JP2005274678A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2005274678A
JP2005274678A JP2004084493A JP2004084493A JP2005274678A JP 2005274678 A JP2005274678 A JP 2005274678A JP 2004084493 A JP2004084493 A JP 2004084493A JP 2004084493 A JP2004084493 A JP 2004084493A JP 2005274678 A JP2005274678 A JP 2005274678A
Authority
JP
Japan
Prior art keywords
light
optical
light emitting
scanning device
collimating lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004084493A
Other languages
Japanese (ja)
Inventor
Junichi Ichikawa
順一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004084493A priority Critical patent/JP2005274678A/en
Publication of JP2005274678A publication Critical patent/JP2005274678A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make compatible original alignment of an optical scanner and alignment of a photodetection means by ensuring performance of an optical system while maintaining compactness. <P>SOLUTION: An optical scanner is disclosed in which there are disposed in order a light source 12 with a monitor where a VCSEL light source part 26 where a number of light emission points are arranged in a line and a single photosensor 28 for receiving a plurality of laser beams LB emitted from the plurality of light emission points are formed on the same substrate 30, a collimate lens 14, a half mirror 16, a polygon mirror front lens, a polygon mirror, a polygon mirror rear lens and a photoreceptor. In the optical scanner, the laser beams LB transmitted through the half mirror 16 are used to expose the photoreceptor, and the laser beams LB reflected on the half mirror 16 are converged again on the photosensor 28 by the collimate lens 14. The photosensor 28 singly receives all the plurality of laser beams LB emitted from the VCSEL light source part 26. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学走査装置に関する。   The present invention relates to an optical scanning device.

面発光レーザ(VCSEL)は、端面発光レーザとは異なり、裏面出射するビーム(所謂バックビーム)が出ないため、出射光の一部をハーフミラー等で分離し、分離されたビームを光検出手段に導いて光量を検出する必要がある。   Unlike the edge emitting laser, the surface emitting laser (VCSEL) does not emit a beam emitted from the back surface (so-called back beam). Therefore, a part of the emitted light is separated by a half mirror or the like, and the separated beam is detected by light detection means. It is necessary to detect the amount of light.

その方法としては、特許文献1に記載の方法がある。   As the method, there is a method described in Patent Document 1.

多数の構成においては、光源からのビームをハーフミラー等で分離し、独立した光路を経由してビームが光検出器に到達するが、例えば、特許文献1の装置では、ハーフミラーで分離したビームが再度コリメータレンズを通過して、光源と同じパッケージ内に光源と同数設けられた光センサにビームが入射する構成となっている。   In many configurations, the beam from the light source is separated by a half mirror or the like, and the beam reaches the photodetector via an independent optical path. For example, in the apparatus of Patent Document 1, the beam separated by the half mirror is used. Is again passed through the collimator lens, and the beam is incident on the same number of light sensors as the light source in the same package as the light source.

他の先行技術では、ハーフミラーによって分離されたビームを光センサ上に集光させるレンズが別途必要となるが、特許文献1の装置では光センサに集光させるレンズをコリメートレンズが兼ねるため、部品点数が少なくなり、コンパクトにできるというメリットがある。   In another prior art, a lens for condensing the beam separated by the half mirror on the optical sensor is required separately. However, in the apparatus of Patent Document 1, the collimating lens also serves as the lens for condensing the optical sensor. The number of points is reduced, and there is an advantage that it can be made compact.

また、ハーフミラーの折り返し角度が微小になるため、面発光レーザ特有の課題である偏向方向不安定性によるハーフミラー反射率変動が発生しないという利点もある。
特開平10−100476号公報
In addition, since the folding angle of the half mirror is small, there is also an advantage that the fluctuation of the half mirror reflectivity due to the deflection direction instability, which is a problem specific to the surface emitting laser, does not occur.
Japanese Patent Application Laid-Open No. 10-1000047

しかしながら、上記特許文献1の装置では、光源と同数の光検主器を用いるため以下のような問題点がある。
(1) 光センサを発光点に隣接させて配置させている。
However, the apparatus of Patent Document 1 uses the same number of photoanalyzers as the light sources, and thus has the following problems.
(1) The optical sensor is disposed adjacent to the light emitting point.

光学走査装置に用いられる複数発光点の間隔は数10μm〜100μm程度で用いられることが多いが、その微小な間隔の間にフォトダイオードを精度良く配置することは実装上困難であり、発光点の間隔を従来よりも大きくしないと構成できず、発光点間隔を大きくすると、発光点と光軸との距離が大きくなるため、光学系の性能確保が難しくなる。
(2) 光センサの受光面積が小さい。
The interval between a plurality of light emitting points used in an optical scanning device is often used at a few tens of μm to 100 μm. However, it is difficult to accurately arrange the photodiodes between the minute intervals, and it is difficult to mount the light emitting points. If the interval is not increased as compared with the conventional case, it cannot be configured. If the interval between the light emitting points is increased, the distance between the light emitting point and the optical axis increases, and it becomes difficult to ensure the performance of the optical system.
(2) The light receiving area of the optical sensor is small.

