JP2005276975A - Manufacturing method of photoconductive layer constituting radiation imaging panel - Google Patents

Manufacturing method of photoconductive layer constituting radiation imaging panel Download PDF

Info

Publication number
JP2005276975A
JP2005276975A JP2004086143A JP2004086143A JP2005276975A JP 2005276975 A JP2005276975 A JP 2005276975A JP 2004086143 A JP2004086143 A JP 2004086143A JP 2004086143 A JP2004086143 A JP 2004086143A JP 2005276975 A JP2005276975 A JP 2005276975A
Authority
JP
Japan
Prior art keywords
photoconductive layer
radiation
charge
imaging panel
radiation imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004086143A
Other languages
Japanese (ja)
Inventor
Ryozo Kakiuchi
良蔵 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004086143A priority Critical patent/JP2005276975A/en
Publication of JP2005276975A publication Critical patent/JP2005276975A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a photoconductive layer consisting of bismuth oxide system compound oxide with low electrical noise, and having high collecting effect of electric charges generated. <P>SOLUTION: Bi<SB>12</SB>MO<SB>20</SB>precursor liquid (where, M is at least one sort of Ge, Si, and Ti.) is obtained by reacting bismuth salt and metal alkoxide under acid conditions. The obtained Bi<SB>12</SB>MO<SB>20</SB>precursor liquid is applied to a support body. The Bi<SB>12</SB>MO<SB>20</SB>precursor liquid applied to the support body is calcinated, so that the photoconduction layer consisting of Bi<SB>12</SB>MO<SB>20</SB>sintering film is manufactured. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、X線などの放射線撮像装置に適用して好適な放射線撮像パネルに関し、詳しくは、放射線撮像パネルを構成する光導電層の製造方法に関するものである。   The present invention relates to a radiation imaging panel suitable for application to a radiation imaging apparatus such as an X-ray, and more particularly to a method for producing a photoconductive layer constituting the radiation imaging panel.

従来より、医療用X線撮影において、被験者の受ける被爆線量の減少、診断性能の向上等のために、X線に感応する光導電層を感光体として用い、この光導電層にX線により形成された静電潜像を、光或いは多数の電極で読み取って記録するX線撮像パネルが知られている。これらは、周知の撮影法であるTV撮像管による間接撮影法と比較して高解像度であること点で優れている。   Conventionally, in medical X-ray photography, a photoconductive layer sensitive to X-rays has been used as a photoconductor to reduce the exposure dose received by subjects and improve diagnostic performance. An X-ray imaging panel that reads and records a recorded electrostatic latent image with light or multiple electrodes is known. These are superior in that the resolution is higher than the indirect photographing method using a TV image pickup tube which is a well-known photographing method.

上述したX線撮像パネルは、この撮像パネル内に設けられた電荷生成層にX線を照射することによって、X線エネルギーに相当する電荷を生成し、生成した電荷を電気信号として読み出すようにしたものであって、上記光導電層は電荷生成層として機能する。従来より、この光導電層としてはアモルファスセレンが使用されているが、アモルファスセレンは一般にX線吸収率が低いために光導電層の厚みを厚く(例えば500μm以上)形成する必要がある。   The X-ray imaging panel described above generates charges corresponding to X-ray energy by irradiating the charge generation layer provided in the imaging panel with X-rays, and reads the generated charges as an electrical signal. The photoconductive layer functions as a charge generation layer. Conventionally, amorphous selenium has been used as the photoconductive layer. However, since amorphous selenium generally has a low X-ray absorption rate, the photoconductive layer must be formed thick (for example, 500 μm or more).

しかし、膜厚を厚くすると読取速度が低下するとともに、潜像形成後少なくとも読出しを開始してから終了するまでの間、光導電層に高圧を印加するため、暗電流が増加し、暗電流による電荷が潜像電荷に加算され、低線量域でのコントラストを低下させるという問題がある。また、高圧を印可するためにデバイスを劣化させやすく、耐久性が低下したり、電気ノイズを発生しやすくなる。さらに、光導電層は通常蒸着法によって形成されるため、上述したような厚みとなるまで光導電層を成長させるには相当な時間がかかり、またその管理も大変である。このことは結局のところ製造コストの上昇となり、X線撮像パネルのコストアップを招来することになる。   However, when the film thickness is increased, the reading speed decreases, and since a high voltage is applied to the photoconductive layer at least after the start of reading after the latent image is formed, the dark current increases, and the dark current is increased. There is a problem in that the charge is added to the latent image charge and the contrast in the low-dose region is lowered. Further, since a high voltage is applied, the device is likely to be deteriorated, durability is lowered, and electric noise is likely to be generated. Furthermore, since the photoconductive layer is usually formed by vapor deposition, it takes a considerable amount of time to grow the photoconductive layer until the thickness becomes as described above, and its management is difficult. This eventually increases the manufacturing cost, leading to an increase in the cost of the X-ray imaging panel.

このような問題からセレン以外の光導電層の材料が検討されている。例えば、特許文献1および2には、光導電層を構成する物質として、組成式BiMO(ただし、MはGe,Si,Ti中の少なくとも1種であり、xは10≦x≦14の条件を満たす数であり、yは上記Mおよびxにより化学量論的な酸素原子数を表す。)で表される酸化ビスマス系複合酸化物が記載されている。この酸化ビスマス系複合酸化物によればX線の電荷変換効率を改善することが期待できる。
特開平11−237478号 特開2000−249769号
Because of these problems, materials for photoconductive layers other than selenium have been studied. For example, in Patent Documents 1 and 2, as a substance constituting the photoconductive layer, a composition formula Bi x MO y (where M is at least one of Ge, Si, and Ti, and x is 10 ≦ x ≦ 14). Wherein y represents the stoichiometric number of oxygen atoms by M and x.). According to this bismuth oxide composite oxide, it can be expected to improve the X-ray charge conversion efficiency.
JP-A-11-237478 JP 2000-249769

ところで、上記特許文献1および2には、この光導電層の形成方法としてビスマスおよび金属のアルコキシドを加水分解して得られたゾル若しくはゲルを焼結処理し、これを分散、塗布することによって形成することが記載されている。   By the way, in Patent Documents 1 and 2, as a method for forming this photoconductive layer, a sol or gel obtained by hydrolyzing bismuth and a metal alkoxide is sintered, dispersed and applied. It is described to do.

