determined whether or not the reproduction timer has exceeded 24 hours. If it has exceeded, the reproduction timer is reset. In this embodiment, since the reproduction is started every day at a predetermined time, the reset is made in 24 hours. However, if this is set to 168 hours, the reproduction can be made once a week at the predetermined time. Next, the state of the regeneration flag is determined. If the regeneration flag is set and the water discharge state is not established, the regeneration subroutine is started and the regeneration operation is started. If the regeneration flag is not set, or if the regeneration flag is set and the water is being discharged, the process directly returns to the main routine.

再生サブルーチンについて説明を行なう。図4は再生サブルーチンのシーケンスを表している。まず開閉弁8を開け、ヒータ24に通電を開始し、再生フラグをリセットしておく。活性炭容器内の温度が40℃になったところで出口側の三方弁としての温度作動弁9が排水側に開く。このように出口側に三方弁を設け加熱再生中の温水や蒸気を排水側へ排出するようにすることで加熱再生動作の安全性を高めることができる。温度センサがT0になったところで開閉弁閉めサブルーチンを行ない、開閉弁8をts0秒間閉止後、tk0秒間開く。開閉弁を閉止し活性炭容器2を密閉し発生する蒸気により内部圧力を高め、その後開放することにより内部の水および蒸気を一気に放出する。それにより活性炭表面から液相へ脱離・溶出した吸着物質を水とともに排出する。この際、活性炭容器2内の残水は、活性炭容器の入り口側および出口側の両方へ排水される。次に活性炭容器内の温度がさらに上昇し、温度センサ値がT1になったところで、開閉弁閉めサブルーチンを行ない、開閉弁8を時間ts1閉止、時間tk1開放し、再び活性炭容器内の残水および脱離物質の排出を行なう。その後さらに温度が上昇し、温度がTfに達した所で、加熱を停止し、再生動作を終了する。この加熱再生中の弁の開閉による排水動作については、1回でなるべく高い温度で極力多くの残水を排水させるようにしても構わないが、複数回行なうことにより脱離物質の液中濃度を低減させ脱離をより促進する効果が得られる。また、複数回排水を行なうことで、残水量をより低減することが可能となり、その後の熱効率を向上させる効果も得られる。したがって2回以上の排水動作を行なうことがより好ましい。また、温度の上昇が早すぎる場合には排水動作間近でヒータの電力を下げ、温度上昇を抑えることも可能である。このように、排水回数については、加熱電力や容器のサイズ、容器内水量、再生時間等を考慮し適宜選定を行なう。また、出口側に設けられた三方弁としての温度作動弁9であるが、所定温度で形状の変化する金属等を用い、温度により自動的に流路を切り替えるものとすることで、電気的な制御が不要な構成とすることができる。また、本実施例では吸着材容器入り口側の弁として逆止弁を用いたが、任意に開閉可能な開閉弁を用いても構わない。   The reproduction subroutine will be described. FIG. 4 shows the sequence of the reproduction subroutine. First, the on-off valve 8 is opened, energization of the heater 24 is started, and the regeneration flag is reset. When the temperature in the activated carbon container reaches 40 ° C., a temperature operation valve 9 as a three-way valve on the outlet side opens to the drain side. Thus, by providing a three-way valve on the outlet side and discharging hot water or steam during heating regeneration to the drainage side, the safety of the heating regeneration operation can be enhanced. When the temperature sensor reaches T0, the on-off valve closing subroutine is performed, and the on-off valve 8 is closed for ts0 seconds and then opened for tk0 seconds. The on-off valve is closed, the activated carbon container 2 is sealed, the internal pressure is increased by the generated steam, and then the internal water and steam are released at once by opening. As a result, the adsorbed substances desorbed and eluted from the activated carbon surface into the liquid phase are discharged together with water. At this time, the remaining water in the activated carbon container 2 is drained to both the inlet side and the outlet side of the activated carbon container. Next, when the temperature in the activated carbon container further rises and the temperature sensor value reaches T1, the on-off valve closing subroutine is performed, the on-off valve 8 is closed for a time ts1, and the time tk1 is opened. Release the desorbed material. Thereafter, the temperature further rises, and when the temperature reaches Tf, the heating is stopped and the regeneration operation is finished. With regard to the drainage operation by opening and closing the valve during heating regeneration, it may be possible to drain as much residual water as possible at a temperature as high as possible at one time. The effect of reducing and further promoting desorption can be obtained. Moreover, it becomes possible to reduce the amount of residual water more by draining several times, and the effect of improving subsequent thermal efficiency is also acquired. Therefore, it is more preferable to perform the draining operation twice or more. In addition, when the temperature rises too early, it is possible to suppress the temperature rise by reducing the power of the heater near the draining operation. Thus, the number of times of drainage is appropriately selected in consideration of the heating power, the size of the container, the amount of water in the container, the regeneration time, and the like. Moreover, although it is the temperature actuated valve 9 as a three-way valve provided on the outlet side, by using a metal or the like whose shape changes at a predetermined temperature, the flow path is automatically switched depending on the temperature. It can be set as the structure which does not require control. In this embodiment, a check valve is used as a valve on the adsorbent container inlet side. However, an open / close valve that can be arbitrarily opened and closed may be used.