光センサの受光面積が小さいため、ビームが確実に受光面に入射させるためにはコリメートレンズやハーフミラーの形状、位置精度を厳しくしなければならない。   Since the light receiving area of the optical sensor is small, the shape and position accuracy of the collimating lens and the half mirror must be strict in order for the beam to reliably enter the light receiving surface.

しかし、光学走査装置では、ビームのアライメントはハーフミラー後に配置されるポリゴンミラーや折り返しミラーを狙って調整されることが一般的なため、本来のアライメントと光センサへのアライメントが両立しない虞がある。   However, in an optical scanning device, the alignment of the beam is generally adjusted with the aim of a polygon mirror or a folding mirror arranged after the half mirror, so there is a possibility that the original alignment and the alignment to the optical sensor may not be compatible. .

そのアライメントずれを許容するために受光面積を大きくすると、上記問題点(1)で述べた問題が大きくなる。   If the light receiving area is increased in order to allow the misalignment, the problem described in the above problem (1) increases.

本発明は、上記問題を解決すべく成されたもので、従来装置のコンパクトさを維持したまま、上記問題点を解決することのできる光学走査装置の提供を目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical scanning apparatus capable of solving the above problems while maintaining the compactness of the conventional apparatus.

請求項1に記載の光学走査装置は、光ビームを出射する発光点を複数備えると共に、複数の前記発光点から出射した複数の光ビームを受光する単一の光検出手段を備えたベース部材と、複数の前記発光点から出射された複数の前記光ビームの光路上に位置し、かつ複数の前記光ビームを略平行光とするように構成および配置された光学手段と、複数の前記光ビームで露光される被走査媒体と、前記光学手段を経た複数の前記光ビームの経路上に位置し、かつ複数の前記光ビームが前記被走査媒体の両端間を走査するように構成および配置された走査手段と、前記光学手段と前記走査手段との間に配置され、前記光ビームの一部分を透過すると共に残りの一部分を反射し、透過した一部分を前記走査手段に投射させると共に、反射した残りの一部を前記光学手段を経て前記単一の光検出手段に返送する機能をもつビーム返送部材と、を含むことを特徴としている。   The optical scanning device according to claim 1 includes a base member including a plurality of light emitting points that emit light beams, and a single light detecting unit that receives a plurality of light beams emitted from the light emitting points. Optical means positioned on the optical path of the plurality of light beams emitted from the plurality of light emitting points and configured and arranged to make the plurality of light beams substantially parallel light, and the plurality of light beams The scanning medium to be exposed in step (b) is positioned on the path of the plurality of light beams that have passed through the optical means, and the plurality of light beams are configured and arranged to scan between both ends of the scanning medium. A scanning means, and disposed between the optical means and the scanning means, and transmits a part of the light beam and reflects the remaining part; projects the transmitted part onto the scanning means; one Is characterized in that it comprises a beam back member having a function of returning to the single optical detection means via said optical means.

次に、請求項1に記載の光学走査装置の作用を説明する。   Next, the operation of the optical scanning device according to claim 1 will be described.

請求項1に記載の光学走査装置では、複数の発光点の各々から出射された光ビームが、光学系により略平行光とされ、ビーム返送部材に入射する。   In the optical scanning device according to the first aspect, the light beam emitted from each of the plurality of light emitting points is made into substantially parallel light by the optical system and enters the beam returning member.

ビーム返送部材では、光ビームの一部分が透過すると共に、残りの一部分が反射し、透過した一部分が走査手段に投射される。   In the beam returning member, a part of the light beam is transmitted, the remaining part is reflected, and the transmitted part is projected onto the scanning means.

走査手段は、投射された光ビームを被走査媒体に走査し、露光を行う。   The scanning means scans the projected light beam onto the scanned medium and performs exposure.

一方、ビーム返送部材で反射された複数の光ビームは、単一の光検出手段に返送される。   On the other hand, the plurality of light beams reflected by the beam returning member are returned to a single light detecting means.

光検出手段で光ビームをモニタすることで、被走査媒体に照射される光ビームの強度を調整することが可能となる。   By monitoring the light beam with the light detection means, it is possible to adjust the intensity of the light beam applied to the scanned medium.

また、本発明の光学走査装置に用いた光検出手段は、単一で、複数の発光点から出射した複数の光ビームを受光するように構成されているので、例えば、ビーム径に合わせた微小なフォトダイオードを精度良く複数配置する場合に比較して構造が簡単になる。   In addition, since the light detection means used in the optical scanning device of the present invention is configured to receive a plurality of light beams emitted from a plurality of light emitting points, for example, a minute detection unit adapted to the beam diameter. As compared with the case where a plurality of photodiodes are accurately arranged, the structure is simplified.

