JP2005278405A - Gene related to acid resistance of lactic acid bacterium and acid induction promoter - Google Patents

Gene related to acid resistance of lactic acid bacterium and acid induction promoter Download PDF

Info

Publication number
JP2005278405A
JP2005278405A JP2004092939A JP2004092939A JP2005278405A JP 2005278405 A JP2005278405 A JP 2005278405A JP 2004092939 A JP2004092939 A JP 2004092939A JP 2004092939 A JP2004092939 A JP 2004092939A JP 2005278405 A JP2005278405 A JP 2005278405A
Authority
JP
Japan
Prior art keywords
acid
gene
strain
acid resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004092939A
Other languages
Japanese (ja)
Inventor
Yasuko Sasaki
泰子 佐々木
Yoshiyuki Ito
喜之 伊藤
Takashi Sasaki
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP2004092939A priority Critical patent/JP2005278405A/en
Publication of JP2005278405A publication Critical patent/JP2005278405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new acid-resistant gene directly related to acid resistance of microorganism and a new acid stress induction promoter strongly inducing expression of a combined gene by acid stress. <P>SOLUTION: The new acid-resistant gene and the new acid stress induction promoter are found by exhaustively analyzing an acid stress gene response in a short time in the acid adaptation of a strongly acid-resistant Lactobacillus gasseri OLL2716 strain (Lactobacillus gasseri LG21) by a DNA array method and confirming the phenotype of the found new gene. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発酵乳製品製造やプロバイオティックスに関わる乳酸菌など食品微生物、及び、乳酸・アミノ酸・核酸など有用物質を生産する微生物、環境浄化に関わる微生物の酸耐性の評価及び強化に関する。さらに詳しくは、ラクトバチルス・ガセリ菌のゲノムに存在し、本菌の酸耐性機構発現に関わる遺伝子の応用に関する。また、該酸耐性遺伝子の転写を制御している酸ストレス誘導プロモーターとその応用に関する。   The present invention relates to the evaluation and enhancement of acid resistance of food microorganisms such as lactic acid bacteria involved in fermented dairy production and probiotics, microorganisms producing useful substances such as lactic acid, amino acids and nucleic acids, and microorganisms involved in environmental purification. More specifically, the present invention relates to the application of genes that are present in the genome of Lactobacillus gasseri and are involved in the expression of the acid resistance mechanism of this bacterium. The present invention also relates to an acid stress-inducible promoter controlling the transcription of the acid resistance gene and its application.

地球上には様々な場所に酸性の環境があるため、微生物を産業的に応用する場合、酸性環境に対する抵抗性(酸耐性)は重要な形質である。酸性環境で生育する微生物は、外部の低pHというストレスに耐えて生育あるいは生存するために、細胞内pHを中性付近の一定の値に保つ必要がある。特に、乳酸菌や酢酸菌、プロピオン酸菌をはじめとする有用微生物では、生育の際に代謝産物として酸を生成するため環境の酸性化が進み、酸に対する強固な防御機構を持つ必要がある。また、ヒトや家畜などの胃内が酸性であるため、プロバイオティクス菌等が消化管のなかで生き残るためにも酸耐性は重要な要素である。   Since there are acidic environments in various places on the earth, resistance to acid environments (acid resistance) is an important trait when microorganisms are applied industrially. Microorganisms that grow in an acidic environment need to maintain an intracellular pH at a constant value in the vicinity of neutrality in order to survive or survive the external low pH stress. In particular, useful microorganisms such as lactic acid bacteria, acetic acid bacteria, and propionic acid bacteria need to have a strong defense mechanism against the acid because the acid is generated as a metabolite during growth and the acidification of the environment proceeds. In addition, since the stomachs of humans and domestic animals are acidic, acid tolerance is an important factor for probiotic bacteria to survive in the digestive tract.

そのため、各種の酸を生成する菌では、その酸耐性に関わる遺伝子やタンパク質について検討が加えられてきた。例えば酢酸菌については、その酢酸耐性遺伝子やその遺伝子を用いて微生物の酢酸耐性を向上させて高濃度の酢酸を得る方法等が既に報告されている。(例えば、特許文献1)
また、乳酸菌においても酸耐性に関わる遺伝子がいくつか報告され、それに伴い乳酸菌の酸耐性機構もいくつか報告されている。(例えば非特許文献1)
Therefore, in bacteria that produce various acids, studies have been made on genes and proteins involved in acid resistance. For example, with respect to acetic acid bacteria, the acetic acid resistance gene and a method for improving the acetic acid resistance of microorganisms to obtain a high concentration of acetic acid using the gene have already been reported. (For example, Patent Document 1)
In addition, some genes related to acid resistance have been reported in lactic acid bacteria, and several acid resistance mechanisms of lactic acid bacteria have been reported. (For example, Non-Patent Document 1)

従来の報告の多くは、ランダムな変異によって遺伝子を失活させ、得られた変異株の中から酸耐性が弱くなったものを見つけてその遺伝子を解明するか、あるいは、「酸適応」現象(すなわち、対数増殖期の細胞を致死的でない比較的穏やかな酸性条件におく事によって酸耐性メカニズムが誘導され菌の酸耐性が増加する現象)を利用して、酸耐性に関わるタンパク質を検討するものであった。   Many of the previous reports have inactivated genes by random mutations and found the mutants that have weakened acid resistance to elucidate the genes, or “acid adaptation” phenomenon ( In other words, a protein that is involved in acid resistance is examined by utilizing the phenomenon that acid resistance mechanism is induced by placing cells in logarithmic growth phase under relatively mild acidity that is not lethal and acid resistance mechanism of bacteria increases. Met.

これらの場合に問題となるのは、ランダム変異法は適用できる微生物が限られているうえに効率が良くないこと、また、二次元電気泳動法を用いたタンパク質の解析法(プロテオーム解析)では、「酸適応」が数分間で起きる現象であるにも拘わらず、発現に時間を要するタンパク質を指標として解析が行われてきたことである。従って、これまで報告されている遺伝子は「酸適応」時に短時間で発現量が増大する本来の酸耐性遺伝子を正確に反映したものとは言えない。   The problem in these cases is that the random mutation method is limited in the number of microorganisms that can be applied and is not efficient, and in the protein analysis method (proteome analysis) using two-dimensional electrophoresis, Despite the fact that “acid adaptation” is a phenomenon that takes place within a few minutes, analysis has been carried out using proteins that require time for expression as indicators. Therefore, it cannot be said that the genes reported so far accurately reflect the original acid resistance gene whose expression level increases in a short time during "acid adaptation".

また、酸耐性遺伝子本体の検討だけでなく、「酸適応」時に遺伝子発現量を増大させる仕組み、すなわち、酸ストレスで誘導される遺伝子発現プロモーターについても検討が行われている。     Further, not only the examination of the acid-resistant gene body but also the mechanism for increasing the gene expression level during “acid adaptation”, that is, the gene expression promoter induced by acid stress is being studied.

例えば特許文献2では Lactobacillus acidophilusのF1F0-ATPase プロモーターが記載されている。この検討の主旨は、酸性条件で誘導される該プロモーターを用いることによって目的遺伝子の発現量を増大させて、有用タンパク質などの大量生産や特定の形質を向上させて有用微生物を得ることを狙ったものである。培地を酸性にするには、乳酸や酢酸、クエン酸などを添加するか、あるいは、微生物が自然に作るこれらの酸を利用すれば良いので、この方法は食品製造に適するものであると言える。しかしながら特許文献2記載の報告では、酸性条件での遺伝子発現量増加が高々2倍程度であり、遺伝子産物の発現量をさらに増大することができる酸ストレス誘導プロモーターが望まれる状況にあった。 For example, Patent Document 2 describes the Lactobacillus acidophilus F 1 F 0 -ATPase promoter. The purpose of this study was to increase the expression level of the target gene by using the promoter induced under acidic conditions, aiming to obtain useful microorganisms by improving mass production of specific proteins and specific traits Is. In order to make the medium acidic, lactic acid, acetic acid, citric acid or the like may be added, or these acids which are naturally produced by microorganisms may be used. Therefore, this method can be said to be suitable for food production. However, according to the report described in Patent Document 2, an increase in gene expression level under acidic conditions is at most about twice, and an acid stress-inducible promoter capable of further increasing the expression level of a gene product was desired.

