JP2005278875A - Artificial bone and artificial joint - Google Patents

Artificial bone and artificial joint Download PDF

Info

Publication number
JP2005278875A
JP2005278875A JP2004096811A JP2004096811A JP2005278875A JP 2005278875 A JP2005278875 A JP 2005278875A JP 2004096811 A JP2004096811 A JP 2004096811A JP 2004096811 A JP2004096811 A JP 2004096811A JP 2005278875 A JP2005278875 A JP 2005278875A
Authority
JP
Japan
Prior art keywords
bone
artificial
stem
core
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096811A
Other languages
Japanese (ja)
Inventor
Takefumi Nakanishi
健文 中西
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004096811A priority Critical patent/JP2005278875A/en
Publication of JP2005278875A publication Critical patent/JP2005278875A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30934Special articulating surfaces

Abstract

<P>PROBLEM TO BE SOLVED: To provide an artificial joint capable of preventing the generation of wear powder and improving the adhesion of thigh bone to a stem at an implanting site of the artificial joint to the thigh bone. <P>SOLUTION: An artificial bone 1 comprising a caput 2, a neck 3 following the caput 2, and a stem 4 following the neck 3 is provided. The outer surface of the stem 4 is covered with composite structures 13 formed by surrounding the circumference of core materials 11 arranged regularly and made of a first ceramic material with a coating material 12 made of a material different from the first ceramic material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、本発明は、生体の骨関節を代替する人工骨および人工関節に関する。   The present invention relates to an artificial bone and an artificial joint that substitute for a living bone joint.

人体内の骨関節の変形や欠損を人工関節にて代替えする治療は、整形外科等で広く行なわれている。例えば、大腿骨骨頭壊死に対し、壊死した骨頭を除去した後、骨頭およびステム部を有する人工関節のステム部を大腿骨の骨髄腔に埋入して固定すると共に、カップ(ソケット)を腰骨に固定し、該ソケットの凹部に骨頭を嵌合してこれらを回動自在に連結する構造からなる人工関節を補綴し、関節機能を回復させることが頻繁に行なわれている。   Treatments for replacing the deformation and loss of bone joints in the human body with artificial joints are widely performed in orthopedics and the like. For example, for the femoral head necrosis, after removing the necrotic head, the stem portion of the artificial joint having the head and stem portion is embedded and fixed in the bone marrow cavity of the femur, and the cup (socket) is attached to the hip bone. Frequently, an artificial joint having a structure in which a bone head is fitted to a concave portion of the socket and is pivotably connected to the prosthesis is restored to restore the joint function.

このような人工関節には、機械的強度、弾性(靱性)、耐久性、生体内での安定性(体液に対する腐食、劣化等がないこと)、生体親和性(造骨促進作用等の周辺組織との適合性)、安全性(毒性、分解性等がないこと)、加工性等の特性が要求されており、現在では、人工関節の構成材料、特に骨頭部の構成材料として、有機樹脂、または特許文献1に記載されているように、ステンレス鋼、コバルト−クロム合金、チタン、チタン合金等の金属、またはアルミナやアパタイト等のセラミックスが用いられている。   Such artificial joints have mechanical strength, elasticity (toughness), durability, in-vivo stability (no corrosion or deterioration against body fluids), biocompatibility (bone-promoting action and other surrounding tissues) Compatibility), safety (no toxicity, degradability, etc.), processability, and other properties are required. At present, organic resin, Alternatively, as described in Patent Document 1, metals such as stainless steel, cobalt-chromium alloy, titanium, and titanium alloy, or ceramics such as alumina and apatite are used.

ここで、大腿骨の皮質骨間に上記人工骨からなる人工関節を挿入する際、大腿骨に埋め込まれる部材であるステムがひずみによりゆるみが発生し、再置換を行わなければならなくなるという問題があった。   Here, when an artificial joint made of the above artificial bone is inserted between the cortical bones of the femur, the stem, which is a member embedded in the femur, is loosened due to strain, and must be replaced again. there were.

そこで、特許文献1では、ステムの外周表面を樹脂製の編組繊維で覆って生体骨と人工骨との間の弾性係数のずれを小さくして骨吸収の問題を防止することが開示されている。また、特許文献2では、ステム表面に炭素繊維(構造繊維)からなる芯材の外周を骨生成活性繊維で被覆した複合繊維を巻きつけることにより、ステムと生体骨との間の親和性を高めて摩耗の発生を抑制し長期間安定して使用できる人工骨となることが開示されている。
特開平5−92018号 特表平9−505345号
Therefore, in Patent Document 1, it is disclosed that the outer peripheral surface of the stem is covered with a resin braided fiber to reduce the deviation of the elastic coefficient between the living bone and the artificial bone, thereby preventing the problem of bone resorption. . Moreover, in patent document 2, the affinity between a stem and a living bone is improved by winding the composite fiber which coat | covered the outer periphery of the core material which consists of carbon fiber (structural fiber) with the osteogenic active fiber on the stem surface. Thus, it is disclosed that an artificial bone that can be used stably for a long period of time is suppressed.
JP-A-5-92018 Special table hei 9-505345

しかしながら、特許文献1、2に開示されたステム表面に複合繊維を編込んだり巻きつける方法では、人工骨の表面がすべて外皮材組成となるために表面部分の摩耗を抑制することができず、また、繊維の外周表面は製造上緻密になりやすく、人工骨と生体骨との界面では液体の湿潤・循環状態が悪くなって骨芽細胞の成長が活性化されにくいという問題があった。   However, in the method of knitting or wrapping the composite fiber around the stem surface disclosed in Patent Documents 1 and 2, since the surface of the artificial bone is entirely a skin material composition, it is not possible to suppress the wear of the surface portion, In addition, the outer peripheral surface of the fiber is likely to be dense in production, and there is a problem that the growth and growth of osteoblasts are difficult to activate due to poor liquid wetting and circulation at the interface between the artificial bone and the living bone.

本発明の目的は、人工骨と生体骨との界面の摩耗の発生を抑制できるとともに、液体の湿潤・循環性に優れて生体への親和性を高めることができ、長期間にわたって安全して使用できる人工骨および人工関節を提供することにある。   The object of the present invention is to suppress the occurrence of wear at the interface between the artificial bone and the living bone, and to improve the affinity to the living body with excellent liquid wetting and circulation, and can be used safely over a long period of time. It is to provide an artificial bone and an artificial joint.

本発明は、人工骨の生体骨と接するステム表面の少なくとも一部を、規則的に配列された第1の材料からなる核材の外周を、前記第1の材料とは異なる材料からなる外皮材にて囲んだ複合組織が表面に露出した状態で被覆した構成とすることにより、界面における摩耗粉の発生を防止できるとともに、血液等の液体の湿潤・循環性に優れて生体への安全性を向上することができる人工関節となることを特徴とするものである。   The present invention provides an outer shell material made of a material different from the first material on the outer periphery of the core material made of the first material regularly arranged on at least a part of the stem surface in contact with the living bone of the artificial bone. The structure covered with a composite structure that is exposed on the surface can prevent the generation of abrasion powder at the interface, and also has excellent wet and circulatory properties of blood and other liquids, thus improving safety to the living body. It is characterized by becoming an artificial joint that can be improved.

