JP2005276771A - Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell - Google Patents

Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell Download PDF

Info

Publication number
JP2005276771A
JP2005276771A JP2004092217A JP2004092217A JP2005276771A JP 2005276771 A JP2005276771 A JP 2005276771A JP 2004092217 A JP2004092217 A JP 2004092217A JP 2004092217 A JP2004092217 A JP 2004092217A JP 2005276771 A JP2005276771 A JP 2005276771A
Authority
JP
Japan
Prior art keywords
fuel cell
composition
cell separator
separator
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004092217A
Other languages
Japanese (ja)
Inventor
Takayoshi Shimizu
貴良 清水
Atsushi Murakami
村上  淳
Jun Oikawa
純 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2004092217A priority Critical patent/JP2005276771A/en
Publication of JP2005276771A publication Critical patent/JP2005276771A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a composition for a fuel cell separator formed by sufficiently and uniformly mixing thermosetting resin and combined material at short times without increasing cost, disusing solvent removing and treatment process, having excellent fluidity suitable for injection molding. <P>SOLUTION: A raw material, containing conductive filler which contains thermosetting resin powder and expanded graphite by 10 to 100 wt% with a combination ratio of 15:85 to 60:40 in weight ratio, is kneaded at such a temperature higher than melting temperature of the thermosetting resin and still not to completely harden the resin, while adding shearing force to pulverize the conductive filler. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用セパレータに成形される樹脂組成物の製造方法に関する。また、前記方法により製造された燃料電池用セパレータ用組成物、更には前記燃料電池用セパレータ用組成物を成形してなる燃料電池用セパレータに関する。   The present invention relates to a method for producing a resin composition molded into a fuel cell separator. The present invention also relates to a fuel cell separator composition produced by the above method, and further to a fuel cell separator formed by molding the fuel cell separator composition.

近年、燃料の有する化学的エネルギーを電気的エネルギーに直接変換する燃料電池に対する需要が高まっている。一般に燃料電池は、電解質膜を挟んで電極板が配置され、更にその外側にセパレータが配置された単位セルを、多数積層した構造になっている。   In recent years, there is an increasing demand for fuel cells that directly convert chemical energy of fuel into electrical energy. In general, a fuel cell has a structure in which a large number of unit cells each having an electrode plate sandwiched between electrolyte membranes and a separator disposed outside the electrode plate are stacked.

図1は、一般的な燃料電池用セパレータの外観を示す概略図であるが、平板部6の両面に所定の間隔で複数の隔壁7を設立して形成されている。燃料電池とするには、多数の燃料電池用セパレータ5を、隔壁の突出方向(図中、上下方向)に積層する。そして、この積層により、隣接する一対の隔壁7で形成されるチャネル8に反応ガス(水素や酸素)を流通させる構成となる。そのため、燃料電池セパレータ5は両反応ガスが混合しないように、気体不透過性に優れることが必要である。また、単位セルを積層しているので、燃料電池用セパレータ5は高い導電性を有し、かつ強度にも優れていることが要求される。   FIG. 1 is a schematic view showing the external appearance of a general fuel cell separator, which is formed by establishing a plurality of partition walls 7 at predetermined intervals on both surfaces of a flat plate portion 6. In order to obtain a fuel cell, a large number of fuel cell separators 5 are stacked in the protruding direction of the partition walls (vertical direction in the figure). And by this lamination | stacking, it becomes the structure which distribute | circulates reaction gas (hydrogen and oxygen) to the channel 8 formed of a pair of adjacent partition 7. Therefore, the fuel cell separator 5 needs to be excellent in gas impermeability so that both reaction gases are not mixed. In addition, since the unit cells are stacked, the fuel cell separator 5 is required to have high conductivity and excellent strength.

例えば、自動車のように高電圧を必要とする分野では、各単位セルを数百枚積層してスタックを構成させる。また、このスタックは一般に約80℃の条件下で使用されるため、熱的寸法安定性(低熱膨張)が求められる。高熱膨張であると、熱によりスタック全体が大きくなるために、締め付け荷重の増大により燃料電池用セパレータ本体、電解質膜の破損が生じる。また、スタック組み付け時に、セパレータの強度、板厚寸法精度、反り等により組み付けの困難、破損などが発生することがある。特に燃料電池用セパレータの反りは、スタックの組み付けを困難にするだけでなく、組み付け後の各セルの密着性が不十分となり、接触電気抵抗にムラが生じ、それによる発電性能の低下、更に偏荷重により燃料電池用セパレータが破損することがある。   For example, in a field that requires a high voltage like an automobile, a stack is formed by stacking several hundred unit cells. In addition, since this stack is generally used under conditions of about 80 ° C., thermal dimensional stability (low thermal expansion) is required. When the thermal expansion is high, the entire stack becomes large due to heat, and therefore the fuel cell separator body and the electrolyte membrane are damaged due to an increase in tightening load. Further, when assembling the stack, it may be difficult to assemble or break due to the strength of the separator, plate thickness dimensional accuracy, warpage, and the like. In particular, the warpage of the separator for the fuel cell not only makes it difficult to assemble the stack, but also the adhesion of each cell after assembly becomes insufficient, resulting in uneven contact electrical resistance, resulting in a decrease in power generation performance and further unevenness. The fuel cell separator may be damaged by the load.