特開2003-289868号公報JP2003-289868 US 6,242,194号公報US 6,242,194 Rallu F ,Gruss A,Ehrlich SD ,Maguin E ,Molecular Microbiology 2000 35(3)517-528Rallu F, Gruss A, Ehrlich SD, Maguin E, Molecular Microbiology 2000 35 (3) 517-528

そこで本発明の課題は、酸性食品の製造に関わる乳酸菌などの微生物からより効果の高い酸耐性遺伝子を探索し、その機構を応用して有用微生物に酸耐性を賦与、あるいは増強、あるいは検出するなどの応用をはかることである。また、もう一つの課題は、培地を酸性にすることによって有用なタンパク質をコードする遺伝子の発現量を確実に増大することができる強い遺伝子発現誘導プロモーターを提供することである。   Thus, an object of the present invention is to search for a more effective acid resistance gene from microorganisms such as lactic acid bacteria involved in the production of acidic foods, and to apply, enhance, or detect acid resistance to useful microorganisms by applying the mechanism. Is to apply the. Another object is to provide a strong gene expression inducing promoter capable of reliably increasing the expression level of a gene encoding a useful protein by acidifying the medium.

本発明者らは、先の2つの課題を解決するにあたり、乳酸菌の中でも酸耐性が強いことが知られているLactobcillus
gasseri OLL2716株(以下LG21株;寄託番号FERM BP-6999)に注目して検討を開始した。LG21株の酸耐性が強いことは、培養液の最終pHがLG21株では約3.8であり、例えばチーズ製造乳酸菌Lactococcus lactisの約4.5と比べて低いこと、また、人工胃液を用いた生残性の検討結果から他の乳酸菌株と比べてもLG21株の生残性が高かったことなどから明確である。
The present inventors have solved Lactobcillus, which is known to have strong acid resistance among lactic acid bacteria, in solving the above two problems.
The study began with a focus on gasseri OLL2716 strain (hereinafter LG21 strain; deposit number FERM BP-6999). The strong acid resistance of the LG21 strain is that the final pH of the culture solution is about 3.8 in the LG21 strain, which is low compared to, for example, about 4.5 of the cheese-producing lactic acid bacterium Lactococcus lactis, and the survivability using artificial gastric juice From the examination results, it is clear that LG21 strain has a higher survival rate than other lactic acid strains.

すなわち本発明は、LG21株に強い酸耐性機構が存在すると予想して、これまで知られていない酸耐性機構に関わる有用遺伝子を見出し、その応用を図ることを狙ったものである。その為、まず酸に対するLG21株の挙動を検討したところ、定常期の細胞ではpH2.5においても生残菌数は減少しないが、対数増殖期の細胞ではpH2.5におくと生残菌数が漸減することを確認した(図1)。   That is, the present invention is aimed at finding a useful gene related to an acid resistance mechanism that has not been known so far and predicting its application, assuming that the LG21 strain has a strong acid resistance mechanism. Therefore, when the behavior of the LG21 strain to acid was first examined, the number of surviving bacteria did not decrease even at pH 2.5 in cells at stationary phase, but the number of surviving bacteria at pH 2.5 in cells at logarithmic growth phase. Was gradually reduced (FIG. 1).

そこで、酸に対する感受性の高い対数増殖期のLG21株細胞を用いることに加えて、「酸適応」によって短時間に発現量が増大する本来の酸耐性遺伝子を検出することが可能なDNAマイクロアレイ技術を用いてLG21株の酸耐性遺伝子を網羅的に解析することを企画した。この方法を用いると、従来行われてきたプロテオーム解析などの手法では捉えることが出来ない遺伝子の転写量変化を解析することができる。   Therefore, in addition to using LG21 strain cells in the logarithmic growth phase with high acid sensitivity, DNA microarray technology that can detect the original acid-resistant genes whose expression levels increase in a short time by “acid adaptation” We planned to comprehensively analyze the acid resistance gene of LG21 strain. By using this method, it is possible to analyze changes in the transcription amount of a gene that cannot be detected by conventional methods such as proteome analysis.

つまり、菌株として新規な酸耐性遺伝子を有する可能性が高いLG21株を用い、且つ、検出方法としても従来の方法では捉えることが出来なかった遺伝子の転写状況を把握出来るDNAマイクロアレイ技術を用いることで、より確実に新規で有用な酸耐性遺伝子と、酸ストレスによって誘導される遺伝子発現プロモーターの両方を見出すことを狙ったものである。そして、LG21株の酸適応の際に転写が促進あるは抑制される遺伝子をゲノム・スケールで網羅的に解析し、その結果「酸適応」時に誘導された乳酸菌の酸耐性発現に関わると考えられる新規遺伝子(以下、#474)を見出すことに成功した。   In other words, by using the LG21 strain that has a high possibility of having a novel acid-resistant gene as a strain, and by using DNA microarray technology that can grasp the transcription status of genes that could not be detected by conventional methods as a detection method It aims to find both new and useful acid resistance genes and gene expression promoters induced by acid stress. And, it is considered that the gene that promotes or represses transcription during acid adaptation of LG21 strain is comprehensively analyzed on a genome scale, and as a result, is involved in the acid tolerance expression of lactic acid bacteria induced during "acid adaptation" We succeeded in finding a new gene (hereinafter # 474).

しかもアレイ解析の結果から、「酸適応」時の#474遺伝子転写量は未処理区の10倍以上に増加することが確認され、#474の転写調節機構は酸ストレスによって非常に強く誘導されることが判明した。したがって、#474の上流にある転写調節に関わる塩基配列を利用すれば、培地への酸添加という簡単な方法で特定の遺伝子を大量に発現させる、いわゆる有用遺伝子の大量および誘導発現系の構築が期待できるのである。 Moreover, from the results of array analysis, it was confirmed that the amount of # 474 gene transcription during "acid adaptation" increased more than 10 times that of the untreated group, and the transcriptional regulatory mechanism of # 474 was very strongly induced by acid stress. It has been found. Therefore, if a base sequence related to transcriptional regulation upstream of # 474 is used, a large amount of a specific gene can be expressed in a large amount by a simple method of acid addition to a medium, and a so-called useful gene large amount and an inducible expression system can be constructed. You can expect.

このようにして得られた酸耐性遺伝子#474の塩基配列(配列番号1)とそれから演繹されるタンパク質のアミノ酸配列をデータベースで比較した結果、該タンパク質と相同なタンパク質がいくつか見い出された。
BLASTPでの相同検索で高い相同性を示したのは、大腸菌K12株のputative receptor protein (score=157,accession
number AE000325-6)、枯草菌168株のYWKB protein (score=76, accession number Z99122-189)、乳酸菌Lactobacillus
plantarumWCFS1株のtransport protein (score=53,accession number AL935262-14)などである。しかし、これらのタンパク質の機能は明確になっておらず、酸耐性との関連性を示す証拠は全く認められない。したがって、本発明で見い出されたLG21株由来の遺伝子#474は機能が不明で、酸耐性など産業的有用性との関連が示唆されたことがないことが判明した。
As a result of comparing the amino acid sequence of the acid resistance gene # 474 thus obtained (SEQ ID NO: 1) and the amino acid sequence of the protein deduced therefrom with a database, several proteins homologous to the protein were found.
High homology in BLASTP homology search is that of putative receptor protein (score = 157, accession) of Escherichia coli K12 strain.
number AE000325-6), 168 strains of Bacillus subtilis YWKB protein (score = 76, accession number Z99122-189), Lactobacillus lactic acid bacteria
plantarumWCFS1 strain transport protein (score = 53, accession number AL935262-14). However, the function of these proteins is not clear and there is no evidence of an association with acid tolerance. Therefore, it has been found that the gene # 474 derived from the LG21 strain found in the present invention has an unknown function and has never been suggested to be associated with industrial utility such as acid resistance.

さらに、この遺伝子#474をノックアウトした株(以後、Δ474株と呼ぶ)を作成し、得られた株の性質を種々の試験で野生株(LG21株)と比較した。その結果、Δ474株は通常の培養条件では野生株と生育の差が認められなかったのに対して、酸性培地では両株の生残性に差が認められた。例えば、pH2.5に調整したMRS培地での生残性を比較すると、Δ474株は「酸適応」処理を行った場合で野生株の1/30、適応が起きていない条件で1/8の生残率しかなく、その他の証拠も併せて判断するとΔ474株の酸耐性が低下していることは明確であった。したがって、遺伝子#474が本菌の酸耐性に関与していると結論した。   Furthermore, a strain in which this gene # 474 was knocked out (hereinafter referred to as Δ474 strain) was prepared, and the properties of the obtained strain were compared with the wild strain (LG21 strain) in various tests. As a result, the Δ474 strain did not show a difference in growth from the wild strain under normal culture conditions, whereas the acidic medium showed a difference in the survival of both strains. For example, when comparing survival in MRS medium adjusted to pH 2.5, Δ474 strain was 1/30 of the wild strain when treated with “acid adaptation”, and 1/8 of the strain when adaptation was not occurring. It was clear that the acid tolerance of the Δ474 strain was reduced when judging only the survival rate and other evidence. Therefore, it was concluded that gene # 474 is involved in acid resistance of this bacterium.