すなわち、本発明の人工骨は、骨頭部と、該骨頭部に続くネック部と、該ネック部に続くステム部とを具備し、規則的に配列された第1のセラミック材料からなる核材の外周を、前記第1のセラミック材料とは異なる材料からなる外皮材にて囲んだ複合構造組織が表面に露出した状態で前記ステム部の外周面の少なくとも一部が覆われている構造からなる。   That is, the artificial bone of the present invention includes a bone head, a neck portion that follows the bone head, and a stem portion that follows the neck portion, and is a core material made of the first ceramic material regularly arranged. It has a structure in which at least a part of the outer peripheral surface of the stem portion is covered in a state where a composite structural structure whose outer periphery is surrounded by a skin material made of a material different from the first ceramic material is exposed on the surface.

ここで、前記複合構造組織の厚みが100〜500μm、より好ましくは300〜450μmであることが、骨芽細胞の成長がよくステムとの密着性を考えると望ましい。また、ステム自体の強度を維持するため好ましい。   Here, it is desirable that the thickness of the composite structure tissue is 100 to 500 μm, more preferably 300 to 450 μm, in view of good growth of osteoblasts and adhesion to the stem. Moreover, it is preferable in order to maintain the strength of the stem itself.

また、前記核材の気孔率が5%以下であり、かつ前記外皮材の気孔率が25%以上で三次元に連通した気孔を有することが、機械的強度に優れるとともに生体親和性を高め骨の再生を促す点で望ましい。   The core material has a porosity of 5% or less and the outer skin material has a porosity of 25% or more and has pores that are three-dimensionally connected to each other. This is desirable because it encourages the regeneration of

さらに、前記複合構造組織の核材の平均直径が10〜1000μmであり、かつ該核材の前記骨頭部表面における面積比率が60〜95面積%であることが、機械的強度と摩耗量を最適化する点で望ましい。   Furthermore, the average diameter of the core material of the composite structure is 10 to 1000 μm, and the area ratio of the core material on the bone head surface is 60 to 95 area%, so that the mechanical strength and the wear amount are optimal. It is desirable in that

さらに、前記ステム部の基体が、長尺状の芯材の外周を表皮材にて被覆してなる単芯繊維体を複数本集束した複合繊維体からなることが、ステム部の硬度を維持した状態で靭性を高めて機械的強度を向上できる点で望ましい。   Furthermore, the stem portion base body is composed of a composite fiber body in which a plurality of single-core fiber bodies formed by coating the outer periphery of a long core material with a skin material, thereby maintaining the hardness of the stem portion. It is desirable in that the mechanical strength can be improved by increasing the toughness in the state.

また、本発明の人工関節は、上記人工骨の前記骨頭部を、ソケットの凹部内に嵌合して回動可能に連結したものである。   In the artificial joint of the present invention, the bone head of the artificial bone is fitted in a recess of a socket so as to be rotatable.

上記本発明の人工骨および人工関節は、人工骨の生体骨と接するステム表面を、規則的に配列された第1の材料からなる核材の外周を、前記第1の材料とは異なる材料からなる外皮材にて囲んだ複合組織が表面に露出した状態で被覆した構成とすることにより、界面における摩耗粉の発生を防止できるとともに、血液等の液体の湿潤・循環性に優れて生体への安全性を向上することができる人工関節となる。   In the artificial bone and artificial joint of the present invention, the stem surface in contact with the living bone of the artificial bone is formed on the outer periphery of the core material made of the first material regularly arranged, from a material different from the first material. The composite structure surrounded by the outer skin material is coated so that it is exposed on the surface, so that generation of abrasion powder at the interface can be prevented, and the wetness and circulation of liquids such as blood can be prevented. It becomes an artificial joint that can improve safety.

以下、本発明の人工骨および人工関節を添付図面に示す好適実施例に基づいて詳細に説明する。   Hereinafter, the artificial bone and artificial joint of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

図1は本発明の人工関節の構成例を示す正面図、図2は図1中に含まれる複合構造組織13の模式断面図、図3は(a)が図1の人工関節における骨頭部の表面についての要部拡大図、(b)が単芯繊維体の斜視図、(c)が複合繊維体の斜視図である。     1 is a front view showing a configuration example of an artificial joint according to the present invention, FIG. 2 is a schematic cross-sectional view of a composite structural tissue 13 included in FIG. 1, and FIG. 3A is a view of a bone head in the artificial joint of FIG. The principal part enlarged view about the surface, (b) is a perspective view of a single core fiber body, (c) is a perspective view of a composite fiber body.

図1に示すように、人工関節1は、骨頭部2と、これに続くネック部3と、これに続く金属製のステム部4とで構成された人工骨5を、骨盤Aの所定位置に別体として設けられるソケット6の凹部7内に嵌合してこれらが回動自在に連結されてなる。   As shown in FIG. 1, the artificial joint 1 has an artificial bone 5 composed of a bone head 2, a neck portion 3 that follows the bone head 2, and a metal stem portion 4 that follows the bone portion 2 at a predetermined position of the pelvis A. These are fitted in a recess 7 of a socket 6 provided as a separate body, and these are rotatably connected.

骨頭部2は、略球状の湾曲表面を有する部材であり、ステム部4は、大腿骨Bの骨髄腔8に埋入されて固定される部分であって、ネック部3側のステム基部9とステム先端部10とで構成されている。なお、ステム基部9の外周と骨髄腔とが密着するため、ステム基部9はネック部3やステム先端部10より太くなっており、その形状は、埋入する骨髄腔の形状と一致するように成形されている。また、ステム先端部10は、骨髄腔の奥部まで挿入されるため、先細りの形状をなしている。   The bone head 2 is a member having a substantially spherical curved surface, and the stem portion 4 is a portion that is embedded and fixed in the bone marrow cavity 8 of the femur B, and has a stem base portion 9 on the neck portion 3 side. It is comprised with the stem front-end | tip part 10. FIG. Since the outer periphery of the stem base 9 and the bone marrow cavity are in close contact with each other, the stem base 9 is thicker than the neck part 3 and the stem tip part 10, and the shape thereof matches the shape of the bone marrow cavity to be implanted. Molded. Moreover, since the stem tip portion 10 is inserted to the back of the bone marrow cavity, it has a tapered shape.

一方、ネック部3は骨頭部2とステム部4とを連結する部材であり、略円柱形状をなす。ネック部3は、好ましくはステム部4と連続して一体的に形成される。そして、ステム先端部10の軸線は、ネック部3の軸線に対し、例えば15〜35度程度傾斜している。   On the other hand, the neck portion 3 is a member that connects the bone head 2 and the stem portion 4 and has a substantially cylindrical shape. The neck portion 3 is preferably formed integrally with the stem portion 4 continuously. The axis of the stem tip 10 is inclined with respect to the axis of the neck 3 by, for example, about 15 to 35 degrees.