燃料電池用セパレータは、生産性の点で有利なことから、熱硬化性樹脂に黒鉛等の導電性フィラーや、補強のための炭素繊維等の配合物を分散させた導電性樹脂組成物を所定の形状にプレス成形して得られるのが一般的である。そのため、導電性樹脂組成物における配合物の分散が十分でないと、燃料電池用セパレータ内で配合物が偏在して、局所的な熱膨張差による反りやうねりが発生し、更に局所的な強度不足も起こる。特に、平面部6の表裏面で隔壁7の数が異なる場合、表裏面で配合物の含有量の差が大きく、反りも大きくなる。しかし、導電性樹脂組成物の調製は、熱硬化性樹脂と配合物とを乾式で混合するのが一般的であり、配合物の分散性を高めるためには長時間の混合が避けられない。
また、導電性樹脂組成物の所定の形状への成形は、一般的にはプレス成形で行われるが、より簡便な成形方法である射出成形を行うためには、導電性樹脂組成物の流動性を優れたものとする必要があり、流動性が悪いと射出成形により好適に燃料電池用セパレータを成形することができない。しかし、乾式混合では、射出成形を好適に行い得る流動性の優れた導電性樹脂組成物を得ることは難しい。
Since the separator for fuel cells is advantageous in terms of productivity, a conductive resin composition in which a conductive filler such as graphite or a compound such as carbon fiber for reinforcement is dispersed in a thermosetting resin is predetermined. In general, it is obtained by press-molding into the shape. Therefore, if the dispersion of the compound in the conductive resin composition is not sufficient, the compound is unevenly distributed in the fuel cell separator, causing warpage and undulation due to local thermal expansion difference, and further insufficient local strength Also happens. In particular, when the number of the partition walls 7 is different between the front and back surfaces of the flat portion 6, the difference in the content of the compound is large between the front and back surfaces, and the warpage is also large. However, the preparation of the conductive resin composition is generally performed by mixing the thermosetting resin and the compound in a dry manner, and long time mixing is inevitable in order to improve the dispersibility of the compound.
In addition, the molding of the conductive resin composition into a predetermined shape is generally performed by press molding. However, in order to perform injection molding, which is a simpler molding method, the fluidity of the conductive resin composition. If the fluidity is poor, a fuel cell separator cannot be suitably molded by injection molding. However, with dry mixing, it is difficult to obtain a conductive resin composition with excellent fluidity that can be suitably injected.

一方で、配合物の分散性などを高めるために、上記のような乾式混合に代えて熱硬化性樹脂と配合物とを湿式混合することも行われている。例えば、液状の熱硬化性樹脂(熱硬化性樹脂の初期重合体)あるいは熱硬化性樹脂を溶剤に溶解したものに、配合物を添加して混合する方法が知られている(例えば、特許文献1参照)。   On the other hand, in order to improve the dispersibility of the blend, a thermosetting resin and the blend are also wet-mixed instead of the dry mixing as described above. For example, a method is known in which a liquid composition is added to a liquid thermosetting resin (initial polymer of a thermosetting resin) or a thermosetting resin dissolved in a solvent and mixed (for example, patent document). 1).

特開2002−343374号公報JP 2002-343374 A

しかし、上記特許文献1の方法では、湿式混合であるため分散性が十分ではなく、得られる樹脂組成物も流動性が低いものとなる。また、溶剤を除去する工程、更には環境保全のために除去した溶剤を処理する工程が別途必要となり、コスト増を招く。   However, in the method of the above-mentioned patent document 1, since it is wet mixing, dispersibility is not sufficient, and the obtained resin composition also has low fluidity. In addition, a process for removing the solvent and a process for treating the solvent removed for environmental protection are separately required, resulting in an increase in cost.