この酸耐性に関与する新規遺伝子#474が大量に発現すると、該遺伝子を有する微生物(または、該遺伝子が導入された形質転換体)の酸耐性が向上すると考えられる。したがって、遺伝子#474の存否、あるいはその転写量、または最終産物であるタンパク質の量を測定することによって、微生物の酸耐性度の推定ができる可能性がある。遺伝子#474の存否、転写量、および該タンパク質の量は公知の方法で容易に測定可能である。例えば遺伝子#474の存否はPCR法などで、転写量は遺伝子#474の塩基配列をもとにしたノーザンブロッティング法や定量的なPCR法など、またタンパク質量は、例えばウエスターンブロッティング法など、それぞれ公知の方法で定量できる。これらのいずれかの方法を用いて測定対象微生物における遺伝子#474の存否、転写量、および発現量の少なくとも一つを測定することで、食品製造やプロバイオティックスなどの分野で有用に用いることのできる酸耐性度の高い微生物株をスクリーニングすることが可能となるものと考えられる。   When a large amount of the novel gene # 474 involved in acid resistance is expressed in large quantities, it is considered that the acid resistance of a microorganism having the gene (or a transformant into which the gene has been introduced) is improved. Therefore, it may be possible to estimate the acid resistance of a microorganism by measuring the presence or absence of gene # 474, the amount of transcription thereof, or the amount of protein as a final product. Presence / absence of gene # 474, the amount of transcription, and the amount of the protein can be easily measured by known methods. For example, the presence or absence of gene # 474 is the PCR method, the transcription amount is the northern blotting method based on the base sequence of gene # 474, the quantitative PCR method, etc. The protein amount is, for example, the Western blotting method, etc. It can be quantified by a known method. By using at least one of these methods to measure at least one of the presence / absence, transcription level, and expression level of gene # 474 in the microorganism to be measured, it can be usefully used in fields such as food production and probiotics. It is considered that it is possible to screen for a microbial strain having high acid resistance.

本発明は以上の知見を元に完成するに至ったものである。すなわち本発明は以下の(1)〜(7)からなるものである。
(1) 配列番号1に記載の塩基配列を有する遺伝子。
(2)(1)に記載の遺伝子を導入して作成され、酸耐性が向上した微生物の形質転換体。
(3)(1)に示される遺伝子が失活した微生物株。
(4) 微生物が乳酸菌である(2)ないし(3)に記載の微生物株。
(5)(1)に示される塩基配列を用いた酸耐性度の高い微生物のスクリーニング方法。
(6)(1)に記載の遺伝子の転写を制御し、該遺伝子上流の配列番号2に記載される600塩基対内に存在する酸ストレス誘導プロモーター領域。
(7)(6)に記載の酸ストレス誘導プロモーター領域を含む、遺伝子誘導発現系。
The present invention has been completed based on the above findings. That is, the present invention comprises the following (1) to (7).
(1) A gene having the base sequence set forth in SEQ ID NO: 1.
(2) A microorganism transformant produced by introducing the gene according to (1) and having improved acid resistance.
(3) A microorganism strain in which the gene shown in (1) is inactivated.
(4) The microorganism strain according to (2) to (3), wherein the microorganism is a lactic acid bacterium.
(5) A method for screening a microorganism having high acid resistance using the base sequence shown in (1).
(6) An acid stress-inducible promoter region that controls transcription of the gene according to (1) and is present within 600 base pairs of SEQ ID NO: 2 upstream of the gene.
(7) A gene inducible expression system comprising the acid stress inducible promoter region according to (6).

また、本発明は(1)の配列番号1に記載の塩基配列の1個もしくは数個の塩基が欠失、置換及び/または付加された塩基配列を有している遺伝子であっても、その機能が酸耐性に関与する遺伝子であればそれを含むことは言うまでもない。さらに(6)の配列番号2に記載の塩基配列の1個もしくは数個の塩基が欠失、置換及び/または付加された塩基配列を有しているプロモーター領域であっても、その機能が酸ストレスによって誘導される遺伝子発現に関与するものであればそれを含むことは言うまでもないことである。 The present invention also relates to a gene having a base sequence in which one or several bases of SEQ ID NO: 1 of (1) have been deleted, substituted and / or added. It goes without saying that if the function is a gene involved in acid resistance, it is included. Furthermore, even if the promoter region has a base sequence in which one or several bases of the base sequence shown in SEQ ID NO: 2 in (6) are deleted, substituted and / or added, the function thereof is acid. It goes without saying that any gene involved in stress-induced gene expression is included.

今回発見された遺伝子はこれまで酸耐性との関連が知られていない新規な遺伝子であり、短時間に強く誘導される酸耐性遺伝子であるため、新たな酸耐性機構として有用微生物、特に、乳酸菌などの食品製造やプロバイオティックスに用いられる微生物に酸耐性を賦与あるいは増強することが期待できる。   The gene discovered this time is a novel gene that has not been known to be related to acid resistance, and is an acid resistance gene that is strongly induced in a short time. It can be expected to impart or enhance acid resistance to microorganisms used in food production and probiotics.

また遺伝子#474の存否および発現量を測定することで、食品製造やプロバイオティックスなどの分野で有用に用いることのできる酸耐性度の高い微生物をスクリーニングすることも可能となるものと考えられる。 In addition, by measuring the presence / absence and expression level of gene # 474, it is considered possible to screen a highly acid-resistant microorganism that can be usefully used in fields such as food production and probiotics.

次に、酸耐性は生存に極めて重要であるため、細胞には複数の酸耐性機構が存在すると考えられるが、種によって異なると推定される酸耐性機構全体を解明して産業的応用を行うには、既知の機構以外の耐性機構解明が不可欠である。その際、既知の酸耐性機構に関わる遺伝子の他に本発明の遺伝子の欠失株を作成することによって、新規の酸耐性機構および関連遺伝子を新たに発見することが期待できる。   Second, since acid tolerance is extremely important for survival, cells are thought to have multiple acid tolerance mechanisms. It is essential to elucidate the resistance mechanism other than the known mechanism. In that case, it can be expected that a novel acid resistance mechanism and related genes can be newly discovered by creating a deletion strain of the gene of the present invention in addition to a gene related to a known acid resistance mechanism.

さらに、本発明の遺伝子は培地pHを低下させる(弱酸処理)という簡便な方法によって急激に転写量が増大するので、本遺伝子の転写制御機構を利用すれば、酸添加によって誘導可能な有用タンパク質の発現系が構築できる可能性がある。   Furthermore, since the gene of the present invention rapidly increases the amount of transcription by a simple method of lowering the medium pH (weak acid treatment), if the transcription control mechanism of this gene is used, useful proteins that can be induced by addition of acid There is a possibility that an expression system can be constructed.

本発明の配列番号1に記載の#474遺伝子は、LG21株から単離されたものであり、1182の塩基対からなる。
また、本発明は配列番号1に記載の塩基配列の1個もしくは数個の塩基が欠失、置換及び/または付加された塩基配列を有している遺伝子であっても、その機能が酸耐性に関与する遺伝子であればそれを含むことは言うまでもない。
遺伝子を発現させるためには、配列番号1記載の遺伝子を発現ベクターに導入すればよい。ベクターには、公知の発現系を有する遺伝子操作宿主細胞由来のプラスミドやファージ、コスミド等に本発明の遺伝子を用いることができる。
The # 474 gene described in SEQ ID NO: 1 of the present invention is isolated from the LG21 strain and consists of 1182 base pairs.
Further, the present invention provides a gene having a base sequence in which one or several bases of the base sequence shown in SEQ ID NO: 1 have been deleted, substituted and / or added, and the function thereof is acid resistant. It goes without saying that genes involved in the gene are included.
In order to express the gene, the gene described in SEQ ID NO: 1 may be introduced into an expression vector. As the vector, the gene of the present invention can be used for plasmids, phages, cosmids and the like derived from genetically engineered host cells having a known expression system.

形質転換体作製は常法によって行えばよい。このとき宿主細胞として、宿主内に挿入された遺伝子を維持、増殖、発現させ得るものであればいずれも使用可能である。宿主には、例えば、大腸菌、ラクトコッカス属細菌、ラクトバチルス属乳酸菌、ビフィドバクテリウム属細菌、枯草菌、動物細胞が挙げられる。
#474遺伝子を失活した微生物を作製するには、ポイントミューテーション、相同組換え等の常法によって行えばよい。
配列番号1記載の塩基配列を用いた酸耐性度の高い微生物をスクリーニングするには、配列番号1記載の遺伝子にハイブリダイズする遺伝子をスクリーニングし、配列番号1記載の配列の一部分から調製したプライマーを用いてクローニングすればよい。
A transformant may be prepared by a conventional method. At this time, any host cell that can maintain, proliferate, and express a gene inserted into the host can be used. Examples of the host include Escherichia coli, Lactococcus bacteria, Lactobacillus lactic acid bacteria, Bifidobacterium bacteria, Bacillus subtilis, and animal cells.
In order to produce a microorganism in which the # 474 gene has been inactivated, conventional methods such as point mutation and homologous recombination may be used.
In order to screen a microorganism having high acid resistance using the base sequence described in SEQ ID NO: 1, a gene hybridizing to the gene described in SEQ ID NO: 1 is screened, and a primer prepared from a part of the sequence described in SEQ ID NO: 1 is used. And cloning.