しかし、一般に塗布によって形成することができる光導電層の光導電物質の充填率には限界がある。また、光導電物質粒間にバインダーが介在するため発生電荷が流れにくくなり、電極に到達する電荷の捕集効率が低く、電気ノイズが大きくなるため、画像の粒状性が悪くなるという問題がある。また、特許文献1および2に記載されている光導電層は充填率が低いためにX線吸収率が悪く、このために膜厚を厚くすることで対応しようとしているが、上述したように膜厚を厚くすると暗電流が増加し、暗電流による電荷が潜像電荷に加算され、低線量域でのコントラストを低下させるという問題が解決できない。   However, the filling rate of the photoconductive material of the photoconductive layer that can be generally formed by coating is limited. In addition, since the binder is interposed between the photoconductive substance particles, the generated charge is difficult to flow, the efficiency of collecting the charge reaching the electrode is low, and the electric noise is increased, so that the graininess of the image is deteriorated. . In addition, the photoconductive layers described in Patent Documents 1 and 2 have low X-ray absorptivity because of a low filling rate. For this reason, attempts are being made to increase the film thickness. If the thickness is increased, the dark current increases and the charge due to the dark current is added to the latent image charge, and the problem of reducing the contrast in the low dose region cannot be solved.

本発明はこのような事情に鑑みなされたものであって、酸化ビスマス系複合酸化物からなる光導電層の新規な製造方法を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a novel method for producing a photoconductive layer made of a bismuth oxide-based composite oxide.

本発明の放射線撮像パネルを構成する光導電層の製造方法は、ビスマス塩と金属アルコキシドを酸性条件下で反応させてBi12MO20前駆体液(ただし、MはGe,Si,Ti中の少なくとも1種である。以下、この記載は省略する。)を得、該Bi12MO20前駆体液を支持体に塗布し、該支持体に塗布した前記Bi12MO20前駆体液を焼成してBi12MO20焼結膜からなる前記光導電層を製造することを特徴とするものである。 In the method for producing a photoconductive layer constituting the radiation imaging panel of the present invention, a Bi 12 MO 20 precursor solution (where M is at least one of Ge, Si and Ti) is prepared by reacting a bismuth salt and a metal alkoxide under acidic conditions. is a species. hereinafter, the description is omitted.) which the Bi 12 MO 20 precursor solution was applied to a substrate, and sintering the Bi 12 MO 20 precursor solution coated on the support Bi 12 MO The photoconductive layer comprising a 20 sintered film is produced.

前記ビスマス塩は硝酸ビスマスまたは酢酸ビスマスであることが好ましい。また、前記加水分解後に濃縮または還流を行って前記Bi12MO20前駆体液を得ることがより好ましい。 The bismuth salt is preferably bismuth nitrate or bismuth acetate. More preferably, the Bi 12 MO 20 precursor liquid is obtained by concentrating or refluxing after the hydrolysis.

本発明の放射線撮像パネルを構成する光導電層の製造方法は、ビスマス塩と金属アルコキシドを酸性条件下で反応させてBi12MO20前駆体液を得、このBi12MO20前駆体液を支持体に塗布し、この支持体に塗布したBi12MO20前駆体液を焼成してBi12MO20焼結膜からなる光導電層を製造するので、塗布によって形成する場合に較べて光導電層のBi12MO20の充填率を高くすることが可能となる。また、光導電物質粒間にバインダーが介在していないため発生電荷が流れやすくなり、電極に到達する電荷の捕集効率が高まり、電気ノイズが小さくなるため、画像の粒状性が改善することが可能となる。 In the method for producing a photoconductive layer constituting the radiation imaging panel of the present invention, a Bi 12 MO 20 precursor liquid is obtained by reacting a bismuth salt and a metal alkoxide under acidic conditions, and this Bi 12 MO 20 precursor liquid is used as a support. Since the Bi 12 MO 20 precursor liquid applied to this support is fired to produce a photoconductive layer made of a Bi 12 MO 20 sintered film, the Bi 12 MO of the photoconductive layer is formed as compared with the case where it is formed by coating. A filling factor of 20 can be increased. In addition, since no binder is present between the photoconductive material grains, the generated charges can easily flow, the efficiency of collecting the charges reaching the electrodes is increased, and the electrical noise is reduced, so that the graininess of the image can be improved. It becomes possible.

本発明の放射線撮像パネルを構成する光導電層の製造方法は、ビスマス塩と金属アルコキシドを酸性条件下で反応させてBi12MO20前駆体液を得、得られたこのBi12MO20前駆体液を支持体に塗布し、支持体に塗布したBi12MO20前駆体液を焼成してBi12MO20焼結膜からなる光導電層を製造することを特徴とする。 In the method for producing a photoconductive layer constituting the radiation imaging panel of the present invention, a Bi 12 MO 20 precursor liquid is obtained by reacting a bismuth salt and a metal alkoxide under acidic conditions, and the obtained Bi 12 MO 20 precursor liquid is used. It was applied to a support, characterized in that to produce a photoconductive layer formed of Bi 12 MO 20 sintered film by firing Bi 12 MO 20 precursor solution was coated on a support.

ビスマス塩は硝酸ビスマスまたは酢酸ビスマスであることが好ましく、金属アルコキシドはGe,Si,Tiのアルコキシド、より具体的には、Ge(O−CH34,Ge(O−C254,Ge(O−iC374,Si(O−CH34,Si(O−C254,Si(O−iC374,Ti(O−CH34,Ti(O−C254 ,Ti(O−iC374 などを好ましくあげることができる。 The bismuth salt is preferably bismuth nitrate or bismuth acetate, and the metal alkoxide is an alkoxide of Ge, Si, Ti, more specifically, Ge (O—CH 3 ) 4 , Ge (O—C 2 H 5 ) 4. , Ge (O—iC 3 H 7 ) 4 , Si (O—CH 3 ) 4 , Si (O—C 2 H 5 ) 4 , Si (O—iC 3 H 7 ) 4 , Ti (O—CH 3 ) 4 , Ti (O—C 2 H 5 ) 4 , Ti (O—iC 3 H 7 ) 4 and the like can be preferably exemplified.

ビスマス塩と金属アルコキシドを酸性条件下で反応させる方法としては、適宜公知の方法により行うことができ、例えば、ビスマス塩と金属アルコキシドを酢酸、メトキシエタノールと硝酸の混合水溶液、エトキシエタノールと硝酸の混合水溶液などとともに加水分解することが好ましい。   As a method of reacting a bismuth salt and a metal alkoxide under acidic conditions, it can be carried out by a known method as appropriate. It is preferable to hydrolyze with an aqueous solution or the like.

加水分解後、Bi12MO20前駆体液が得られるが、これを支持体に塗布する前に、濃縮または還流を行うことがより好ましい。濃縮または還流を行うことなく本焼成を行うと、本焼成を行う温度条件にもよるが、Bi12MO20相の他にBi2MO5やBi4312等の別の相が生成する場合があるからである。 After hydrolysis, a Bi 12 MO 20 precursor solution is obtained, but it is more preferable to perform concentration or reflux before applying it to the support. When the main calcination is performed without concentration or reflux, depending on the temperature condition of the main calcination, another phase such as Bi 2 MO 5 or Bi 4 M 3 O 12 is generated in addition to the Bi 12 MO 20 phase. Because there is a case to do.