また、光検出のために発光点の間隔を広くとる必要がないので、発光点と光学手段の光軸との距離が小さくて済み、光学手段の性能確保が容易になる。   In addition, since it is not necessary to increase the interval between the light emitting points for light detection, the distance between the light emitting point and the optical axis of the optical means can be reduced, and the performance of the optical means can be easily ensured.

さらに、複数の光ビームを受光するように構成されている光検出手段は、受光面積が大きいため、コリメートレンズやハーフミラーの形状、位置は、ビーム径に合わせた微小なフォトダイオードを複数配置した従来例に対して精度はそれほど要求されず、調整等が容易になると共に、ハーフミラー後に配置されるポリゴンミラーや折り返しミラーを狙って行うビームのアライメント調整と、光検出手段へ入射させる光ビームの調整とが両立可能となる。   Furthermore, since the light detection means configured to receive a plurality of light beams has a large light receiving area, the collimating lens and the half mirror are arranged with a plurality of minute photodiodes that match the beam diameter. The accuracy is not required so much as in the conventional example, and the adjustment etc. becomes easy, and the alignment of the beam aimed at the polygon mirror and the folding mirror arranged after the half mirror is adjusted, and the light beam incident on the light detection means Adjustment is compatible.

請求項2に記載の発明は、請求項1記載の光学走査装置において、前記ビーム返送部材と前記光学手段との距離は、光学手段の焦点距離以下とされる、ことを特徴としている。   According to a second aspect of the present invention, in the optical scanning device according to the first aspect, a distance between the beam returning member and the optical means is set to be equal to or less than a focal length of the optical means.

次に、請求項2に記載の光学走査装置の作用を説明する。   Next, the operation of the optical scanning device according to claim 2 will be described.

ビーム返送部材と光学手段との距離を、光学手段の焦点距離以下に設定することで、ビーム返送部材で反射されて光検出手段に向かう光ビームを、光学手段の光軸側に寄せることができ、光学手段のサイズを小さくすることが出来る。   By setting the distance between the beam returning member and the optical means to be equal to or less than the focal length of the optical means, the light beam reflected by the beam returning member and directed to the light detecting means can be brought closer to the optical axis side of the optical means. The size of the optical means can be reduced.

請求項3に記載の発明は、請求項1記載または請求項2に記載の光学走査装置において、前記単一の光検出手段は、前記ビーム返送部材によって返送された全てのビームを受光できる大きさの検出面を有し、かつ、その検出面は前記光源の発光点に対して、その配列の長手方向に対して側方に配置される、ことを特徴としている。   According to a third aspect of the present invention, in the optical scanning device according to the first or second aspect, the single photodetecting means has a size capable of receiving all the beams returned by the beam returning member. And the detection surface is arranged laterally with respect to the light emitting point of the light source with respect to the longitudinal direction of the array.

次に、請求項3に記載の光学走査装置の作用を説明する。   Next, the operation of the optical scanning device according to claim 3 will be described.

例えば、複数の発光点を一方向に並べた場合、光検出手段の検出面は発光点の配列に合わせて一方向に沿って長い長尺形状となる。   For example, when a plurality of light emitting points are arranged in one direction, the detection surface of the light detection means has an elongated shape along one direction according to the arrangement of the light emitting points.

したがって、一列に並んだ発光点と、長尺形状の検出面を直列に配置すると、一方向に長いベース部材が必要となる。   Therefore, when the light emitting points arranged in a row and the elongated detection surface are arranged in series, a base member that is long in one direction is required.

請求項3に記載の光学走査装置においては、検出面が複数の発光点に対して、その配列の長手方向に対して側方に配置される、即ち、一列に並んだ発光点と、長尺形状の検出面とは並列になるので、ベース部材の全長が抑えられ、装置をコンパクトにまとめることが可能となる。   In the optical scanning device according to claim 3, the detection surface is arranged laterally with respect to the longitudinal direction of the array with respect to the plurality of light emitting points, that is, the light emitting points arranged in a line and the long length. Since the shape detection surface is in parallel, the overall length of the base member is suppressed, and the apparatus can be compactly assembled.

請求項4に記載の発明は、請求項1乃至請求項3の何れか1項に記載の光学走査装置において、前記光学手段はコリメートレンズを備え、前記発光点から出射した光ビームは前記コリメートレンズの光軸付近を通り、前記ビーム返送部材で返送された光ビームは前記コリメートレンズの外周側を通る、ことを特徴としている。   According to a fourth aspect of the present invention, in the optical scanning device according to any one of the first to third aspects, the optical means includes a collimating lens, and the light beam emitted from the light emitting point is the collimating lens. The light beam returned by the beam return member passes through the outer peripheral side of the collimating lens.

次に、請求項4に記載の光学走査装置の作用を説明する。   Next, the operation of the optical scanning device according to claim 4 will be described.