本発明によれば、図2および図3(a)に記載されるように、ステム4の少なくともステム先端部10の表面の少なくとも一部(図2、3(a)ではステム先端部10からステム基部9までの領域)が、規則的に配列された第1のセラミック材料からなる核材11の外周を、前記第1のセラミック材料とは異なる材料からなる外皮材12にて囲んだ複合構造組織13が表面に露出した状態で被覆されたものからなることが大きな特徴であり、これによって、ステム4と大腿骨Bとの間の界面における摩耗粉の発生を防止できるとともに、血液等の液体の湿潤・循環性に優れて生体への安全性を向上することができる。   According to the present invention, as described in FIGS. 2 and 3 (a), at least a part of the surface of at least the stem tip 10 of the stem 4 (in FIGS. 2, 3 (a), the stem tip 10 to the stem). A composite structural structure in which a region up to the base 9) surrounds the outer periphery of a core material 11 made of a first ceramic material regularly arranged with a skin material 12 made of a material different from the first ceramic material. It is a great feature that it is covered with the surface 13 exposed on the surface, which can prevent generation of abrasion powder at the interface between the stem 4 and the femur B, and can prevent the liquid such as blood from flowing. It is excellent in wetness and circulation and can improve safety to living bodies.

本発明によれば、核材11が規則的に配列するので、不規則配列と比較して局所的な摩耗の偏りがなく、骨芽細胞の生成も均一であるという利点がある。また、この核材11の周囲を生体親和性の高い外皮材12で囲んでいるので、骨頭部2表面に衝撃がかかるような場合でも欠損する危険性が小さい。   According to the present invention, since the nuclear materials 11 are regularly arranged, there is an advantage that there is no local wear bias and the generation of osteoblasts is uniform compared to the irregular arrangement. Further, since the core material 11 is surrounded by the skin material 12 having high biocompatibility, there is little risk of loss even when an impact is applied to the surface of the bone head 2.

なお、核材11は、例えば図3では六角形の断面形状を呈するが、本発明はこれに限定されるものではなく、円形または他の多角形、さらには一方向に長い細長形状をなしていてもよい。   The core material 11 has, for example, a hexagonal cross-sectional shape in FIG. 3, but the present invention is not limited to this, and has a circular shape or other polygonal shape, or an elongated shape that is long in one direction. May be.

核材11の構成材料としては、基材との密着性という理由から、基材と同じ成分を含む同種材料を用いることができる。一方、外皮材12の構成材料としては、核材11よりも靭性または生体親和性に富んだ材料が用いられることが望ましく、例えば、ジルコニア、リン酸カルシウム化合物等のセラミック材料、または金属や有機樹脂も用いることができる。   As a constituent material of the core material 11, the same kind of material containing the same components as the base material can be used because of its adhesion to the base material. On the other hand, as the constituent material of the outer skin material 12, it is desirable to use a material having higher toughness or biocompatibility than the core material 11, for example, a ceramic material such as zirconia or a calcium phosphate compound, or a metal or an organic resin is also used. be able to.

ここで、骨頭2およびソケット6も人工でできた骨からなる場合には、骨頭2およびソケット6の凹部7内表面が複合構造組織13からなることが、骨頭2およびソケット6の摺動部での摩耗を防止できる点で望ましい。   Here, when the bone head 2 and the socket 6 are also made of artificial bone, the inner surface of the concave portion 7 of the bone head 2 and the socket 6 is composed of the composite structural tissue 13 in the sliding portion of the bone head 2 and the socket 6. It is desirable in that it can prevent wear.

なお、複合構造組織13の核材11の気孔率が5%以下、特に2%以下であり、かつ外皮材12の気孔率が25%以上、特に40〜90%、さらに45〜70%で三次元に連通した気孔を有することが、機械的強度に優れるとともに生体親和性を高め骨芽細胞の増殖および骨の再生を促す点で望ましい。ここで、外皮材12中の気孔には潤滑液が充填されて骨頭部2表面の摺動性を高めることができるという効果もある。   The porosity of the core material 11 of the composite structure 13 is 5% or less, particularly 2% or less, and the porosity of the outer skin material 12 is 25% or more, particularly 40 to 90%, and further 45 to 70%. It is desirable to have pores that communicated with each other in terms of excellent mechanical strength, enhanced biocompatibility, and promoted osteoblast proliferation and bone regeneration. Here, there is an effect that the pores in the outer skin material 12 can be filled with a lubricating liquid to improve the slidability of the bone head 2 surface.

また、骨頭部2はその全体を上記複合構造組織13にて構成することもできるが、骨頭部表面が曲面をなしていることから表面の組織制御の点では、骨頭部2の内部が複合構造組織13とは異なる組織にて構成されることが望ましい。   The bone head 2 can be entirely composed of the composite structure tissue 13, but since the bone head surface has a curved surface, the inside of the bone head 2 has a composite structure in terms of surface tissue control. It is desirable to be composed of an organization different from the organization 13.

なお、骨頭部2およびネック部3の構成材料としては、例えば、ステンレス鋼(例えば、SUS316、SUS316L)、コバルト−クロム合金、コバルト−クロム−ニッケル合金、チタン、チタン合金(例えばTi−6%Al−4%V)等の耐食性に優れる金属、合金、または、例えばアルミナ、ジルコニア、窒化ケイ素、炭化ケイ素等のセラミックス等の強度および硬度に優れる材料を用いることができるが、本発明においては、骨頭部2の内部が、特に、上述した核材11をなす第1の材料にて形成された均一組織からなることが、骨頭部11自体の硬度が高く、かつ骨頭部11の内部と表面組織(複合構造組織13)との密着力が高める点で望ましい。また、骨頭部2の内部は、中空でも中実でもよい。   In addition, as a constituent material of the bone head 2 and the neck part 3, for example, stainless steel (for example, SUS316, SUS316L), cobalt-chromium alloy, cobalt-chromium-nickel alloy, titanium, titanium alloy (for example, Ti-6% Al) −4% V) or other metals, alloys, or materials having excellent strength and hardness such as ceramics such as alumina, zirconia, silicon nitride, and silicon carbide can be used. The inside of the portion 2 is composed of a uniform tissue formed of the first material that forms the core material 11 described above, and the hardness of the bone head 11 itself is high, and the inside of the bone head 11 and the surface tissue ( This is desirable in terms of enhancing the adhesion with the composite structure 13). Further, the inside of the bone head 2 may be hollow or solid.