得られたBi12MO20前駆体液を支持体に塗布し、この支持体に塗布したBi12MO20前駆体液を焼成してBi12MO20焼結膜からなる光導電層を得ることができる。 The obtained Bi 12 MO 20 precursor liquid is applied to a support, and the Bi 12 MO 20 precursor liquid applied to the support is baked to obtain a photoconductive layer composed of a Bi 12 MO 20 sintered film.

放射線撮像パネルには、放射線を直接電荷に変換し電荷を蓄積する直接変換方式と、放射線を一度CsIなどのシンチレータで光に変換し、その光をa−Siフォトダイオードで電荷に変換し蓄積する間接変換方式があるが、本発明の製造方法によって製造される光導電層は前者の直接変換方式に用いることができる。なお、放射線としてはX線の他、γ線、α線などについて使用することが可能である。   In the radiation imaging panel, a direct conversion method in which radiation is directly converted into charges and stored, and radiation is converted into light once by a scintillator such as CsI, and the light is converted into charges by an a-Si photodiode and stored. Although there is an indirect conversion method, the photoconductive layer manufactured by the manufacturing method of the present invention can be used for the former direct conversion method. In addition to X-rays, γ rays, α rays, etc. can be used as radiation.

また、本発明の製造方法によって製造される光導電層は、光の照射により電荷を発生する半導体材料を利用した放射線画像検出器により読み取る、いわゆる光読取方式にも、放射線の照射により発生した電荷を蓄積し、その蓄積した電荷を薄膜トランジスタ(thin film transistor:TFT)などの電気的スイッチを1画素ずつON・OFFすることにより読み取る方式(以下、TFT方式という)にも用いることができる。   In addition, the photoconductive layer manufactured by the manufacturing method of the present invention can be read by a radiation image detector using a semiconductor material that generates a charge when irradiated with light. Can be used for a method (hereinafter referred to as TFT method) in which the accumulated charge is read by turning on and off an electrical switch such as a thin film transistor (TFT) one pixel at a time.

まず、前者の光読取方式に用いられる放射線撮像パネルを例にとって説明する。図1は本発明の製造方法により製造される光導電層を有する放射線撮像パネルの一実施の形態を示す断面図を示すものである。   First, a radiation imaging panel used for the former optical reading method will be described as an example. FIG. 1 is a sectional view showing an embodiment of a radiation imaging panel having a photoconductive layer manufactured by the manufacturing method of the present invention.

この放射線撮像パネル10は、後述する記録用の放射線L1に対して透過性を有する第1の導電層1、この導電層1を透過した放射線L1の照射を受けることにより導電性を呈する記録用放射線導電層2、導電層1に帯電される電荷(潜像極性電荷;例えば負電荷)に対しては略絶縁体として作用し、かつ、電荷と逆極性の電荷(輸送極性電荷;上述の例においては正電荷)に対しては略導電体として作用する電荷輸送層3、後述する読取用の読取光L2の照射を受けることにより導電性を呈する読取用光導電層4、読取光L2に対して透過性を有する第2の導電層5を、この順に積層してなるものである。   The radiation imaging panel 10 includes a first conductive layer 1 that is transparent to a recording radiation L1, which will be described later, and a recording radiation that exhibits conductivity when irradiated with the radiation L1 transmitted through the conductive layer 1. The conductive layer 2 and the charge charged on the conductive layer 1 (latent image polar charge; for example, negative charge) act as an insulator and have a charge opposite to the charge (transport polar charge; in the above example) Is positively charged) with respect to the charge transport layer 3 that acts as a substantially conductive material, the reading photoconductive layer 4 that exhibits conductivity when irradiated with the reading light L2 for reading described later, and the reading light L2. The second conductive layer 5 having transparency is laminated in this order.

ここで、導電層1および5としては、例えば、透明ガラス板上に導電性物質を一様に塗布したもの(ネサ皮膜等)が適当である。電荷輸送層3としては、導電層1に帯電される負電荷の移動度と、その逆極性となる正電荷の移動度の差が大きい程良く、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶等の有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PVK)分散物,Clを10〜200ppmドープしたa−Se等の半導体物質が適当である。特に、有機系化合物(PVK,TPD、ディスコティック液晶等)は光不感性を有するため好ましく、また、誘電率が一般に小さいため電荷輸送層3と読取用光導電層4の容量が小さくなり読み取り時の信号取り出し効率を大きくすることができる。   Here, as the conductive layers 1 and 5, for example, a transparent glass plate in which a conductive substance is uniformly applied (nesa film or the like) is suitable. As the charge transport layer 3, the larger the difference between the mobility of the negative charge charged in the conductive layer 1 and the mobility of the positive charge having the opposite polarity, the better, poly N-vinylcarbazole (PVK), N, N Organic compounds such as' -diphenyl-N, N'-bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD) and discotic liquid crystals, or TPD polymers ( Polycarbonate, polystyrene, PVK) dispersion, semiconductor materials such as a-Se doped with 10 to 200 ppm of Cl are suitable. In particular, organic compounds (PVK, TPD, discotic liquid crystal, etc.) are preferable because they have light insensitivity, and since the dielectric constant is generally small, the capacitance of the charge transport layer 3 and the photoconductive layer 4 for reading is reduced, and thus reading is performed. The signal extraction efficiency can be increased.

読取用光導電層4には、a−Se,Se−Te,Se−As−Te,無金属フタロシアニン,金属フタロシアニン,MgPc( Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine),CuPc(Cupper phtalocyanine)等のうち少なくとも1つを主成分とする光導電性物質が好適である。   The reading photoconductive layer 4 includes a-Se, Se-Te, Se-As-Te, metal-free phthalocyanine, metal phthalocyanine, MgPc (Magnesium phtalocyanine), VoPc (phase II of Vanadyl phthalocyanine), CuPc (Cupper phtalocyanine), and the like. Among them, a photoconductive material mainly containing at least one of them is preferable.

記録用放射線導電層2には、本発明の製造方法によって製造されるBi12MO20焼結膜からなる光導電層を使用する。すなわち、本発明の製造方法によって製造される光導電層は、記録用放射線導電層である。 For the recording radiation conductive layer 2, a photoconductive layer made of a Bi 12 MO 20 sintered film manufactured by the manufacturing method of the present invention is used. That is, the photoconductive layer produced by the production method of the present invention is a recording radiation conductive layer.