また、本発明の配列番号2記載の塩基配列は、LG21株から単離されたものであり、#474遺伝子の上流に位置するプロモーター領域内に存在する600の塩基対からなる。
さらに配列番号2に記載の塩基配列の1個もしくは数個の塩基が欠失、置換及び/または付加された塩基配列を有しているプロモーター領域であっても、その機能が酸ストレスによって誘導される遺伝子発現に関与するものであればそれを含むことは言うまでもないことである。
The base sequence described in SEQ ID NO: 2 of the present invention is isolated from the LG21 strain and consists of 600 base pairs present in the promoter region located upstream of the # 474 gene.
Furthermore, even in a promoter region having a base sequence in which one or several bases of the base sequence shown in SEQ ID NO: 2 have been deleted, substituted and / or added, its function is induced by acid stress. It goes without saying that any gene involved in gene expression is included.

以下、実施例を元に本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[実施例1] LG21株の酸ストレス耐性誘導(酸適応)
LG21株の酸適応について以下により調べた。「酸適応」とは、対数増殖期の細胞を致死的でない比較的緩やかな酸性条件におく事(弱酸処理)によって酸耐性メカニズムが誘導され、酸耐性が増加する現象をいう。
まず、本菌での弱酸処理の至適pHを検討するため、MRS培地に乳酸を加えて様々な初発pH(pH5.8, 5.3, 4.8, 4.3, 3.8)の弱酸性培地を調整した。対数増殖期のLG21株細胞をこれら各々の培地に懸濁して37℃30分処理(弱酸処理)した後、強酸性(pH2.5)MRS培地で2.5時間処理して生残菌数を測定した。対照として初発pH6.5の培地に懸濁して30分処理した後、同様に強酸性培地(pH2.5)で2.5時間処理した場合の生残菌数も測定した。各pHでの効果を比較するために、弱酸処理した場合(処理区)の各々の生残菌数(CFU
: Colony Forming Unit)を対照(無処理区)の生残菌数で割って比較した。(図2)その結果、pH4.8での弱処理が最も酸適応効果が高く、生残性は無処理区と比較して百倍以上増加した。
次に、弱酸処理の時間についても検討した。pH4.8の培地で15分から3時間まで検討した結果、弱酸処理が長いほど強酸処理での生残性は高かった。しかし、15分処理でも無処理区と比較して生残性が数十倍以上増加したので、以後の実験では弱酸処理時間を30分とした。pH4.8のMRS培地で弱酸処理を行うと、LG21株の生残率は無処理区と比較して10の2乗から5乗倍も高かった。(図3)
[Example 1] Induction of acid stress tolerance of LG21 strain (acid adaptation)
The acid adaptation of LG21 strain was examined by the following. “Acid adaptation” refers to a phenomenon in which acid tolerance mechanism is induced by placing cells in logarithmic growth phase under relatively mild acid conditions that are not lethal (weak acid treatment), thereby increasing acid tolerance.
First, in order to examine the optimum pH for the weak acid treatment in this bacterium, lactic acid was added to the MRS medium to prepare weakly acidic media having various initial pHs (pH 5.8, 5.3, 4.8, 4.3, 3.8). The LG21 strain cells in the logarithmic growth phase were suspended in each of these media, treated at 37 ° C. for 30 minutes (weak acid treatment), and then treated with a strongly acidic (pH 2.5) MRS medium for 2.5 hours to determine the number of surviving bacteria. . As a control, after suspending in a medium having an initial pH of 6.5 and treating for 30 minutes, the number of surviving bacteria when treated with a strongly acidic medium (pH 2.5) for 2.5 hours was also measured. In order to compare the effects at each pH, the number of surviving bacteria (CFU) in the case of weak acid treatment (treated section)
: Colony Forming Unit) divided by the number of surviving bacteria in the control (untreated section) for comparison. (Fig. 2) As a result, the weak treatment at pH 4.8 had the highest acid adaptation effect, and the survival increased by a factor of 100 or more compared to the untreated group.
Next, the time for the weak acid treatment was also examined. As a result of examination from 15 minutes to 3 hours in a medium of pH 4.8, the longer the weak acid treatment, the higher the survival in the strong acid treatment. However, the survival rate increased by several tens of times even in the 15-minute treatment compared to the untreated section, and therefore the weak acid treatment time was set to 30 minutes in the subsequent experiments. When the weak acid treatment was performed in the MRS medium at pH 4.8, the survival rate of the LG21 strain was 10 2 to 5 times higher than that of the untreated group. (Figure 3)

[実施例2] LG21株の遺伝子を載せたDNAアレイ作成と解析条件の検討
LG21株の酸適応の際にどのような遺伝子が関与しているかを解析するために、本株ゲノムに存在する遺伝子を載せたDNAアレイを作製した。乳酸菌のアレイ解析については検討開始時点で報告がなかったため、本株での条件について検討した。
A) DNAアレイの作製
LG21株ゲノムの大きさは約2.1 Mbと推定されるが、現在までにその約9割の塩基配列を決定した。その平均GC含量は約35%で, 200 bp以上のORF(遺伝子候補)が約2900個あった。これらを通常の解析プログラム(BLASTPとCOG)を用いて各々のORFの機能推定を行った。得られた機能推定結果をもとに、機能未知遺伝子を含む1597個のORFを選択してLG21株用のDNAマイクロアレイ(以下、アレイと呼ぶ)を作製した。
アレイに載せるDNAをPCRで増幅するため、プライマーの設計を設計ソフトprimer3で行った。各ORFの内側の500 bpから800 bpの配列をPCRで増幅して各ORFのDNA断片を得た。Human
TFR などの対照遺伝子DNAを加え、duplicateとして合計3456スポットから成る、いわゆるStanfordタイプのマイクロアレイを作製した。DNA断片のスライドグラスへのスポッティングは(株)宝酒造に依頼した。
B) 試料調製および解析条件の検討
アレイ解析は、次の1)から6)の手順に従って行った。すなわち、1) 菌体サンプルの採取、2) RNA調製、3) 逆転写酵素によるRNAからcDNAの調製と蛍光標識、4) 得られた蛍光標識cDNAとアレイ上のDNAスポットとのハイブリダイゼーション、5)
各スポット蛍光強度の測定、6) シグナル解析、である。
最初に全体的条件を検討した。実験条件を検討する基準として、同一RNAから逆転写されたcDNAを蛍光色素Cy5およびCy3(ともに、Amersham Pharmacia Biotech)で標識してglobal normalizationした後、LG21株由来の約1600遺伝子の蛍光強度の比、すなわち、Cy5/Cy3が最も1.0に近づく条件を最適とした。まず、ハイブリダイゼーションに用いるRNA量を検討した結果、100μgもしくはそれ以上が適当であることが判明した。また、primerとしてrandom
primerとspecific primerを比較した結果、前者ではribosomal RNAなどと反応するためかバックグランドが高く良好な画像が得られなかった。これに対してspecific
primerを用いた場合には低いバックグランドで良好な画像が得られた。従って、プライマーには約1600遺伝子各々固有の3'末端配列(22〜24mer)から成るspecific
primer(ミクスチャー)を用いた。
[Example 2] Preparation of DNA array carrying genes of LG21 strain and examination of analysis conditions
In order to analyze the genes involved in acid adaptation of the LG21 strain, a DNA array carrying the genes present in the genome of this strain was prepared. Since there was no report on the array analysis of lactic acid bacteria at the start of the study, the conditions of this strain were examined.
A) Preparation of DNA array
The size of the LG21 strain genome is estimated to be about 2.1 Mb, but about 90% of the base sequence has been determined so far. The average GC content was about 35%, and there were about 2900 ORFs (gene candidates) of 200 bp or more. The functions of each ORF were estimated using ordinary analysis programs (BLASTP and COG). Based on the obtained function estimation results, 1597 ORFs containing unknown function genes were selected to prepare a DNA microarray (hereinafter referred to as an array) for the LG21 strain.
Primers were designed with the design software primer3 in order to amplify the DNA to be placed on the array by PCR. A 500 bp to 800 bp sequence inside each ORF was amplified by PCR to obtain a DNA fragment of each ORF. Human
A control gene DNA such as TFR was added to prepare a so-called Stanford type microarray consisting of a total of 3456 spots as duplicates. Spotting of DNA fragments on slide glass was requested from Takara Shuzo.
B) Sample preparation and analysis conditions analysis Array analysis was performed according to the following procedures 1) to 6). 1) collection of bacterial cell samples, 2) preparation of RNA, 3) preparation of cDNA from RNA by reverse transcriptase and fluorescent labeling, 4) hybridization of the obtained fluorescently labeled cDNA with DNA spots on the array, 5 )
Measurement of each spot fluorescence intensity, 6) Signal analysis.
First, the overall conditions were examined. As a standard for studying the experimental conditions, the cDNA reverse-transcribed from the same RNA was labeled with fluorescent dyes Cy5 and Cy3 (both Amersham Pharmacia Biotech) and global normalization was performed, and then the ratio of the fluorescence intensity of about 1600 genes derived from the LG21 strain That is, the condition in which Cy5 / Cy3 is closest to 1.0 was determined as the optimum. First, as a result of examining the amount of RNA used for hybridization, it was found that 100 μg or more was appropriate. Also, random as a primer
As a result of comparing the primer with the specific primer, the former had a high background due to the reaction with ribosomal RNA and the like, and a good image could not be obtained. In contrast to this
When primer was used, good images were obtained with a low background. Therefore, the primer has a specific 3 'end sequence (22-24mer) specific for each of about 1600 genes.
Primer (mixture) was used.