本実施の形態においては、吸着材容器の密閉のタイミングを温度により、開放のタイミングは密閉からの時間で決定している。水道水の温度は季節や日により変動するが、水温が決まれば温度上昇速度やその際の水蒸気の蒸発量、圧力の上昇速度は決まる。本実施の形態のように吸着材容器内の温度により密閉タイミングを決定し、密閉開始からの時間により開放タイミングを決定することにより、簡単にかつ安全に吸着材容器内で親水性物質の脱離のすすんだ残水の排水が可能となる。   In the present embodiment, the timing for sealing the adsorbent container is determined by the temperature, and the timing for opening is determined by the time from the sealing. The temperature of tap water varies depending on the season and day, but once the water temperature is determined, the rate of temperature rise, the amount of water vapor evaporated, and the rate of pressure rise are determined. As in this embodiment, the sealing timing is determined based on the temperature in the adsorbent container, and the opening timing is determined based on the time from the start of sealing. It is possible to drain the remaining waste water.

吸着材容器を加熱すると、初期は吸着材容器内に残水が多いため親水性物質の脱離・溶出が進む。水道水中に含まれ吸着材に吸着されている物質は多様であり、親水性の程度も様々であるが、水中での加熱により脱離がすすむ物質として、例えば、モノクロラミン、ジクロラミン等の結合塩素やフェノール類、低級脂肪酸類、フミン質、等が考えられる。高分子などの一部では、もともとは親水性でも水が抜けた後空気と接触することにより、次第に内部にあった疎水基が表面に出ることで、次第に水になじみの悪い物質に付着形態が変化する変性を起こすと思われる。このように表面が疎水性になった高分子有機物は、加熱再生しても容易には脱離しないと思われる。このように、水がある状態で加熱した方が良いものについては水の存在下で十分脱離させるとともに、脱離した物質を水とともに排出し、その後沸騰状態で気相中に脱離しやすい物質を脱離させ、早い拡散速度で外部へ排出を行なうことで、効率的に吸着材の再生を行なうことができる。排水を行なうために弁を開閉する吸着材容器内温度についてであるが、脱離温度が高いほど脱離の速度は速い。しかし、水の沸騰温度である100℃に達すると水の蒸発が激しくなり気相部分が多くなることから、親水性高分子の変性が急速にすすむ。脱離している物質も、実際には吸着材表面で吸着と脱離の平衡にあると考えられ、高温で気相との接触が増加し、次第に変性し再吸着する可能性がある。また、沸騰により気相圧力の上昇速度も急激になる。吸着材容器毎に温度上昇特性は若干異なるため、どの個体についても圧力が上がりすぎることなく安全に、かつ所定の圧力に到達させて確実に水抜きを行うためには、沸点付近での水抜きは避け、100℃付近未満で弁を開閉・水抜きすると良い。また、脱離速度に影響を与える因子として、温度と、対象物質の吸着材表面濃度と水中での濃度の差があるが、加熱により吸着物質の脱離がすすむと水中の脱離物質濃度が高くなり脱離の速度が低下すると思われる。したがって、前記のように排水動作を頻繁に行ない、脱離物質濃度を低減することで全体の再生速度を向上させることができる。   When the adsorbent container is heated, since there is a large amount of residual water in the adsorbent container, the desorption / elution of the hydrophilic substance proceeds. Substances contained in tap water and adsorbed on adsorbents vary widely, and the degree of hydrophilicity varies. Substances that can be desorbed by heating in water include, for example, bound chlorine such as monochloramine and dichloramine. And phenols, lower fatty acids, humic substances, and the like. Some of the macromolecules are originally hydrophilic, but when they come out of water, they come into contact with the air, and the hydrophobic groups that exist inside gradually come out on the surface. It seems to cause a change of denaturation. Thus, it is considered that the organic polymer having a hydrophobic surface is not easily detached even when heated and regenerated. In this way, substances that should be heated in the presence of water are sufficiently desorbed in the presence of water, and the desorbed substance is discharged together with water, and then easily desorbed into the gas phase in a boiling state. The adsorbent can be efficiently regenerated by desorbing and discharging to the outside at a high diffusion rate. Regarding the temperature inside the adsorbent container that opens and closes the valve for draining, the higher the desorption temperature, the faster the desorption rate. However, when the boiling temperature of water reaches 100 ° C., the evaporation of water becomes vigorous and the gas phase portion increases, so that the modification of the hydrophilic polymer proceeds rapidly. The desorbed substance is actually considered to be in an equilibrium between adsorption and desorption on the surface of the adsorbent, and contact with the gas phase increases at a high temperature, which may gradually denature and re-adsorb. In addition, the rate of increase of the gas phase pressure becomes abrupt due to boiling. Since the temperature rise characteristics differ slightly for each adsorbent container, it is necessary to drain water near the boiling point in order to drain water safely and reliably without reaching too high pressure for any individual. The valve should be opened / closed and drained at temperatures below 100 ° C. In addition, factors that affect the desorption rate include temperature, the difference between the concentration of the adsorbent surface of the target substance and the concentration in water, but if desorption of the adsorbed substance proceeds by heating, the concentration of the desorbed substance in water It becomes higher and the rate of desorption is expected to decrease. Therefore, the overall regeneration speed can be improved by frequently performing the draining operation as described above and reducing the concentration of the desorbed substance.