続いて、静電潜像を読み取るために光を用いる方式について簡単に説明する。図2は放射線撮像パネル10を用いた記録読取システム(静電潜像記録装置と静電潜像読取装置を一体にしたもの)の概略構成図を示すものである。この記録読取システムは、放射線撮像パネル10、記録用照射手段90、電源50、電流検出手段70、読取用露光手段92並びに接続手段S1、S2とからなり、静電潜像記録装置部分は放射線撮像パネル10、電源50、記録用照射手段90、接続手段S1とからなり、静電潜像読取装置部分は放射線撮像パネル10、電流検出手段70、接続手段S2とからなる。   Next, a system that uses light to read an electrostatic latent image will be briefly described. FIG. 2 is a schematic configuration diagram of a recording / reading system using the radiation imaging panel 10 (integrated electrostatic latent image recording device and electrostatic latent image reading device). This recording / reading system comprises a radiation imaging panel 10, a recording irradiation means 90, a power source 50, a current detection means 70, a reading exposure means 92, and connection means S1, S2. The panel 10, the power supply 50, the recording irradiation means 90, and the connection means S 1, and the electrostatic latent image reading device portion includes the radiation imaging panel 10, the current detection means 70, and the connection means S 2.

放射線撮像パネル10の導電層1は接続手段S1を介して電源50の負極に接続されるとともに、接続手段S2の一端にも接続されている。接続手段S2の他端の一方は電流検出手段70に接続され、放射線撮像パネル10の導電層5、電源50の正極並びに接続手段S2の他端の他方は接地されている。電流検出手段70はオペアンプからなる検出アンプ70aと帰還抵抗70b とからなり、いわゆる電流電圧変換回路を構成している。   The conductive layer 1 of the radiation imaging panel 10 is connected to the negative electrode of the power source 50 through the connection means S1, and is also connected to one end of the connection means S2. One end of the connection means S2 is connected to the current detection means 70, and the conductive layer 5 of the radiation imaging panel 10, the positive electrode of the power supply 50, and the other end of the connection means S2 are grounded. The current detection means 70 includes a detection amplifier 70a made of an operational amplifier and a feedback resistor 70b, and constitutes a so-called current-voltage conversion circuit.

導電層1の上面には被写体9が配設されており、被写体9は放射線L1に対して透過性を有する部分9aと透過性を有しない遮断部(遮光部)9bが存在する。記録用照射手段90は放射線L1を被写体9に一様に曝射するものであり、読取用露光手段92は赤外線レーザ光やLED、EL等の読取光L2を図3中の矢印方向へ走査露光するものであり、読取光L2は細径に収束されたビーム形状をしていることが望ましい。   A subject 9 is disposed on the upper surface of the conductive layer 1, and the subject 9 has a portion 9a that is transparent to the radiation L1 and a blocking portion (light-shielding portion) 9b that is not transparent. The recording irradiation means 90 uniformly exposes the radiation L1 to the subject 9, and the reading exposure means 92 scans and exposes the reading light L2 such as infrared laser light, LED or EL in the direction of the arrow in FIG. Therefore, it is desirable that the reading light L2 has a beam shape converged to a small diameter.

以下、上記構成の記録読取システムにおける静電潜像記録過程について電荷モデル(図3)を参照しながら説明する。図2において接続手段S2を開放状態(接地、電流検出手段70の何れにも接続させない)にして、接続手段S1をオンし導電層1と導電層5との間に電源50による直流電圧Edを印加し、電源50から負の電荷を導電層1に、正の電荷を導電層5に帯電させる(図3(A)参照)。これにより、放射線撮像パネル10には導電層1と5との間に平行な電場が形成される。   Hereinafter, an electrostatic latent image recording process in the recording / reading system having the above configuration will be described with reference to a charge model (FIG. 3). In FIG. 2, the connection means S2 is opened (not connected to either the ground or current detection means 70), the connection means S1 is turned on, and the DC voltage Ed from the power source 50 is applied between the conductive layer 1 and the conductive layer 5. Then, a negative charge is applied to the conductive layer 1 and a positive charge is applied to the conductive layer 5 from the power source 50 (see FIG. 3A). Thereby, a parallel electric field is formed between the conductive layers 1 and 5 in the radiation imaging panel 10.

次に記録用照射手段90から放射線L1を被写体9に向けて一様に曝射する。放射線L1は被写体9の透過部9aを透過し、さらに導電層1をも透過する。放射線導電層2はこの透過した放射線L1を受け導電性を呈するようになる。これは放射線L1の線量に応じて可変の抵抗値を示す可変抵抗器として作用することで理解され、抵抗値は放射線L1によって電子(負電荷)とホール(正電荷)の電荷対が生じることに依存し、被写体9を透過した放射線L1の線量が少なければ大きな抵抗値を示すものである(図3(B)参照)。なお、放射線L1によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   Next, the radiation L1 is uniformly irradiated toward the subject 9 from the recording irradiation means 90. The radiation L1 passes through the transmission part 9a of the subject 9, and further passes through the conductive layer 1. The radiation conductive layer 2 receives the transmitted radiation L1 and exhibits conductivity. This is understood by acting as a variable resistor that shows a variable resistance value according to the dose of radiation L1, and the resistance value is caused by the generation of a charge pair of electrons (negative charge) and holes (positive charge) by radiation L1. The resistance value is large if the dose of the radiation L1 transmitted through the subject 9 is small (see FIG. 3B). The negative charge (−) and the positive charge (+) generated by the radiation L1 are represented by enclosing − or + in circles in the drawing.

放射線導電層2中に生じた正電荷は放射線導電層2中を導電層1に向かって高速に移動し、導電層1と放射線導電層2との界面で導電層1に帯電している負電荷と電荷再結合して消滅する(図3(C),(D)を参照)。一方、放射線導電層2中に生じた負電荷は放射線導電層2中を電荷転送層3に向かって移動する。電荷転送層3は導電層1に帯電した電荷と同じ極性の電荷(本例では負電荷)に対して絶縁体として作用するものであるから、放射線導電層2中を移動してきた負電荷は放射線導電層2と電荷転送層3との界面で停止し、この界面に蓄積されることになる(図3(C),(D)を参照)。蓄積される電荷量は放射線導電層2中に生じる負電荷の量、即ち、放射線L1の被写体9を透過した線量によって定まるものである。   The positive charge generated in the radiation conductive layer 2 moves at high speed in the radiation conductive layer 2 toward the conductive layer 1, and the negative charge is charged in the conductive layer 1 at the interface between the conductive layer 1 and the radiation conductive layer 2. And disappear due to charge recombination (see FIGS. 3C and 3D). On the other hand, the negative charges generated in the radiation conductive layer 2 move in the radiation conductive layer 2 toward the charge transfer layer 3. Since the charge transfer layer 3 acts as an insulator for charges having the same polarity as the charges charged in the conductive layer 1 (in this example, negative charges), the negative charges that have moved through the radiation conductive layer 2 are radiation. It stops at the interface between the conductive layer 2 and the charge transfer layer 3 and accumulates at this interface (see FIGS. 3C and 3D). The amount of charge accumulated is determined by the amount of negative charge generated in the radiation conductive layer 2, that is, the dose of radiation L1 transmitted through the subject 9.