また、ステム4の構成材料としては、例えば、ステンレス鋼(例えば、SUS316、SUS316L)、コバルト−クロム合金、コバルト−クロム−ニッケル合金、チタン、チタン合金(例えばTi−6%Al−4%V)等の耐食性に優れる金属、合金、または、例えばアルミナ、ジルコニア、窒化ケイ素、炭化ケイ素等のセラミックス等の強度および材料を用いることができるが、耐食性と機械的特性を考慮するとチタン合金からなることが望ましい。   Moreover, as a constituent material of the stem 4, for example, stainless steel (for example, SUS316, SUS316L), cobalt-chromium alloy, cobalt-chromium-nickel alloy, titanium, titanium alloy (for example, Ti-6% Al-4% V) It is possible to use metals and alloys having excellent corrosion resistance such as, or strength and materials such as ceramics such as alumina, zirconia, silicon nitride, silicon carbide, etc., but in consideration of corrosion resistance and mechanical properties, it may be made of a titanium alloy. desirable.

本発明においては、図3(b)(c)のように長尺状の芯材15の外周を表皮材16にて被覆してなる単芯繊維体17を複数本集束した複合繊維体18からなることが、ネック部3の硬度を維持して骨頭部2およびステム部4との連結部におけるネック部3の摩耗を抑制することができるとともに、部材の靭性を高めて突発的な荷重が発生したときの耐久性を向上できる点で望ましい。   In the present invention, as shown in FIGS. 3B and 3C, from a composite fiber body 18 in which a plurality of single core fiber bodies 17 formed by covering the outer periphery of a long core material 15 with a skin material 16 are converged. As a result, the hardness of the neck portion 3 can be maintained and the wear of the neck portion 3 at the connecting portion between the bone head 2 and the stem portion 4 can be suppressed, and the toughness of the member can be increased to generate a sudden load. It is desirable in that it can improve the durability.

一方、複合構造組織13の厚みが100〜500μmであることが、表面組織である複合構造組織13内に新成骨が充分に進入してステムとの密着性を確保できるとともに望ましい。   On the other hand, it is desirable that the thickness of the composite structure 13 is 100 to 500 μm, while the new bone can sufficiently enter the composite structure 13 that is a surface tissue to ensure adhesion with the stem.

さらには、複合構造組織13の核材11の平均直径が10〜1000μmであり、かつ核材11の骨頭部2表面における面積比率が60〜95面積%であることが、機械的強度と摩耗特性で望ましい。   Furthermore, the average diameter of the core material 11 of the composite structure 13 is 10 to 1000 μm, and the area ratio of the core material 11 on the surface of the bone head 2 is 60 to 95 area%. Is desirable.

ここで、複合構造組織13の断面における核材11の面積c1と外皮材12の面積s1との面積比c1/s1が1〜10の間であるときに摩耗性に優れるとともに高い生体親和性を有し、望ましくは1〜5であり、さらに望ましくは1〜3である。   Here, when the area ratio c1 / s1 between the area c1 of the core material 11 and the area s1 of the outer skin material 12 in the cross section of the composite structure 13 is between 1 and 10, the wearability is excellent and the biocompatibility is high. It is preferably 1 to 5, and more preferably 1 to 3.

なお、本発明において、複合構造組織13(または後述の複合繊維体18)の断面における外皮材12(または複合繊維体18の表皮材16)と核材11(または複合繊維体18の芯材15)との面積比c/sを算出するには、例えば複合構造組織13の任意横断面における走査型電子顕微鏡(SEM)写真にて観察される各核材11の断面積の和をc、複合構造組織13の任意断面における総断面積から前記核材11の面積cを引いたものを外皮材12の面積sとして計算することができる。簡単には画像解析法などによっても求めることができる。   In the present invention, the skin material 12 (or the skin material 16 of the composite fiber body 18) and the core material 11 (or the core material 15 of the composite fiber body 18) in the cross section of the composite structure 13 (or the composite fiber body 18 described later). For example, the sum of the cross-sectional areas of the respective core materials 11 observed in a scanning electron microscope (SEM) photograph in an arbitrary cross section of the composite structure 13 is calculated as c. The area s of the outer skin 12 can be calculated by subtracting the area c of the core material 11 from the total cross-sectional area of the arbitrary cross section of the structural structure 13. It can be easily obtained by an image analysis method or the like.

本発明において用いる複合繊維体18の表皮材16としては生体親和性の多孔質セラミックスとして一般的に知られているリン酸カルシウム化合物が好適で、例えばリン酸三カルシウムTCP(Ca(PO)、リン酸四カルシウム(Ca(POO)、リン酸八カルシウム(Ca(PO・5HO)、リン酸一水素カルシウム(CaHPO)、リン酸二水素カルシウム(Ca(HPO)・HO)、ハイドロキシアパタイトHAP(Ca10(PO(OH))、ジルコニア(ZrO)などの無機材質、または、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアリルエーテルケトンのようなケトン系樹脂や、ポリフェニレンサルフィド、ポリサルフォン等の熱可塑性樹脂が挙げられる。本発明では、これらのうちの1種または2種以上を任意に組み合せて用いることができる。このような生体用樹脂材料8中には、例えば、安定剤、強化材のような各種添加剤が添加されていてもよい。 As the skin material 16 of the composite fiber body 18 used in the present invention, a calcium phosphate compound generally known as a biocompatible porous ceramic is suitable, for example, tricalcium phosphate TCP (Ca 3 (PO 4 ) 2 ). , tetracalcium phosphate (Ca 4 (PO 4) 2 O), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 · 5H 2 O), calcium hydrogen phosphate (CaHPO 4), dihydrogen phosphate Inorganic materials such as calcium (Ca (H 2 PO 4 ) · H 2 O), hydroxyapatite HAP (Ca 10 (PO 4 ) 6 (OH) 2 ), zirconia (ZrO 2 ), or polyether ketone, polyether Ketone resins such as ether ketone and polyallyl ether ketone, polyphenylene sulfide, polysulfone, etc. It includes thermoplastic resins. In the present invention, one or more of these can be used in any combination. Various additives such as stabilizers and reinforcing materials may be added to the biomedical resin material 8.

一方、芯材15の材質としては、生体為害性のない材料であり望ましくは生体適合性を有する緻密なセラミックスあるいは金属であり、例えばアルミナ(Al)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)が挙げられ、これらセラミックスには適宜Ti、Mg、Zr、Hf、Y系などの助剤を含んでいても良い。また、金属としては、ステンレス鋼(例えば、SUS316、SUS316L)、コバルト−クロム合金、コバルト−クロム−ニッケル合金、チタン、チタン合金(例えばTi−6%Al−4%V、Ti−49〜51%Ni)等の耐食性に優れる金属を用いることができる。その中でも特に、形状記憶合金(Ti−49〜51%Ni)を用いるのが好ましい。この形状記憶合金は、繰り返し荷重に対する追従性、復元性、疲労特性が優れるため、長期の埋入において安定性、耐久性が向上する。 On the other hand, the material of the core material 15 is a material that is not harmful to the living body and is preferably a dense ceramic or metal having biocompatibility. For example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), silica ( SiO 2 ) and titania (TiO 2 ). These ceramics may contain auxiliary agents such as Ti, Mg, Zr, Hf, and Y as appropriate. Examples of the metal include stainless steel (for example, SUS316, SUS316L), cobalt-chromium alloy, cobalt-chromium-nickel alloy, titanium, titanium alloy (for example, Ti-6% Al-4% V, Ti-49 to 51%). A metal having excellent corrosion resistance such as Ni) can be used. Among them, it is particularly preferable to use a shape memory alloy (Ti-49 to 51% Ni). Since this shape memory alloy has excellent followability to repeated loads, resilience, and fatigue characteristics, stability and durability are improved during long-term embedding.