このように水になじみの良い親水性物質を水中に極力脱離させた後、沸騰前に水を弁の開閉動作により排出させることで、親水性物質を熱変性させることなく外部に排出し、また疎水性物質については水量が減り気相が増加したところで早い拡散速度で脱離・排出させ、さらに以上の再生動作を安全にかつ熱効率も良く行なうことが可能となる。また、吸着材についてであるが、除去対象物質により種々のものを選択可能である。例えば、活性炭、活性アルミナ、シリカゲル、二酸化チタン、ゼオライト、骨炭、さらにはセラミック粒子など様々なものが利用できるが、活性炭は比表面積が大きく吸着容量も大きく熱的にも安定なため、特に適している。これらの中から単独または組み合わせて使うことにより、水道水中の様々な物質を除去することができる。   After desorbing the hydrophilic substance that is well-suited to water as much as possible in this way, water is discharged by opening and closing the valve before boiling, thereby discharging the hydrophilic substance to the outside without thermal denaturation, In addition, the hydrophobic substance can be desorbed and discharged at a high diffusion rate when the amount of water decreases and the gas phase increases, and the above regeneration operation can be performed safely and efficiently. Further, regarding the adsorbent, various materials can be selected depending on the substance to be removed. For example, various materials such as activated carbon, activated alumina, silica gel, titanium dioxide, zeolite, bone charcoal, and ceramic particles can be used. Activated carbon is particularly suitable because it has a large specific surface area and a large adsorption capacity and is thermally stable. Yes. By using these alone or in combination, various substances in tap water can be removed.

ここで温度T0、T1、閉止時間ts0、ts1、開放時間tk0、tk1、について説明を行なう。前述のようにT0,T1はいずれも100℃未満である必要があるが、脱離を促進するためなるべく温度が高いほうが望ましい。温度T0、T1、閉止時間ts0、ts1、開放時間tk0、tk1、の設定値についてはヒータの消費電力と、吸着材容器内の残水量、吸着材容器の入り口部、出口部形状、吸着材容器の耐圧等にもよるが、例えばヒータの消費電力が20w、吸着材として活性炭を用い、活性炭容器内初期残水量が400cc程度、入り口部および出口部の断面積が10cm2程度以下の場合には、T0を92℃、T1を95℃、ts0、ts1を1分程度、tk0、tk1も1分程度とすると良い。また、活性炭容器2の加熱初期においては、早く昇温したいため初期のヒータ出力を100w程度と大きくとり、水抜き温度に近づくにつれて徐々に出力を下げることができる。このような条件は吸着材容器、ヒータ消費電力等に合わせて実験を行い、最も効率よく水抜きができるよう適宜選定する。また、加熱再生の終了温度Tfは、加熱再生が十分された温度として、例えば120℃〜160℃程度に設定することができる。この温度は吸着材容器中位置やヒータ位置等により測定部位で異なるが、構成や加熱再生の回数等に応じて適宜選定することができる。   Here, the temperatures T0 and T1, the closing times ts0 and ts1, and the opening times tk0 and tk1 will be described. As described above, both T0 and T1 need to be lower than 100 ° C., but it is desirable that the temperature be as high as possible in order to promote desorption. Regarding the set values of the temperatures T0, T1, the closing times ts0, ts1, and the opening times tk0, tk1, the power consumption of the heater, the amount of residual water in the adsorbent container, the shape of the adsorbent container inlet, outlet, and the adsorbent container Depending on the pressure resistance of the heater, for example, when the power consumption of the heater is 20 w, activated carbon is used as the adsorbent, the amount of initial residual water in the activated carbon container is about 400 cc, and the sectional area of the inlet and outlet is about 10 cm 2 or less, It is preferable that T0 is 92 ° C., T1 is 95 ° C., ts0 and ts1 are about 1 minute, and tk0 and tk1 are also about 1 minute. In addition, in the initial heating of the activated carbon container 2, since it is desired to raise the temperature quickly, the initial heater output can be set as large as about 100 w, and the output can be gradually lowered as the water draining temperature is approached. Such conditions are appropriately selected so that water can be drained most efficiently by conducting experiments in accordance with the adsorbent container, heater power consumption, and the like. Further, the end temperature Tf of the heat regeneration can be set to, for example, about 120 ° C. to 160 ° C. as a temperature at which the heat regeneration is sufficiently performed. This temperature varies depending on the measurement site depending on the position in the adsorbent container, the heater position, and the like, but can be appropriately selected according to the configuration, the number of heating regenerations, and the like.