一方、放射線L1は被写体9の遮光部9bを透過しないから、放射線撮像パネル10の遮光部9bの下部にあたる部分は何ら変化を生じない( 図3(B)〜(D)を参照)。このようにして、被写体9に放射線L1を曝射することにより、被写体像に応じた電荷を放射線導電層2と電荷転送層3との界面に蓄積することができるようになる。なお、この蓄積せしめられた電荷による被写体像を静電潜像という。   On the other hand, since the radiation L1 does not pass through the light shielding part 9b of the subject 9, no change occurs in the portion corresponding to the lower part of the light shielding part 9b of the radiation imaging panel 10 (see FIGS. 3B to 3D). In this way, by exposing the subject 9 to the radiation L1, charges corresponding to the subject image can be accumulated at the interface between the radiation conductive layer 2 and the charge transfer layer 3. The subject image based on the accumulated charges is called an electrostatic latent image.

次に静電潜像読取過程について電荷モデル(図4)を参照しつつ説明する。接続手段S1を開放し電源供給を停止すると共に、S2を一旦接地側に接続し、静電潜像が記録された放射線撮像パネル10の導電層1および5を同電位に帯電させて電荷の再配列を行った後に(図4(A)参照)、接続手段S2を電流検出手段70側に接続する。   Next, an electrostatic latent image reading process will be described with reference to a charge model (FIG. 4). The connection means S1 is opened to stop the power supply, and S2 is temporarily connected to the ground side, and the conductive layers 1 and 5 of the radiation imaging panel 10 on which the electrostatic latent image is recorded are charged to the same potential to recharge the charge. After the arrangement (see FIG. 4A), the connection means S2 is connected to the current detection means 70 side.

読取用露光手段92により読取光L2を放射線撮像パネル10の導電層5側に走査露光すると、読取光L2は導電層5を透過し、この透過した読取光L2が照射された光導電層4は走査露光に応じて導電性を呈するようになる。これは上記放射線導電層2が放射線L1の照射を受けて正負の電荷対が生じることにより導電性を呈するのと同様に、読取光L2の照射を受けて正負の電荷対が生じることに依存するものである(図4(B)参照)。なお、記録過程と同様に、読取光L2によって生成される負電荷(−)および正電荷(+)を、図面上では−または+を○で囲んで表している。   When the reading light L2 is scanned and exposed to the conductive layer 5 side of the radiation imaging panel 10 by the reading exposure means 92, the reading light L2 passes through the conductive layer 5, and the photoconductive layer 4 irradiated with the transmitted reading light L2 is Conductivity is exhibited according to scanning exposure. This is dependent on the fact that the radiation conductive layer 2 is irradiated with the radiation L1 to generate positive and negative charge pairs, and has a positive and negative charge pair upon irradiation with the reading light L2. (See FIG. 4B). As in the recording process, negative charges (−) and positive charges (+) generated by the reading light L2 are represented by enclosing − or + in circles in the drawing.

電荷輸送層3は正電荷に対しては導電体として作用するものであるから、光導電層4に生じた正電荷は蓄積電荷に引きつけられるように電荷輸送層3の中を急速に移動し、放射線導電層2と電荷輸送層3との界面で蓄積電荷と電荷再結合をし消滅する(図4(C)参照)。一方、光導電層4に生じた負電荷は導電層5の正電荷と電荷再結合をし消滅する(図4(C)参照)。光導電層4は読取光L2により十分な光量でもって走査露光されており、放射線導電層2と電荷輸送層3との界面に蓄積されている蓄積電荷、即ち静電潜像が全て電荷再結合により消滅せしめられる。このように、放射線撮像パネル10に蓄積されていた電荷が消滅するということは、放射線撮像パネル10に電荷の移動による電流Iが流れたことを意味するものであり、この状態は放射線撮像パネル10を電流量が蓄積電荷量に依存する電流源で表した図4(D)のような等価回路でもって示すことができる。   Since the charge transport layer 3 acts as a conductor for positive charges, the positive charge generated in the photoconductive layer 4 rapidly moves in the charge transport layer 3 so as to be attracted to the accumulated charges, The accumulated charge and charge recombination disappear at the interface between the radiation conductive layer 2 and the charge transport layer 3 (see FIG. 4C). On the other hand, the negative charge generated in the photoconductive layer 4 disappears by recombining with the positive charge of the conductive layer 5 (see FIG. 4C). The photoconductive layer 4 is scanned and exposed with a sufficient amount of light by the reading light L2, and the accumulated charges accumulated at the interface between the radiation conductive layer 2 and the charge transport layer 3, that is, the electrostatic latent image are all recombined. Will be extinguished. Thus, the disappearance of the charges accumulated in the radiation imaging panel 10 means that the current I has flowed through the radiation imaging panel 10 due to the movement of charges, and this state is the radiation imaging panel 10. Can be expressed by an equivalent circuit as shown in FIG. 4D, in which the current amount is expressed by a current source whose amount depends on the accumulated charge amount.

このように、読取光L2を走査露光しながら、放射線撮像パネル10から流れ出す電流を検出することにより、走査露光された各部(画素に対応する)の蓄積電荷量を順次読み取ることができ、これにより静電潜像を読み取ることができる。なお、本放射線検出部動作については特開2000-105297号等に記載されている。   In this way, by detecting the current flowing out from the radiation imaging panel 10 while scanning and exposing the reading light L2, it is possible to sequentially read the accumulated charge amount of each scanning-exposed part (corresponding to the pixel). The electrostatic latent image can be read. The operation of the radiation detection unit is described in Japanese Patent Application Laid-Open No. 2000-105297.

次に、後者のTFT方式の放射線撮像パネルについて説明する。この放射線撮像パネルは、図5に示すように放射線検出部100とアクティブマトリックスアレイ基板(以下AMA基板)200が接合された構造となっている。図6に示すように放射線検出部100は大きく分けて放射線入射側から順に、バイアス電圧印加用の共通電極103と、検出対象の放射線に感応して電子−正孔対であるキャリアを生成する光導電層104と、キャリア収集用の検出電極107とが積層形成された構成となっている。共通電極の上層には放射線検出部支持体102を有していてもよい。   Next, the latter TFT type radiation imaging panel will be described. This radiation imaging panel has a structure in which a radiation detection unit 100 and an active matrix array substrate (hereinafter referred to as an AMA substrate) 200 are joined as shown in FIG. As shown in FIG. 6, the radiation detection unit 100 is roughly divided into a common electrode 103 for applying a bias voltage and light that generates carriers that are electron-hole pairs in response to the radiation to be detected in order from the radiation incident side. The conductive layer 104 and the detection electrode 107 for collecting carriers are stacked. The radiation detection unit support 102 may be provided on the upper layer of the common electrode.

