JP2005276697A - Gas pump for fuel cell system - Google Patents

Gas pump for fuel cell system Download PDF

Info

Publication number
JP2005276697A
JP2005276697A JP2004090096A JP2004090096A JP2005276697A JP 2005276697 A JP2005276697 A JP 2005276697A JP 2004090096 A JP2004090096 A JP 2004090096A JP 2004090096 A JP2004090096 A JP 2004090096A JP 2005276697 A JP2005276697 A JP 2005276697A
Authority
JP
Japan
Prior art keywords
pump
gas
chamber
discharge
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004090096A
Other languages
Japanese (ja)
Other versions
JP4830261B2 (en
Inventor
Kazuhiro Osada
和浩 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2004090096A priority Critical patent/JP4830261B2/en
Publication of JP2005276697A publication Critical patent/JP2005276697A/en
Application granted granted Critical
Publication of JP4830261B2 publication Critical patent/JP4830261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas pump making stable power generation possible by efficiently supplying gas of a flow rate of small pulsation in a fuel cell system. <P>SOLUTION: Opposite direction magnetic force alternately acts to a permanent magnet 28 by an electromagnet 29 to reciprocate a driving rod 27, a moving body 25 fixed to both ends of the driving rod is moved in front and the rear to alternately increase and decrease the volume of a pair of pump chambers 24. When the volume of one pump chamber is increased and gas flows in the pump chamber through an admission valve from a suction passage, the volume of the other pump chamber is decreased, gas is discharged to a discharge passage 36, through a delivery valve 33, and since this action is continuously repeated, gas is continuously supplied from a pair of pump chambers to the discharge passage, and joined in the discharge passage to relieve flow rate variation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、供給された改質用燃料ガスおよび水蒸気から改質ガスを生成して該改質ガスを燃料電池に供給する燃料電池システムに用いるガスポンプに関する。   The present invention relates to a gas pump used in a fuel cell system that generates a reformed gas from supplied reforming fuel gas and water vapor and supplies the reformed gas to a fuel cell.

燃料電池システムでは、ガスポンプで流量制御して供給された改質用燃料ガス(例えば天然ガス、LPガスなどの炭化水素系の燃料ガス)と、純水を流量制御して水蒸発器に供給して生成した水蒸気とを混合して改質部に供給し改質ガスを生成している。そして、該改質ガスから一酸化炭素を低減して、いわゆる水素リッチな改質ガスを生成し、この改質ガスを燃料電池に供給している。燃料電池は供給された改質ガス中の水素と空気中の酸素との化学反応によって発電する。   In a fuel cell system, a reforming fuel gas (for example, a hydrocarbon fuel gas such as natural gas or LP gas) supplied by controlling the flow rate with a gas pump and pure water are flow-controlled and supplied to a water evaporator. The generated steam is mixed and supplied to the reforming section to generate reformed gas. Then, carbon monoxide is reduced from the reformed gas to generate a so-called hydrogen-rich reformed gas, and this reformed gas is supplied to the fuel cell. The fuel cell generates power by a chemical reaction between hydrogen in the supplied reformed gas and oxygen in the air.

特許文献1には、電磁石による吸引力と復帰バネによる弾発力によって往復運動されるピストンをシリンダに嵌挿してシリンダの前部にポンプ室を画成し、ピストンの後退によりポンプ室に吸入弁を通ってガスを吸入し、ピストンの前進によりポンプ室から吐出弁を通ってガスを吐出するガスポンプが開示されている。
特開2003−021061号公報(第2頁、図5) 特開平8−222253号公報 特開2002−303143号公報
In Patent Document 1, a piston that is reciprocated by an attractive force of an electromagnet and a resilient force of a return spring is fitted into a cylinder to define a pump chamber at the front of the cylinder, and a suction valve is provided in the pump chamber by retreating the piston. There is disclosed a gas pump that sucks gas through and discharges gas from a pump chamber through a discharge valve by advance of a piston.
JP 2003-021061 A (second page, FIG. 5) JP-A-8-222253 JP 2002-303143 A

上述したガスポンプを、例えば燃料電池用システムの改質装置に改質用燃料ガスを供給するガスポンプとして使用した場合、ピストンが前進するときガスが吐出されるが、ピストンが後退するときはガスが吐出されないので、改質装置に供給される改質用燃料ガスの流量が、図6に示すように、間欠的になって大きく変化し均一に流れないので、改質ガスの生成量が変化し、燃料電池に供給される水素量が変化し効率よく発電することができなかった。さらに、ピストンの前進時にのみガスを間欠的に吐出するので、ポンプ効率が悪く消費電力が大きくなる不具合があった。    When the gas pump described above is used as, for example, a gas pump that supplies reforming fuel gas to a reforming device of a fuel cell system, gas is discharged when the piston moves forward, but gas is discharged when the piston moves backward. As shown in FIG. 6, the flow rate of the reforming fuel gas supplied to the reforming device is intermittently greatly changed and does not flow uniformly, so that the amount of reformed gas generated changes, The amount of hydrogen supplied to the fuel cell changed, and it was not possible to generate power efficiently. Furthermore, since gas is intermittently discharged only when the piston moves forward, there is a problem that pump efficiency is poor and power consumption is increased.

本発明は、上述した問題を解消するためになされたもので、燃料電池システムにおいて脈動の少ない流量のガスを効率的に供給し、安定した発電を可能にするガスポンプを提供することである。    The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a gas pump that efficiently supplies a gas with a small pulsation in a fuel cell system and enables stable power generation.

上記の課題を解決するため、請求項1に係る発明の構成上の特徴は、水蒸気と改質用燃料ガスとから改質ガスを生成し、該改質ガスを燃料電池に供給する燃料電池システムに用いるガスポンプにおいて、ハウジングに2つ以上のポンプ室を形成し、かつ前記ポンプ室の容積を増減させる可動体を前記ハウジングに収容し、夫々の前記ポンプ室に個別に対応して吸入弁室および吐出弁室を設け、各吸入弁室と対応するポンプ室との間に吸入弁室からポンプ室に向かう流れのみを許容する吸入弁を設け、各ポンプ室と対応する吐出弁室との間にポンプ室から吐出弁室に向かう流れのみを許容する吐出弁を設け、各吸入弁室を連通する吸入路および各吐出弁室を連通する吐出路を形成し、前記吸入路を前記ハウジングに穿設した吸入ポートに連通し、前記吐出路を前記ハウジングに穿設した吐出ポートに連通し、前記各可動体を互いに所定の位相差で周期的に往復動させることである。   In order to solve the above problems, the structural feature of the invention according to claim 1 is that a fuel cell system that generates reformed gas from water vapor and reforming fuel gas and supplies the reformed gas to the fuel cell. In the gas pump used in the present invention, a movable body that forms two or more pump chambers in the housing and increases or decreases the volume of the pump chamber is housed in the housing, and a suction valve chamber and a pump valve corresponding to each of the pump chambers individually. A discharge valve chamber is provided, a suction valve that allows only the flow from the suction valve chamber to the pump chamber is provided between each suction valve chamber and the corresponding pump chamber, and between each pump chamber and the corresponding discharge valve chamber. A discharge valve that allows only the flow from the pump chamber to the discharge valve chamber is provided, a suction path that communicates with each suction valve chamber and a discharge path that communicates with each discharge valve chamber are formed, and the suction path is drilled in the housing Communication with the suction port Wherein the discharge passage communicates with the discharge port which is formed in said housing, said is to periodically reciprocate with a predetermined phase difference with each other to the movable member.