発光点から出射した光ビームをコリメートレンズの光軸付近を通すことで、画像形成に必要な光ビームはコリメートレンズの中でも性能の良い部分を用いることができる。   By passing the light beam emitted from the light emitting point through the vicinity of the optical axis of the collimating lens, the light beam necessary for image formation can use a portion having good performance in the collimating lens.

なお、ビーム返送部材で返送されて光検出手段に向かう光ビームは、光量検出に用いるだけであり、光検出手段に照射されれば良く、コリメートレンズの機能としては集光するだけで良く、特に性能の良い部分を用いる必要はない。   Note that the light beam that is returned by the beam returning member and directed to the light detection means is only used for light amount detection, and only needs to be applied to the light detection means. It is not necessary to use a portion with good performance.

以上、説明したように、本発明によれば、面発光レーザのように、出射されたビームの一部を分離して光検出手段にビームを導いて光量を制御する必要がある光学走査装置において、従来技術よりもコンパクト、かつ簡単な構成で光量を検出することができるようになる。   As described above, according to the present invention, as in a surface emitting laser, in an optical scanning device that needs to control a light quantity by separating a part of an emitted beam and guiding the beam to a light detection unit. Thus, it becomes possible to detect the light quantity with a more compact and simpler configuration than the prior art.

[第1の実施形態]
以下、図面を参照して本発明の第1の実施形態に係る光学走査装置10を詳細に説明する。
[First Embodiment]
Hereinafter, an optical scanning device 10 according to a first embodiment of the present invention will be described in detail with reference to the drawings.

図1に示すように、本実施形態の光学走査装置10は、モニタ付き光源12、コリメートレンズ14、ハーフミラー16、ポリゴンミラー前方レンズ18、ポリゴンミラー20、ポリゴンミラー後方レンズ22および感光体24を備えている。   As shown in FIG. 1, the optical scanning device 10 of the present embodiment includes a light source 12 with a monitor, a collimating lens 14, a half mirror 16, a polygon mirror front lens 18, a polygon mirror 20, a polygon mirror rear lens 22, and a photoreceptor 24. I have.

図2(A)に示すように、モニタ付き光源12は、多数(本実施形態では4個)の発光点26Aを一列に配置したVCSEL光源部26と、複数の発光点26Aから出射した複数のレーザビームLBを受光する単一の光センサ28とが同一基板30上に形成されている。   As shown in FIG. 2A, the monitor-equipped light source 12 includes a VCSEL light source unit 26 in which a large number (four in this embodiment) of light emitting points 26A are arranged in a row, and a plurality of light emitted from a plurality of light emitting points 26A. A single optical sensor 28 that receives the laser beam LB is formed on the same substrate 30.

光センサ28は、単一の受光面を有し、出射された全てのレーザビームLB(一列。点線の丸で図示)を受光できる大きさに設定されており、本実施形態では受光面が長方形に形成されており、複数の発光点26Aと直列に配置されている。   The optical sensor 28 has a single light receiving surface, and is set to a size that can receive all emitted laser beams LB (one row, illustrated by dotted circles). In this embodiment, the light receiving surface is rectangular. And are arranged in series with the plurality of light emitting points 26A.

図3に示すように、VCSEL光源部26から出射された複数のレーザビームLB(図面には、光軸のみ図示。また、各ビームは発散光である。)は、コリメートレンズ14で略平行光とされる。   As shown in FIG. 3, a plurality of laser beams LB emitted from the VCSEL light source unit 26 (only the optical axis is shown in the drawing. Each beam is divergent light) are substantially collimated by the collimating lens 14. It is said.

各レーザビームLBの光軸は、コリメートレンズ14の焦点位置で交差するようになる。   The optical axes of the laser beams LB intersect at the focal position of the collimating lens 14.

コリメートレンズ14の焦点位置には、レーザビームLBの一部を反射するハーフミラー16が配置されている。   A half mirror 16 that reflects part of the laser beam LB is disposed at the focal position of the collimating lens 14.

図1に示すように、ハーフミラー16を透過したレーザビームLBは、ポリゴンミラー前方レンズ18、ポリゴンミラー20、ポリゴンミラー後方レンズ22を介して感光体24の露光に用いられる。   As shown in FIG. 1, the laser beam LB transmitted through the half mirror 16 is used for exposure of the photosensitive member 24 via the polygon mirror front lens 18, the polygon mirror 20, and the polygon mirror rear lens 22.

一方、ハーフミラー16で反射されたレーザビームLBは、再びコリメートレンズ14によって光センサ28上に集光される(なお、複数ビームの光軸間は平行となる。)。
(作用)
次に、本実施形態の光学走査装置10の作用を説明する。
On the other hand, the laser beam LB reflected by the half mirror 16 is condensed again on the optical sensor 28 by the collimator lens 14 (note that the optical axes of the plurality of beams are parallel to each other).
(Function)
Next, the operation of the optical scanning device 10 of this embodiment will be described.