光導電層104は本発明の製造方法によって製造されるものである。共通電極103や検出電極107は、例えばITO(インジウム錫酸化物)や、AuあるいはPtなどの導電材料からなる。バイアス電圧の極性に応じて、正孔注入阻止層、電子注入阻止層が共通電極103や検出電極107に付設されていてもよい。   The photoconductive layer 104 is manufactured by the manufacturing method of the present invention. The common electrode 103 and the detection electrode 107 are made of a conductive material such as ITO (indium tin oxide), Au, or Pt, for example. Depending on the polarity of the bias voltage, a hole injection blocking layer and an electron injection blocking layer may be attached to the common electrode 103 and the detection electrode 107.

AMA基板200の各部の構成について簡単に説明する。AMA基板200は図7に示すように、画素相当分の放射線検出部105の各々に対して電荷蓄積容量であるコンデンサ210とスイッチング素子としてTFT220とが各1個ずつ設けられている。支持体102においては、必要画素に応じて縦1000〜3000×横1000〜3000程度のマトリックス構成で画素相当分の放射線検出部105が2次元配列されており、また、AMA基板200においても、画素数と同じ数のコンデンサ210およびTFT220が、同様のマトリックス構成で2次元配列されている。光導電層で発生した電荷はコンデンサ210に蓄積され、光読取方式に対応して静電潜像となる。本発明のTFT方式においては、放射線で発生した静電潜像は電荷蓄積容量に保持される。   The configuration of each part of the AMA substrate 200 will be briefly described. As shown in FIG. 7, the AMA substrate 200 is provided with a capacitor 210 as a charge storage capacitor and a TFT 220 as a switching element for each of the radiation detection portions 105 corresponding to pixels. In the support 102, the radiation detection units 105 corresponding to the pixels are two-dimensionally arranged in a matrix configuration of about 1000 to 3000 × 1000 to 3000 in accordance with the required pixels, and the AMA substrate 200 also has pixels. The same number of capacitors 210 and TFTs 220 are two-dimensionally arranged in the same matrix configuration. The electric charge generated in the photoconductive layer is accumulated in the capacitor 210 and becomes an electrostatic latent image corresponding to the optical reading method. In the TFT method of the present invention, an electrostatic latent image generated by radiation is held in a charge storage capacitor.

AMA基板200におけるコンデンサ210およびTFT220の具体的構成は、図6に示す通りである。すなわち、AMA基板支持体230は絶縁体であり、その表面に形成されたコンデンサ210の接地側電極210aとTFT220のゲート電極220aの上に絶縁膜240を介してコンデンサ210の接続側電極210bとTFT220のソース電極220bおよびドレイン電極220cが積層形成されているのに加え、最表面側が保護用の絶縁膜250で覆われた状態となっている。また接続側電極210bとソース電極220bはひとつに繋がっており同時形成されている。コンデンサ210の容量絶縁膜およびTFT220のゲート絶縁膜の両方を構成している絶縁膜240としては、例えば、プラズマSiN膜が用いられる。このAMA基板200は、液晶表示用基板の作製に用いられるような薄膜形成技術や微細加工技術を用いて製造される。   Specific configurations of the capacitor 210 and the TFT 220 in the AMA substrate 200 are as shown in FIG. That is, the AMA substrate support 230 is an insulator, and the connection side electrode 210b of the capacitor 210 and the TFT 220 are formed on the ground electrode 210a of the capacitor 210 and the gate electrode 220a of the TFT 220 formed on the surface thereof via the insulating film 240. In addition to the source electrode 220b and the drain electrode 220c being stacked, the outermost surface side is covered with a protective insulating film 250. Further, the connection side electrode 210b and the source electrode 220b are connected to each other and are formed simultaneously. As the insulating film 240 constituting both the capacitor insulating film of the capacitor 210 and the gate insulating film of the TFT 220, for example, a plasma SiN film is used. The AMA substrate 200 is manufactured by using a thin film forming technique or a fine processing technique used for manufacturing a liquid crystal display substrate.

続いて放射線検出部100とAMA基板200の接合について説明する。検出電極107とコンデンサ210の接続側電極210bを位置合わせした状態で、両基板100、200を銀粒子などの導電性粒子を含み厚み方向のみに導電性を有する異方導電性フィルム(ACF)を間にして加熱・加圧接着して貼り合わせることで、両基板100、200が機械的に合体されると同時に、検出電極107と接続側電極210bが介在導体部140によって電気的に接続される。   Subsequently, the joining of the radiation detection unit 100 and the AMA substrate 200 will be described. With the detection electrode 107 and the connection side electrode 210b of the capacitor 210 aligned, both substrates 100 and 200 are made of anisotropic conductive film (ACF) containing conductive particles such as silver particles and having conductivity only in the thickness direction. The substrates 100 and 200 are mechanically combined by heating and pressurizing and bonding together, and at the same time, the detection electrode 107 and the connection side electrode 210b are electrically connected by the interposition conductor 140. .

さらに、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが設けられている。読み出し駆動回路260は、図7に示すように、列が同一のTFT220のドレイン電極を結ぶ縦(Y)方向の読み出し配線(読み出しアドレス線)280に接続されており、ゲート駆動回路270は行が同一のTFT220のゲート電極を結ぶ横(X)方向の読み出し線(ゲートアドレス線)290に接続されている。なお、図示しないが、読み出し駆動回路260内では、1本の読み出し配線280に対してプリアンプ(電荷−電圧変換器)が1個それぞれ接続されている。このように、AMA基板200には、読み出し駆動回路260とゲート駆動回路270とが接続されている。ただし、AMA基板200内に読み出し駆動回路260とゲート駆動回路270とを一体成型し、集積化を図ったものも用いられる。   Further, the AMA substrate 200 is provided with a read drive circuit 260 and a gate drive circuit 270. As shown in FIG. 7, the read drive circuit 260 is connected to a read wiring (read address line) 280 in the vertical (Y) direction that connects the drain electrodes of the TFTs 220 having the same column, and the gate drive circuit 270 has a row. A horizontal (X) direction read line (gate address line) 290 connecting the gate electrodes of the same TFT 220 is connected. Although not shown, one preamplifier (charge-voltage converter) is connected to one readout wiring 280 in the readout drive circuit 260. As described above, the read driving circuit 260 and the gate driving circuit 270 are connected to the AMA substrate 200. However, an integrated circuit in which the read drive circuit 260 and the gate drive circuit 270 are integrally formed in the AMA substrate 200 is also used.

なお、上述の放射線検出器100とAMA基板200とを接合合体させた放射線撮像装置による放射線検出動作については例えば特開平11-287862号などに記載されている。
以下に本発明の放射線撮像パネルを構成する光導電層の製造方法の実施例を示す。
The radiation detection operation by the radiation imaging apparatus in which the radiation detector 100 and the AMA substrate 200 are joined and combined is described in, for example, Japanese Patent Application Laid-Open No. 11-287862.
Examples of the method for producing a photoconductive layer constituting the radiation imaging panel of the present invention are shown below.