請求項2に係る発明の構成上の特徴は、請求項1において、前記ポンプ室を前記ハウジングの軸線方向両端部に夫々形成し、前記可動体は各ポンプ室の内側壁をなしてハウジングの軸線方向に移動可能とし、前記吸入弁室および吐出弁室を前記ハウジングの両端部に夫々設け、前記吸入路および前記吐出路をハウジングに軸線方向に形成し、前記各可動体を互いに所定の位相差で周期的に往復動させるために、前記各可動体に両端を夫々連結された駆動ロッドを前記各ポンプ室の間で前記ハウジングに形成された中央孔内に設け、該駆動ロッドの中央部分に永久磁石を両極を軸線方向に整列して設け、該永久磁石に反対向きの磁力を交互に作用させて駆動ロッドを軸線方向に往復動させる電磁石を前記中央孔に固定したことである。   The structural feature of the invention according to claim 2 is that, in claim 1, the pump chambers are formed at both ends in the axial direction of the housing, and the movable body forms an inner wall of each pump chamber and the axis of the housing. The suction valve chamber and the discharge valve chamber are provided at both ends of the housing, the suction passage and the discharge passage are formed in the housing in the axial direction, and the movable bodies are mutually connected with a predetermined phase difference. In order to reciprocate periodically, a drive rod connected to each movable body at both ends is provided in a central hole formed in the housing between the pump chambers. Permanent magnets are provided with both poles aligned in the axial direction, and an electromagnet for reciprocating the drive rod in the axial direction by alternately applying a magnetic force in the opposite direction to the permanent magnet is fixed to the central hole.

請求項3に係る発明の構成上の特徴は、請求項1または2において、前記各ポンプ室から吐出されるガス圧の脈動を吸収するために、前記吐出路の容積を大きくして吐出滞留室としたことである。   According to a third aspect of the present invention, in the first or second aspect of the invention, in order to absorb the pulsation of the gas pressure discharged from each pump chamber, the volume of the discharge path is increased and the discharge retention chamber It is that.

請求項4に係る発明の構成上の特徴は、請求項1乃至3のいずれか1項において、前記吐出ポートは前記吐出路の中央部でハウジングに吐出路の軸線方向と直角方向に穿設されるとともに、各ポンプ室から吐出されるガスに対して絞りとして作用することである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the discharge port is formed in the housing at a central portion of the discharge path in a direction perpendicular to the axial direction of the discharge path. In addition, it acts as a throttle for the gas discharged from each pump chamber.

請求項5に係る発明の構成上の特徴は、各吐出弁室から吐出ポートに圧力が直接伝播することを防止するために、一対の遮蔽板を前記吐出ポートの入口部分の両側に夫々設けたことである。   The structural feature of the invention according to claim 5 is that a pair of shielding plates are provided on both sides of the inlet portion of the discharge port in order to prevent pressure from directly propagating from each discharge valve chamber to the discharge port. That is.

上記のように構成した請求項1に係る発明においては、各可動体は互いに所定の位相差で周期的に往復動され、各ポンプ室の容積が互いに所定の位相差で増減されるので、一のポンプ室の容積が増大してガスが吸入路から吸入弁を通ってポンプ室に流入されるとき、他のポンプ室の容積が減少してガスが吐出弁を通って吐出路に吐出されることが連続的に繰返され、吐出路には各ポンプ室から連続的にガスが供給され、吐出路で合流して流量変動が緩和される。これにより、例えば改質用燃料ガスを本ガスポンプにより改質部に供給すると、改質用燃料ガスの流量が連続的になって脈動が抑制され、改質ガスを連続的に生成することができ、燃料電池に供給される水素量が安定し効率よく発電することができる。また、吐出されるガスの流量の脈動が抑えられるので、流量を検出する場合、検出精度が向上する。   In the invention according to claim 1 configured as described above, the movable bodies are periodically reciprocated with a predetermined phase difference, and the volumes of the pump chambers are increased or decreased with a predetermined phase difference. When the volume of the pump chamber increases and gas flows into the pump chamber from the suction path through the suction valve, the volume of the other pump chamber decreases and the gas is discharged to the discharge path through the discharge valve This is repeated continuously, and gas is continuously supplied from the pump chambers to the discharge passages, and merged in the discharge passages to reduce fluctuations in flow rate. Thus, for example, when the reforming fuel gas is supplied to the reforming unit by the gas pump, the flow rate of the reforming fuel gas becomes continuous, the pulsation is suppressed, and the reformed gas can be generated continuously. In addition, the amount of hydrogen supplied to the fuel cell can be stabilized and power can be generated efficiently. Further, since the pulsation of the flow rate of the discharged gas is suppressed, the detection accuracy is improved when detecting the flow rate.

上記のように構成した請求項2に係る発明においては、反対向きの磁力が電磁石により永久磁石に交互に作用されて駆動ロッドが往復動され、駆動ロッドの両端に固定された可動体が往復動されて各ポンプ室の容積が交互に増減される。一方のポンプ室の容積が増大してガスが吸入路から吸入弁を通ってポンプ室に流入されるとき、他方のポンプ室の容積が減少してガスが吐出弁を通って吐出路に吐出されることが連続的に繰返されるので、吐出路には各ポンプ室から連続的にガスが供給され、吐出路で合流して流量変動が緩和される。これにより、請求項1に係る発明と同様の効果を奏するとともに、作動ロッドの往復動いずれのときにも、ガスを吐出するので、ポンプ効率を向上して消費電力を低減することができる。    In the invention according to claim 2 configured as described above, the magnetic force in the opposite direction is alternately applied to the permanent magnet by the electromagnet, so that the drive rod is reciprocated, and the movable body fixed to both ends of the drive rod is reciprocated. Thus, the volume of each pump chamber is increased or decreased alternately. When the volume of one pump chamber increases and gas flows into the pump chamber from the suction passage through the suction valve, the volume of the other pump chamber decreases and the gas is discharged to the discharge passage through the discharge valve. Therefore, the gas is continuously supplied from the pump chambers to the discharge passage, and merged in the discharge passage to reduce the flow rate fluctuation. Thus, the same effect as that of the invention according to claim 1 can be obtained, and the gas is discharged during any reciprocation of the operating rod, so that the pump efficiency can be improved and the power consumption can be reduced.