次に本発明の第二の実施の形態について詳細に説明を行なう。
第二の実施の形態の構成を図6に示す。第一の実施の形態では、再生時に吸着材容器内の残水が入り口側と出口側の両方へ排出された。本実施例では、加熱再生中は入り口側開閉弁のみ開閉を行ない、出口側については常に閉止とし、入り口側へ排水するとともに、加熱再生の開始タイミングを通水量により決定する例について説明を行なう。構成については、ほぼ第一の実施の形態と同様であるが、10は流量センサであり、浄水器使用時には常に流量センサ10の値を制御部4で積算し、前回再生終了後からの通水量を求め保持している。また、30は三方弁であり、通水方向を活性炭容器から吐水口7方向へと、排水口6方向へと任意に切り替え可能である。排水流路につながった三方弁30を任意に開放可能とすることにより、加熱再生中の水を排水できるだけでなく、再生後初めて使用する際にも所定の量排水することで、再生後初期の脱離物質が含有されている可能性のある水を排水することができ、衛生性をより高めることが可能となる。31は開閉弁、32は三方弁、33は活性炭容器の加熱再生中に水を排出する水抜き口であり、通常の浄水時には三方弁32は水道水入水口5から活性炭容器2へ水道水を通水し、加熱再生中の水抜き時には活性炭容器内の残水を水抜き口33へ抜くように動作する。また、13は三方弁32からの排水流路である。
Next, the second embodiment of the present invention will be described in detail.
The configuration of the second embodiment is shown in FIG. In the first embodiment, residual water in the adsorbent container was discharged to both the inlet side and the outlet side during regeneration. In the present embodiment, an example will be described in which only the inlet side opening / closing valve is opened and closed during heating regeneration, the outlet side is always closed, drained to the inlet side, and the start timing of heating regeneration is determined by the amount of water. The configuration is almost the same as in the first embodiment, but 10 is a flow rate sensor. When the water purifier is used, the value of the flow rate sensor 10 is always accumulated by the control unit 4 and the amount of water flow since the end of the previous regeneration. Seeking and holding. Reference numeral 30 denotes a three-way valve, and the water flow direction can be arbitrarily switched from the activated carbon container to the water discharge port 7 direction and to the water discharge port 6 direction. By enabling the three-way valve 30 connected to the drainage channel to be opened arbitrarily, not only can the water being heated and regenerated be drained, but also when it is used for the first time after the regeneration, a predetermined amount is drained, so Water that may contain the desorbed substance can be drained, and hygiene can be further improved. 31 is an on-off valve, 32 is a three-way valve, 33 is a water outlet for discharging water during heating and regeneration of the activated carbon container. During normal water purification, the three-way valve 32 supplies tap water from the tap water inlet 5 to the activated carbon container 2. When draining water during heating and regeneration, it operates to drain residual water in the activated carbon container to the drain port 33. Reference numeral 13 denotes a drainage channel from the three-way valve 32.

次に、活吸着材再生タイミングの判定動作について図7のフローチャートを用いて説明を行なう。第一の実施の形態と同様に定期的に割り込み動作により判定を行なう。割り込み動作では、前回再生終了後の通水量を読み出し、通水量が所定の量を超えておりかつ吐水スイッチがOFFの場合、再生サブルーチンに飛び再生動作を開始する。通水量が所定量に達していない場合や吐水スイッチがONの場合は、そのままメインルーチンに戻る。吸着材表面への吸着物質の量は水道水質によるものの基本的には通水量による。したがって、このように前回再生終了後からの通水量により加熱再生のタイミングを決定することで、使用頻度に関わらずより正確なタイミングで再生を行なうことが可能となる。   Next, the determination operation of the active adsorbent regeneration timing will be described using the flowchart of FIG. Similar to the first embodiment, the determination is periodically made by the interrupt operation. In the interruption operation, the amount of water flow after the end of the previous regeneration is read, and if the amount of water flow exceeds a predetermined amount and the water discharge switch is OFF, the regeneration operation jumps to the regeneration subroutine and starts the regeneration operation. When the amount of water passing does not reach the predetermined amount or when the water discharge switch is ON, the process directly returns to the main routine. Although the amount of adsorbed material on the adsorbent surface depends on the quality of tap water, it basically depends on the water flow rate. Therefore, by determining the heating regeneration timing based on the water flow rate after the end of the previous regeneration in this way, it is possible to perform regeneration at a more accurate timing regardless of the frequency of use.

加熱再生動作について図8により説明を行なう。第一の実施の形態では加熱再生開始時は吸着材容器入り口側と出口側の両方の開閉弁を開放していたが、本実施例では出口側は閉止し、入り口側の開閉弁を開放するとともに、入り口側の三方弁を水抜き口33側へ開いておく。また、排水を行なうための開閉弁の開閉動作についても、第一の実施の形態では入り口側と出口側両方の開閉弁8を開放したのに対し、本実施例では出口側の開閉弁22は常に閉止し、入り口側の開閉弁31のみ開閉を行う。したがって、開閉弁閉めサブルーチンにおいても、入り口側開閉弁31のみ開閉を行なっている。   The heating regeneration operation will be described with reference to FIG. In the first embodiment, the opening and closing valves on both the adsorbent container inlet side and the outlet side are opened at the start of heating regeneration. However, in this embodiment, the outlet side is closed and the inlet side opening and closing valve is opened. At the same time, the three-way valve on the entrance side is opened to the drain port 33 side. As for the opening / closing operation of the on-off valve for draining, the on-off valve 8 on both the inlet side and the outlet side is opened in the first embodiment, whereas the on-off valve 22 on the outlet side in this embodiment is It is always closed and only the opening / closing valve 31 on the inlet side is opened / closed. Therefore, in the on-off valve closing subroutine, only the inlet-side on-off valve 31 is opened / closed.