以下、各工程の具体的な条件について検討した結果を示す。
<菌体のサンプリング>
細菌mRNAの半減期は短いためサンプリングは迅速に行なう事が重要である。瞬時にRNaseを失活させるため、菌体を含む培養液10
mlにstop solution(エタノールにDEPC水飽和フェノール5 %を加えたもの)1.25 mlを素早く添加・混合してmRNAの分解を止める。これを室温、10,000
rpmで1分間遠心して上清液を捨て、菌体を液体窒素を用いて凍結した。この処理は全体で数分以内にし、凍結菌体サンプルはマイナス80℃で保存した。
<RNA調製、cDNA化、蛍光標識とハイブリダイゼーション>
菌体サンプリング以降の実験操作は、一部の試薬メーカーの違いを除き基本的に以下の枯草菌アレイ実験方法に関する文献{Yoshida, K., et al.,Nucleic Acids Res., (2001), 29 (3), 683-692. Ogura, M.,
et al., Nucleic Acids Res., (2001), 29 (18), 3804-3813}に準じて行った。
なお、アレイスキャナーはAffymetrix428(Affymetrix社)を、シグナル解析ソフトはImaGene(BioDiscovery社)を使用した。
以上の方法を用いてLG21株の対数増殖期あるいは定常期細胞から調製した同一のRNAを各々Cy5、および、Cy3標識してアレイ解析した結果、Cy5/Cy3 のシグナル比は約1,600遺伝子のほとんどで約1.0であった。(図4)また、この結果は再現性があったため本株でのアレイ解析がこの方法で精度良く進められると結論した。
Hereinafter, the result of having examined about the concrete conditions of each process is shown.
<Bacteria sampling>
It is important to sample quickly because the half-life of bacterial mRNA is short. In order to inactivate RNase instantly, a culture solution containing bacterial cells 10
Stop the degradation of mRNA by quickly adding and mixing 1.25 ml of stop solution (ethanol plus 5% DEPC water-saturated phenol) in ml. This is room temperature, 10,000
After centrifugation at rpm for 1 minute, the supernatant was discarded, and the cells were frozen using liquid nitrogen. This treatment was performed within a few minutes in total, and the frozen cell samples were stored at minus 80 ° C.
<RNA preparation, cDNA conversion, fluorescent labeling and hybridization>
The experimental procedure after the cell sampling is basically the following literature on Bacillus subtilis array experiment methods except for some reagent manufacturers {Yoshida, K., et al., Nucleic Acids Res., (2001), 29 (3), 683-692. Ogura, M.,
et al., Nucleic Acids Res., (2001), 29 (18), 3804-3813}.
The array scanner used was Affymetrix428 (Affymetrix), and the signal analysis software used was ImaGene (BioDiscovery).
Using the above method, the same RNA prepared from logarithmic growth phase or stationary phase cells of the LG21 strain was labeled with Cy5 and Cy3, respectively. As a result, the signal ratio of Cy5 / Cy3 was almost 1,600 genes. It was about 1.0. (FIG. 4) Moreover, since this result was reproducible, it was concluded that the array analysis in this strain can be advanced with this method with high accuracy.

[実施例3] DNAアレイによるLG21株酸ストレス応答解析。
実施例2で確立した方法を用いて、LG21株の酸適応の際に起こる約1,600個の遺伝子の転写変化をアレイで解析した。
MRS培地で37℃15時間培養したLG21株の前培養液を、pH緩衝剤であるMOPS (3-morpholinopropanesulfonic acid, 和光純薬)を200 mM添加してpHを6.5に調整したMRS培地(MRS+MOPS pH6.5)800 mlに2%植菌して、さらに2時間静置培養した。培養液の濁度(OD660)が約0.4になった培養液を2分し、各々遠心(6000rpm,1分、室温)した。試験区では、沈殿(LG21株細胞)を乳酸でpH4.8に調整したMRS培地400
mlに懸濁して37℃で弱酸処理を行った。弱酸処理開始後3分,8分、30分後に10 mlずつ菌懸濁液を採取して実施例2に示した方法でRNAを調整し、得られたcDNAを蛍光色素Cy5で標識した。対照サンプルでは、上記と同様に遠心処理を行ったが、上清液を用いて沈殿を再懸濁し37℃で培養した。そして上記と同じ時間に10mlずつ菌懸濁液を採取してサンプルを調製し、得られたcDNAを蛍光色素Cy3で標識した。
[Example 3] Acid stress response analysis of LG21 strain by DNA array.
Using the method established in Example 2, the transcriptional changes of about 1,600 genes occurring during acid adaptation of the LG21 strain were analyzed in an array.
MRS medium (MRS +) adjusted to pH 6.5 by adding 200 mM of MOPS (3-morpholinopropanesulfonic acid, Wako Pure Chemicals), a pH buffer, to the LG21 strain precultured in MRS medium at 37 ° C for 15 hours MOPS pH6.5) 2% inoculated into 800 ml, and further statically cultured for 2 hours. The culture solution in which the turbidity (OD 660 ) of the culture solution became about 0.4 was divided into 2 minutes, and each was centrifuged (6000 rpm, 1 minute, room temperature). In the test group, MRS medium 400 in which the precipitate (LG21 cell) was adjusted to pH 4.8 with lactic acid.
Suspended in ml and treated with weak acid at 37 ° C. 10 ml each of the bacterial suspension was collected 3 minutes, 8 minutes and 30 minutes after the start of the weak acid treatment, RNA was prepared by the method shown in Example 2, and the obtained cDNA was labeled with the fluorescent dye Cy5. The control sample was centrifuged as described above, but the precipitate was resuspended using the supernatant and cultured at 37 ° C. Samples were prepared by collecting 10 ml of bacterial suspension at the same time as above, and the obtained cDNA was labeled with the fluorescent dye Cy3.

なお、酸適応が起こったことを確認するため、弱酸処理(または無処理)開始後30分の培養液を遠心(6000rpm, 1分、室温)し、沈澱した細胞をpH2.5のMRS培地に懸濁して生残率を測定した。その結果、処理区での生残性が対照よりほぼ実施例1と同程度に高かったので、本実験サンプルでも酸適応が起こったことが確認された。
上記の様にして得られた標識サンプルをアレイ解析して蛍光強度の比(すなわち、Cy5/Cy3比)を調べた結果、弱酸処理3分後には既に菌体内でダイナミックな転写変化が起こっていることが推測された。すなわち、約1600遺伝子のうち約60個の遺伝子では転写が3倍以上に促進されておりこれらの中に酸耐性に関わる重要な遺伝子が含まれていると推定された。一方、約40個の遺伝子では転写が3分の1以下に抑制されていた。(図5)
To confirm that acid adaptation occurred, the culture solution for 30 minutes after the start of mild acid treatment (or no treatment) was centrifuged (6000 rpm, 1 minute, room temperature), and the precipitated cells were placed in MRS medium at pH 2.5. The survival rate was measured after suspending. As a result, the survival in the treated area was almost as high as that of Example 1 compared to the control, so it was confirmed that acid adaptation occurred in this experimental sample.
As a result of analyzing the fluorescence intensity ratio (ie, Cy5 / Cy3 ratio) by array analysis of the labeled sample obtained as described above, a dynamic transcription change has already occurred in the microbial cells after 3 minutes of weak acid treatment. It was speculated. That is, it was estimated that about 60 genes out of about 1600 genes promoted transcription more than 3 times, and these included important genes related to acid resistance. On the other hand, about 40 genes had transcription suppressed to one third or less. (Fig. 5)