上記のように構成した請求項3に係る発明においては、各ポンプ室から吐出されたガスが、一旦吐出滞留室に滞留されるので、各ポンプ室から吐出されたガスの流量の脈動を簡単な構成で効率的に吸収することができる。   In the invention according to claim 3 configured as described above, since the gas discharged from each pump chamber is once retained in the discharge retention chamber, the pulsation of the flow rate of the gas discharged from each pump chamber can be simplified. It can absorb efficiently by the configuration.

上記のように構成した請求項4に係る発明においては、吐出ポートが吐出路の中央部でハウジングに吐出路の軸線方向と直角方向に穿設されているので、各吐出弁室からのガス圧が吐出ポートから直接外部に伝達されることが抑制される。さらに、吐出ポートは一対のポンプ室から吐出されるガスに対して絞りとして作用するので、吐出滞留室から吐出ポートを通って送出されるガスの流量の脈動を一層抑制することができる。   In the invention according to claim 4 configured as described above, since the discharge port is formed in the housing at the central portion of the discharge path in a direction perpendicular to the axial direction of the discharge path, the gas pressure from each discharge valve chamber is Is directly transmitted to the outside from the discharge port. Furthermore, since the discharge port acts as a throttle for the gas discharged from the pair of pump chambers, it is possible to further suppress the pulsation of the flow rate of the gas sent from the discharge residence chamber through the discharge port.

上記のように構成した請求項5に係る発明においては、各吐出弁室から伝播した圧力は各遮蔽板に遮蔽され吐出ポートに直接伝播することが防止されるので、吐出ポートを通って送出されるガスの流量の脈動をさらに抑制することができる。    In the invention according to claim 5 configured as described above, since the pressure propagated from each discharge valve chamber is shielded by each shielding plate and prevented from directly propagating to the discharge port, the pressure is sent through the discharge port. The pulsation of the gas flow rate can be further suppressed.

以下、本発明に係る燃料電池システム用ガスポンプの第1の実施の形態について説明する。燃料電池システムは、図1に示すように、燃料電池11と燃料電池11に必要な水素ガスを生成して供給する改質装置12を備えている。燃料電池11の燃料極には、改質装置12から改質ガスが供給され、燃料電池11の空気極には、外部からの空気がエアポンプにより供給され、燃料電池11において改質ガス中の水素ガスと空気中の酸素ガスとが反応して発電するようになっている。   Hereinafter, a first embodiment of a gas pump for a fuel cell system according to the present invention will be described. As shown in FIG. 1, the fuel cell system includes a fuel cell 11 and a reformer 12 that generates and supplies hydrogen gas necessary for the fuel cell 11. A reformed gas is supplied from the reformer 12 to the fuel electrode of the fuel cell 11, and air from the outside is supplied to the air electrode of the fuel cell 11 by an air pump. The gas and oxygen gas in the air react to generate power.

改質装置12は、天然ガス、LPGなどの炭化水素系の改質用燃料ガスを水素ガスに改質する改質部13、水ポンプから供給された純水を蒸発させて水蒸気を生成する水蒸発器15、改質部13の下部に積層された冷却部16、冷却部16の下部に積層され改質部13で生成され冷却部16で冷却された改質ガスに含まれる一酸化炭素を除去する一酸化炭素シフト反応部(以下、COシフト部という。)17、COシフト部17に接続されCOシフト部17から送出された改質ガスに含まれる一酸化炭素をさらに除去して燃料電池11に供給する一酸化炭素選択酸化部(以下、CO浄化部という。)18から構成されている。   The reformer 12 includes a reformer 13 that reforms a hydrocarbon-based reforming fuel gas such as natural gas or LPG into hydrogen gas, and water that evaporates pure water supplied from a water pump to generate water vapor. The evaporator 15, the cooling unit 16 stacked below the reforming unit 13, the carbon monoxide contained in the reformed gas that is stacked below the cooling unit 16 and generated by the reforming unit 13 and cooled by the cooling unit 16. A carbon monoxide shift reaction unit (hereinafter referred to as a CO shift unit) 17 to be removed, and a carbon cell contained in the reformed gas sent from the CO shift unit 17 connected to the CO shift unit 17 are further removed to form a fuel cell. 11, a carbon monoxide selective oxidation unit (hereinafter referred to as a CO purification unit) 18 that is supplied to 11.

改質部13は、触媒が充填された反応室19と、反応室19の上部および外周を包囲して設けられ反応室19を加熱する加熱室20と、ガスポンプ22により送られた燃焼用燃料ガスにエアポンプにより送られた燃焼空気を混合して燃焼させ、加熱室20に高温の燃焼ガスを供給するバーナ21から構成されている。ガスポンプ22により圧送された改質用燃料ガスが水蒸発器15により生成された水蒸気と混合され、冷却部16で予加熱されて反応室19に供給され、改質用燃料ガスと水蒸気が加熱された触媒により水蒸気改質反応および一酸化炭素シフト反応して改質ガスを生成する。   The reforming unit 13 includes a reaction chamber 19 filled with a catalyst, a heating chamber 20 that surrounds the upper and outer periphery of the reaction chamber 19 and heats the reaction chamber 19, and a combustion fuel gas sent by a gas pump 22. Combustion air sent by an air pump is mixed and burned, and a burner 21 that supplies high-temperature combustion gas to the heating chamber 20 is configured. The reforming fuel gas pumped by the gas pump 22 is mixed with the steam generated by the water evaporator 15, preheated by the cooling unit 16 and supplied to the reaction chamber 19, and the reforming fuel gas and steam are heated. The reformed gas is generated by the steam reforming reaction and the carbon monoxide shift reaction by the catalyst.