この光学走査装置10では、VCSEL光源部26の複数の発光点26Aから出射されたレーザビームLB(発散光)が、コリメートレンズ14により略平行光とされ、ハーフミラー16に入射する。   In the optical scanning device 10, laser beams LB (diverged light) emitted from a plurality of light emitting points 26 </ b> A of the VCSEL light source unit 26 are made substantially parallel light by the collimator lens 14 and enter the half mirror 16.

ハーフミラー16を透過したレーザビームLBは、ポリゴンミラー前方レンズ18、ポリゴンミラー20、ポリゴンミラー後方レンズ22を介して感光体24に投射される。   The laser beam LB transmitted through the half mirror 16 is projected onto the photoconductor 24 through the polygon mirror front lens 18, the polygon mirror 20, and the polygon mirror rear lens 22.

レーザビームLBは、ポリゴンミラー20によって感光体24上を走査される。   The laser beam LB is scanned on the photosensitive member 24 by the polygon mirror 20.

一方、ハーフミラー16で反射されたレーザビームLBは、単一の光センサ28に返送され、光量制御に用いられる。   On the other hand, the laser beam LB reflected by the half mirror 16 is returned to the single optical sensor 28 and used for light quantity control.

光センサ28は、単一で、複数の発光点26Aから出射された複数のレーザビームLBを全て受光するので、例えば、ビーム径に合わせた微小なフォトダイオードを精度良く複数配置する従来装置に比較して構造を簡略化できる。   Since the single optical sensor 28 receives all of the plurality of laser beams LB emitted from the plurality of light emitting points 26A, for example, compared with a conventional device in which a plurality of minute photodiodes matching the beam diameter are accurately arranged. Thus, the structure can be simplified.

また、光検出のために発光点26Aの間隔を広くとる必要がないので、発光点26Aから出射されたレーザビームLBをコリメートレンズ14の光軸に接近させることができ、コリメートレンズ14の光学性能の良い中心部が使用できるため、コリメートレンズ14の性能確保が容易になる。   Further, since it is not necessary to widen the interval between the light emitting points 26A for light detection, the laser beam LB emitted from the light emitting point 26A can be brought close to the optical axis of the collimating lens 14, and the optical performance of the collimating lens 14 is achieved. Therefore, it is easy to secure the performance of the collimating lens 14.

さらに、光センサ28は、受光面積が大きく設定されているため、コリメートレンズ14やハーフミラー16の形状、位置は、ビーム径に合わせた微小なフォトダイオードを複数配置した従来例に対して精度はそれほど要求されず、調整等が容易になると共に、ハーフミラー後に配置されるポリゴンミラー20等を狙って行うビームのアライメント調整と、光センサ28へ入射させるレーザビームLBの調整とが両立可能となる。   Further, since the light receiving area of the optical sensor 28 is set large, the shape and position of the collimating lens 14 and the half mirror 16 are more accurate than the conventional example in which a plurality of minute photodiodes corresponding to the beam diameter are arranged. This is not so required, and the adjustment and the like are facilitated, and the alignment adjustment of the beam aiming at the polygon mirror 20 and the like arranged after the half mirror and the adjustment of the laser beam LB incident on the optical sensor 28 can be compatible. .

なお、ハーフミラー16の位置は、コリメートレンズ14の焦点位置に限られることは無く、図4に示すように焦点位置よりもコリメートレンズ14に近づけたり、図5に示すように遠ざけても構わない。   Note that the position of the half mirror 16 is not limited to the focal position of the collimating lens 14, and may be closer to the collimating lens 14 than the focal position as shown in FIG. .

しかしながら、図5を見ると分かるように、ハーフミラー16をコリメートレンズ14の焦点位置よりも遠ざけると、ハーフミラー16によって反射されたビームがコリメートレンズ14の外端側に寄ってしまい(図3対比)、さらに複数ビーム間の距離が広がるため、レンズ開口によるケラレを防止するためにコリメートレンズ14を大きくしなければならず、コリメートレンズ14の大きさという点からは、図4に示すようにハーフミラー16の配置位置はコリメートレンズ14の焦点位置よりもコリメートレンズ側(焦点位置も含む)に配置した方がよく、さらにはコリメートレンズ14とハーフミラー16の距離はコリメートレンズ14の焦点距離の約1/2が良い(コリメートレンズ14のところでビームが交差するのでレンズ面使用範囲が最小となる)。即ち、図4の配置では、コリメートレンズ14を小型化できる。
[第2の実施形態]
次に、本発明の第2の実施形態を説明する。なお、第1の実施形態と同一構成には同一符号を付し、その説明は省略する。
However, as can be seen from FIG. 5, when the half mirror 16 is moved away from the focal position of the collimating lens 14, the beam reflected by the half mirror 16 approaches the outer end side of the collimating lens 14 (as compared with FIG. 3). ) Since the distance between the plurality of beams further increases, the collimating lens 14 must be enlarged in order to prevent vignetting due to the lens opening. From the point of view of the size of the collimating lens 14, half as shown in FIG. It is better to arrange the mirror 16 on the collimating lens side (including the focal position) than the focal position of the collimating lens 14, and the distance between the collimating lens 14 and the half mirror 16 is about the focal length of the collimating lens 14. 1/2 is good (Because the beam intersects at the collimating lens 14, the lens surface Use range is the minimum). That is, in the arrangement of FIG. 4, the collimating lens 14 can be reduced in size.
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same structure as 1st Embodiment, and the description is abbreviate | omitted.