本発明はこのような状況に鑑みてなされたものであり、導電性樹脂組成物の調製に際して短時間で、かつ溶剤の除去及び処理工程も不要で、大きなコスト増を招くことなく熱硬化性樹脂と導電性フィラーとを十分に均一混合でき、形状安定性や機械的特性に優れ、接触電気抵抗ムラも無い高性能の燃料電池用セパレータを与え、かつ、射出成形を好適に行い得るような優れた流動性を有する燃料電池用セパレータ用組成物の製造方法を提供することを目的とする。また、当該製造方法により得られる燃料電池用セパレータ用組成物、更には当該燃料電池用セパレータ用組成物を成形してなる燃料電池用セパレータを提供することを目的とする。   The present invention has been made in view of such a situation, and in the preparation of the conductive resin composition, the thermosetting resin can be prepared in a short time, without the need for solvent removal and processing steps, and without causing a significant increase in cost. And a conductive filler can be sufficiently uniformly mixed, excellent in shape stability and mechanical properties, and provided with a high-performance fuel cell separator that does not have uneven contact resistance, and can be suitably molded by injection molding It is an object of the present invention to provide a method for producing a fuel cell separator composition having excellent fluidity. Moreover, it aims at providing the separator for fuel cells obtained by shape | molding the composition for separators for fuel cells obtained by the said manufacturing method, and also the said composition for separators for fuel cells.

本発明は、上記の目的を達成するために、下記に示す燃料電池用セパレータ用組成物の製造方法、燃料電池用セパレータ用組成物及び燃料電池用セパレータを提供する。
(1)燃料電池用セパレータに成形される組成物の製造方法であって、熱硬化性樹脂粉末と、膨張黒鉛を10〜100重量%の割合で含む導電性フィラーとを、重量比で15:85〜60:40の配合比で含む原料を、熱硬化性樹脂の溶融温度以上でかつ完全硬化をしない温度にて、導電性フィラーを粉砕可能なせん断力を加えながら混練することを特徴とする燃料電池用セパレータ用組成物の製造方法。
(2)熱硬化性樹脂が、フェノール樹脂又はエポキシ樹脂であることを特徴とする上記(1)に記載の燃料電池用セパレータ用組成物の製造方法。
(3)せん断応力が0.1kg/cm2以上であることを特徴とする上記(1)または(2)記載の燃料電池用セパレータ用組成物の製造方法。
(4)上記(1)〜(3)の何れか1項に記載の方法により得られたことを特徴とする燃料電池用セパレータ用組成物。
(5)上記(4)に記載の燃料電池用セパレータ用組成物を成形してなることを特徴とする燃料電池用セパレータ。
In order to achieve the above object, the present invention provides a method for producing a fuel cell separator composition, a fuel cell separator composition, and a fuel cell separator described below.
(1) A method for producing a composition formed into a fuel cell separator, wherein a thermosetting resin powder and a conductive filler containing expanded graphite in a proportion of 10 to 100% by weight are 15: A raw material containing a blending ratio of 85 to 60:40 is kneaded at a temperature not lower than the melting temperature of the thermosetting resin and not completely cured while applying a shearing force capable of pulverizing the conductive filler. A method for producing a composition for a fuel cell separator.
(2) The method for producing a composition for a fuel cell separator as described in (1) above, wherein the thermosetting resin is a phenol resin or an epoxy resin.
(3) The method for producing a composition for a fuel cell separator as described in (1) or (2) above, wherein the shear stress is 0.1 kg / cm 2 or more.
(4) A fuel cell separator composition obtained by the method according to any one of (1) to (3) above.
(5) A fuel cell separator obtained by molding the composition for a fuel cell separator according to (4) above.

本発明によれば、従来の湿式混合のような溶剤の除去及び処理工程も不要で、大きなコスト増を招くことなく熱硬化性樹脂と導電性フィラーとを十分に均一混合でき、かつ射出成形を良好に行い得る、優れた流動性を有する燃料電池用セパレータ用組成物を調製することができる。また、得られる燃料電池用セパレータ用組成物からは、形状安定性や機械的特性に優れ、接触電気抵抗ムラも無い高性能の燃料電池用セパレータを製造することができ、その際、生産性に優れる射出成形を採用することができる。   According to the present invention, solvent removal and processing steps such as conventional wet mixing are not required, the thermosetting resin and the conductive filler can be sufficiently uniformly mixed without incurring a large cost increase, and injection molding can be performed. A composition for a fuel cell separator having excellent fluidity that can be carried out well can be prepared. In addition, from the obtained fuel cell separator composition, it is possible to produce a high-performance fuel cell separator that is excellent in shape stability and mechanical properties and has no uneven contact electric resistance. Excellent injection molding can be employed.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の燃料電池用セパレータ用組成物を得るには、先ず、熱硬化性樹脂と、導電性フィラーとを、重量比で15:85〜60:40、好ましくは20:80〜50:50、更に好ましくは25:75〜40:60となるように秤量する。熱硬化性樹脂の比率が前記値よりも高い場合は導電性が低くなり、導電性フィラーの比率が前記値よりも高い場合は強度が低くなり、成形性も悪くなる。   In order to obtain the composition for a fuel cell separator of the present invention, first, a thermosetting resin and a conductive filler are mixed in a weight ratio of 15:85 to 60:40, preferably 20:80 to 50:50, More preferably, it is weighed so as to be 25:75 to 40:60. When the ratio of the thermosetting resin is higher than the above value, the conductivity is low, and when the ratio of the conductive filler is higher than the above value, the strength is low and the moldability is also deteriorated.

熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、フラン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。   Examples of the thermosetting resin include an epoxy resin, a phenol resin, a furan resin, an unsaturated polyester resin, a polyimide resin, and the like. These can be used alone or in combination.

ここで、エポキシ樹脂とは、多官能性エポキシ化合物と硬化剤との反応で形成される構造体、並びに該構造体を与えるエポキシ化合物及び硬化剤すべてを含包する。以後、反応前のエポキシ化合物をエポキシ樹脂前駆体、反応により生じた構造体をエポキシ化合物と言うことがある。また、エポキシ樹脂量は、エポキシ硬化物の質量に等しい。   Here, the epoxy resin includes a structure formed by a reaction between a polyfunctional epoxy compound and a curing agent, and all of the epoxy compound and the curing agent that give the structure. Hereinafter, the epoxy compound before the reaction may be referred to as an epoxy resin precursor, and the structure produced by the reaction may be referred to as an epoxy compound. The amount of epoxy resin is equal to the mass of the epoxy cured product.

エポキシ樹脂前駆体としては、種々の公知の化合物を使用することができる。例えば、ビスフェノールAジグリシジルエーテル型、ビスフェノールFジグリシジルエーテル型、ビスフェノールSジグリシジルエーテル型、ビスフェノールADジグリシジルエーテル型、レゾルシノールジグリシジルエーテル型等の2官能性エポキシ化合物;フェノールノボラック型、クレゾールノボラック型等の多官能性エポキシ化合物;更には、エポキシ化大豆油のような線状脂肪族エポキシ化合物、環式脂肪族エポキシ化合物、複素環式エポキシ化合物、グリシジルエステル系エポキシ化合物、グリシジルアミン系エポキシ化合物等が挙げられるが、これらに限定されない。ハロゲン等の置換基を有する化合物、芳香環が水素化された化合物をも使用することができる。また、そのエポキシ当量、分子量、エポキシ基数等にも、特に制限はない。しかしながら、エポキシ樹脂前駆体として、エポキシ当量が約400以上、特に約700以上のエポキシ化合物を主に使用すると、可使時間を長くすることができる。また、これらの化合物は、常温で固体であるため、粉体成形を行う場合には取り扱いが容易となる。複数のエポキシ化合物を併用することも可能である。例えばエポキシ当量200程度の、網目密度の高い硬化物を与えるエポキシ樹脂前駆体を、エポキシ当量900程度の、可使時間の長い前駆体を混入させ、粉体として、あるいは可使時間のやや長い液状物として取り扱うことができる。   Various known compounds can be used as the epoxy resin precursor. For example, bifunctional epoxy compounds such as bisphenol A diglycidyl ether type, bisphenol F diglycidyl ether type, bisphenol S diglycidyl ether type, bisphenol AD diglycidyl ether type, resorcinol diglycidyl ether type; phenol novolac type, cresol novolac type Polyfunctional epoxy compounds such as: linear aliphatic epoxy compounds such as epoxidized soybean oil, cyclic aliphatic epoxy compounds, heterocyclic epoxy compounds, glycidyl ester epoxy compounds, glycidyl amine epoxy compounds, etc. However, it is not limited to these. A compound having a substituent such as halogen or a compound in which an aromatic ring is hydrogenated can also be used. Moreover, there is no restriction | limiting in particular also in the epoxy equivalent, molecular weight, the number of epoxy groups. However, when an epoxy compound having an epoxy equivalent of about 400 or more, particularly about 700 or more is mainly used as the epoxy resin precursor, the pot life can be extended. Moreover, since these compounds are solid at normal temperature, handling becomes easy when performing powder molding. It is also possible to use a plurality of epoxy compounds in combination. For example, an epoxy resin precursor that gives a cured product having a high network density with an epoxy equivalent of about 200 is mixed with a precursor with an epoxy equivalent of about 900 that has a long usable time, and is used as a powder or a liquid with a slightly long usable time. It can be handled as a thing.

これらエポキシ樹脂前駆体は、硬化剤と反応することによって、エポキシ硬化物を生成する。硬化物も各種公知の化合物を使用することができる。例えばジメチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、メンセンジアミン、イソホロンジアミン等の脂肪族、脂環族、芳香族のポリアミン又はその炭酸塩;無水フタル酸、メチルテトラヒドロ無水フタル酸、無水トリメリット酸等の酸無水物;フェノールノボラックのようなポリフェノール;ポリメルカプタン;トリス(ジメチルアミノメチル)フェノール、イミダゾール、エチルメチルイミダゾール等のアニオン重合触媒;BF3やその錯体のようなカチオン重合触媒;更には熱分解や光分解によって上記化合物を生成する潜在性硬化剤等が挙げられるが、これらに限定されない。複数の硬化剤を併用することもできる。 These epoxy resin precursors react with a curing agent to produce an epoxy cured product. Various known compounds can also be used for the cured product. For example, aliphatic, alicyclic and aromatic polyamines such as dimethylenetriamine, triethylenetetramine, tetraethylenepentamine, mensendiamine, isophoronediamine or carbonates thereof; phthalic anhydride, methyltetrahydrophthalic anhydride, trihydric anhydride Acid anhydrides such as merit acid; polyphenols such as phenol novolac; polymercaptan; anionic polymerization catalysts such as tris (dimethylaminomethyl) phenol, imidazole, ethylmethylimidazole; cationic polymerization catalysts such as BF 3 and its complexes; Includes, but is not limited to, a latent curing agent that generates the above compound by thermal decomposition or photolysis. A plurality of curing agents can be used in combination.