図2はガスポンプ22の構成を示す図である。ガスポンプ22は、ハウジング23の軸線方向両端部に一対のポンプ室24が形成されている。各ポンプ24室の内側にはダイヤフラム25が気密的に固定され、各ポンプ室24の内側壁をなしている。各ダイヤフラム25は、ハウジング23に収容され軸線方向に移動して各ポンプ室24の容積を増減させる可動体として機能する。ハウジング23には、中央孔26が一対のポンプ室24間に形成され、中央孔26内に配置された駆動ロッド27の両端が各ダイヤフラム25の中心部に夫々気密的に連結されている。駆動ロッド27の中央部分には、永久磁石28がN極、S極を軸線方向に整列して固定されている。中央孔26内には、永久磁石28の両極に対向して一対の電磁石29が固定され、永久磁石28の両極に夫々対向する各電磁石29の磁極が同じN極又はS極に同時に交互に切替わるように各電磁石のコイルに流す電流の方向が切換え制御され、一対の電磁石29から永久磁石28に反対向きの磁力が交互に作用し、駆動ロッド27が軸線方向に往復動され、各ダイヤフラム25が180度の所定位相差で周期的に往復動される。    FIG. 2 is a diagram showing the configuration of the gas pump 22. The gas pump 22 is formed with a pair of pump chambers 24 at both axial ends of the housing 23. A diaphragm 25 is hermetically fixed inside each pump chamber 24 and forms an inner wall of each pump chamber 24. Each diaphragm 25 functions as a movable body that is accommodated in the housing 23 and moves in the axial direction to increase or decrease the volume of each pump chamber 24. A central hole 26 is formed in the housing 23 between the pair of pump chambers 24, and both ends of a drive rod 27 disposed in the central hole 26 are airtightly connected to the central portion of each diaphragm 25. A permanent magnet 28 is fixed to the central portion of the drive rod 27 with the north and south poles aligned in the axial direction. A pair of electromagnets 29 are fixed in the central hole 26 so as to face both poles of the permanent magnet 28, and the magnetic poles of the respective electromagnets 29 respectively facing both poles of the permanent magnet 28 are alternately cut to the same N pole or S pole. The direction of the current flowing through the coil of each electromagnet is controlled to be switched so that the opposite magnetic force acts alternately from the pair of electromagnets 29 to the permanent magnet 28, the drive rod 27 is reciprocated in the axial direction, and each diaphragm 25. Are reciprocated periodically with a predetermined phase difference of 180 degrees.

夫々のポンプ室41に個別に対応して吸入弁室30および吐出弁室31が各ポンプ室24の外側壁を挟んでハウジング23の両端部に形成されている。各吸入弁室30とポンプ室24との間には、吸入弁室30からポンプ室24に向かう流れのみを許容する吸入弁32が設けられ、各ポンプ室24と吐出弁室31との間には、ポンプ室24から吐出弁室31に向かう流れのみを許容する吐出弁33が設けられている。各吸入弁室30はハウジング23に軸線方向に穿設された吸入路34により連通され、吸入路34の軸線方向中央部分には、ハウジング23に軸線方向と直角方向に穿設されて外部に開口する吸入ポート35が連通している。吸入路34には吸入ポート35の開口部に対向して分流突起39が形成され、吸入ポート35から吸入されたガスは分流突起39により両側の吸入弁室30に向かってスムーズに流れの方向を変えて分流する。    Corresponding to each pump chamber 41 individually, a suction valve chamber 30 and a discharge valve chamber 31 are formed at both ends of the housing 23 across the outer wall of each pump chamber 24. Between each suction valve chamber 30 and the pump chamber 24, a suction valve 32 that allows only a flow from the suction valve chamber 30 toward the pump chamber 24 is provided, and between each pump chamber 24 and the discharge valve chamber 31. Is provided with a discharge valve 33 that allows only a flow from the pump chamber 24 toward the discharge valve chamber 31. Each suction valve chamber 30 communicates with a suction passage 34 formed in the housing 23 in the axial direction. The suction passage 34 is formed in the central portion of the suction passage 34 in the axial direction so as to be opened in the direction perpendicular to the axial direction. A suction port 35 is connected. A diversion projection 39 is formed in the intake passage 34 so as to face the opening of the intake port 35, and the gas sucked from the intake port 35 flows smoothly toward the intake valve chambers 30 on both sides by the diversion projection 39. Change and divert.

各吐出弁室31はハウジング23に軸線方向に穿設された吐出路36により連通され、吐出路36の軸線方向中央部分には、一対のポンプ室24の間の中央部でハウジング23に軸線方向と直角方向に穿設されて外部に開口する吐出ポート37が連通されている。吐出路36は、一対のポンプ室24から吐出されるガス圧の脈動を吸収するために、容積を大きく形成され吐出滞留室となっている。吐出ポート37は、一対のポンプ室24から吐出されるガスに対して絞りとして作用する断面積に形成されている。吐出滞留室34内の吐出ポート37の入口部分の両側には、各吐出弁室31から吐出ポート37に向かって軸線方向に伝播した圧力を軸線方向と直角で吐出ポート37と反対側に反射させ、圧力が吐出ポート37に直接伝播することを防止するための、一対の遮蔽板38が設けられている。    Each discharge valve chamber 31 is communicated by a discharge passage 36 formed in the housing 23 in the axial direction. The discharge passage 36 has an axial central portion in the axial direction of the housing 23 at a central portion between the pair of pump chambers 24. The discharge port 37 is formed in a direction perpendicular to the opening and opened to the outside. The discharge path 36 is formed with a large volume and serves as a discharge retention chamber in order to absorb the pulsation of the gas pressure discharged from the pair of pump chambers 24. The discharge port 37 is formed in a cross-sectional area that acts as a throttle for the gas discharged from the pair of pump chambers 24. On both sides of the inlet portion of the discharge port 37 in the discharge retention chamber 34, the pressure propagated in the axial direction from each discharge valve chamber 31 toward the discharge port 37 is reflected to the opposite side of the discharge port 37 at right angles to the axial direction. A pair of shielding plates 38 are provided to prevent the pressure from propagating directly to the discharge port 37.