弱酸処理で転写量が増大する遺伝子が酸耐性発現に主に関与していると考えられるが、転写促進が認められた約60個の遺伝子の中には、アルギニン・オルニチン・アンタイポーター、オルニチン脱炭酸酵素、陽イオン輸送関連遺伝子、糖輸送関連遺伝子群など、酸耐性との関連が報告ないし推定されている遺伝子があった。
と同時に、転写量が増大した遺伝子には機能未知遺伝子もあった。その中で、短時間でも転写量の増加が顕著で30分後も高い転写が続いている未知遺伝子として、本発明者らは図5の太線部分に示す遺伝子#474を新たに発見した。遺伝子#474は、pH4.8の培地での弱酸処理後3分から30分にわたって対照の10倍以上の転写促進が認められた。しかも、酸適応がほとんど認められないpH
5.3の培地で弱酸処理した場合と比べても、遺伝子#474の転写はpH4.8の処理で3倍以上促進された。したがって、弱酸処理の初期から高い転写量を示す遺伝子#474が、LG21株の酸耐性に関わる重要な遺伝子の一つである可能性が考えられた。
It is thought that genes whose transcription amount increases with weak acid treatment are mainly involved in the expression of acid tolerance, but some of the 60 genes that have been shown to promote transcription include arginine, ornithine, antiporter, and ornithine desensitization. There were genes that have been reported or estimated to be associated with acid resistance, such as carbonic acid enzymes, cations transport-related genes, and sugar transport-related genes.
At the same time, there were genes whose functions were unknown among the genes whose transcription amount was increased. Among them, the present inventors newly discovered the gene # 474 shown in the bold line portion of FIG. 5 as an unknown gene whose transcription amount is remarkable even in a short time and high transcription continues after 30 minutes. Gene # 474 showed a transcriptional acceleration of 10 times or more that of the control over 3 to 30 minutes after the weak acid treatment in the pH 4.8 medium. Moreover, the pH at which acid adaptation is hardly observed
Compared to the case of weak acid treatment in the medium of 5.3, the transcription of gene # 474 was promoted 3 times or more by treatment with pH 4.8. Therefore, it was considered that gene # 474, which shows a high transcription amount from the beginning of the weak acid treatment, may be one of the important genes related to the acid resistance of the LG21 strain.

[実施例4] 酸耐性との関連が推定された遺伝子#474の相同性検索
実施例3に示す結果から、遺伝子#474を選択してその機能を検討した。
まず、このようにして得られた酸耐性遺伝子#474の塩基配列(配列番号1)とそれから演繹されるタンパク質のアミノ酸配列をデータベースで比較した結果、該タンパク質と相同なタンパク質がいくつか見い出された。BLASTPでの相同検索で高い相同性を示したのは、大腸菌K12株のputative
receptor protein (score=157, accession number AE000325-6)、枯草菌168株のYWKB
protein (score=76, accession number Z99122-189)、乳酸菌Lactobacillus plantarum WCFS1株のtransport protein (score=53, accession
number AL935262-14)などである。しかし、これらタンパク質の機能は明確になっておらず、酸耐性との関連性を示す証拠は全く認められない。したがって、本発明で見い出されたLG21株由来の遺伝子#474は機能が不明で、酸耐性など産業的有用性との関連が示唆されたことがないことが判明した。しかも、相同性がある先の遺伝子の中で機能が明確になっているものはなく、従って酸耐性との関連性を示す証拠は全くない状況であった。
また、大腸菌では本発明と同様にアレイを用いて酸耐性について解析した報告(Tucker, D.L, et al., J. Bacteriol., 2002, 184(23) 6551-6558.)があり、酸耐性に関連すると考えられる多くの遺伝子が示されているが、遺伝子#474と相同性のあるywkBやyfdVはその中には含まれていない。したがって、大腸菌ではywkBやyfdVなどは酸耐性に関与していない可能性がある。
以上のように、塩基配列およびアミノ酸配列による相同性検索結果から、ガセリ菌LG21株の遺伝子#474はこれまでのところ機能の推定ができず、酸耐性など産業的有用性との関連が示唆されたことがないことが明確となった。
[Example 4] Homology search of gene # 474 estimated to be associated with acid resistance From the results shown in Example 3, gene # 474 was selected and its function was examined.
First, as a result of comparing the amino acid sequence of the acid resistance gene # 474 thus obtained (SEQ ID NO: 1) and the amino acid sequence of the protein deduced therefrom with a database, several proteins homologous to the protein were found. . It was putative of E. coli K12 that showed high homology in BLASTP homology search.
receptor protein (score = 157, accession number AE000325-6), YWKB of Bacillus subtilis 168 strain
protein (score = 76, accession number Z99122-189), Lactobacillus plantarum WCFS1 strain transport protein (score = 53, accession
number AL935262-14). However, the function of these proteins is not clear and there is no evidence of an association with acid tolerance. Therefore, it has been found that the gene # 474 derived from the LG21 strain found in the present invention has an unknown function and has never been suggested to be associated with industrial utility such as acid resistance. Moreover, none of the homologous previous genes have a clear function, and thus there is no evidence of any association with acid resistance.
In addition, in E. coli, there was a report (Tucker, DL, et al., J. Bacteriol., 2002, 184 (23) 6551-6558.) That analyzed acid resistance using an array in the same manner as the present invention. Many genes that are thought to be related are shown, but ywkB and yfdV that are homologous to gene # 474 are not included. Therefore, in E. coli, ywkB and yfdV may not be involved in acid resistance.
As described above, the results of homology searches based on the nucleotide sequence and amino acid sequence indicate that the gene # 474 of Gasseri strain LG21 strain has not been estimated so far, and is related to industrial utility such as acid resistance. It became clear that it never happened.

[実施例5] 遺伝子#474ノックアウト株の作製
次に、遺伝子#474の機能を検討するために、本遺伝子を欠失した株(遺伝子#474ノックアウト株)を相同組換えによる二重交叉によって作製した。
まず、遺伝子#474の内部配列705 bpを欠失したDNA断片を、常法によりLG21株ゲノムDNAを鋳型にしてPCR反応で増幅した。この断片を温度感受性複製ベクターpSG+E2(Y.
Sasaki et al, , Appl. Environ. Microbiol.,2004,70(3),
1858-1864 参照)由来の組み込みベクターに挿入してプラスミドpTERM4745(図6)を構築した。すなわち、LG21株のゲノム上にある遺伝子#474(図6太線の直線矢印:1179塩基対)の中央部分を欠失させるために、遺伝子#474の上流配列を含む472bpDNA断片(#474_A)と、遺伝子#474の下流配列を含む370bpDNA断片(#474_C)をPCRで増幅した。これら二つの断片を同一方向に結合してから組み込んだのがpTERM4745である。本プラスミドでは、二つのDNA断片(すなわち、#474_Aと#474_C)がLG21株ゲノムと相同な配列であるが、遺伝子#474の内部配列705bp(図6のB欠失部位)が欠失している。
[Example 5] Preparation of gene # 474 knockout strain Next, in order to examine the function of gene # 474, a strain lacking this gene (gene # 474 knockout strain) was prepared by double crossover by homologous recombination. did.
First, a DNA fragment from which the internal sequence 705 bp of gene # 474 was deleted was amplified by a PCR reaction using LG21 strain genomic DNA as a template by a conventional method. This fragment was transformed into a temperature sensitive replication vector pSG + E2 (Y.
Sasaki et al,, Appl. Environ. Microbiol., 2004, 70 (3),
The plasmid pTERM4745 (FIG. 6) was constructed by inserting into the integration vector derived from 1858-1864. That is, in order to delete the central part of gene # 474 on the genome of the LG21 strain (FIG. 6, bold straight arrow: 1179 base pairs), a 472 bp DNA fragment (# 474_A) containing the upstream sequence of gene # 474, A 370 bp DNA fragment (# 474_C) containing the downstream sequence of gene # 474 was amplified by PCR. PTERM4745 was assembled after combining these two fragments in the same direction. In this plasmid, two DNA fragments (namely, # 474_A and # 474_C) are homologous to the LG21 strain genome, but the internal sequence of gene # 474, 705 bp (B deletion site in FIG. 6) is deleted. Yes.