図6は、図3の発展形であるが、図6のようにハーフミラー16を、反射面がコリメートレンズ14を透過するレーザビームLBの光軸に対して90°と異なる角度に設定して配置すると、VCSEL光源部26からの出射光をコリメートレンズ14の光軸中心に配置することが出来、図3,4,5のようなコリメートレンズ14の光軸外を用いるよりも収差を減らすことができる(感光体24に対して)、あるいは、レンズ設計に対する制約を緩くすることができる。   FIG. 6 is a development of FIG. 3, but as shown in FIG. 6, the half mirror 16 is set at an angle different from 90 ° with respect to the optical axis of the laser beam LB whose reflecting surface is transmitted through the collimator lens 14. When arranged, the light emitted from the VCSEL light source unit 26 can be arranged at the center of the optical axis of the collimating lens 14, and the aberration is reduced as compared with the case where the outside of the optical axis of the collimating lens 14 as shown in FIGS. (Relative to the photoreceptor 24), or restrictions on lens design can be relaxed.

なお、光センサ28に戻るレーザビームLBに対しては、コリメートレンズ14の機能はビームを集光するだけなので、結像性能はそれほど考慮する必要はなく、図2のように、VCSEL光源部26から出射されるレーザビームLBと、光センサ28へ戻るレーザビームLBとが、コリメートレンズ14の対称位置を通過させる必要はない。   For the laser beam LB returning to the optical sensor 28, the collimating lens 14 only condenses the beam, so the imaging performance does not need to be considered so much. As shown in FIG. It is not necessary for the laser beam LB emitted from the laser beam LB and the laser beam LB returning to the optical sensor 28 to pass through the symmetrical position of the collimating lens 14.

本発明の構成の場合、VCSEL光源部26と光センサ28の(中心間)距離Sは近い方が望ましい。   In the case of the configuration of the present invention, it is desirable that the distance S (between the centers) between the VCSEL light source unit 26 and the optical sensor 28 is short.

この距離Sが長いと、コリメートレンズ面の使用範囲が大きくなるため、コリメートレンズ14を大きくする必要がある。
[第3の実施形態]
次に、本発明の第2の実施形態を説明する。なお、前述した実施形態と同一構成には同一符号を付し、その説明は省略する。
If this distance S is long, the use range of the collimating lens surface becomes large, so that the collimating lens 14 needs to be enlarged.
[Third Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same structure as embodiment mentioned above, and the description is abbreviate | omitted.

図2(B)は、図2(A)に示した4つの発光点26Aが1列に配置されたVCSEL光源部26に対して、光センサ28を並列に配置した場合を示したものである。   FIG. 2B shows a case where the optical sensor 28 is arranged in parallel to the VCSEL light source unit 26 in which the four light emitting points 26A shown in FIG. 2A are arranged in a row. .

図2(B)から明らかなように、並列に配置した方が、VCSEL光源部26と光センサ28の距離Sを短くすることが出来る。   As apparent from FIG. 2B, the distance S between the VCSEL light source unit 26 and the optical sensor 28 can be shortened by arranging them in parallel.

この距離Sが短くなることにより、コリメートレンズ14のサイズだけでなく、VCSEL光源部26と光センサ28が取り付けられている基板30のサイズも小さくすることができるので、構成をよりコンパクトにすることができる。   By shortening the distance S, not only the size of the collimating lens 14 but also the size of the substrate 30 to which the VCSEL light source unit 26 and the optical sensor 28 are attached can be reduced, so that the configuration is made more compact. Can do.

なお、ここでは1列に配置された発光点26Aで説明したが、発光点26Aが二次元(例えば、マトリクス状)に配置されていても、その長手方向に対して並列な位置に光センサ28を配置すれば本発明の効果が得られることは言うまでもない。   Here, the light emitting points 26A arranged in one row have been described. However, even if the light emitting points 26A are arranged two-dimensionally (for example, in a matrix form), the optical sensors 28 are arranged in parallel to the longitudinal direction. Needless to say, the effects of the present invention can be obtained by arranging.