また、ポリイミドとは、分子内にイミド基((−CO−)2N−)を有するポリマーの総てを包含する。例としてポリアミドイミド、ポリエーテルイミド等の熱可塑性ポリイミド;(全)芳香族ポリイミド等の非熱可塑性ポリイミド;熱硬化性ポリイミド、例えばビスマレイミド型ポリイミド、アリルナジイミド等のナジック酸型ポリイミド、アセチレン型ポリイミド等が挙げられるが、これらに限定されない。複数のポリイミドを併用することもできる。中でも熱硬化性ポリイミドの使用が特に好ましい。熱硬化性ポリイミドは、熱可塑性ポリイミドや非熱可塑性(芳香族)ポリイミドに比べ、加工が容易であるという利点を有する。高温特性は非熱可塑性ポリイミドと比べれば劣るものの、各種有機ポリマーの内では極めて良好な部類である。しかも硬化の際にボイドやクラックをほとんど発生しない。 Polyimide includes all polymers having an imide group ((—CO—) 2 N—) in the molecule. Examples include thermoplastic polyimide such as polyamideimide and polyetherimide; non-thermoplastic polyimide such as (all) aromatic polyimide; thermosetting polyimide such as nadic acid type polyimide such as bismaleimide polyimide and allyl nadiimide, acetylene type Although polyimide etc. are mentioned, it is not limited to these. A plurality of polyimides can be used in combination. Of these, the use of thermosetting polyimide is particularly preferred. Thermosetting polyimide has the advantage that it is easier to process than thermoplastic polyimide or non-thermoplastic (aromatic) polyimide. Although the high temperature characteristics are inferior to those of non-thermoplastic polyimides, it is a very good class among various organic polymers. Moreover, almost no voids or cracks occur during curing.

一方、導電性フィラーは、膨張黒鉛を必須成分として含む。導電性フィラーの全てが膨張黒鉛であっても良い。この膨張黒鉛は、黒鉛結晶構造の層間を拡張処理したもので、極めて嵩高いものとなっている。膨張黒鉛としては、好ましくは嵩比重が0.3程度以下、より好ましくは0.1程度以下、特に好ましくは0.05程度以下のものを使用する。導電性フィラー中の膨張黒鉛の割合は10〜100重量%であり、好ましくは60〜100重量%、更に好ましくは70〜100重量%である。膨張黒鉛の比率が前記値よりも低い場合は、導電性及び強度が低下する。   On the other hand, the conductive filler contains expanded graphite as an essential component. All of the conductive filler may be expanded graphite. This expanded graphite is obtained by expanding the interlayer of the graphite crystal structure and is extremely bulky. The expanded graphite preferably has a bulk specific gravity of about 0.3 or less, more preferably about 0.1 or less, and particularly preferably about 0.05 or less. The proportion of expanded graphite in the conductive filler is 10 to 100% by weight, preferably 60 to 100% by weight, and more preferably 70 to 100% by weight. When the ratio of expanded graphite is lower than the above value, conductivity and strength are lowered.

併用できる導電性フィラーには制限がないが、例えば人造黒鉛、カーボンブラック等が挙げられ、それぞれ単独で、あるいはこれらを混合して用いることができる。   Although there is no restriction | limiting in the conductive filler which can be used together, For example, artificial graphite, carbon black, etc. are mentioned, Each can be used individually or in mixture.

また、補強のために補強材を配合してもよい。補強材として炭素繊維が好ましく、例えばPAN系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維等をそれぞれ単独で、あるいはこれらを混合して用いることができる。炭素繊維を添加することにより燃料電池用セパレータの強度、特に耐衝撃性を改善することができ、また導電性や熱膨張に殆ど影響を与えずに強度を改善することができる。   Moreover, you may mix | blend a reinforcing material for reinforcement. Carbon fibers are preferable as the reinforcing material, and for example, PAN-based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers and the like can be used alone or in combination. By adding carbon fiber, the strength of the fuel cell separator, particularly impact resistance, can be improved, and the strength can be improved with little influence on conductivity and thermal expansion.