なお、上記複合構造組織13の核材11と複合繊維体18の芯材15、および複合構造組織13の外皮材12と複合繊維体18の表皮材16とは同一材料によって形成されていてもよく、この場合には途中まで同一製法にて複合構造組織13と複合繊維体18とを作製できる点で望ましい。   The core material 11 of the composite structure 13 and the core material 15 of the composite fiber body 18, and the skin material 12 of the composite structure 13 and the skin material 16 of the composite fiber body 18 may be formed of the same material. In this case, it is desirable in that the composite structure 13 and the composite fiber body 18 can be produced by the same manufacturing method halfway.

ここで複合繊維体18の断面における芯材15の面積cと表皮材16の面積sとの面積比c/sが1〜10の間であるときに骨補填材料として好適な強度と生体親和性とを有し、望ましくは1〜5であり、さらに望ましくは1〜3である。面積比c/sが1未満の場合は緻密体の割合が少なくなり複合構造体自体の強度が低下し、破損などを引き起こしてしまう場合がある。一方、面積比c/sが10を超える場合には強度的には十分であるが、複合構造体内に占める気孔の存在密度が低いため、骨芽細胞の成長が抑制され治癒に長時間を必要とするようになる。   Here, when the area ratio c / s between the area c of the core material 15 and the area s of the skin material 16 in the cross section of the composite fiber body 18 is between 1 and 10, strength and biocompatibility suitable as a bone grafting material. And preferably 1 to 5 and more preferably 1 to 3. When the area ratio c / s is less than 1, the proportion of the dense body is reduced, and the strength of the composite structure itself is reduced, which may cause damage. On the other hand, when the area ratio c / s exceeds 10, the strength is sufficient, but since the density of pores in the composite structure is low, the growth of osteoblasts is suppressed and a long time is required for healing. It comes to be.

さらに本発明の芯材cと表皮材sの面積比およびそれぞれの気孔率を制御することにより複合構造体のヤング率を調節することも可能であり、例えば生体骨のヤング率30GPa程度に制御することにより、骨補填材料としてより好適なものとなる。   Furthermore, the Young's modulus of the composite structure can be adjusted by controlling the area ratio between the core material c and the skin material s of the present invention and the porosity of each, and for example, the Young's modulus of living bone is controlled to about 30 GPa. As a result, it becomes more suitable as a bone filling material.

複合繊維体18としては、短繊維、長繊維のいずれでもよく、また、直線状でも、バルキー加工のように屈曲部分を有するものでもよい。また、複合繊維体18の集合形態は、特に限定されず、単芯繊維体17を単に束ねたものでもよいが、単芯繊維体17の織物、編物または網状物(メッシュ)であってもよい。これにより、強度、特に、ステム部4の軸方向およびこれと直交する方向の強度が増す。   The composite fiber body 18 may be either a short fiber or a long fiber, and may be linear or have a bent portion as in bulky processing. In addition, the aggregate form of the composite fiber body 18 is not particularly limited, and the single core fiber body 17 may be simply bundled, but may be a woven fabric, a knitted fabric, or a net (mesh) of the single core fiber body 17. . This increases the strength, particularly the strength in the axial direction of the stem portion 4 and the direction perpendicular thereto.

単芯繊維体17の直径の好適な範囲は、その構成材料の種類にもよるが、通常は、0.01〜2.0mmであるのが好ましく、0.1〜1.0mmであるのがより好ましい。金属繊維7の直径が0.01mm未満では、焼結時に粉体との混合が困難となり、2.0mmを超えると、樹脂との複合体としての強度が低下する。また、複合繊維体18における単芯繊維体17の本数は特に限定されないが、上記直径の単芯繊維体17の場合、100〜400万本、特に400〜40000本とするのが好ましい。   Although the suitable range of the diameter of the single core fiber body 17 is based also on the kind of the constituent material, it is preferable that it is 0.01-2.0 mm normally, and it is 0.1-1.0 mm. More preferred. When the diameter of the metal fiber 7 is less than 0.01 mm, mixing with the powder becomes difficult at the time of sintering, and when it exceeds 2.0 mm, the strength as a composite with the resin decreases. In addition, the number of single-core fiber bodies 17 in the composite fiber body 18 is not particularly limited, but in the case of the single-core fiber bodies 17 having the above-mentioned diameter, it is preferably 1 to 4 million, particularly 400 to 40000.

ステム部4、特に、ステム基部9における単芯繊維体7の配設密度は特に限定されないが、100万〜20本/cm、特に10000〜100本/cmとするのが好ましい。なお、このような金属繊維7の配設密度は、ステム部4の中心部と周縁部とで異なっていてもよい。 The arrangement density of the single-core fiber bodies 7 in the stem part 4, particularly the stem base part 9 is not particularly limited, but is preferably 1 million to 20 pieces / cm 2 , particularly preferably 10,000 to 100 pieces / cm 2 . Note that the arrangement density of such metal fibers 7 may be different between the central portion and the peripheral portion of the stem portion 4.

人工関節1を例えば大腿骨に埋入、固定する場合、ステム先端部10は緻密質の部分(コンパクトボーン)まで挿入され、その上部のステム基部9は海綿骨の部分に位置することとなるが、海綿骨ではリーミングにより骨髄腔が拡大しているため、ステム基部9の外周との接触面積が大きくなり、よって、人工関節1と生体骨との曲げ弾性率のバランスが重要となる。金属製のステム部に見られるような曲げ弾性率の過多による骨の破壊や吸収(特にカルカー部の骨の吸収)を防止するためには、人工関節埋入時の小転子より上部であるステム基部9の曲げ弾性率を改善することが特に有効となる。   When the artificial joint 1 is embedded and fixed in, for example, the femur, the stem distal end portion 10 is inserted up to a dense portion (compact bone), and the upper stem base portion 9 is located in the cancellous bone portion. In the cancellous bone, since the bone marrow cavity is enlarged by reaming, the contact area with the outer periphery of the stem base 9 is increased, and therefore, the balance of the bending elastic modulus between the artificial joint 1 and the living bone becomes important. In order to prevent bone destruction and resorption (particularly resorption of the bone in the calcar part) due to excessive bending elastic modulus as seen in the metal stem part, it is above the little trochanter at the time of artificial joint implantation. It is particularly effective to improve the bending elastic modulus of the stem base 9.