次に、上記実施の形態の作動について説明する。改質部13において、燃焼用燃料ガスおよび燃焼空気がバーナ21に供給され、燃焼用燃料ガスが燃焼されて生成された燃焼ガスが加熱室20を流れて反応室19内の触媒を加熱する。ガスポンプ22から送出された改質用燃料ガスと水蒸発器15で生成された水蒸気が混合されて冷却部16に送られ、改質部13で改質された高温の改質ガスと熱交換して予加熱され、改質部13の反応室19に送られる。反応室19内では、水蒸気と改質用燃料ガスが加熱された触媒により水蒸気改質反応および一酸化炭素シフト反応して改質ガスを生成する。改質部13で生成された改質ガスはCOシフト部17およびCO浄化部18で一酸化炭素ガスを低減されて燃料電池11に供給される。    Next, the operation of the above embodiment will be described. In the reforming unit 13, combustion fuel gas and combustion air are supplied to the burner 21, and combustion gas generated by burning the combustion fuel gas flows through the heating chamber 20 to heat the catalyst in the reaction chamber 19. The reforming fuel gas sent from the gas pump 22 and the water vapor generated by the water evaporator 15 are mixed and sent to the cooling unit 16 to exchange heat with the high-temperature reformed gas reformed by the reforming unit 13. Then, it is preheated and sent to the reaction chamber 19 of the reforming section 13. In the reaction chamber 19, a reformed gas is generated by a steam reforming reaction and a carbon monoxide shift reaction using a catalyst in which steam and reforming fuel gas are heated. The reformed gas generated in the reforming unit 13 is supplied to the fuel cell 11 after the carbon monoxide gas is reduced in the CO shift unit 17 and the CO purification unit 18.

ガスポンプ22では、永久磁石28のN極、S極に夫々対向する一対の電磁石29の各対向磁極が同時にN極となり、次に同時にS極となることを交互に繰返すように、各電磁石29のコイルに通電される電流の方向が交互に切替え制御されるので、各電磁石29の対向磁極がS極になると永久磁石28はN極が対向磁極に吸引され、S極が反発されて図2の左方に移動され、反対に各対向磁極がN極になると永久磁石28はS極が対向磁極に吸引され、N極が反発されて右方に移動される。これにより、駆動ロッド27が往復動され、各ダイヤフラム25が軸線方向に往復動され、一対のポンプ室24の一方が膨張すると他方が収縮することを繰返す。膨張するポンプ室24では、吐出弁33が閉じ、吸入弁32が開いて改質用燃料ガスが吸入弁室30からポンプ室24に吸入され、吸入弁室30には吸入ポート35、吸入路34を通って改質用燃料ガスが補充される。収縮するポンプ室24では、吸入弁32が閉じ、吐出弁33が開いて改質用燃料ガスがポンプ室24から吐出弁室31に吐出される。図3(イ)に示すように、駆動ロッド27の往動時に一方のポンプ室24から、復動時に他方のポンプ室24から改質用燃料ガスが各吐出弁室31に吐出され、吐出滞留室36に連続的に供給される。一対のポンプ室24から吐出された改質用燃料ガスは容積の大きい吐出滞留室36に一旦滞留されるので、図3(ロ)に示すように、吐出ポート37の絞り作用と相俟って一対のポンプ室24から吐出された改質用燃料ガスのガス圧の脈動が吸収され、改質用燃料ガスの流量が平準化される。各ポンプ室24から改質用燃料ガスが吐出されることにより各吐出弁室31から伝播される圧力は各遮蔽板38に遮蔽され、吐出ポート37に直接伝播されないので、吐出ポート37を通って改質部13送出される改質用燃料ガスの流量の脈動は一層抑制される。    In the gas pump 22, each of the electromagnets 29 is alternately arranged so that the opposing magnetic poles of the pair of electromagnets 29 respectively facing the N pole and the S pole of the permanent magnet 28 simultaneously become the N pole and then simultaneously become the S pole. Since the direction of the current supplied to the coil is alternately switched and controlled, when the opposing magnetic pole of each electromagnet 29 becomes the S pole, the N pole of the permanent magnet 28 is attracted to the opposing magnetic pole, and the S pole is repelled. On the contrary, when each counter magnetic pole becomes N pole, the permanent magnet 28 is attracted to the counter magnetic pole, and the N pole is repelled and moved to the right. Accordingly, the drive rod 27 is reciprocated, the diaphragms 25 are reciprocated in the axial direction, and when one of the pair of pump chambers 24 expands, the other contracts repeatedly. In the expanding pump chamber 24, the discharge valve 33 is closed, the suction valve 32 is opened, and the reforming fuel gas is sucked into the pump chamber 24 from the suction valve chamber 30. The suction valve chamber 30 has a suction port 35 and a suction passage 34. The reforming fuel gas is replenished. In the contracting pump chamber 24, the suction valve 32 is closed, the discharge valve 33 is opened, and the reforming fuel gas is discharged from the pump chamber 24 to the discharge valve chamber 31. As shown in FIG. 3 (a), the reforming fuel gas is discharged from one pump chamber 24 to the discharge valve chambers 31 when the drive rod 27 moves forward and from the other pump chamber 24 when the drive rod 27 moves backward. The chamber 36 is continuously supplied. Since the reforming fuel gas discharged from the pair of pump chambers 24 is temporarily retained in the discharge retention chamber 36 having a large volume, in combination with the throttle action of the discharge port 37 as shown in FIG. The pulsation of the gas pressure of the reforming fuel gas discharged from the pair of pump chambers 24 is absorbed, and the flow rate of the reforming fuel gas is leveled. As the reforming fuel gas is discharged from each pump chamber 24, the pressure propagated from each discharge valve chamber 31 is shielded by each shielding plate 38 and is not directly propagated to the discharge port 37. The pulsation of the flow rate of the reforming fuel gas delivered to the reforming unit 13 is further suppressed.

次に、燃料電池システム用ガスポンプの第2の実施形態について図4,5に基づいて説明する。ハウジング40の長手方向両端部には一対のポンプ室41が形成され、各ポンプ室41の下側にはダイヤフラム42が気密的に固定され、各ポンプ室41の下側壁をなしている。各ダイヤフラム42は、ハウジング40に収容され軸線方向に移動して各ポンプ室41の容積を増減させる可動体として機能する。ハウジング40には、各ダイヤフラム42の下方にクランク室43が形成され、両側のクランク室43内に配置された駆動ロッド44の各上端が各ダイヤフラム42の中心部に気密的に連結されている。両側のクランク室43の間にはモータ45が固定され、モータ45の長手方向両側に突出する各回転軸46は両側クランク室43内に延在し、各駆動ロッド44と各クランク機構47を介して夫々連結されている。各クランク機構47の相互の回転位相差は180度であり、モータ45の回転軸46の回転がクランク機構47により駆動ロッド44の往復動に変換され、各ダイヤフラム42が互いに180度の所定位相差で周期的に往復動される。    Next, a second embodiment of the fuel cell system gas pump will be described with reference to FIGS. A pair of pump chambers 41 are formed at both ends in the longitudinal direction of the housing 40, and a diaphragm 42 is airtightly fixed below each pump chamber 41 to form a lower wall of each pump chamber 41. Each diaphragm 42 functions as a movable body that is accommodated in the housing 40 and moves in the axial direction to increase or decrease the volume of each pump chamber 41. A crank chamber 43 is formed in the housing 40 below each diaphragm 42, and each upper end of a drive rod 44 disposed in the crank chamber 43 on both sides is airtightly connected to the center of each diaphragm 42. A motor 45 is fixed between the crank chambers 43 on both sides, and the rotation shafts 46 projecting on both sides in the longitudinal direction of the motor 45 extend into the crank chambers 43 on both sides, via the drive rods 44 and the crank mechanisms 47. Are connected to each other. The rotation phase difference between the crank mechanisms 47 is 180 degrees, the rotation of the rotating shaft 46 of the motor 45 is converted into the reciprocating motion of the drive rod 44 by the crank mechanism 47, and the diaphragms 42 have a predetermined phase difference of 180 degrees from each other. It is reciprocated periodically.