次に、弁の開閉時に出口側開閉弁22は常に閉止し入り口側開閉弁31のみ開閉を行なう理由について説明を行なう。活性炭23は水道水中の有機物等の吸着除去を行うが、活性炭の上流側から吸着していくため、入り口側の吸着濃度が高く、出口側では吸着物質の濃度は低いまたは初期では全く吸着していない傾向にある。上流側により多く吸着している活性炭を加熱した場合、吸着物質は熱により脱離・拡散すると考えられる、活性炭の下流側へも拡散することが予想される。活性炭の上流側の吸着物質が加熱により下流側へ拡散した場合、より広い空間へ拡散することにより吸着物質の濃度が拡散するため濃度が低下し、加熱しても脱離がしにくくなるとともに、吸着と脱離を繰り返しながら拡散するため活性炭容器外へ排出するのに長時間を要する。したがって、加熱再生中の水および蒸気の排出方向を上流側へとすることで、吸着物質の吸着材全体への拡散を防止することが可能となり、吸着材の再生率を向上させることが可能となる。またこれまでと同程度の再生レベルを達成するのであれば再生時間をより短かくすることが可能となる。   Next, the reason why the outlet side opening / closing valve 22 is always closed when the valve is opened and closed and only the inlet side opening / closing valve 31 is opened / closed will be described. Activated carbon 23 adsorbs and removes organic substances in tap water, but adsorbs from the upstream side of the activated carbon, so the adsorption concentration is high on the inlet side, and the concentration of the adsorbed substance is low on the outlet side or not adsorbed at all in the initial stage. There is no tendency. When activated carbon adsorbed more on the upstream side is heated, the adsorbed material is expected to diffuse to the downstream side of the activated carbon, which is considered to be desorbed and diffused by heat. When the adsorbed material upstream of the activated carbon diffuses to the downstream side by heating, the concentration of adsorbed material diffuses by diffusing to a wider space, so the concentration decreases, and it becomes difficult to desorb even when heated. Since it diffuses while repeating adsorption and desorption, it takes a long time to discharge out of the activated carbon container. Therefore, by setting the water and steam discharge direction during heating regeneration to the upstream side, it becomes possible to prevent diffusion of the adsorbed material to the entire adsorbent and to improve the regeneration rate of the adsorbent. Become. Further, if the same level of reproduction level as before is achieved, the reproduction time can be shortened.

次に本発明の第三の実施の形態について詳細に説明を行なう。
第一および第二の実施の形態では、加熱再生中の開閉弁の開閉タイミングは、まず温度により閉止タイミングを決定し、予め決められた閉止時間閉止した後、開放し所定時間開放を行なっていた。本実施例においては、閉止タイミングと開放タイミングの両方を温度により決定する例について説明を行なう。構成については、第二の実施の形態と同様で図6の構成であり、加熱再生中の排水は、開閉動作の排水だけでなく、その後の蒸気の排出もすべて活性炭容器2の入り口側から水抜き口33へ行なう。
Next, a third embodiment of the present invention will be described in detail.
In the first and second embodiments, the opening / closing timing of the opening / closing valve during the heat regeneration is determined by first determining the closing timing based on the temperature, closing after a predetermined closing time, and then opening for a predetermined time. . In the present embodiment, an example in which both the closing timing and the opening timing are determined by temperature will be described. The configuration is the same as that of the second embodiment, and the configuration shown in FIG. To the outlet 33.