なお、本発明の人工関節は、上記人工骨頭に限らず、例えば、人工膝関節、人工肩関節、人工肘関節、人工指関節あるいは人工股関節や寛骨に埋入される臼蓋カップの一部に適用することもできる。   The artificial joint of the present invention is not limited to the above-mentioned artificial bone head, for example, an artificial knee joint, an artificial shoulder joint, an artificial elbow joint, an artificial finger joint, an artificial hip joint, or a part of an acetabular cup embedded in a hipbone It can also be applied to.

(製造方法)
次に、本発明の人工関節を製造する方法について、好適例を挙げて説明する。
(Production method)
Next, a method for producing the artificial joint of the present invention will be described with a suitable example.

まず、ステム部の表面を形成する複合表面組織を作製する方法について、核材がチタン、外皮材がハイドロキシアパタイトの場合を例として図4の模式図をもとに説明する。     First, a method for producing a composite surface structure that forms the surface of the stem portion will be described with reference to the schematic diagram of FIG. 4 taking as an example the case where the core material is titanium and the outer skin material is hydroxyapatite.

まず、平均粒径0.01〜3.5μmのチタン粉末に適宜助剤を添加・混合し、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレ−ト、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により円柱形状に核材用成形体21を作製する。   First, an auxiliary agent is appropriately added to and mixed with titanium powder having an average particle size of 0.01 to 3.5 μm, and paraffin wax, polystyrene, polyethylene, ethylene-ethyl acrylate, ethylene-vinyl acetate, polybutyl methacrylate, polyethylene are added thereto. An organic binder such as glycol or dibutyl phthalate is added and kneaded to produce a core material molding 21 in a cylindrical shape by a molding method such as press molding, extrusion molding or casting.

一方、平均粒径0.1〜100μmのハイドロキシアパタイト原料粉末に前述のバインダ等に加え適宜、分散剤・発泡剤・消泡剤を添加、混錬して、プレス成形、押出成形または鋳込成形等の成形方法により半割円筒形状の2本の外皮材用成形体22を作製する。   On the other hand, a hydroxyapatite raw material powder having an average particle size of 0.1 to 100 μm is appropriately added with a dispersant, a foaming agent, and an antifoaming agent in addition to the above-mentioned binder and kneaded, and press molding, extrusion molding, or cast molding. Two molded bodies 22 for the outer skin material are produced by a molding method such as the above.

本発明によれば、外皮材12の気孔率を25%以上に制御するために上記外皮材用成形体22用の原料を混合するに際して、前記有機バインダの添加量を100〜200体積部、特に120〜150体積部とすることが望ましい。また、前記ハイドロキシアパタイト原料粉末は二次粒子径が20〜400μm、特に50〜200μmに造粒しておいたほうが均一な気孔径および組織を作製する点で望ましい。   According to the present invention, when the raw material for the outer shell material molding 22 is mixed in order to control the porosity of the outer skin material 12 to 25% or more, the amount of the organic binder added is 100 to 200 parts by volume, particularly It is desirable to set it as 120-150 volume parts. The hydroxyapatite raw material powder is preferably granulated to have a secondary particle size of 20 to 400 μm, particularly 50 to 200 μm, in terms of producing a uniform pore size and structure.

次に、核材用成形体21の外周に2本の外皮材用成形体22を配した複合成形体23を作製し、この複合成形体23を共押出成形する(核材用成形体21、および外皮材用成形体22を同時に押出成形する)ことにより核材用成形体21の外周に外皮材用成形体22が被覆され細い径に伸延された単芯成形体24を作製する(工程(b)参照)。また、マルチ繊維(フィラメント)タイプの多芯成形体25を作製するには、上記共押出しした長尺状の単芯成形体24を複数本収束して再度共押出し成形すればよく、この方法によれば、成形体中の単芯成形体24同士のより強固な密着性を得ることができる。(図4(c)参照)。   Next, a composite molded body 23 in which two outer shell material molded bodies 22 are arranged on the outer periphery of the core material molded body 21 is produced, and the composite molded body 23 is co-extruded (core material molded body 21, And the outer shell material molded body 22 are simultaneously extruded) to produce a single core molded body 24 in which the outer shell material molded body 22 is coated on the outer periphery of the core material molded body 21 and is elongated to a thin diameter (step (step (step)). b)). Further, in order to produce a multi-fiber (filament) type multi-core molded body 25, a plurality of the co-extruded long single-core molded bodies 24 may be converged and co-extruded again. According to this, it is possible to obtain stronger adhesion between the single-core molded bodies 24 in the molded body. (See FIG. 4 (c)).

なお、上記共押出成形においては、口金を変えること等により、上記伸延された長尺状の単芯成形体24または多芯成形体25の断面形状を、円形、三角形、四角形または六角形等の所望の形状に成形することも可能である。   In the co-extrusion molding, the elongated single-core molded body 24 or the multi-core molded body 25 has a cross-sectional shape such as a circle, a triangle, a quadrangle, or a hexagon by changing the die. It is also possible to mold into a desired shape.

また、本発明によれば、図3(c)に示したような、複合繊維体18、または単芯繊維体17をシート状に集束した複合繊維体18を形成する場合には、前述のようにして作製した複合繊維体18、または単芯繊維体17を束ねて集合成形体を形成する。さらには、シート状成形体を作製する場合には単芯成形体24または多芯成形体25を整列させる際に公知のラピッドプロトタイピング法などの成形法を用いて予め所望の複雑な形状に成形することも可能である。   In addition, according to the present invention, as shown in FIG. 3C, when the composite fiber body 18 or the composite fiber body 18 in which the single-core fiber bodies 17 are gathered into a sheet shape is formed, as described above. The composite fiber body 18 or the single-core fiber body 17 produced as described above is bundled to form an aggregate molded body. Furthermore, when producing a sheet-like molded body, when a single-core molded body 24 or a multi-core molded body 25 is aligned, it is molded into a desired complex shape in advance using a molding method such as a known rapid prototyping method. It is also possible to do.

そして、上記集合成形体を前記繊維体の繊維方向と直交する方向に切断してシート状の成形体とする。その場合、集合成形体、または単芯繊維体17間に所望により上記バインダなどの接着材を介在させ、さらに、このシート状成形体に冷間静水圧プレス(CIP)などによって圧力を印加するものであってもよいが、必要に応じ、ロール等を用いてシート状成形体をロール圧延成形することも可能である。   And the said assembly molded object is cut | disconnected in the direction orthogonal to the fiber direction of the said fiber body, and it is set as a sheet-like molded object. In that case, an adhesive such as the above binder is interposed between the aggregated molded body or the single-core fiber body 17 as desired, and pressure is applied to the sheet-shaped molded body by a cold isostatic press (CIP) or the like. However, if necessary, it is possible to roll-roll the sheet-like formed body using a roll or the like.