このプラスミドを用いエレクトロポレーション法でガセリ菌LG21株を形質転換した。低温(32℃)で培養しエリスロマイシン(Em)耐性で選択した形質転換体を、Em存在下高温(42℃)で培養して、該プラスミドが染色体に組み込まれた株(組み込み株)を得た。
次に、この組み込み株をEm無添加培地を用い低温(32℃)で培養した後、単一コロニーを100個分離して調べた。その結果、Em耐性を失った感受性コロニーが25個得られたので、これら感受性コロニーをPCRにかけて各々のゲノム上の遺伝子#474の構造を推定した。まず25個中18個のコロニーでは、遺伝子#474を挟むプライマー(primer
1296L : AGCCTTCGTAGTCACCTTGAGC、および、primer ysk244: GCCCATCCTTACACTTCTTG)によるPCR反応で、約2.2kbのDNA断片が得られた。これらは二重交叉の際に元と同じ遺伝子構成に戻った株と考えられた。
しかしながら、残りの7株では、約1.5kbのDNA断片が得られた。すなわち、これらの7株では遺伝子#474の内部配列約0.7kbが欠失していることが推定された。さらに、欠失を予定した遺伝子#474内部配列705bpの中にはFbaIの制限サイトがあるが、上記7株で増幅された約1.5kbのDNA断片にはFbaIの制限サイトがない事が確認された。したがって、これら7個のコロニーでは遺伝子#474の内部配列約0.7kbが欠失していることが確認され、「遺伝子#474ノックアウト株」であると結論した。
This plasmid was used to transform the L. LG21 strain by electroporation. A transformant cultured at a low temperature (32 ° C.) and selected for resistance to erythromycin (Em) was cultured at a high temperature (42 ° C.) in the presence of Em to obtain a strain in which the plasmid was integrated into the chromosome (integrated strain). .
Next, this integrated strain was cultured at a low temperature (32 ° C.) using an Em-free medium, and then 100 single colonies were isolated and examined. As a result, 25 sensitive colonies that lost Em resistance were obtained, and these sensitive colonies were subjected to PCR to estimate the structure of gene # 474 on each genome. First, in 18 out of 25 colonies, the primer that sandwiches gene # 474 (primer
1296L: AGCCTTCGTAGTCACCTTGAGC and primer ysk244: GCCCATCCTTACACTTCTTG), a DNA fragment of about 2.2 kb was obtained. These were considered to have returned to the same genetic structure as the original upon double crossover.
However, in the remaining 7 strains, a DNA fragment of about 1.5 kb was obtained. That is, it was estimated that about 0.7 kb of the internal sequence of gene # 474 was deleted in these seven strains. Furthermore, it was confirmed that there is an FbaI restriction site in the internal sequence 705 bp of gene # 474, which is scheduled to be deleted, but the FbaI restriction site was not found in the approximately 1.5 kb DNA fragment amplified in the above seven strains. It was. Therefore, it was confirmed that about 0.7 kb of the internal sequence of gene # 474 was deleted in these seven colonies, and it was concluded that it was a “gene # 474 knockout strain”.

[実施例6] 遺伝子#474ノックアウト株の酸ストレスに対する耐性の検討
実施例5で得られた遺伝子#474ノックアウト株の1株(以下、Δ474株)の表現型をLG21株(野生株)と比較した。
まず、Δ474株とLG21株の生育を通常のMRS培地で培養して培養液の濁度を比較した。その結果、Δ474株は野生株のLG21とほぼ完全に同じ生育曲線を示し(結果は省略)、最終到達pHは両株とも約3.8であった。したがって、Δ474株はMRS培地での生育曲線と培養液の最終pHで判断する限り、LG21株と比べて明確に酸耐性が低下しているとは言えなかった。
そこで、酸耐性度を以下二つの方法でさらに詳細に比較した。
第1は、酸性培地中での「生残性」の比較、第2は、酸性培地中での「生育」の比較である。これらの結果から、Δ474株とLG21株には以下のような酸耐性に関わる形質の差が認められた。以下に具体的な結果を示す。
[Example 6] Examination of resistance to acid stress of gene # 474 knockout strain The phenotype of gene # 474 knockout strain obtained in Example 5 (hereinafter referred to as Δ474 strain) was compared with the LG21 strain (wild strain). did.
First, the growth of Δ474 strain and LG21 strain was cultured in a normal MRS medium, and the turbidity of the cultures was compared. As a result, the Δ474 strain showed almost the same growth curve as the wild-type LG21 (results omitted), and the final pH reached was about 3.8 for both strains. Therefore, as long as the Δ474 strain was judged by the growth curve in the MRS medium and the final pH of the culture solution, it could not be said that the acid tolerance was clearly reduced compared to the LG21 strain.
Therefore, the acid resistance was compared in more detail by the following two methods.
The first is a comparison of “survival” in an acidic medium, and the second is a comparison of “growth” in an acidic medium. From these results, the following differences in traits related to acid resistance were observed between the Δ474 strain and the LG21 strain. Specific results are shown below.

まず、実施例3と同様に、前培養液をMRS+MOPS pH6.5培地で2時間培養したLG21株とΔ474株細胞を直接(無処理区)、あるいは、MRS
pH4.8培地でさらに30分間培養して酸適応を起こした細胞(弱酸処理区)を、強酸性(pH2.5)MRS培地に懸濁して生残性を比較した。その結果、両株とも無処理区に比較して、弱酸処理によりpH2.5のMRS培地中での生残率が増大し、酸適応が起こっていることが確認できた。しかし、Δ474株のCFUはLG21株と比べて低く、酸適応条件下で30分の1、適応が起きていない条件で8分の1だった。(図7)
このように、酸性培地での生残性を比べるとΔ474株の生残率がLG21株より低下していたので、遺伝子#474が酸耐性に関わる遺伝子であることが判明した。
次に、pHを酸性に調整したMRS培地で両株の生育を比較した。
LG21株はpH 4.0以下のMRS培地ではほとんど生育しないため、塩酸でpHを4.25, 4.5, 4.75, 5.00に調整しフィルターで無菌濾過した培地で生育を比較した。なお、培地はMRSを無菌水で2分の1に希釈した液体培地(以下、1/2
MRS培地と呼ぶ)を用いたが、さらに対照としてpHを特に調整しない1/2MRS培地も用いた。
まず、pH無調整の1/2 MRS培地で37℃15時間培養したLG21株とΔ474株を、上記のように各pHに調製した培地に2%植菌して生育を調べた。生育は培養液の濁度(OD660)で比較したが、この実験では両菌株で明確な差は認められなかった。
そこで、前培養後のpHが中性付近となるように前培養培地を変更した。すなわち、200 mM MOPSを添加してpHを7.5に調整し、フィルターで濾過滅菌した1/2MRS培地を前培養に用いて上記と同様の検討を加えた結果、pH
4.25および4.5の培地でΔ474株の生育がLG21株より遅いことが判明した。(図8)
pH無調整、および、pH 5.0の培地では両株の生育には差が認められなかったので、pH 4.25〜4.5での生育の差は、培地のpHによるものと結論された。
以上から、Δ474株はLG21株と比べて、低pHでの生残性と生育能が劣っていることが明確になった。したがって、遺伝子#474が本菌の酸耐性に関与していると結論した。
First, in the same manner as in Example 3, LG21 strain and Δ474 strain cells cultured for 2 hours in MRS + MOPS pH6.5 medium were directly (untreated) or MRS
Cells that had been acid-adapted by culturing in pH 4.8 medium for another 30 minutes (weak acid treatment group) were suspended in strongly acidic (pH 2.5) MRS medium and compared for survival. As a result, in both strains, the survival rate in the MRS medium at pH 2.5 was increased by the weak acid treatment compared to the untreated group, and it was confirmed that acid adaptation occurred. However, the CFU of the Δ474 strain was lower than that of the LG21 strain, which was 1/30 under acid adaptation conditions and 1/8 under conditions where adaptation did not occur. (Fig. 7)
Thus, when the survival rate in the acidic medium was compared, the survival rate of the Δ474 strain was lower than that of the LG21 strain, so it was found that gene # 474 is a gene involved in acid resistance.
Next, the growth of both strains was compared in an MRS medium adjusted to acidic pH.
Since the LG21 strain hardly grows in MRS medium having a pH of 4.0 or less, the growth was compared in a medium that was adjusted to pH 4.25, 4.5, 4.75, 5.00 with hydrochloric acid and filtered aseptically with a filter. Note that the medium is a liquid medium obtained by diluting MRS with sterile water in half (hereinafter 1/2).
(Referred to as MRS medium), but a 1/2 MRS medium with no special pH adjustment was also used as a control.
First, LG21 strain and Δ474 strain cultured at 37 ° C. for 15 hours in 1/2 MRS medium without pH adjustment were inoculated to the medium prepared at each pH as described above to examine the growth. Growth was compared by the turbidity of the culture (OD 660 ), but no clear difference was observed between the two strains in this experiment.
Therefore, the pre-culture medium was changed so that the pH after pre-culture was around neutral. That is, 200 mM MOPS was added to adjust the pH to 7.5, and as a result of adding the same examination as described above using 1/2 MRS medium sterilized by filtration with a filter, the pH was adjusted.
It was found that the growth of the Δ474 strain was slower than that of the LG21 strain in the media of 4.25 and 4.5. (Fig. 8)
Since no difference was observed in the growth of both strains in the medium without pH adjustment and pH 5.0, it was concluded that the difference in growth between pH 4.25 and 4.5 was due to the pH of the medium.
From the above, it became clear that the Δ474 strain was inferior in survival and viability at low pH compared to the LG21 strain. Therefore, it was concluded that gene # 474 is involved in acid resistance of this bacterium.