更に、必要に応じて、カルナバワックスやステアリン酸などの滑剤を適量添加してもよい。これら滑剤を添加することにより、得られる燃料電池用セパレータ用組成物を用いて燃料電池用セパレータを成形する際に、金型などへの貼りつきを防止することができる。また、導電性を低下させない範囲で、ガラス繊維、シリカ、タルク、クレー、炭酸カルシウムなどの無機充填剤や、木粉などの有機充填剤や、可塑剤などを添加することもできる。   Further, if necessary, an appropriate amount of a lubricant such as carnauba wax or stearic acid may be added. By adding these lubricants, sticking to a mold or the like can be prevented when a fuel cell separator is molded using the obtained fuel cell separator composition. In addition, inorganic fillers such as glass fiber, silica, talc, clay, and calcium carbonate, organic fillers such as wood powder, plasticizers, and the like can be added as long as the conductivity is not lowered.

上記の各成分は、熱硬化性樹脂の溶融温度以上で、かつ完全硬化をしない温度で、導電性フィラーを粉砕可能なせん断力を加えながら混練される。用いる混練機としては、熱硬化性樹脂を前記の温度に加熱する機構を有し、かつ、混練に際して十分なせん断力を発生して導電性フィラーを粉砕できるものであれば特に制限されないが、単軸押出機、二軸押出機、多軸押出機に大別されるスクリュー型や、単軸ニーダー、二軸ニーダーに大別されるロータ型などが挙げられ、せん断力を加えるために加圧状態で混練する。このとき、好適には0.1kg/cm2以上のせん断応力が得られるように、加圧を調整する。 Each of the above components is kneaded at a temperature not lower than the melting temperature of the thermosetting resin and not completely cured while applying a shear force capable of pulverizing the conductive filler. The kneading machine to be used is not particularly limited as long as it has a mechanism for heating the thermosetting resin to the above temperature and can generate a sufficient shearing force during kneading to pulverize the conductive filler. There are screw types roughly divided into a screw extruder, twin screw extruder, and multi-screw extruder, and rotor types roughly classified as a single screw kneader and a twin screw kneader. Knead. At this time, the pressure is preferably adjusted so that a shear stress of 0.1 kg / cm 2 or more is obtained.

せん断力を加えながら溶融混練することにより、導電性フィラーが破砕されて微細物となり、微細な導電性フィラーと溶融状態の熱硬化性樹脂とが混練される結果、導電性フィラーと熱硬化性樹脂とが極めて均一に混合され、流動性に優れた組成物が得られる。また、導電性からは導電性フィラーが微細で、高充填である方が好ましいが、当初から微細な導電性フィラーを用いて溶融混練すると、導電性フィラーが凝集するなどして均質な混練物を得るのが困難である。しかし、本発明の方法によれば、溶融混練中に導電性フィラーが破砕されて、自然に微細物になるため、均質な混練物が容易に、短時間で得られる。   By conducting melt kneading while applying a shearing force, the conductive filler is crushed into a fine product, and the fine conductive filler and the molten thermosetting resin are kneaded. As a result, the conductive filler and the thermosetting resin are mixed. Are mixed evenly and a composition having excellent fluidity is obtained. From the viewpoint of conductivity, it is preferable that the conductive filler is fine and highly filled. However, if the conductive filler is melt-kneaded from the beginning using a fine conductive filler, the conductive filler aggregates to form a homogeneous kneaded product. Difficult to get. However, according to the method of the present invention, the conductive filler is crushed during melt-kneading and naturally becomes a fine product, so that a homogeneous kneaded product can be obtained easily and in a short time.

このようにして得られる本発明の燃料電池用セパレータ用組成物は、後述する実施例にも示すように、均質で、かつ、流動性に優れたものとなる。従って、本発明の燃料電池用セパレータ用組成物を用いることにより、生産性に優れる射出成形により、導電性や機械的強度に優れ、寸法精度が高く高品質の燃料電池用セパレータが得られる。本発明は、このような燃料電池用セパレータ用組成物及び燃料電池用セパレータを包含する。   The composition for a fuel cell separator of the present invention thus obtained is homogeneous and excellent in fluidity, as shown in the examples described later. Therefore, by using the fuel cell separator composition of the present invention, high-quality fuel cell separators with excellent electrical conductivity and mechanical strength, high dimensional accuracy, and high productivity can be obtained by injection molding with excellent productivity. The present invention includes such a fuel cell separator composition and a fuel cell separator.

尚、燃料電池用セパレータ組成物から燃料電池用セパレータを製造する際の成形条件は従来と同様で構わず、組成に応じて適宜選択できる。また、燃料電池用セパレータの形状などにも制限がなく、例えば図1に示した形状とすることもできる。   The molding conditions for producing the fuel cell separator from the fuel cell separator composition may be the same as those in the prior art, and can be appropriately selected according to the composition. Moreover, there is no restriction | limiting also in the shape of the separator for fuel cells, For example, it can also be set as the shape shown in FIG.