その後、基材ステム部を別途準備し、その表面に前記成形体を貼り付けた状態で脱バインダ処理した後、焼成することにより上記骨頭部を作製することができる。焼成方法は、芯材および表皮材によって、真空または雰囲気焼成、ガス圧焼成、ホットプレス、放電プラズマ焼結法などが用いられる。焼成温度は750℃〜1300℃とすることが望ましい。   Then, after preparing a base material stem part separately and carrying out a binder removal process in the state which stuck the molded object on the surface, the said bone head can be produced by baking. As the firing method, vacuum or atmosphere firing, gas pressure firing, hot press, discharge plasma sintering, or the like is used depending on the core material and the skin material. The firing temperature is desirably 750 ° C to 1300 ° C.

さらに、骨頭部、ネック部、およびソケットを別途作製し、上記ステム部と合わせて組み立てることにより、本発明の人工関節を作製することができる。   Further, the artificial joint of the present invention can be manufactured by separately manufacturing a bone head, a neck portion, and a socket and assembling them together with the stem portion.

平均粒径0.3μmのチタン粉末に対して、バインダ、および滑剤を合計で85質量部の割合で添加、混錬した後、プレス成形により円柱形状の核材用成形体を作製した。一方、平均粒径0.2μmのハイドロキシアパタイト粉末に対して、バインダ、および滑剤を合計で120質量部の割合で添加、混錬した後、プレス成形により半割円筒状の外皮材用成形体を2本作製し、核材用成形体の周囲に図4に示すように外皮材用成形体を被覆した複合成形体を作製した。   After adding and kneading a binder and a lubricant in a total proportion of 85 parts by mass to titanium powder having an average particle size of 0.3 μm, a cylindrical shaped core material was produced by press molding. On the other hand, after adding and kneading a binder and a lubricant in a ratio of 120 parts by mass in total to a hydroxyapatite powder having an average particle size of 0.2 μm, a half-cylindrical molded body for outer skin material is formed by press molding. Two were prepared, and a composite molded body in which the outer core material molded body was covered as shown in FIG. 4 was manufactured around the core material molded body.

次に、前記複合成形体を押出して伸延された単芯形成体を並列に並べて集合成形体を作製しCIP加圧した後、この集合成形体を繊維方向と直交する方向に0.4mmの厚さでスライスしてシート状成形体を得た。   Next, after the composite molded body is extruded and stretched, the single core formed bodies are arranged in parallel to form an aggregate molded body and subjected to CIP pressing, and then the aggregate molded body is 0.4 mm thick in a direction perpendicular to the fiber direction. Then, it was sliced to obtain a sheet-like molded body.

そして、このシート状成形体を、別途チタン合金からなるステム基体の表面に貼り合わせて、300〜700℃まで72時間で昇温させることによって脱バインダ処理を行った後、真空中、放電プラズマ焼結法にて1200℃で10分間焼成した。   Then, this sheet-like molded body is separately bonded to the surface of a stem base made of a titanium alloy, and the binder removal treatment is performed by raising the temperature to 300 to 700 ° C. in 72 hours. Firing was carried out at 1200 ° C. for 10 minutes by the kneading method.


得られた複合構造体の研磨した横断面を金属顕微鏡または走査型電子顕微鏡にて観察し、画像解析法にて核材と外皮材との面積比率c/sを算出したところ、面積比率c/sは5であった。また、この組織観察写真から核材中に含まれる気孔の面積比率を測定して芯材中の気孔率を算出したところ0.2%であった。さらには、水銀圧入法にて気孔率を算出し、上記核材と外皮材との面積比率および核材の気孔率の見積もりと併せて外皮材の気孔率を算出した結果、外皮材の気孔率は27%であった。

The polished cross section of the obtained composite structure was observed with a metal microscope or a scanning electron microscope, and the area ratio c / s between the core material and the skin material was calculated by an image analysis method. s was 5. Moreover, when the area ratio of the pores contained in the core material was measured from the structure observation photograph to calculate the porosity in the core material, it was 0.2%. Furthermore, the porosity was calculated by mercury porosimetry, and the porosity of the outer skin material was calculated together with the area ratio of the core material and the outer skin material and the estimation of the porosity of the core material. Was 27%.

密着性は以下の引っ張り試験で評価した。試験片は図5に示す形状を作製し、図に示すように両面にシート状成形体を貼り付け焼成し、試験体とした。上記同様に作製した焼結体を、ビーグル犬(10〜15kgの成犬)の左右大腿骨の膝蓋面に埋設して1ヶ月経過した後、取り出す動物実験を行った(図5参照)。平均応力値が5.2MPaであった。   The adhesion was evaluated by the following tensile test. The test piece was produced in the shape shown in FIG. 5, and a sheet-like molded body was attached to both sides as shown in the figure and fired to obtain a test body. The sintered body produced in the same manner as described above was embedded in the patellas of the left and right femurs of a beagle dog (10-15 kg adult dog), and an animal experiment was conducted after one month had passed (see FIG. 5). The average stress value was 5.2 MPa.

(条件)

クロスヘッドスピード:2.0mm/min

n=8
(比較例1)
実施例1のシート状成形体を試験片の表面に貼り合わせることなく、チタン合金試験片を作製した。 実施例1と同様に評価した結果、
平均応力値が0.1MPaであった。
(conditions)

Crosshead speed: 2.0mm / min

n = 8
(Comparative Example 1)
A titanium alloy test piece was prepared without bonding the sheet-like molded body of Example 1 to the surface of the test piece. As a result of evaluation in the same manner as in Example 1,
The average stress value was 0.1 MPa.


(比較例2)
外皮材の気孔率が20%の試験片(その他の条件は実施例1と同様)を作製し、引っ張り試験を行った。実施例1同様に動物実験を行って引っ張り試験を行ったところ、平均応力値が2.9MPaであった。

(Comparative Example 2)
A test piece having a porosity of the outer skin material of 20% (other conditions are the same as in Example 1) was prepared, and a tensile test was performed. When an animal experiment was conducted in the same manner as in Example 1 to conduct a tensile test, the average stress value was 2.9 MPa.


(比較例3)
外皮材の厚みが0.1mmの試験片(その他の条件は実施例1と同様)を作製し、引っ張り試験を行った。引っ張り試験を行ったところ、平均応力値が2.5MPaであった。

(Comparative Example 3)
A test piece having a thickness of 0.1 mm for the outer skin material (other conditions were the same as in Example 1) was prepared, and a tensile test was performed. When the tensile test was conducted, the average stress value was 2.5 MPa.