実施形態に係る光学走査装置の概略構成図である。1 is a schematic configuration diagram of an optical scanning device according to an embodiment. (A)は第1の実施形態に係る光学走査装置のモニタ付き光源の平面図であり、(B)は第3の実施形態に係る光学走査装置のモニタ付き光源の平面図である。(A) is a top view of the light source with a monitor of the optical scanning device which concerns on 1st Embodiment, (B) is a top view of the light source with a monitor of the optical scanning device which concerns on 3rd Embodiment. モニタ付き光源からハーフミラーまでの間の光学系の側面図である。It is a side view of the optical system between a light source with a monitor and a half mirror. モニタ付き光源からハーフミラーまでの間の光学系の側面図である。It is a side view of the optical system between a light source with a monitor and a half mirror. モニタ付き光源からハーフミラーまでの間の光学系の側面図である。It is a side view of the optical system between a light source with a monitor and a half mirror. 第2の実施形態に係る光学走査装置のモニタ付き光源からハーフミラーまでの間の光学系の側面図である。It is a side view of the optical system from the light source with a monitor to the half mirror of the optical scanning device according to the second embodiment.

符号の説明Explanation of symbols

10 光学走査装置
14 コリメートレンズ(光学手段)
16 ハーフミラー(ビーム返送部材)
20 ポリゴンミラー(走査手段)
24 感光体(被走査媒体)
26A 発光点
28 光センサ(光検出手段)
30 基板(ベース部材)
10 optical scanning device 14 collimating lens (optical means)
16 Half mirror (beam return member)
20 Polygon mirror (scanning means)
24 photoconductor (scanned medium)
26A Light emission point 28 Optical sensor (light detection means)
30 Substrate (base member)

Claims (4)

光ビームを出射する発光点を複数備えると共に、複数の前記発光点から出射した複数の光ビームを受光する単一の光検出手段を備えたベース部材と、
複数の前記発光点から出射された複数の前記光ビームの光路上に位置し、かつ複数の前記光ビームを略平行光とするように構成および配置された光学手段と、
複数の前記光ビームで露光される被走査媒体と、
前記光学手段を経た複数の前記光ビームの経路上に位置し、かつ複数の前記光ビームが前記被走査媒体の両端間を走査するように構成および配置された走査手段と、
前記光学手段と前記走査手段との間に配置され、前記光ビームの一部分を透過すると共に残りの一部分を反射し、透過した一部分を前記走査手段に投射させると共に、反射した残りの一部を前記光学手段を経て前記単一の光検出手段に返送する機能をもつビーム返送部材と、
を含むことを特徴とする光学走査装置。
A plurality of light emitting points that emit light beams, and a base member that includes a single light detection means that receives a plurality of light beams emitted from the light emitting points.
Optical means positioned on the optical path of the plurality of light beams emitted from the plurality of light emitting points and configured and arranged to make the plurality of light beams substantially parallel light;
A scanned medium exposed with a plurality of the light beams;
Scanning means positioned on the path of the plurality of light beams that have passed through the optical means, and configured and arranged so that the plurality of light beams scan between both ends of the scanned medium;
It is disposed between the optical means and the scanning means, transmits a part of the light beam and reflects the remaining part, projects the transmitted part onto the scanning means, and transmits the remaining reflected part to the scanning means. A beam returning member having a function of returning to the single light detecting means via an optical means;
An optical scanning device comprising:
前記ビーム返送部材と前記光学手段との距離は、光学手段の焦点距離以下とされる、ことを特徴とする請求項1記載の光学走査装置。   2. The optical scanning device according to claim 1, wherein a distance between the beam returning member and the optical unit is equal to or less than a focal length of the optical unit. 前記単一の光検出手段は、前記ビーム返送部材によって返送された全てのビームを受光できる大きさの検出面を有し、かつ、その検出面は前記光源の発光点に対して、その配列の長手方向に対して側方に配置される、ことを特徴とする請求項1または請求項2に記載の光学走査装置。   The single light detection means has a detection surface having a size capable of receiving all the beams returned by the beam return member, and the detection surface is arranged in an array with respect to the light emitting point of the light source. The optical scanning device according to claim 1, wherein the optical scanning device is disposed laterally with respect to the longitudinal direction. 前記光学手段はコリメートレンズを備え、
前記発光点から出射した光ビームは前記コリメートレンズの光軸付近を通り、前記ビーム返送部材で返送された光ビームは前記コリメートレンズの外周側を通る、ことを特徴とする請求項1乃至請求項3の何れか1項に記載の光学走査装置。
The optical means comprises a collimating lens;
The light beam emitted from the light emitting point passes through the vicinity of the optical axis of the collimating lens, and the light beam returned by the beam returning member passes through the outer peripheral side of the collimating lens. 4. The optical scanning device according to any one of items 3.
JP2004084493A 2004-03-23 2004-03-23 Optical scanner Pending JP2005274678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084493A JP2005274678A (en) 2004-03-23 2004-03-23 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084493A JP2005274678A (en) 2004-03-23 2004-03-23 Optical scanner

Publications (1)

Publication Number Publication Date
JP2005274678A true JP2005274678A (en) 2005-10-06

Family

ID=35174461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084493A Pending JP2005274678A (en) 2004-03-23 2004-03-23 Optical scanner