吸着材再生タイミングの判定動作については、定期的に割り込み動作により前回再生からの通水量によって判定を行なっているが、もちろん第一の実施の形態のようにタイマーを用いて定期的に行なうようにしても良い。再生動作について図9の再生サブルーチンのフローチャートを用いて説明を行なう。第二の実施の形態と同様に出口側は閉止し、入り口側の開閉弁を開放するとともに、入り口側の三方弁を水抜き口33側へ開いておく。加熱再生を開始し、温度が所定値T0に達したところで、開放温度Tk0を規定し開閉弁閉めサブルーチンに飛び、弁の開閉による排水動作を行なう。この際吸着材容器内のより正しい推定現状温度Txは割り込み動作により定期的に計算するものとしており、この推定法については後述する。開閉弁閉めサブルーチンについて図10により説明を行なう。まず開閉弁8を閉じ、吸着材容器内の推定現状温度Txが第一回目の開放温度であるTk0を超えた場合に開閉弁8を開き再生サブルーチンへ戻る。再生サブルーチンに戻り、推定現状温度Txが2回目の閉止温度T1を超えたかを判定し、超えた場合には開閉弁閉めサブルーチンへ再度飛ぶ。2回目の開閉終了後、吸着材容器内の温度が加熱終了温度を超えたところで加熱を止め、加熱再生を終了する。   The adsorbent regeneration timing judgment operation is periodically determined by the amount of water flow from the previous regeneration by an interrupt operation, but of course it should be performed periodically using a timer as in the first embodiment. May be. The reproduction operation will be described with reference to the flowchart of the reproduction subroutine of FIG. As in the second embodiment, the outlet side is closed, the inlet-side on-off valve is opened, and the inlet-side three-way valve is opened to the drain port 33 side. Heating regeneration is started, and when the temperature reaches a predetermined value T0, the open temperature Tk0 is defined, the flow goes to the on-off valve closing subroutine, and the drainage operation is performed by opening and closing the valve. At this time, the more accurate estimated current temperature Tx in the adsorbent container is periodically calculated by an interruption operation, and this estimation method will be described later. The on-off valve closing subroutine will be described with reference to FIG. First, the on-off valve 8 is closed, and when the estimated current temperature Tx in the adsorbent container exceeds the first opening temperature Tk0, the on-off valve 8 is opened and the process returns to the regeneration subroutine. Returning to the regeneration subroutine, it is determined whether or not the estimated current temperature Tx exceeds the second closing temperature T1, and if it exceeds, the process jumps again to the on-off valve closing subroutine. After the opening and closing of the second time, the heating is stopped when the temperature in the adsorbent container exceeds the heating end temperature, and the heating regeneration is ended.

吸着材容器を加熱する際の温度上昇特性は、水温とともに、投入電力のうち実際に吸着材容器内の温度上昇に使われる熱効率により影響を受ける。この熱効率は、浄水器を長期間使用することによりヒータ近傍に付着する無機物等の影響により次第に低下する。また、使用期間だけでなく無機物の量など水道水の水質によっても変わる。したがって、加熱再生からの温度特性や水蒸気の蒸発量等を制御する際には、吸着材容器内の温度により制御を行なうことが望ましい。本実施の形態では、活性炭容器の密閉および開放のタイミングを何れも活性炭容器内温度により制御しており、浄水器の使用期間や水道水の水質、水温等の温度を受けずに、より正確に排水のコントロールが可能となる。また本実施の形態では、吸着材容器内の温度により排水弁の開閉制御を行なったが、第一の実施の形態の予定閉止時間と組み合わせることにより、温度上昇が極端に早いまたは遅い場合に吸着材の密閉を解除する、警告を出すなどより細かな制御が可能となり、より好ましい。   The temperature rise characteristic when heating the adsorbent container is affected by the thermal efficiency of the input power, which is actually used for increasing the temperature in the adsorbent container, together with the water temperature. This thermal efficiency gradually decreases due to the influence of inorganic substances adhering to the vicinity of the heater when the water purifier is used for a long period of time. Moreover, it changes not only with the period of use but also with the quality of tap water such as the amount of inorganic substances. Therefore, when controlling the temperature characteristics from the heat regeneration, the evaporation amount of water vapor, and the like, it is desirable to control by the temperature in the adsorbent container. In this embodiment, the timing of sealing and opening of the activated carbon container is both controlled by the temperature inside the activated carbon container, and more accurately without receiving the temperature of the water purifier, the quality of the tap water, the water temperature, etc. The drainage can be controlled. Further, in this embodiment, the drain valve is controlled to open and close depending on the temperature in the adsorbent container, but when combined with the scheduled closing time of the first embodiment, the adsorption is performed when the temperature rise is extremely fast or slow. More detailed control such as releasing the sealing of the material or issuing a warning is possible, which is more preferable.

加熱再生中は吸着材容器内は水の蒸発と結露、また熱や蒸気等による流れが生じていると思われ、温度センサ付近の状態により値のぶれが非常に大きい。開閉弁の動作温度は、再生の程度を左右する非常に大きな因子であるが、温度データをそのまま用いると非常に誤差が大きくなる可能性がある。過去の複数の温度データにより現状のより正しい温度を推定することにより、弁の開閉のタイミングが遅すぎたりまた逆に早すぎることを防止することができる。現状温度Txの推定法については、過去10点程度の温度センサ値を読みだし温度上昇直線を推定し、この温度上昇直線に基づき現状温度Txを推定することができる。この際温度データのサンプリングスピードについては10秒程度で十分であり、これらの値を直接用いても良いし、過去のデータを線形に足し合わせたデジタルフィルタリングを行ない、新たに温度データとし、その値からTxを求めても良い。さらに、ハードウエアによりローパスフィルタを構成し、温度データのぶれを除去する構成としても良い。   During heating regeneration, it seems that water is evaporated and condensed in the adsorbent container, and a flow due to heat, steam, etc. is generated, and the value fluctuates greatly depending on the state near the temperature sensor. The operating temperature of the on-off valve is a very large factor that affects the degree of regeneration, but if the temperature data is used as it is, there is a possibility that the error will become very large. By estimating a more accurate current temperature from a plurality of past temperature data, it is possible to prevent the valve opening / closing timing from being too late or conversely too early. As for the estimation method of the current temperature Tx, it is possible to estimate the temperature rise line by reading the temperature sensor values of about the past 10 points, and to estimate the current temperature Tx based on this temperature rise line. At this time, about 10 seconds is sufficient as the sampling speed of the temperature data. These values may be used directly, or digital filtering is performed by linearly adding the past data to obtain new temperature data. From this, Tx may be obtained. Furthermore, a configuration may be adopted in which a low-pass filter is configured by hardware to eliminate temperature data fluctuation.