以下に、実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

(サンプルの調製)
実施例1、2については、表1に示す成分を加圧ニーダーに投入し、90℃で0.1MPaの加圧下で溶融混練して組成物を調製した。また、比較例1、2については、表1に示す成分をメタノール溶媒に分散させ、室温にて湿式混練して組成物を調製した。
(Sample preparation)
For Examples 1 and 2, the components shown in Table 1 were charged into a pressure kneader and melt kneaded at 90 ° C. under a pressure of 0.1 MPa to prepare compositions. Moreover, about the comparative examples 1 and 2, the component shown in Table 1 was disperse | distributed to the methanol solvent, and the composition was prepared by wet-kneading at room temperature.

Figure 2005276771
Figure 2005276771

*1:群栄化学社製、「レヂトップPSM−2222」
*2:カーボンブラック(電気化学工業社製、「デンカブラック粒状」)
* 1: “Resitop PSM-2222” manufactured by Gunei Chemical Co., Ltd.
* 2: Carbon black (manufactured by Denki Kagaku Kogyo, “Denka Black Granular”)

(サンプルの物性の評価)
実施例1、2及び比較例1、2の各サンプルの流動性を下記方法で評価した。その結果を表2、並びに図2にグラフ化して示す。また、同サンプルの分散性を下記方法で評価した。その結果を表3、並びに図3にグラフ化して示す。
(Evaluation of sample physical properties)
The fluidity of each sample of Examples 1 and 2 and Comparative Examples 1 and 2 was evaluated by the following method. The results are shown in graph form in Table 2 and FIG. Moreover, the dispersibility of the sample was evaluated by the following method. The results are shown in graph form in Table 3 and FIG.

〈I〉流動性の評価
JIS K6911・熱硬化性プラスチック一般試験方法・「押出式流れ、フェノール樹脂の流れの良いもの」に準じる。流出量が多いほど、流動性が高いことを示す。
具体的試験条件
使用金型:JIS K6911で定められた押出式流れ試験用金型
金型温度:160±3℃
充填量:40g
圧力:100kgf/cm2
評価:流出時間(秒)−加圧開始から流出の止まるまでの時間
流出量(g)−金型から押出された試料の質量
<I> Evaluation of fluidity Conforms to JIS K6911, thermosetting plastic general test method, “extruded flow, good flow of phenolic resin”. The more spillage, the higher the fluidity.
Specific test conditions Mold used: Extrusion flow test mold defined in JIS K6911 Mold temperature: 160 ± 3 ° C
Filling amount: 40g
Pressure: 100 kgf / cm 2
Evaluation: Outflow time (seconds)-Time from start of pressurization to stop of outflow
Outflow rate (g)-mass of the sample extruded from the mold

Figure 2005276771
Figure 2005276771

(II)分散性の評価
下記手順により、樹脂分だけが焼失する温度で試料を加熱することで、試料に含まれる樹脂量を測定し、そのバラツキを分散性とする。レンジが小さい程、分散性が良い(樹脂が均一に混ざっている)ことを示す。
(1) 試料を取り出し、ルツボに入れる。
(2) 上記(1)を繰り返し、試料が入ったルツボを5個準備する。
(3) 試料入りルツボを樹脂成分だけが焼失する温度で加熱する。
(4) 加熱前後の試料入りルツボの重量を測定する。
(5) 加熱前後の重量変化から樹脂減少量を算出する。
(6) 5個の試料について測定を行い、樹脂減少率の最大と最小値の差(レンジ)を分散 性とする。
(II) Evaluation of dispersibility By the following procedure, the amount of resin contained in the sample is measured by heating the sample at a temperature at which only the resin component is burned off, and the variation is regarded as dispersibility. The smaller the range, the better the dispersibility (the resin is uniformly mixed).
(1) Remove the sample and place it in the crucible.
(2) Repeat (1) above to prepare five crucibles containing samples.
(3) Heat the crucible containing the sample at a temperature at which only the resin component burns away.
(4) Measure the weight of the sample crucible before and after heating.
(5) Calculate the resin decrease from the weight change before and after heating.
(6) Measure 5 samples and make the dispersibility the difference (range) between the maximum and minimum resin reduction rate.

Figure 2005276771
Figure 2005276771

上記の各評価から、本発明に従いせん断力を加えながら溶融混練することにより、流動性に優れ、かつ、均質な組成物が得られることがわかる。   From the above evaluations, it can be seen that a homogeneous composition having excellent fluidity can be obtained by melt-kneading while applying a shearing force according to the present invention.