本発明の人工関節の好適な実施態様例を示す概略斜視図である。It is a schematic perspective view which shows the example of a suitable embodiment of the artificial joint of this invention. 図1のステム表面部の概略断面図である。It is a schematic sectional drawing of the stem surface part of FIG. (a)は図1のステム表面部の表面を示す要部拡大図、(b)は単芯繊維体の斜視図、(c)は複合繊維体の斜視図である。(A) is a principal part enlarged view which shows the surface of the stem surface part of FIG. 1, (b) is a perspective view of a single core fiber body, (c) is a perspective view of a composite fiber body. 本発明の複合構造体の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the composite structure of this invention. 実施例で行った密着性試験(引き剥がし試験)について説明するための模式図である。It is a schematic diagram for demonstrating the adhesiveness test (peeling test) performed in the Example.

符号の説明Explanation of symbols

1 人工関節
2 骨頭部
3 ネック部
4 ステム部
5 人工骨
6 ソケットステム先端部
7 凹部
9 ステム基部
10 ステム先端部
11 核材
12 外皮材
13 複合繊維組織
14 ステム基体
15 芯材
16 表皮材
17 単芯繊維体
18 複合繊維体
21 核材用成形体
22 外皮材用成形体
23 複合成形体
24 単芯成形体
25 多芯成形体
DESCRIPTION OF SYMBOLS 1 Artificial joint 2 Bone head 3 Neck part 4 Stem part 5 Artificial bone 6 Socket stem front-end | tip part 7 Recessed part 9 Stem base part 10 Stem front-end | tip part 11 Core material 12 Outer skin material 13 Composite fiber structure 14 Stem base material 15 Core material 16 Skin material 17 Single Core fiber body 18 Composite fiber body 21 Core material molded body 22 Outer skin material molded body 23 Composite molded body 24 Single-core molded body 25 Multi-core molded body

Claims (6)

骨頭部と、該骨頭部に続くネック部と、該ネック部に続くステム部とを具備する人工骨であって、規則的に配列された第1の材料からなる核材の外周を、前記第1の材料とは異なる材料からなる外皮材にて囲んだ複合構造組織が表面に露出した状態で前記ステム部の外周面の少なくとも一部が覆われている人工骨。 An artificial bone comprising a bone head, a neck portion following the bone head, and a stem portion following the neck portion, wherein the outer periphery of the core material made of the first material regularly arranged is An artificial bone in which at least a part of the outer peripheral surface of the stem portion is covered in a state where a composite structure surrounded by an outer skin material made of a material different from the material of 1 is exposed on the surface. 前記複合構造組織の厚みが100〜500μmである請求項1記載の人工骨。 The artificial bone according to claim 1, wherein the thickness of the composite structure tissue is 100 to 500 µm. 前記核材の気孔率が5%以下であり、かつ前記外皮材の気孔率が25%以上で三次元に連通した気孔を有する請求項1または2記載の人工骨。 The artificial bone according to claim 1 or 2, wherein the core material has a porosity of 5% or less, and the skin material has a porosity of 25% or more and has pores communicating in three dimensions. 前記複合構造組織の核材の平均直径が10〜1000μmであり、かつ該核材の前記骨頭部表面における面積比率が60〜95面積%である請求項1乃至3のいずれか記載の人工骨。 The artificial bone according to any one of claims 1 to 3, wherein an average diameter of the core material of the composite structure is 10 to 1000 µm, and an area ratio of the core material on the surface of the bone head is 60 to 95 area%. 前記ステム部の基体が、長尺状の芯材の外周を表皮材にて被覆してなる単芯繊維体を複数本集束した複合繊維体からなる請求項1乃至4のいずれか記載の人工骨。 The artificial bone according to any one of claims 1 to 4, wherein the base body of the stem portion is composed of a composite fiber body in which a plurality of single-core fiber bodies formed by covering an outer periphery of a long core material with a skin material. . 請求項1乃至5のいずれか記載の前記人工骨の前記骨頭部を、ソケットの凹部内に嵌合して回動可能に連結した人工関節。 The artificial joint which connected the said bone head of the said artificial bone in any one of Claim 1 thru | or 5 in the recessed part of a socket so that rotation was possible.
JP2004096811A 2004-03-29 2004-03-29 Artificial bone and artificial joint Pending JP2005278875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096811A JP2005278875A (en) 2004-03-29 2004-03-29 Artificial bone and artificial joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096811A JP2005278875A (en) 2004-03-29 2004-03-29 Artificial bone and artificial joint

Publications (1)

Publication Number Publication Date
JP2005278875A true JP2005278875A (en) 2005-10-13

Family

ID=35177903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096811A Pending JP2005278875A (en) 2004-03-29 2004-03-29 Artificial bone and artificial joint

Country Status (1)

Country Link
JP (1) JP2005278875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054788A (en) * 2006-08-30 2008-03-13 Bi Tec:Kk Socket made of composite material for artificial hip joint and its manufacturing method
KR20230051344A (en) * 2021-10-08 2023-04-18 재단법인 포항산업과학연구원 Porous titanium powder, and method for manufacturing of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008054788A (en) * 2006-08-30 2008-03-13 Bi Tec:Kk Socket made of composite material for artificial hip joint and its manufacturing method
KR20230051344A (en) * 2021-10-08 2023-04-18 재단법인 포항산업과학연구원 Porous titanium powder, and method for manufacturing of the same
KR102562983B1 (en) 2021-10-08 2023-08-03 재단법인 포항산업과학연구원 Porous titanium powder, and method for manufacturing of the same

Similar Documents

Publication Publication Date Title
US9370427B2 (en) Bone-compliant femoral stem
RU2229313C2 (en) Composition, manufacturing and application of silicon nitride as biomaterial for medicinal purposes
Morscher Cementless total hip arthroplasty.
US6066176A (en) Orthopedic implant system
US6993406B1 (en) Method for making a bio-compatible scaffold
JP5596686B2 (en) Orthopedic graft with spatially varying porosity
US20100076570A1 (en) Medical implant
JP2017536214A (en) Ceramic space holder (“spacer”) for both sides replacement of implants implanted in shoulder, knee and crotch due to inflammation
US10285816B2 (en) Implant including cartilage plug and porous metal
JP2017529297A (en) Member to fuse vertebral bodies
EP2764849B1 (en) Femoral prosthesis head
Wang et al. Design of a graded cellular structure for an acetabular hip replacement component
Shen et al. Mechanical failure of hydroxyapatite-and polysulfone-coated titanium rods in a weight-bearing canine model
JP2005278875A (en) Artificial bone and artificial joint
Fabi et al. Porous coatings on metallic implant materials
JP2005278874A (en) Artificial joint
JPH0592019A (en) Artificial joint
CN211156484U (en) Femoral head prosthesis, femoral prosthesis component and hip joint component
Minko et al. Biomechanical properties of composite compact-porous titanium produced by electric discharge dintering
CN111281616A (en) Full-hip metal cup prosthesis and manufacturing method thereof
JPH09501064A (en) Artificial bone and artificial bone transplantation method
EP4241738A1 (en) Non-polygonal porous structure
US20160367374A1 (en) Implants
JP2006006756A (en) Biological ceramic composite structure
Ishikawa et al. Effect of hydroxyapatite containing glass coating on the bonding between bone and titanium implants