しかし、この差が明確に再現されるのは上述のように、前培養を中性付近で行った場合であり、通常の培地で一晩培養し培地のpHが4付近になる条件では差が明確ではなかった。これは、ノックアウト株(Δ474株)にも存在している他の複数の酸耐性機構が酸性条件で作動し、遺伝子#474の欠損を相補したため差が検出しにくかったと解釈される。実際にアレイ解析で検討した結果、Δ474株では弱酸処理によって酸耐性に関わると推定される複数の遺伝子が、LG21株と比べると数倍多く転写されることが判明した。(データ省略)つまり、中性付近の培地で培養し酸耐性機構全般が十分に作動していない条件でこそ、たった一つの耐性機構(この場合には遺伝子#474による酸耐性機構)の効果が検出できたと推定される。   However, this difference is clearly reproduced when the pre-culture is carried out in the vicinity of neutrality as described above, and the difference is observed under the condition that the medium is cultured overnight in a normal medium and the pH of the medium is around 4. It was not clear. This is interpreted that it was difficult to detect the difference because a plurality of other acid resistance mechanisms present in the knockout strain (Δ474 strain) operated under acidic conditions and complemented the deletion of gene # 474. As a result of actual analysis by array analysis, it was found that a plurality of genes estimated to be involved in acid tolerance by weak acid treatment were transcribed several times more in the Δ474 strain than in the LG21 strain. (Data not shown) In other words, the effect of only one resistance mechanism (in this case, the acid resistance mechanism by gene # 474) can be achieved under conditions where the acid resistance mechanism is not fully functioning when cultured in a neutral medium. It is estimated that it was detected.

本発明の新規遺伝子は、微生物の酸耐性に深く寄与しており、微生物を用いた食品製造、プロバイオティックス等において重要な性質となっている酸耐性に優れた微生物の創出、スクリーニングを可能とすることができる。また、本遺伝子の発現に関わる酸ストレス誘導プロモーターは10倍以上の遺伝子発現を誘導することができ、有用な遺伝子に連結することで簡便な酸刺激によって目的とする有用遺伝子の発現を増大させることができる。   The novel gene of the present invention contributes deeply to the acid resistance of microorganisms, and enables creation and screening of microorganisms with excellent acid resistance, which are important properties in food production using microorganisms, probiotics, etc. be able to. Moreover, the acid stress-inducible promoter involved in the expression of this gene can induce 10-fold or more gene expression, and can increase the expression of the target useful gene by simple acid stimulation by linking to the useful gene. Can do.

LG21株の対数増殖期と定常期における酸耐性能の比較。Comparison of acid resistance performance in the logarithmic growth phase and stationary phase of LG21 strain. 各pHで弱酸処理した場合のLG21株の生残率の比較。Comparison of the survival rate of LG21 strain when treated with weak acid at each pH. 酸適応の有無による強酸処理後の生残率の比較。Comparison of survival rate after strong acid treatment with and without acid adaptation. 同一サンプルをCy5,Cy3標識した場合のシグナル分布(測定の信頼性を示す)。Signal distribution when Cy5 and Cy3 are labeled on the same sample (shows measurement reliability). LG21株の酸適応時に転写促進あるいは抑制が認められた遺伝子転写量の変化。Changes in the amount of gene transcription that was observed to promote or repress transcription during acid adaptation of the LG21 strain. 温度感受性組込みプラスミド pTERM4745。(遺伝子#474ノックアウト用)Temperature sensitive integration plasmid pTERM4745. (For gene # 474 knockout) 酸適応の有無によるLG21株と△474株酸耐性の比較。Comparison of LG21 strain and Δ474 acid resistance with and without acid adaptation. Δ474株とLG21株の低pHでの生育の比較。Comparison of growth at low pH between Δ474 and LG21 strains.

Claims (7)

配列番号1に記載の塩基配列を有する遺伝子。   A gene having the base sequence set forth in SEQ ID NO: 1. 請求項1に記載の遺伝子を導入して作成され、酸耐性が向上した微生物の形質転換体。   A transformant of a microorganism produced by introducing the gene according to claim 1 and having improved acid resistance. 請求項1に示される遺伝子が失活した微生物株。   A microorganism strain in which the gene shown in claim 1 is inactivated. 微生物が乳酸菌である請求項2ないし請求項3に記載の微生物株。   The microorganism strain according to any one of claims 2 to 3, wherein the microorganism is a lactic acid bacterium. 請求項1に示される塩基配列を用いた酸耐性度の高い微生物のスクリーニング方法。 A method for screening a microorganism having a high acid resistance using the base sequence shown in claim 1. 請求項1に記載の遺伝子の転写を制御し、該遺伝子上流の配列番号2に記載される600塩基対内に存在する酸ストレス誘導プロモーター領域。   An acid stress-inducible promoter region that controls transcription of the gene according to claim 1 and is present within 600 base pairs of SEQ ID NO: 2 upstream of the gene. 請求項6に記載の酸ストレス誘導プロモーター領域を含む、遺伝子誘導発現系。

A gene-inducible expression system comprising the acid stress-inducible promoter region according to claim 6.

JP2004092939A 2004-03-26 2004-03-26 Gene related to acid resistance of lactic acid bacterium and acid induction promoter Pending JP2005278405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092939A JP2005278405A (en) 2004-03-26 2004-03-26 Gene related to acid resistance of lactic acid bacterium and acid induction promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092939A JP2005278405A (en) 2004-03-26 2004-03-26 Gene related to acid resistance of lactic acid bacterium and acid induction promoter

Publications (1)

Publication Number Publication Date
JP2005278405A true JP2005278405A (en) 2005-10-13

Family

ID=35177467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092939A Pending JP2005278405A (en) 2004-03-26 2004-03-26 Gene related to acid resistance of lactic acid bacterium and acid induction promoter

Country Status (1)

Country Link
JP (1) JP2005278405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547432A (en) * 2019-09-03 2022-11-14 寧夏伊品生物科技股▲ふん▼有限公司 Use of transporter gene in Escherichia coli to improve L-tryptophan production efficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547432A (en) * 2019-09-03 2022-11-14 寧夏伊品生物科技股▲ふん▼有限公司 Use of transporter gene in Escherichia coli to improve L-tryptophan production efficiency
JP7475434B2 (en) 2019-09-03 2024-04-26 寧夏伊品生物科技股▲ふん▼有限公司 Use of transporter genes in Escherichia coli to improve L-tryptophan production efficiency

Similar Documents

Publication Publication Date Title
Aymerich et al. Safety properties and molecular strain typing of lactic acid bacteria from slightly fermented sausages
Azcarate-Peril et al. Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance
Landete et al. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway
JP2008537885A (en) Methods and compositions for modifying bacterial adhesion and stress tolerance
Li et al. Myxococcus xanthus viability depends on groEL supplied by either of two genes, but the paralogs have different functions during heat shock, predation, and development
CN109097317B (en) Lactobacillus engineering bacterium with improved acid stress resistance and application thereof
US8741622B2 (en) Stress tolerant Bifidobacteria
Weaver et al. Examination of Enterococcus faecalis toxin-antitoxin system toxin Fst function utilizing a pheromone-inducible expression vector with tight repression and broad dynamic range
Mohedano et al. Construction and validation of a mCherry protein vector for promoter analysis in Lactobacillus acidophilus
Stephenson et al. Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract
MacKinnon et al. Identification and characterization of IS1476, an insertion sequence-like element that disrupts VanY function in a vancomycin-resistant Enterococcus faecium strain
Man et al. LuxS-mediated quorum sensing system in Lactobacillus plantarum NMD-17 from koumiss: induction of plantaricin MX in co-cultivation with certain lactic acid bacteria
CN109536427B (en) Lactobacillus engineering bacterium with improved acid stress resistance
CN106414776B9 (en) Growth independent detection of cells
Hsiao et al. Transcriptional analysis and functional characterization of XCC1294 gene encoding a GGDEF domain protein in Xanthomonas campestris pv. campestris
CN109486735B (en) Lactobacillus engineering bacterium with improved acid stress resistance and application thereof
CN109182237B (en) Lactobacillus engineering bacterium with improved acid stress resistance and application thereof
JP4676789B2 (en) Genes related to acid resistance of lactic acid bacteria
CN113583931B (en) Citrobacter williamsii ansB gene knockout mutant strain and application thereof
Nicoloff et al. Repression of the pyr operon in Lactobacillus plantarum prevents its ability to grow at low carbon dioxide levels
JP2006262818A (en) Gene derived from lactobacillus and concerned with acid resistance
JP2005278405A (en) Gene related to acid resistance of lactic acid bacterium and acid induction promoter
Jiang et al. Characterization of quinolone resistance mechanisms in lactic acid bacteria isolated from yogurts in China
CN104745683A (en) Group of specific primers and probe for real-time fluorescence quantitative PCR detection of lactobacillus casei as well as detection kit
JP4111369B2 (en) Protein having DNA repair promoting activity