夫々のポンプ室41に個別に対応して吸入弁室48および吐出弁室49が各ポンプ室41の上側壁を挟んでハウジング23の長手方向両端上部に形成されている。各吸入弁室48とポンプ室41との間には、吸入弁室48からポンプ室41に向かう流れのみを許容する吸入弁50が設けられ、各ポンプ室41と吐出弁室49との間には、ポンプ室41から吐出弁室49に向かう流れのみを許容する吐出弁51が設けられている。各吸入弁室48はハウジング40の上端部に長手方向に穿設された吸入路52により連通され、吸入路52の長手方向中央部分には、ハウジング40に長手方向と直角方向に穿設されて外部に開口する吸入ポート53が連通している。吸入路52には吸入ポート53の開口部に対向して分流突起54が形成され、吸入ポート53から吸入されたガスは分流突起54により両側の吸入弁室48に向かってスムーズに流れの方向を変えて分流する。    Corresponding to each pump chamber 41 individually, a suction valve chamber 48 and a discharge valve chamber 49 are formed at both upper ends in the longitudinal direction of the housing 23 with the upper wall of each pump chamber 41 interposed therebetween. Between each suction valve chamber 48 and the pump chamber 41, a suction valve 50 that allows only a flow from the suction valve chamber 48 toward the pump chamber 41 is provided, and between each pump chamber 41 and the discharge valve chamber 49. Is provided with a discharge valve 51 that allows only a flow from the pump chamber 41 toward the discharge valve chamber 49. Each suction valve chamber 48 is communicated with a suction passage 52 formed in the longitudinal direction at the upper end portion of the housing 40, and is formed in the housing 40 at a center portion in the longitudinal direction in a direction perpendicular to the longitudinal direction. A suction port 53 that opens to the outside communicates. A diversion projection 54 is formed in the intake passage 52 so as to face the opening of the intake port 53, and the gas sucked from the intake port 53 smoothly flows toward the intake valve chambers 48 on both sides by the diversion projection 54. Change and divert.

各吐出弁室49はハウジング40に軸線方向に穿設された吐出路55により連通され、吐出路55の長手方向中央部分には、一対のポンプ室41の間の中央部でハウジング40に長手方向と直角方向に穿設されて外部に開口する吐出ポート56が連通されている。吐出路55は、一対のポンプ室41から吐出されるガス圧の脈動を吸収するために、容積を大きく形成され吐出滞留室となっている。吐出ポート56は、一対のポンプ室41から吐出されるガスに対して絞りとして作用する断面積に形成されている。吐出滞留室55内の吐出ポート56の入口部分の両側には、各吐出弁室49から吐出ポート56に向かって長手方向に伝播した圧力を長手方向と直角で吐出ポート56と反対側に反射させ、圧力が吐出ポート56に直接伝播することを防止するための、一対の遮蔽板57が設けられている。    Each discharge valve chamber 49 is communicated with a discharge passage 55 formed in the housing 40 in the axial direction, and the discharge passage 55 has a longitudinal central portion in the longitudinal direction of the housing 40 at a central portion between the pair of pump chambers 41. A discharge port 56 is formed in a direction perpendicular to the opening and opened to the outside. The discharge path 55 is formed with a large volume and serves as a discharge retention chamber in order to absorb the pulsation of the gas pressure discharged from the pair of pump chambers 41. The discharge port 56 is formed in a cross-sectional area that acts as a throttle for the gas discharged from the pair of pump chambers 41. On both sides of the inlet portion of the discharge port 56 in the discharge staying chamber 55, the pressure propagated in the longitudinal direction from each discharge valve chamber 49 toward the discharge port 56 is reflected to the opposite side of the discharge port 56 at right angles to the longitudinal direction. A pair of shielding plates 57 are provided to prevent the pressure from directly propagating to the discharge port 56.

第2の実施形態に係るガスポンプ58では、モータ45が起動され回転軸46が回転されると、駆動ロッド44がクランク機構47を介して往復動され、各ダイヤフラム42が180度の位相差で往復動され、一対のポンプ室41の一方が膨張すると他方が収縮することを繰返す。膨張するポンプ室41では、吐出弁51が閉じ、吸入弁52が開いて改質用燃料ガスが吸入弁室48からポンプ室41に吸入され、吸入弁室48には吸入ポート53、吸入路52を通って改質用燃料ガスが補充される。収縮するポンプ室41では、吸入弁50が閉じ、吐出弁51が開いて改質用燃料ガスがポンプ室41から吐出弁室49に吐出される。このとき、第1の実施形態に係るガスポンプ22と同様に吐出ポート56を通って改質部13送出される改質用燃料ガスの流量の脈動は抑制される。    In the gas pump 58 according to the second embodiment, when the motor 45 is started and the rotating shaft 46 is rotated, the drive rod 44 is reciprocated via the crank mechanism 47, and each diaphragm 42 is reciprocated with a phase difference of 180 degrees. It is moved, and when one of the pair of pump chambers 41 expands, the other contracts repeatedly. In the expanding pump chamber 41, the discharge valve 51 is closed, the suction valve 52 is opened, and the reforming fuel gas is sucked into the pump chamber 41 from the suction valve chamber 48. The suction valve chamber 48 has a suction port 53 and a suction passage 52. The reforming fuel gas is replenished. In the contracting pump chamber 41, the suction valve 50 is closed, the discharge valve 51 is opened, and the reforming fuel gas is discharged from the pump chamber 41 to the discharge valve chamber 49. At this time, similarly to the gas pump 22 according to the first embodiment, pulsation of the flow rate of the reforming fuel gas that is sent through the discharge port 56 and delivered to the reforming unit 13 is suppressed.