本発明の第一の実施の形態における、構成を示す図である。It is a figure which shows the structure in 1st embodiment of this invention. 本発明の第一の実施の形態における、メインルーチンを示す図である。It is a figure which shows the main routine in 1st embodiment of this invention. 本発明の第一の実施の形態における、再生タイミング判定の割り込み動作を示す図である。It is a figure which shows the interruption operation | movement of reproduction | regeneration timing determination in 1st embodiment of this invention. 本発明の第一の実施の形態における、再生動作を示す図である。It is a figure which shows reproduction | regeneration operation | movement in 1st embodiment of this invention. 本発明の第一の実施の形態における、弁の開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement of a valve in 1st embodiment of this invention. 本発明の第二の実施の形態における、構成を示す図である。It is a figure which shows the structure in 2nd embodiment of this invention. 本発明の第二の実施の形態における、再生タイミング判定の割り込み動作を示す図である。It is a figure which shows the interruption operation | movement of reproduction | regeneration timing determination in 2nd embodiment of this invention. 本発明の第二の実施の形態における、再生動作を示す図である。It is a figure which shows reproduction | regeneration operation | movement in 2nd embodiment of this invention. 本発明の第三の実施の形態における、再生動作を示す図である。It is a figure which shows reproduction | regeneration operation | movement in 3rd embodiment of this invention. 本発明の第三の実施の形態における、弁の開閉動作を示す図である。It is a figure which shows the opening / closing operation | movement of the valve in 3rd embodiment of this invention.

符号の説明Explanation of symbols

1…浄水器
2…活性炭容器
3…逆止弁
4…制御部
5…入水口
6…排水口
7…吐水口
8…開閉弁
9…温度切り替え弁
10…流量センサ
11…スイッチ
12…排水流路
13…排水流路
21…流入部
22…流出部
23…活性炭
24…ヒータ
25…温度センサ
30…三方弁
31…開閉弁
32…三方弁
33…水抜き口
DESCRIPTION OF SYMBOLS 1 ... Water purifier 2 ... Activated carbon container 3 ... Check valve 4 ... Control part 5 ... Water inlet 6 ... Drain port 7 ... Water discharge port 8 ... On-off valve 9 ... Temperature switching valve 10 ... Flow sensor 11 ... Switch 12 ... Drain flow path DESCRIPTION OF SYMBOLS 13 ... Drain flow path 21 ... Inflow part 22 ... Outflow part 23 ... Activated carbon 24 ... Heater 25 ... Temperature sensor 30 ... Three-way valve 31 ... On-off valve 32 ... Three-way valve 33 ... Drain outlet

Claims (10)