(実施例1)
Bi(NO33を40℃で酢酸に溶解し、Si(O−C254をBiの1/12倍モル当量添加し、加水分解を行うためにここに酢酸の50vol%の水を添加した。次いで、80℃大気中で1時間還流した。還流後、これを真空条件下60℃で12分間濃縮した。Bi(NO33の濃度が濃縮前と同じ濃度となるように酢酸を加えてBi12SiO20前駆体液を得た。高純度アルミナ基板(99.6%)に下部電極としてAuスパッタを行い、その上にBi12SiO20前駆体液をスピンコート(1500rpm、20s)した。これを大気中80℃で10分間乾燥した後、さらに大気中350℃で5分間仮焼成し、次いで大気中850℃で1時間本焼成し、Bi12SiO20焼成膜を形成した。最後に、形成したBi12SiO20焼成膜上に上部電極としてAuを60nmの厚さでスパッタし、Bi12SiO20焼成膜からなる光導電層を備えた放射線撮像パネルを完成させた。
(Example 1)
Bi (NO 3 ) 3 is dissolved in acetic acid at 40 ° C., Si (O—C 2 H 5 ) 4 is added to 1/12 times the molar equivalent of Bi, and 50 vol% of acetic acid is added here for hydrolysis. Water was added. Subsequently, it recirculate | refluxed in 80 degreeC air | atmosphere for 1 hour. After refluxing, it was concentrated under vacuum conditions at 60 ° C. for 12 minutes. Acetic acid was added so that the concentration of Bi (NO 3 ) 3 was the same as that before concentration to obtain a Bi 12 SiO 20 precursor solution. Au sputtering was performed as a lower electrode on a high-purity alumina substrate (99.6%), and a Bi 12 SiO 20 precursor solution was spin-coated (1500 rpm, 20 s) thereon. This was dried at 80 ° C. for 10 minutes in the atmosphere, and further pre-baked for 5 minutes at 350 ° C. in the atmosphere, followed by main baking at 850 ° C. for 1 hour in the air to form a Bi 12 SiO 20 fired film. Finally, Au was sputtered to a thickness of 60 nm as an upper electrode on the formed Bi 12 SiO 20 fired film, and a radiation imaging panel provided with a photoconductive layer made of the Bi 12 SiO 20 fired film was completed.

(実施例2)
実施例1で使用したSi(O−C254の替わりにGe(O−C254を用いた以外は実施例1と同様の手順で、Bi12GeO20焼成膜からなる光導電層を備えた放射線撮像パネルを完成させた。
(Example 2)
A Bi 12 GeO 20 fired film was prepared in the same manner as in Example 1 except that Ge (O—C 2 H 5 ) 4 was used instead of Si (O—C 2 H 5 ) 4 used in Example 1. The radiation imaging panel provided with the photoconductive layer was completed.

(実施例3)
実施例1で使用したSi(O−C254の替わりにTi(O−C254を用いた以外は実施例1と同様の手順で、Bi12TiO20焼成膜からなる光導電層を備えた放射線撮像パネルを完成させた。
(Example 3)
From the Bi 12 TiO 20 fired film, the same procedure as in Example 1 was used except that Ti (O—C 2 H 5 ) 4 was used instead of Si (O—C 2 H 5 ) 4 used in Example 1. The radiation imaging panel provided with the photoconductive layer was completed.

(比較例1)
ITO基板に下部電極としてAuスパッタを行い、その上にBi23粉末とSiO2粉末を混合し800℃で焼成して得られたBi12SiO20を1/9倍のポリエステル樹脂(東洋紡製バイロン200)を用いて塗布してBi12SiO20膜とし、この塗膜を大気中で60℃4時間加熱乾燥させた。このBi12SiO20膜上に上部電極としてAuを60nmの厚さでスパッタし、Bi12SiO20膜からなる光導電層を備えた放射線撮像パネルを完成させた。
(Comparative Example 1)
The ITO substrate is sputtered with Au as the lower electrode, and Bi 12 SiO 20 obtained by mixing Bi 2 O 3 powder and SiO 2 powder on the ITO substrate and firing at 800 ° C. is 1/9 times the polyester resin (manufactured by Toyobo) By coating using BYRON 200), a Bi 12 SiO 20 film was formed, and this coating film was heated and dried in the atmosphere at 60 ° C. for 4 hours. On this Bi 12 SiO 20 film, Au was sputtered as an upper electrode to a thickness of 60 nm to complete a radiation imaging panel provided with a photoconductive layer made of a Bi 12 SiO 20 film.

(測定方法および測定結果)
実施例1〜3および比較例1の放射線撮像パネルに対し、電圧500Vの条件で10mRのX線を0.1秒間照射し、電圧を印加した条件で生じたパルス上の光電流を電流増幅器で電圧に変換し、デジタルオシロスコープで測定した。得られた電流・時間カーブより、X線照射時間の範囲において積分し、発生荷電量として測定したところ、実施例1〜3の放射線撮像パネルの光導電層は比較例1の放射線撮像パネルの光導電層に比較して膜厚200μm換算で10倍高い値を示した。
(Measurement method and measurement results)
The radiation imaging panels of Examples 1 to 3 and Comparative Example 1 were irradiated with 10 mR of X-rays for 0.1 second under the condition of a voltage of 500 V, and the photocurrent on the pulse generated under the condition of applying the voltage was converted to a voltage by a current amplifier. Converted and measured with a digital oscilloscope. From the obtained current / time curve, integration was performed in the range of the X-ray irradiation time, and the amount of generated charge was measured. As a result, the photoconductive layer of the radiation imaging panel of Examples 1 to 3 was light of the radiation imaging panel of Comparative Example 1. Compared to the conductive layer, the value was 10 times higher in terms of film thickness of 200 μm.

以上のように、本発明の放射線撮像パネルを構成する光導電層の製造方法は、ビスマス塩と金属アルコキシドを酸性条件下で反応させてBi12MO20前駆体液を得、このBi12MO20前駆体液を支持体に塗布し、この支持体に塗布したBi12MO20前駆体液を焼成してBi12MO20焼結膜からなる光導電層を製造するので、塗布によって形成する場合に較べて光導電層のBi12MO20の充填率を高くすることが可能となる。また、光導電物質粒間にバインダーが介在していないため発生電荷が流れやすくなり、電極に到達する電荷の捕集効率が高まり、電気ノイズが小さくなるため、画像の粒状性が改善することが可能となる。 As described above, in the method for producing a photoconductive layer constituting the radiation imaging panel of the present invention, a Bi 12 MO 20 precursor liquid is obtained by reacting a bismuth salt and a metal alkoxide under acidic conditions, and this Bi 12 MO 20 precursor is obtained. Since the body fluid is applied to the support and the Bi 12 MO 20 precursor solution applied to the support is baked to produce a photoconductive layer made of a Bi 12 MO 20 sintered film, the photoconductivity is higher than when formed by coating. It becomes possible to increase the packing ratio of Bi 12 MO 20 in the layer. In addition, since no binder is present between the photoconductive material grains, the generated charges can easily flow, the efficiency of collecting the charges reaching the electrodes is increased, and the electrical noise is reduced, so that the graininess of the image can be improved. It becomes possible.