上記実施形態では、ハウジングに形成された二つのポンプ室が180度の位相差で膨張収縮を交互に繰返しているが、ハウジングに二つ以上のポンプ室を形成し、各ポンプ室の容積を増減させる各可動体を、例えば360度をポンプ室の個数で除した角度の所定位相差で周期的に往復動させるようにしてもよい。    In the above embodiment, the two pump chambers formed in the housing are alternately expanded and contracted with a phase difference of 180 degrees. However, two or more pump chambers are formed in the housing, and the volume of each pump chamber is increased or decreased. Each movable body to be moved may be reciprocated periodically with a predetermined phase difference of an angle obtained by dividing 360 degrees by the number of pump chambers, for example.

上記実施形態では、本燃料電池システム用ガスポンプを、改質用燃料ガスを改質部13に送出するガスポンプ22に使用しているが、空気を燃料電池11の空気極或いはバーナ21に供給するエアポンプ、燃焼用燃料ガスをバーナ21に供給するガスポンプ等に用いてもよい。    In the above embodiment, the gas pump for the fuel cell system is used as the gas pump 22 for sending the reforming fuel gas to the reforming unit 13, but the air pump supplies air to the air electrode or the burner 21 of the fuel cell 11. Alternatively, it may be used in a gas pump or the like that supplies combustion fuel gas to the burner 21.

本発明の実施形態に係るガスポンプを備えた燃料電池システムの概要を示す概要図。The schematic diagram showing the outline of the fuel cell system provided with the gas pump concerning the embodiment of the present invention. 本燃料電池システム用ガスポンプの断面図。Sectional drawing of the gas pump for this fuel cell system. 本燃料電池システム用ガスポンプの吐出流量を示す図。The figure which shows the discharge flow volume of the gas pump for this fuel cell system. 第2の実施形態に係るガスポンプの断面図。Sectional drawing of the gas pump which concerns on 2nd Embodiment. 図4の5−5線に沿って切断した断面図。Sectional drawing cut | disconnected along line 5-5 of FIG. 従来のガスポンプの吐出流量を示す図。The figure which shows the discharge flow volume of the conventional gas pump.

符号の説明Explanation of symbols

11…燃料電池 、12…改質装置、13…改質部、15…水蒸発器、16…冷却部、17…一酸化炭素シフト反応部(COシフト部)、18…一酸化炭素選択酸化部(CO浄化部)、19…反応室、20…加熱室、21…バーナ、22,58…ガスポンプ、23,40…ハウジング、24,41…ポンプ室、25,42…ダイヤフラム(可動体)、26…中央孔、27,44…駆動ロッド、28…永久磁石、29…電磁石、30,48…吸入弁室、31,49…吐出弁室、32,50…吸入弁、33,51…吐出弁、34,52…吸入路、35,53…吸入ポート、36,55…吐出路(吐出滞留室)、37,56…吐出ポート、38,57…遮蔽板、43…クランク室、45…モータ、47…クランク機構。
DESCRIPTION OF SYMBOLS 11 ... Fuel cell, 12 ... Reformer, 13 ... Reforming part, 15 ... Water evaporator, 16 ... Cooling part, 17 ... Carbon monoxide shift reaction part (CO shift part), 18 ... Carbon monoxide selective oxidation part (CO purification unit), 19 ... reaction chamber, 20 ... heating chamber, 21 ... burner, 22, 58 ... gas pump, 23, 40 ... housing, 24, 41 ... pump chamber, 25, 42 ... diaphragm (movable body), 26 ... central hole, 27, 44 ... drive rod, 28 ... permanent magnet, 29 ... electromagnet, 30, 48 ... suction valve chamber, 31, 49 ... discharge valve chamber, 32, 50 ... suction valve, 33, 51 ... discharge valve, 34, 52 ... suction path, 35, 53 ... suction port, 36, 55 ... discharge path (discharge staying chamber), 37, 56 ... discharge port, 38, 57 ... shielding plate, 43 ... crank chamber, 45 ... motor, 47 ... Crank mechanism.

Claims (5)