水道水を導入する入水口と、浄化された水を吐水する吐水口と、前記水道水の入り口および出口を備え内部に吸着材を収容した吸着材容器と、該吸着材容器を加熱する加熱手段とを備え、水道水の浄化を行なうとともに加熱による再生が可能な浄水器であって、吸着材容器内温度計測手段と前記吸着材容器の入り口側および出口側に吸着材容器を密閉可能な弁を備えるとともに、加熱再生中における沸騰前に前記弁により密閉および開放を行ない、前記弁の開閉後も加熱を継続することを特徴とする浄水器。 A water inlet for introducing tap water, a water outlet for discharging purified water, an adsorbent container having an inlet and an outlet for the tap water and containing an adsorbent therein, and heating means for heating the adsorbent container A water purifier that purifies tap water and can be regenerated by heating, and is capable of sealing the adsorbent container at the adsorbent container temperature measuring means and the inlet and outlet sides of the adsorbent container The water purifier is sealed and opened by the valve before boiling during heating regeneration, and the heating is continued even after the valve is opened and closed. 加熱再生中における前記温度計測手段により得られた計測値により前記吸着材容器の密閉タイミングを決定し、密閉を開始してからの時間により開放タイミングを決定することを特徴とする請求項1記載の浄水器。 2. The sealing timing of the adsorbent container is determined based on a measured value obtained by the temperature measuring means during heating regeneration, and the opening timing is determined based on the time after the sealing is started. Water purifier. 加熱再生中における前記温度計測手段により得られた計測値により前記吸着材容器の密閉タイミングおよび、開放タイミングを決定することを特徴とする請求項1記載の浄水器。 The water purifier according to claim 1, wherein a sealing timing and an opening timing of the adsorbent container are determined based on a measurement value obtained by the temperature measuring means during heating regeneration. タイマーを有し、該タイマーにより加熱再生の開始を決定することを特徴とする請求項1記載の浄水器。 The water purifier according to claim 1, further comprising a timer, wherein the start of heating regeneration is determined by the timer. 通水量検知手段を備え、通水量検知手段から推定される前回再生からの通水量により加熱再生の開始を決定することを特徴とする請求項1〜4いずれかに記載の浄水器。 The water purifier according to any one of claims 1 to 4, further comprising a water flow detection means, wherein the start of heating regeneration is determined based on the water flow from a previous regeneration estimated from the water flow detection means. 前記加熱再生中の密閉および開放動作を複数回行うことを特徴とする請求項1〜5いずれかに記載の浄水器。 The water purifier according to any one of claims 1 to 5, wherein the sealing and opening operations during the heating regeneration are performed a plurality of times. 前記吸着材容器の出口側から排水を行なう排水流路を備え、前記吸着材容器出口側に前記吐水口への流路と前記排水流路へとを切り替える三方弁を備え、該三方弁により前記吸着材容器からの水を排水流路へ排水可能としたことを特徴とする請求項1〜6いずれかに記載の浄水器。 A drainage channel for draining from the outlet side of the adsorbent container, and a three-way valve for switching between the channel to the water outlet and the drainage channel on the outlet side of the adsorbent container, the three-way valve The water purifier according to any one of claims 1 to 6, wherein water from the adsorbent container can be drained into a drainage channel. 前記加熱再生中において、前記吸着材容器の出口側弁は閉止し、入り口側弁を開閉することを特徴とする請求項1〜7いずれかに記載の浄水器。 8. The water purifier according to claim 1, wherein the outlet side valve of the adsorbent container is closed and the inlet side valve is opened and closed during the heat regeneration. 前記吸着材容器入り口側から排水を行なう排水流路と、前記吸着材容器入り口側に前記入水口への流路と前記排水流路へとを切り替える三方弁を備え、加熱再生中は、前記吸着材容器の出口側弁は閉止し、入り口側弁を開閉するとともに前記三方弁を排水流路側へ切り替えることを特徴とする請求項8に記載の浄水器。 A drainage channel for draining from the inlet side of the adsorbent container, and a three-way valve for switching between the channel to the inlet and the drainage channel on the inlet side of the adsorbent container, and during the heat regeneration, the adsorption The water purifier according to claim 8, wherein the outlet side valve of the material container is closed, the inlet side valve is opened and closed, and the three-way valve is switched to the drainage channel side. 加熱再生中における前記吸着材容器の密閉タイミングおよび、開放タイミングを、加熱再生中の前記温度計測手段により得られた、互いに異なる時間に計測された複数の計測値により決定することを特徴とする請求項2または請求項3に記載の浄水器。
The sealing timing and opening timing of the adsorbent container during heating regeneration are determined by a plurality of measured values obtained at different times obtained by the temperature measuring means during heating regeneration. Claim 2 or Claim 3 water purifier.
JP2004100108A 2004-03-30 2004-03-30 Water purifier Pending JP2005279561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100108A JP2005279561A (en) 2004-03-30 2004-03-30 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100108A JP2005279561A (en) 2004-03-30 2004-03-30 Water purifier

Publications (1)

Publication Number Publication Date
JP2005279561A true JP2005279561A (en) 2005-10-13

Family

ID=35178512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100108A Pending JP2005279561A (en) 2004-03-30 2004-03-30 Water purifier

Country Status (1)

Country Link
JP (1) JP2005279561A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948823A (en) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 Connector, water purifier and connector control method
JP2018051503A (en) * 2016-09-30 2018-04-05 東洋紡株式会社 Water treatment device, water treatment system and water treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948823A (en) * 2014-12-03 2015-09-30 佛山市云米电器科技有限公司 Connector, water purifier and connector control method
JP2018051503A (en) * 2016-09-30 2018-04-05 東洋紡株式会社 Water treatment device, water treatment system and water treatment method

Similar Documents

Publication Publication Date Title
JP4916898B2 (en) Dehumidifying / humidifying device
JPH027688B2 (en)
DK152018B (en) METHOD AND GAS FRACTION APPARATUS WITH HEAT ACTIVATION
JPH06172B2 (en) Adsorption fractionation apparatus and method with automatic temperature sensing cycle control
JP2005279561A (en) Water purifier
RU2002129372A (en) METHOD FOR CLEANING AIR FOR FUEL ELEMENTS AND DEVICE FOR ITS IMPLEMENTATION
JPH01262984A (en) Water purifying apparatus
CN207645926U (en) water treatment system and water purifier
JP2006150321A (en) Water purifier
JPH02290288A (en) Water purifier
KR100293767B1 (en) Drinking Water and Drinking Tea Providing Device
JPH11319814A (en) Water purifyer
JP7525218B1 (en) Air-made water machine
JPH0625236Y2 (en) Electric insulation pot with purification function
JPH0975923A (en) Water purifier
JPH037116A (en) Water drip coffee brewing device
JP2007222840A (en) Water-purifying preparation arrangement
JP2002022263A (en) Bath device and method for controlling pump
JPH0424352Y2 (en)
JPH0796276A (en) Water purifier
JP3835397B2 (en) Water heater
JPH07284445A (en) Water feeder/heater
JP2005279560A (en) Water purifier
JP3007974U (en) Water purifier
JPH06210280A (en) Instantaneous water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090831