燃料電池用セパレータの一例を示す概略図である。It is the schematic which shows an example of the separator for fuel cells. 実施例及び比較例で得たサンプルの流動性(流出量)を示すグラフである。It is a graph which shows the fluidity | liquidity (outflow amount) of the sample obtained by the Example and the comparative example. 実施例及び比較例で得たサンプルの分散性(樹脂減少率の最大と最小値の差(レンジ))を示すグラフである。It is a graph which shows the dispersibility (the difference (range) of the maximum and minimum values of resin reduction rate) of the sample obtained by the Example and the comparative example.

符号の説明Explanation of symbols

5 燃料電池用セパレータ
6 平板部
7 隔壁
8 チャネル
5 Fuel Cell Separator 6 Flat Plate 7 Bulkhead 8 Channel

Claims (5)

燃料電池用セパレータに成形される組成物の製造方法であって、熱硬化性樹脂粉末と、膨張黒鉛を10〜100重量%の割合で含む導電性フィラーとを、重量比で15:85〜60:40の配合比で含む原料を、熱硬化性樹脂の溶融温度以上でかつ完全硬化をしない温度にて、導電性フィラーを粉砕可能なせん断力を加えながら混練することを特徴とする燃料電池用セパレータ用組成物の製造方法。   A method for producing a composition formed into a separator for a fuel cell, comprising a thermosetting resin powder and a conductive filler containing expanded graphite in a proportion of 10 to 100% by weight in a weight ratio of 15: 85-60. For a fuel cell, characterized by kneading a raw material containing a blending ratio of 40 at a temperature not lower than the melting temperature of the thermosetting resin and not completely cured while applying a shearing force capable of pulverizing the conductive filler. The manufacturing method of the composition for separators. 熱硬化性樹脂が、フェノール樹脂又はエポキシ樹脂であることを特徴とする請求項1に記載の燃料電池用セパレータ用組成物の製造方法。   The method for producing a composition for a fuel cell separator according to claim 1, wherein the thermosetting resin is a phenol resin or an epoxy resin. せん断応力が0.1kg/cm2以上であることを特徴とする請求項1または2記載の燃料電池用セパレータ用組成物の製造方法。 The method for producing a composition for a fuel cell separator according to claim 1 or 2, wherein the shear stress is 0.1 kg / cm 2 or more. 請求項1〜3の何れか1項に記載の方法により得られたことを特徴とする燃料電池用セパレータ用組成物。   A composition for a fuel cell separator, obtained by the method according to claim 1. 請求項4に記載の燃料電池用セパレータ用組成物を成形してなることを特徴とする燃料電池用セパレータ。   A fuel cell separator obtained by molding the composition for a fuel cell separator according to claim 4.
JP2004092217A 2004-03-26 2004-03-26 Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell Pending JP2005276771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092217A JP2005276771A (en) 2004-03-26 2004-03-26 Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092217A JP2005276771A (en) 2004-03-26 2004-03-26 Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2005276771A true JP2005276771A (en) 2005-10-06

Family

ID=35176183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092217A Pending JP2005276771A (en) 2004-03-26 2004-03-26 Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2005276771A (en)

Similar Documents

Publication Publication Date Title
Boyaci San et al. A review of thermoplastic composites for bipolar plate applications
US7695806B2 (en) Moulding composition for producing bipolar plates
EP1657269B1 (en) Conductive epoxy resin composition and method for producing the same
JP3469491B2 (en) Resin composition for fuel cell separator and fuel cell separator
US7381493B2 (en) Separator for fuel cell and process for producing the same
KR101398918B1 (en) Separator for fuel cell, method for manufacturing the same and fuel cell comprising the same
JP2002201257A (en) Electroconductive epoxy resin molding material
JP4780257B2 (en) Fuel cell separator and manufacturing method thereof
JP4660082B2 (en) Fuel cell separator
Kimura et al. Performance of graphite filled composite based on benzoxazine resin
JP2005276771A (en) Manufacturing method of composition for fuel cell separator, composition for fuel cell separator, and separator for fuel cell
KR100533104B1 (en) Mixed powder material for separators of fuel cell
JP2005108591A (en) Molding material for fuel cell separator
JP2006206790A (en) Conductive epoxy resin composition and method for producing the same
JP2005108590A (en) Method of manufacturing fuel cell separator
JP2008291132A (en) Resin composition for fuel cell separator and fuel cell separator
JP2001216977A (en) Separator material for fuel cell
JP2006260956A (en) Fuel cell separator
JP4989880B2 (en) Fuel cell separator, resin composition therefor and method for producing the same
US20090142645A1 (en) Bipolar plate, method for producing bipolar plate and PEM fuel cell
JP4810142B2 (en) Manufacturing method of fuel cell separator
JP2006199812A (en) Conductive epoxy resin composition and separator for fuel cell
KR101399352B1 (en) Separator for fuel cell, method for manufacturing the same and fuel cell comprising the same
JP2006338908A (en) Separator for fuel cell
JP2005339899A (en) Resin composite for fuel cell separator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327