本発明の製造方法により製造される光導電層を有する放射線撮像パネルの一実施の形態を示す断面図Sectional drawing which shows one Embodiment of the radiation imaging panel which has a photoconductive layer manufactured with the manufacturing method of this invention 放射線撮像パネルを用いた記録読取システムの概略構成図Schematic configuration diagram of a recording and reading system using a radiation imaging panel 記録読取システムにおける静電潜像記録過程を電荷モデルにより示した図Diagram showing the electrostatic latent image recording process in a recording and reading system using a charge model 記録読取システムにおける静電潜像読取過程を電荷モデルにより示した図Diagram showing the electrostatic latent image reading process in the recording and reading system using a charge model 放射線検出器とAMA基板の合体状態を示す概略模式図Schematic diagram showing the combined state of the radiation detector and the AMA substrate AMA基板の等価回路を示す電気回路図Electrical circuit diagram showing equivalent circuit of AMA substrate 放射線検出部の画素分を示す概略断面図Schematic cross-sectional view showing the pixels of the radiation detector

符号の説明Explanation of symbols

1 導電層
2 記録用放射線導電層
3 電荷輸送層
4 記録用光導電層
5 導電層
10 放射線撮像パネル
70 電流検出手段
DESCRIPTION OF SYMBOLS 1 Conductive layer 2 Recording radiation conductive layer 3 Charge transport layer 4 Recording photoconductive layer 5 Conductive layer 10 Radiation imaging panel 70 Current detection means

Claims (3)

放射線画像情報を静電潜像として記録する放射線撮像パネルを構成する光導電層の製造方法であって、ビスマス塩と金属アルコキシドを酸性条件下で反応させてBi12MO20前駆体液(ただし、MはGe,Si,Ti中の少なくとも1種である。)を得、該Bi12MO20前駆体液を支持体に塗布し、該支持体に塗布した前記Bi12MO20前駆体液を焼成してBi12MO20焼結膜からなる前記光導電層を製造することを特徴とする光導電層の製造方法。 A method for producing a photoconductive layer constituting a radiation imaging panel for recording radiation image information as an electrostatic latent image, comprising reacting a bismuth salt and a metal alkoxide under acidic conditions to provide a Bi 12 MO 20 precursor solution (M is Ge, Si, at least one of Ti.) give, by the Bi 12 MO 20 precursor solution was applied to a substrate, firing the Bi 12 MO 20 precursor solution coated on the support Bi A method for producing a photoconductive layer, comprising producing the photoconductive layer comprising a 12 MO 20 sintered film. 前記ビスマス塩が硝酸ビスマスまたは酢酸ビスマスであることを特徴とする請求項1記載の光導電層の製造方法。   2. The method for producing a photoconductive layer according to claim 1, wherein the bismuth salt is bismuth nitrate or bismuth acetate. 前記加水分解後に濃縮または還流を行って前記Bi12MO20前駆体液を得ることを特徴とする請求項1または2記載の光導電層の製造方法。 The method for producing a photoconductive layer according to claim 1, wherein the Bi 12 MO 20 precursor liquid is obtained by concentrating or refluxing after the hydrolysis.
JP2004086143A 2004-03-24 2004-03-24 Manufacturing method of photoconductive layer constituting radiation imaging panel Withdrawn JP2005276975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086143A JP2005276975A (en) 2004-03-24 2004-03-24 Manufacturing method of photoconductive layer constituting radiation imaging panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086143A JP2005276975A (en) 2004-03-24 2004-03-24 Manufacturing method of photoconductive layer constituting radiation imaging panel

Publications (1)

Publication Number Publication Date
JP2005276975A true JP2005276975A (en) 2005-10-06

Family

ID=35176333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086143A Withdrawn JP2005276975A (en) 2004-03-24 2004-03-24 Manufacturing method of photoconductive layer constituting radiation imaging panel

Country Status (1)

Country Link
JP (1) JP2005276975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192854A (en) * 2014-07-07 2014-12-10 上海应用技术学院 Method for preparing bismuth silicate powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104192854A (en) * 2014-07-07 2014-12-10 上海应用技术学院 Method for preparing bismuth silicate powder
CN104192854B (en) * 2014-07-07 2016-02-10 上海应用技术学院 A kind of method preparing bismuth silicate powder

Similar Documents

Publication Publication Date Title
US7709804B2 (en) Radiation detector
EP1978563A2 (en) Radiation detector and method for producing photoconductive layer for recording thereof
US7632539B2 (en) Method for manufacturing photoconductive layers that constitute radiation imaging panels
US7476341B2 (en) Process for producing photo-conductor layers for constituting radiation imaging panels
US20060051287A1 (en) Processes for producing Bi12MO20 precursors, Bi12MO20 particles, and photo-conductor layers
JP4252918B2 (en) Method for producing photoconductive layer constituting radiation imaging panel
EP1780800A2 (en) Photoconductive layer forming radiation image taking panel and radiation image taking panel
JP4602205B2 (en) Bi12MO20 precursor, manufacturing method of Bi12MO20 powder, and manufacturing method of photoconductive layer constituting radiation imaging panel
JP2005276975A (en) Manufacturing method of photoconductive layer constituting radiation imaging panel
US7419697B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
JP2007005623A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
JP4787227B2 (en) Radiation detector and method for producing photoconductive layer for recording radiation detector
JP2005274259A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
JP5077921B2 (en) Radiation solid state sensor and manufacturing method thereof
JP4545538B2 (en) Photoconductive layer and radiation imaging panel constituting radiation imaging panel
JP2005274258A (en) Manufacturing method for photoconductive layer constituting radiation imaging panel
US7429296B2 (en) Method for manufacturing photoconductive layer constituting radiation imaging panel
JP2007012843A (en) Optical conductive layer and radiation imaging panel
JP2006261202A (en) Photoconduction layer constituting radiographic imaging panel, and radiographic imaging panel
JP2007005624A (en) Photoconduction layer which constitutes radiation image pick-up panel and radiation image pick-up panel
JP2007150277A (en) Radiation image taking panel and photoconductive layer forming the same
US7382006B2 (en) Photo-conductive layer for constituting a radiation imaging panel
JP2006261204A (en) Photoconductive layer constituting radiation imaging panel and radiation imaging panel
JP2006245463A (en) Bi12TiO20 SINTERED COMPACT AND PHOTOCONDUCTIVE LAYER
JP2007150278A (en) Radiation image taking panel and photoconductive layer forming the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605