Country Status (1)

Country Link
JP (1) JP2005274678A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241240A (en) * 2006-02-07 2007-09-20 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007298563A (en) * 2006-04-27 2007-11-15 Ricoh Co Ltd Light source system, optical scanner, image forming apparatus, method of controlling light quantity, method of scanning light and method of forming image
US20080267662A1 (en) * 2007-04-24 2008-10-30 Nobuyuki Arai Light scanning device and image forming apparatus
US7936367B2 (en) 2007-12-26 2011-05-03 Ricoh Company, Ltd. Image forming apparatus controlling the output level of the light source
JP2013037024A (en) * 2011-08-03 2013-02-21 Ricoh Co Ltd Light source device, optical scanner, and image forming apparatus
US8699110B2 (en) 2009-12-10 2014-04-15 Ricoh Company, Limited Optical scanning device and image forming apparatus
US8913096B2 (en) 2010-08-25 2014-12-16 Ricoh Company, Limited Optical scanning device and image forming apparatus
WO2019205163A1 (en) * 2018-04-28 2019-10-31 SZ DJI Technology Co., Ltd. Light detection and ranging sensors with multiple emitters and multiple receivers, and associated systems and methods
WO2023062987A1 (en) * 2021-10-13 2023-04-20 アルプスアルパイン株式会社 Lens with lens barrel and light source device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230259A (en) * 1996-01-25 1997-09-05 Canon Inc Plural-beam writing device
JP2003132580A (en) * 2001-10-19 2003-05-09 Ricoh Co Ltd Multi-beam light source unit, optical pickup device, and optical disk device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230259A (en) * 1996-01-25 1997-09-05 Canon Inc Plural-beam writing device
JP2003132580A (en) * 2001-10-19 2003-05-09 Ricoh Co Ltd Multi-beam light source unit, optical pickup device, and optical disk device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241240A (en) * 2006-02-07 2007-09-20 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007298563A (en) * 2006-04-27 2007-11-15 Ricoh Co Ltd Light source system, optical scanner, image forming apparatus, method of controlling light quantity, method of scanning light and method of forming image
US8085457B2 (en) 2006-04-27 2011-12-27 Ricoh Company, Ltd. Light source system, optical scanner, image forming apparatus, and light-amount control method
US20080267662A1 (en) * 2007-04-24 2008-10-30 Nobuyuki Arai Light scanning device and image forming apparatus
US7936367B2 (en) 2007-12-26 2011-05-03 Ricoh Company, Ltd. Image forming apparatus controlling the output level of the light source
US8699110B2 (en) 2009-12-10 2014-04-15 Ricoh Company, Limited Optical scanning device and image forming apparatus
US8837027B2 (en) 2009-12-10 2014-09-16 Ricoh Company, Limited Optical scanning device and image forming apparatus
US8913096B2 (en) 2010-08-25 2014-12-16 Ricoh Company, Limited Optical scanning device and image forming apparatus
JP2013037024A (en) * 2011-08-03 2013-02-21 Ricoh Co Ltd Light source device, optical scanner, and image forming apparatus
WO2019205163A1 (en) * 2018-04-28 2019-10-31 SZ DJI Technology Co., Ltd. Light detection and ranging sensors with multiple emitters and multiple receivers, and associated systems and methods
WO2023062987A1 (en) * 2021-10-13 2023-04-20 アルプスアルパイン株式会社 Lens with lens barrel and light source device
KR20240054363A (en) 2021-10-13 2024-04-25 알프스 알파인 가부시키가이샤 Lens and light source device attached to the barrel

Similar Documents

Publication Publication Date Title
US9285266B2 (en) Object detector including a light source with light emitting region of a first size in a first direction and a second size in a second direction
US20060209372A1 (en) Scanning device
US7253386B2 (en) Method and apparatus for monitoring and controlling laser intensity in a ROS scanning system
JP2908657B2 (en) Semiconductor laser array recording device
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP4888807B2 (en) Scanning shape measuring machine
JP6892734B2 (en) Light wave distance measuring device
JP2014240782A (en) Measurement apparatus
JP6460445B2 (en) Laser range finder
JP2005274678A (en) Optical scanner
US4621890A (en) Optical apparatus including two afocal systems
US5543955A (en) Optical scanning system
JP3139050U (en) Laser scanning optical engine device
US6313935B1 (en) Scanning optical apparatus
CN109506570B (en) Displacement sensor
JP6867736B2 (en) Light wave distance measuring device
JP2006148711A (en) Laser beam scanner
JP6506672B2 (en) Photoelectric sensor
JPH06164056A (en) Light-source device for optical scanning
US11762066B2 (en) Multi-beam scanning system
JP4967833B2 (en) Optical scanning device
JP2001324314A (en) Measuring instrument
JP2008309924A (en) Optical scanner
JP5070559B2 (en) Optical scanning apparatus and image forming apparatus
US20040223203A1 (en) Laser scanning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727