水蒸気と改質用燃料ガスとから改質ガスを生成し、該改質ガスを燃料電池に供給する燃料電池システムに用いるガスポンプにおいて、
ハウジングに2つ以上のポンプ室を形成し、かつ前記ポンプ室の容積を増減させる可動体を前記ハウジングに収容し、夫々の前記ポンプ室に個別に対応して吸入弁室および吐出弁室を設け、各吸入弁室と対応するポンプ室との間に吸入弁室からポンプ室に向かう流れのみを許容する吸入弁を設け、各ポンプ室と対応する吐出弁室との間にポンプ室から吐出弁室に向かう流れのみを許容する吐出弁を設け、各吸入弁室を連通する吸入路および各吐出弁室を連通する吐出路を形成し、前記吸入路を前記ハウジングに穿設した吸入ポートに連通し、前記吐出路を前記ハウジングに穿設した吐出ポートに連通し、前記各可動体を互いに所定の位相差で周期的に往復動させることを特徴とする燃料電池システム用ガスポンプ。
In a gas pump used in a fuel cell system that generates reformed gas from steam and reforming fuel gas and supplies the reformed gas to a fuel cell,
Two or more pump chambers are formed in the housing, and a movable body for increasing or decreasing the volume of the pump chamber is accommodated in the housing, and a suction valve chamber and a discharge valve chamber are provided corresponding to each of the pump chambers. A suction valve that allows only the flow from the suction valve chamber to the pump chamber is provided between each suction valve chamber and the corresponding pump chamber, and the discharge valve from the pump chamber is disposed between each pump chamber and the corresponding discharge valve chamber. A discharge valve that allows only the flow toward the chamber is provided, and a suction passage that communicates with each suction valve chamber and a discharge passage that communicates with each discharge valve chamber are formed, and the suction passage communicates with a suction port formed in the housing. A gas pump for a fuel cell system, wherein the discharge passage is communicated with a discharge port formed in the housing, and the movable bodies are periodically reciprocated with a predetermined phase difference.
請求項1において、前記ポンプ室を前記ハウジングの軸線方向両端部に夫々形成し、前記可動体は各ポンプ室の内側壁をなしてハウジングの軸線方向に移動可能とし、前記吸入弁室および吐出弁室を前記ハウジングの両端部に夫々設け、前記吸入路および前記吐出路をハウジングに軸線方向に形成し、前記各可動体を互いに所定の位相差で周期的に往復動させるために、前記各可動体に両端を夫々連結された駆動ロッドを前記各ポンプ室の間で前記ハウジングに形成された中央孔内に設け、該駆動ロッドの中央部分に永久磁石を両極を軸線方向に整列して設け、該永久磁石に反対向きの磁力を交互に作用させて駆動ロッドを軸線方向に往復動させる電磁石を前記中央孔に固定したことを特徴とする燃料電池システム用ガスポンプ。   2. The pump chamber according to claim 1, wherein the pump chamber is formed at both axial ends of the housing, and the movable body is movable in the axial direction of the housing by forming an inner wall of each pump chamber. Chambers are provided at both ends of the housing, the suction passage and the discharge passage are formed in the housing in the axial direction, and the movable bodies are reciprocated periodically with a predetermined phase difference. A drive rod having both ends connected to the body is provided in a central hole formed in the housing between the pump chambers, and a permanent magnet is provided in the central portion of the drive rod with both poles aligned in the axial direction. A gas pump for a fuel cell system, wherein an electromagnet for reciprocating a drive rod in an axial direction by alternately applying a magnetic force in the opposite direction to the permanent magnet is fixed to the central hole. 請求項1または2において、前記各ポンプ室から吐出されるガス圧の脈動を吸収するために、前記吐出路の容積を大きくして吐出滞留室としたことを特徴とする燃料電池システム用ガスポンプ。   The gas pump for a fuel cell system according to claim 1 or 2, wherein a volume of the discharge path is increased to form a discharge retention chamber in order to absorb pulsation of gas pressure discharged from each pump chamber. 請求項1乃至3のいずれか1項において、前記吐出ポートは前記吐出路の中央部でハウジングに吐出路の軸線方向と直角方向に穿設されるとともに、各ポンプ室から吐出されるガスに対して絞りとして作用することを特徴とする燃料電池システム用ガスポンプ。   4. The discharge port according to claim 1, wherein the discharge port is formed in the housing at a central portion of the discharge passage in a direction perpendicular to the axial direction of the discharge passage, and for the gas discharged from each pump chamber. A gas pump for a fuel cell system characterized by acting as a throttle. 請求項4において、各吐出弁室から吐出ポートに圧力が直接伝播することを防止するために、一対の遮蔽板を前記吐出ポートの入口部分の両側に夫々設けたことを特徴とする燃料電池システム用ガスポンプ。   5. The fuel cell system according to claim 4, wherein a pair of shielding plates are provided on both sides of the inlet portion of the discharge port in order to prevent pressure from directly propagating from each discharge valve chamber to the discharge port. Gas pump.
JP2004090096A 2004-03-25 2004-03-25 Gas pump for fuel cell system Expired - Fee Related JP4830261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090096A JP4830261B2 (en) 2004-03-25 2004-03-25 Gas pump for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090096A JP4830261B2 (en) 2004-03-25 2004-03-25 Gas pump for fuel cell system

Publications (2)

Publication Number Publication Date
JP2005276697A true JP2005276697A (en) 2005-10-06
JP4830261B2 JP4830261B2 (en) 2011-12-07

Family

ID=35176119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090096A Expired - Fee Related JP4830261B2 (en) 2004-03-25 2004-03-25 Gas pump for fuel cell system

Country Status (1)

Country Link
JP (1) JP4830261B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043548A1 (en) * 2005-10-05 2007-04-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation method
JP2008144592A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Constant flow rate small pump
KR100844785B1 (en) 2007-03-29 2008-07-07 삼성에스디아이 주식회사 Pump driving module and fuel cell system equipped it
US7846609B2 (en) 2006-11-30 2010-12-07 Samsung Sdi Co., Ltd. Module-type fuel cell system
US8343674B2 (en) 2007-01-17 2013-01-01 Samsung Sdi Co., Ltd. Fuel cell system and control method of the same
WO2018037443A1 (en) * 2016-08-22 2018-03-01 柴田科学株式会社 Multi-cylinder diaphragm pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318152A (en) * 1997-05-15 1998-12-02 Matsushita Electric Works Ltd Diaphragm pump
JP2002147363A (en) * 2000-11-10 2002-05-22 Denso Corp Bellows type pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318152A (en) * 1997-05-15 1998-12-02 Matsushita Electric Works Ltd Diaphragm pump
JP2002147363A (en) * 2000-11-10 2002-05-22 Denso Corp Bellows type pump device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043548A1 (en) * 2005-10-05 2007-04-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation method
US7846609B2 (en) 2006-11-30 2010-12-07 Samsung Sdi Co., Ltd. Module-type fuel cell system
JP2008144592A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Constant flow rate small pump
US8343674B2 (en) 2007-01-17 2013-01-01 Samsung Sdi Co., Ltd. Fuel cell system and control method of the same
KR100844785B1 (en) 2007-03-29 2008-07-07 삼성에스디아이 주식회사 Pump driving module and fuel cell system equipped it
WO2018037443A1 (en) * 2016-08-22 2018-03-01 柴田科学株式会社 Multi-cylinder diaphragm pump

Also Published As

Publication number Publication date
JP4830261B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP4627997B2 (en) Fuel cell system
JP4014583B2 (en) Fluid machinery
US5675974A (en) Heat exchanger
JP4830261B2 (en) Gas pump for fuel cell system
WO2007135778A1 (en) Mixing pump device and fuel cell
JP2006308197A (en) Magnetic temperature regulator
CA2470681A1 (en) Standing wave cavity pump
JP2006283736A (en) Self-driving type pump for liquefied gas
JP2004084486A (en) Double reciprocating bellows pump
WO2007094131A1 (en) Mixing pump and fuel cell
JP3988275B2 (en) Feed pump
US10578099B2 (en) Cooling device fitted with a compressor
JP2008002454A (en) Mixing pump device and fuel cell
WO2015005264A1 (en) Hot water supply system, fuel cell system, and pump device
JP2006226542A (en) Catalytic combustion device
JP2005259439A (en) Fuel cell system
JP2005188401A (en) Thermal acoustic energy generation device
JP2005166355A (en) Fuel cell system
CN218882473U (en) Air pump capable of cooling internal power source
JP2007051611A (en) Rotary pump, cooling device, electronic apparatus and fuel cell device
KR100650547B1 (en) Venturi type micro pump, and fuel cell system therewith
JP2011185116A (en) Fluid pump system and method of operating the same
CN217770736U (en) Loop heat pipe structure and electronic equipment
KR100477352B1 (en) Pre-piston type viru cycle engine
JP2003262424A (en) Heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees