JP2005273716A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2005273716A
JP2005273716A JP2004084989A JP2004084989A JP2005273716A JP 2005273716 A JP2005273716 A JP 2005273716A JP 2004084989 A JP2004084989 A JP 2004084989A JP 2004084989 A JP2004084989 A JP 2004084989A JP 2005273716 A JP2005273716 A JP 2005273716A
Authority
JP
Japan
Prior art keywords
bearing device
oil
rolling bearing
tapered roller
mesh member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004084989A
Other languages
Japanese (ja)
Inventor
Hiroki Matsuyama
博樹 松山
Hiroyuki Chiba
博行 千葉
Masahiro Harada
昌寛 原田
Kazuhisa Toda
一寿 戸田
Kiyoshi Ogino
清 荻野
Koshi Kawaguchi
幸志 川口
譲 ▲高▼橋
Yuzuru Takahashi
Hirobumi Momoji
博文 百々路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2004084989A priority Critical patent/JP2005273716A/en
Publication of JP2005273716A publication Critical patent/JP2005273716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/667Details of supply of the liquid to the bearing, e.g. passages or nozzles related to conditioning, e.g. cooling, filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/10Porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2212/00Natural materials, i.e. based on animal or plant products such as leather, wood or cotton or extracted therefrom, e.g. lignin
    • F16C2212/08Woven, unwoven fabrics, e.g. felt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing capable of reducing rotation torque. <P>SOLUTION: A mesh member 5 made up of felt having flexibility whose nominal filtration accuracy is approximately 30 μm and formed in a disc shape, is arranged so as to block an annular opening on the oil inflow side between an outer ring 1 and an inner ring 2 by fixing a part opposed to an end surface of the outer ring 1 of the mesh member 5 onto the end surface of the outer ring 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、転がり軸受装置に関する。   The present invention relates to a rolling bearing device.

従来、転がり軸受装置としては、特開平7−144548号公報(特許文献1)に記載されたものがある。   Conventionally, as a rolling bearing device, there is one described in JP-A-7-144548 (Patent Document 1).

この転がり軸受装置は、円錐ころ軸受装置であり、内輪と、外輪と、内輪と外輪との間に配置された複数の円錐ころと、断面コ字状の第1のシールド板と、断面コ字状の第2のシールド板とを備える。   This rolling bearing device is a tapered roller bearing device, and includes an inner ring, an outer ring, a plurality of tapered rollers disposed between the inner ring and the outer ring, a first shield plate having a U-shaped cross section, and a U-shaped cross section. And a second shield plate having a shape.

上記第1のシールド板の外周縁部は、上記外輪の大径部側の内周面に固定されると共に、上記第1のシールド板の内周側の縁は、上記内輪の小径側の外周面に近接させられる一方、上記第2のシールド板の内周縁部は、上記内輪の大径部側の外周面に固定されると共に、上記第2のシールド板の外周側の縁は、上記外輪小径部側の端面に近接させられている。   An outer peripheral edge portion of the first shield plate is fixed to an inner peripheral surface of the outer ring on the large diameter portion side, and an inner peripheral side edge of the first shield plate is an outer periphery on the small diameter side of the inner ring. The inner peripheral edge of the second shield plate is fixed to the outer peripheral surface of the inner ring on the large diameter portion side, and the outer peripheral edge of the second shield plate is fixed to the outer ring. It is made to adjoin to the end surface by the side of a small diameter part.

上記円錐ころ軸受装置は、第1のシールド板を用いることによって、上記第1のシールド板の内周面の縁と上記内輪の小径側の外周面との間にのみオイルの流路を設けて、このオイルの流路以外の箇所からオイルが軸受装置内部に侵入するのを防いで、円錐ころ軸受装置に供給されるオイルの量が増大する高速運転時において必要以上のオイルが軸受装置内部に侵入することを防止して、オイルの攪拌抵抗を小さくしている。   The tapered roller bearing device uses the first shield plate to provide an oil flow path only between the edge of the inner peripheral surface of the first shield plate and the outer peripheral surface on the small diameter side of the inner ring. This prevents oil from entering the inside of the bearing device from locations other than the oil flow path, and increases the amount of oil supplied to the tapered roller bearing device. This prevents the intrusion and reduces the oil stirring resistance.

また、上記円錐ころ軸受装置は、第2のシールド板を用いることによって、上記第2のシールド板の外周側の縁と上記外輪の小径側の端面との間にのみオイルの流路を設けて、このオイルの流路以外の箇所からオイルが軸受装置外部に流出するのを防いで、一度軸受装置内部に侵入したオイルが軸受装置外に流出しにくいようにして、低速運転時にオイルが不足して、焼き付きが発生するのを防止している。   Further, the tapered roller bearing device uses the second shield plate so that an oil flow path is provided only between the outer peripheral edge of the second shield plate and the end surface on the small diameter side of the outer ring. This prevents oil from flowing out of the bearing device from other locations than the oil flow path, making it difficult for oil that has once entered the bearing device to flow out of the bearing device. Thus, seizure is prevented from occurring.

しかしながら、上記従来の円錐ころ軸受装置では、軸受装置におけるオイルの流れの下流の端部に、第2のシールド板を配置し、軸受装置内部に浸入したオイルを流出させないようにして、オイルを軸受装置内部に溜め込むようにしたので、軸受装置内部のオイルの量が増大して、オイルの攪拌抵抗が大きくなり、軸受装置の回転トルクが大きくなって、この軸受装置を備える自動車等の燃費が増大するという問題がある。
特開7−144548号公報
However, in the above conventional tapered roller bearing device, the second shield plate is disposed at the downstream end of the oil flow in the bearing device so that the oil that has entered the bearing device does not flow out, and the oil is Since the amount of oil in the bearing device increases, the oil stirring resistance increases, the rotational torque of the bearing device increases, and the fuel consumption of an automobile equipped with this bearing device increases. There is a problem of doing.
JP-A-7-144548

そこで、本発明の課題は、回転トルクを小さくできる転がり軸受装置を提供することにある。   Then, the subject of this invention is providing the rolling bearing apparatus which can make rotational torque small.

上記課題を解決するため、この発明の転がり軸受装置は、
内周に軌道面を有する外輪と、
外周に軌道面を有する内輪と、
上記外輪の軌道面と上記内輪の軌道面との間に配置された転動体と
を備え、
上記外輪と上記内輪との間に形成される円環状開口から流入するオイルの量を調節するオイル流入量調節部材を、上記円環状開口を塞ぐように配置していることを特徴としている。
In order to solve the above problems, the rolling bearing device of the present invention is
An outer ring having a raceway surface on the inner periphery;
An inner ring having a raceway surface on the outer periphery;
A rolling element disposed between the raceway surface of the outer ring and the raceway surface of the inner ring,
An oil inflow amount adjusting member for adjusting the amount of oil flowing in from an annular opening formed between the outer ring and the inner ring is disposed so as to close the annular opening.

上記発明によれば、上記円環状開口から流入するオイルの量を調節するオイル流入量調節部材を、上記円環状開口を塞ぐように配置しているので、転がり軸受装置に流入するオイルの量を、調節することができる。したがって、オイルが必要以上に転がり軸受装置に流入することを防止できるので、転がり軸受装置の攪拌抵抗を低減することができて、転がり軸受装置の回転トルクを低減することができる。また、上記発明によれば、転がり軸受装置の焼付を防止するのに最低限必要な量のオイルを、転がり軸受装置に確実に流入させることができるので、転がり軸受装置に焼付が発生することを防止できる。特に、この発明の転がり軸受装置を、比較的高粘度のオイル(潤滑油)が大量に供給される自動車のデファレンシャルギヤのピニオン軸支持に用いるとその効果を大きくすることができる。   According to the invention, the oil inflow amount adjusting member that adjusts the amount of oil flowing in from the annular opening is arranged so as to close the annular opening, so that the amount of oil flowing into the rolling bearing device is reduced. Can be adjusted. Therefore, since oil can be prevented from flowing into the rolling bearing device more than necessary, the stirring resistance of the rolling bearing device can be reduced, and the rotational torque of the rolling bearing device can be reduced. Further, according to the above invention, since the minimum amount of oil necessary to prevent seizure of the rolling bearing device can be surely flowed into the rolling bearing device, seizure occurs in the rolling bearing device. Can be prevented. In particular, when the rolling bearing device of the present invention is used for supporting a pinion shaft of a differential gear of an automobile supplied with a large amount of oil (lubricating oil) having a relatively high viscosity, the effect can be increased.

また、一実施形態の転がり軸受装置は、上記オイル流入量調節部材が、可撓性のメッシュ部材である。   In the rolling bearing device of one embodiment, the oil inflow rate adjusting member is a flexible mesh member.

上記実施形態によれば、上記オイル流入調節部材として、可撓性のメッシュ部材を用いているので、転がり軸受装置が高速回転しているとき、すなわち、転がり軸受装置のポンプ作用が大きくてオイルを吸い込む力が大きいとき(この効果は、特に、円錐ころ軸受装置で大きい)には、上記可撓性のメッシュ部材が軸方向に自動的に縮んでメッシュの空隙の大きさが自動的に小さくなり、オイルが必要以上に転がり軸受装置に流入することを防止できる。また、転がり軸受装置が低速回転しているとき、すなわち、転がり軸受装置のポンプ作用が小さくてオイルを吸い込む力が小さいときには、上記可撓性のメッシュ部材が軸方向に自動的に緩んでメッシュの空隙の大きさが自動的に大きくなり、焼付を防止するのに最低限必要なオイルを、確実に転がり軸受装置に流入させることができる。   According to the embodiment, since the flexible mesh member is used as the oil inflow adjusting member, when the rolling bearing device is rotating at a high speed, that is, the pumping action of the rolling bearing device is large and the oil is supplied. When the suction force is large (this effect is particularly large in the tapered roller bearing device), the flexible mesh member is automatically contracted in the axial direction, and the size of the mesh gap is automatically reduced. The oil can be prevented from rolling more than necessary and flowing into the bearing device. When the rolling bearing device is rotating at a low speed, that is, when the pumping action of the rolling bearing device is small and the oil suction force is small, the flexible mesh member is automatically loosened in the axial direction and the mesh The size of the gap is automatically increased, so that the minimum oil necessary for preventing seizure can be reliably introduced into the rolling bearing device.

また、一実施形態の転がり軸受装置は、上記メッシュ部材が、フェルトから成っている。   In one embodiment, the mesh member is made of felt.

上記実施形態によれば、上記オイル流入量調節部材であるメッシュ部材が、可撓性を有し、かつ、取り扱いが容易でかつ安価なフェルトから成っているので、メッシュの空隙の大きさを自動的に最適に調整でき、かつ、オイル流入量調節部材を簡単安価に構成できる。   According to the above embodiment, the mesh member that is the oil inflow rate adjusting member is made of felt that is flexible, easy to handle, and inexpensive. Can be optimally adjusted, and the oil inflow rate adjusting member can be configured simply and inexpensively.

また、一実施形態の転がり軸受装置は、上記メッシュ部材が、公称ろ過精度が2μm以上100μm以下である。   Moreover, as for the rolling bearing apparatus of one Embodiment, the said mesh member has a nominal filtration precision of 2 micrometers or more and 100 micrometers or less.

公称ろ過精度と回転トルクとの関係を示す実験によれば、公称ろ過精度が100μm以下の場合、メッシュ部材を設けない従来の転がり軸受と比較して、回転トルクの低減効果があることがわかった。また、公称ろ過精度が2μmよりも小さい場合には、転がり軸受装置に焼付が発生した。   According to an experiment showing the relationship between the nominal filtration accuracy and the rotational torque, it was found that when the nominal filtration accuracy is 100 μm or less, there is an effect of reducing the rotational torque as compared with a conventional rolling bearing without a mesh member. . When the nominal filtration accuracy was less than 2 μm, seizure occurred in the rolling bearing device.

上記実施形態によれば、上記メッシュ部材が、公称ろ過精度が2μm以上100μm以下であるので、メッシュ部材を設けない転がり軸受と比較して、回転トルクを低減でき、かつ、焼付の発生も防止できる。   According to the embodiment, since the mesh member has a nominal filtration accuracy of 2 μm or more and 100 μm or less, the rotational torque can be reduced and the occurrence of seizure can be prevented as compared with a rolling bearing not provided with a mesh member. .

また、一実施形態の転がり軸受装置は、上記内輪と上記外輪の間、または、上記オイルが流出する側の端部付近に、オイル流出促進手段が設けられている。   In the rolling bearing device of one embodiment, oil outflow promoting means is provided between the inner ring and the outer ring or in the vicinity of the end portion on the side from which the oil flows out.

上記実施形態によれば、上記内輪と上記外輪の間、または、上記オイルが流出する側の端部付近に、オイル流出促進手段が設けられているので、上記オイル流出促進手段によって、軸受の内部に浸入したオイルを速やかに軸受の外部に流出させることができる。したがって、軸受内にオイルが留まることがなくて、オイルがスムーズに流出するので、オイルの攪拌抵抗を小さくすることができる。さらに、転動体と軌道輪の接触面に介在する余力なオイル(潤滑油)が少ないため、転がり粘性抵抗も小さくできる(特に、転動体が、転動方向と直角方向の寸法が長く接触域が大きい円錐ころまたは円筒ころである場合、この効果を顕著にできる。)。よって、転がり軸受装置の回転トルクを小さくすることができて、この発明の転がり軸受装置を備えた自動車等の燃費を低減できる。   According to the embodiment, since the oil outflow promotion means is provided between the inner ring and the outer ring or in the vicinity of the end on the oil outflow side, the oil outflow promotion means can It is possible to quickly drain the oil that has entered the outside of the bearing. Therefore, the oil does not stay in the bearing and the oil flows out smoothly, so that the oil stirring resistance can be reduced. Furthermore, since there is less oil (lubricating oil) remaining on the contact surface between the rolling element and the race, the rolling viscous resistance can be reduced (especially, the rolling element has a long dimension in the direction perpendicular to the rolling direction and a large contact area. This effect can be noticeable for large tapered or cylindrical rollers.) Therefore, the rotational torque of the rolling bearing device can be reduced, and the fuel consumption of an automobile equipped with the rolling bearing device of the present invention can be reduced.

本発明の転がり軸受装置によれば、外輪と内輪との間に形成される円環状開口から流入するオイルの量を調節するオイル流入量調節部材を、上記円環状開口を塞ぐように配置しているので、転がり軸受装置に流入するオイルの量を、調節することができて、オイルが必要以上に転がり軸受装置に流入することを防止できる。また、転がり軸受装置の焼付を防止するのに最低限必要な量のオイルを、転がり軸受装置に確実に流入させることができて、転がり軸受装置に焼付が発生することを防止できる。   According to the rolling bearing device of the present invention, the oil inflow amount adjusting member for adjusting the amount of oil flowing in from the annular opening formed between the outer ring and the inner ring is arranged so as to close the annular opening. Therefore, the amount of oil flowing into the rolling bearing device can be adjusted, and oil can be prevented from flowing into the rolling bearing device more than necessary. In addition, the minimum amount of oil required to prevent seizure of the rolling bearing device can be reliably introduced into the rolling bearing device, and seizure can be prevented from occurring in the rolling bearing device.

以下、本発明を図示の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、この発明の転がり軸受装置の第1実施形態の円錐ころ軸受装置の軸方向の断面図である。
(First embodiment)
FIG. 1 is an axial sectional view of a tapered roller bearing device according to a first embodiment of the rolling bearing device of the present invention.

この円錐ころ軸受装置は、外輪1と、内輪2と、円錐ころ3と、オイル流入量調節部材の一例としてのメッシュ部材5とを備える。この円錐ころ軸受装置は、運転中、外輪1と内輪2の間における円錐ころ3の小径側の円環状開口から他方の円環状開口までオイルが流動するようになっている。   This tapered roller bearing device includes an outer ring 1, an inner ring 2, a tapered roller 3, and a mesh member 5 as an example of an oil inflow amount adjusting member. In this tapered roller bearing device, oil flows from the annular opening on the small diameter side of the tapered roller 3 between the outer ring 1 and the inner ring 2 to the other annular opening during operation.

上記外輪1は、内周面に円錐状の軌道面7を有し、内輪2は、その周面における軌道面7に対向する部分に、円錐状の軌道面8を有している。また、上記円錐ころ3は、外輪1の軌道面7と内輪2の軌道面8との間に、保持器10によって保持された状態で、周方向に一定の間隔を隔てて略等間隔に複数配置されている。   The outer ring 1 has a conical raceway surface 7 on the inner peripheral surface, and the inner ring 2 has a conical raceway surface 8 at a portion facing the raceway surface 7 on the peripheral surface. The tapered rollers 3 are plurally spaced at regular intervals in the circumferential direction while being held by a cage 10 between the raceway surface 7 of the outer ring 1 and the raceway surface 8 of the inner ring 2. Has been placed.

また、上記メッシュ部材5は、公称ろ過精度が略30μmの可撓性を有するフェルトから形成されている。上記メッシュ部材5は、円板状の部材であり、円板の略中央には、内輪2の開口に対応する開口13が形成されている。上記メッシュ部材5の開口13の内周からメッシュ部材5の外周15までの径方向の寸法は、円錐ころ軸受装置の内輪の内周から外輪の外周までの径方向の寸法と略等しくなっている。また、上記メッシュ部材5の軸受装置側の端面における軸受装置のオイル流入側の円板状開口に対向する部分には、凹部17が形成され、メッシュ部材5が、上記円板状開口から外部にはみ出している保持器10の小径環状部18と接触しないようになっている。上記メッシュ部材5は、メッシュ部材5における外輪1の大径側の端面に対向している部分が、接着剤により外輪1の端面に固定されている一方、メッシュ部材5における内輪2の小径側の端面に対向している部分が、この内輪2の端面に固定されずこの内輪2の端面とソフトタッチするようになっており、メッシュ部材5における内輪2の小径側の端面に対向している部分が、この内輪2の端面と摺動するようになっている。なお、メッシュ部材は、補強部材に取付けて、この補強部材を軌道輪や他の固定部材に設けた段部に圧入あるいはピン等で固定する等、どのように固定してもよい。   The mesh member 5 is formed of a flexible felt having a nominal filtration accuracy of about 30 μm. The mesh member 5 is a disk-shaped member, and an opening 13 corresponding to the opening of the inner ring 2 is formed in the approximate center of the disk. The radial dimension from the inner circumference of the opening 13 of the mesh member 5 to the outer circumference 15 of the mesh member 5 is substantially equal to the radial dimension from the inner circumference of the inner ring to the outer circumference of the outer ring of the tapered roller bearing device. . Further, a concave portion 17 is formed in a portion of the end face of the mesh member 5 on the bearing device side facing the disk-like opening on the oil inflow side of the bearing device, and the mesh member 5 is externally provided from the disk-like opening. It does not come into contact with the small-diameter annular portion 18 of the cage 10 that protrudes. In the mesh member 5, the portion of the mesh member 5 facing the end surface on the large diameter side of the outer ring 1 is fixed to the end surface of the outer ring 1 with an adhesive, while the mesh member 5 has a portion on the small diameter side of the inner ring 2 in the mesh member 5. The portion facing the end surface is not fixed to the end surface of the inner ring 2 and is soft-touched with the end surface of the inner ring 2, and the portion facing the small-diameter end surface of the inner ring 2 in the mesh member 5 However, it slides on the end face of the inner ring 2. The mesh member may be fixed in any way, for example, by attaching the mesh member to the reinforcing member and press-fitting or fixing the reinforcing member to a step provided on the raceway ring or other fixing member.

図2は、メッシュ部材の公称ろ過精度と、回転トルクとの関係を示す図である。   FIG. 2 is a diagram showing the relationship between the nominal filtration accuracy of the mesh member and the rotational torque.

図2のデータは、JIS30306相当品の円錐ころ軸受に様々な公称ろ過精度を有するフェルト製のメッシュ部材を取り付けた後に、擬似的な予圧として4kNのアキシアル荷重を与えて、各円錐ころ軸受において500rpmおよび3000rpmの2つの回転速度で内外輪の一方を回転させて、内外輪の他方に作用する回転トルク値を測定したときの、メッシュ部材を取付なかった円錐ころ軸受の回転トルクに対する各円錐ころ軸受装置の回転トルクの比を表わすデータである。この実験においては、オイルとして、アメリカ自動車技術協会規定のSAE粘度分類で85W−90のギヤオイルを50度に維持したものを使用している。また、この実施形態においては、回転トルクの測定の他に、外輪、内輪および円錐ころの表層部の観察を行い、外輪、内輪および円錐ころの焼付の有無の判定も行っている。   The data of FIG. 2 shows that after attaching a felt mesh member having various nominal filtration accuracy to a tapered roller bearing equivalent to JIS30306, an axial load of 4 kN is applied as a pseudo preload, and 500 rpm is applied to each tapered roller bearing. Each of the tapered roller bearings with respect to the rotational torque of the tapered roller bearing without the mesh member when one of the inner and outer rings is rotated at two rotational speeds of 3000 rpm and the rotational torque value acting on the other of the inner and outer rings is measured. It is the data showing the ratio of the rotational torque of an apparatus. In this experiment, oil that has been maintained at 50 degrees of 85 W-90 gear oil according to the SAE viscosity classification stipulated by the American Automobile Engineering Association is used. Further, in this embodiment, in addition to the measurement of the rotational torque, the outer layer, the inner ring and the tapered roller are observed on the surface layer portion to determine whether the outer ring, the inner ring and the tapered roller are seized.

図2に示すように、回転速度が3000rpmにおいては、公称ろ過精度が100μmより大きい場合、トルク比の値が略一定である一方、公称ろ過精度が100μmから10μmに低下するにしたがって、トルク比が略0.9から略0.2まで急激に低下している。また、公称ろ過精度が10μmより小さい場合においては、公称ろ過精度が低下するにしたがって、トルク比は、0.2から僅かに減少している。   As shown in FIG. 2, at a rotational speed of 3000 rpm, when the nominal filtration accuracy is greater than 100 μm, the torque ratio value is substantially constant, while as the nominal filtration accuracy decreases from 100 μm to 10 μm, the torque ratio decreases. It drops sharply from about 0.9 to about 0.2. When the nominal filtration accuracy is smaller than 10 μm, the torque ratio slightly decreases from 0.2 as the nominal filtration accuracy decreases.

また、図2に示すように、回転速度が500rpmにおいては、公称ろ過精度が90μmより大きい場合、トルク比の値が略一定である一方、公称ろ過精度が90μmから10μmに低下するにしたがって、トルク比が略0.9から略0.55まで急激に低下している。また、公称ろ過精度が10μmより小さい場合においては、公称ろ過精度が低下するにしたがって、トルク比は略0.55から僅かに減少している。   As shown in FIG. 2, when the nominal filtration accuracy is greater than 90 μm at a rotational speed of 500 rpm, the torque ratio value is substantially constant, while the torque decreases as the nominal filtration accuracy decreases from 90 μm to 10 μm. The ratio drops rapidly from about 0.9 to about 0.55. When the nominal filtration accuracy is smaller than 10 μm, the torque ratio slightly decreases from about 0.55 as the nominal filtration accuracy decreases.

また、外輪、内輪および円錐ころの表層部の観察の結果、回転速度が500rpmの場合および回転速度が3000rpmの場合のいずれの場合においても、公称ろ過精度が2μmより小さい場合においては、焼付が観察される一方、公称ろ過精度が2μm以上の場合、焼付が観察されなかった。   In addition, as a result of observation of the outer layer, the inner ring and the surface layer of the tapered roller, seizure was observed when the nominal filtration accuracy was less than 2 μm in both cases where the rotational speed was 500 rpm and the rotational speed was 3000 rpm. On the other hand, seizure was not observed when the nominal filtration accuracy was 2 μm or more.

以上より、メッシュ部材の公称ろ過精度を2μm以上100μm以下に設定すれば、円錐ころ軸受装置の回転トルクを低減できると共に、円錐ころ軸受装置の焼付も確実に防止できる。また、メッシュ部材の公称ろ過精度を2μm以上10μm以下に設定すれば、円錐ころ軸受装置の回転トルクを格段に低減できると共に、円錐ころ軸受装置の焼付も防止できる。   From the above, if the nominal filtration accuracy of the mesh member is set to 2 μm or more and 100 μm or less, the rotational torque of the tapered roller bearing device can be reduced, and seizure of the tapered roller bearing device can be reliably prevented. If the nominal filtration accuracy of the mesh member is set to 2 μm or more and 10 μm or less, the rotational torque of the tapered roller bearing device can be remarkably reduced and seizure of the tapered roller bearing device can be prevented.

本発明者は、更に、金属製のメッシュ部材と、この金属製のメッシュ部材と同じ公称ろ過精度有するフェルト製のメッシュ部材において、図2に示すような回転トルクの実験を行った。その結果、フェルト製のメッシュ部材を使用した場合、金属製のメッシュ部材を用いた場合と比較して、回転速度が高い場合に、回転トルクの低減効果が大きいことが確認された。   The present inventor further conducted an experiment of a rotational torque as shown in FIG. 2 in a metal mesh member and a felt mesh member having the same nominal filtration accuracy as the metal mesh member. As a result, it was confirmed that when a felt mesh member was used, the rotational torque reduction effect was greater when the rotational speed was higher than when a metal mesh member was used.

これは、上記オイル流入調節部材として、フェルト製のメッシュ部材を用いた場合においては、円錐ころ軸受装置が高速回転しているとき、すなわち、円錐ころ軸受装置のポンプ作用が大きくてオイルを吸い込む力が大きいときには、上記フェルト製のメッシュ部材が軸方向に自動的に縮んでメッシュの空隙の大きさが自動的に小さくなり、公称ろ過精度が実際の値よりも小さくなるからである。   This is because when the felt mesh member is used as the oil inflow adjusting member, the tapered roller bearing device rotates at a high speed, that is, the pumping action of the tapered roller bearing device is large and the oil is sucked in. This is because the felt mesh member automatically shrinks in the axial direction and the size of the mesh gap automatically decreases, and the nominal filtration accuracy becomes smaller than the actual value.

上記第1実施形態の円錐ころ軸受装置によれば、軸受装置内に流入するオイルの量を調節するオイル流入量調節部材を、外輪1と内輪2のオイル流入側の円環状開口を塞ぐように配置したので、円錐ころ軸受装置に流入するオイルの量を、調節することができる。したがって、オイルが必要以上に円錐ころ軸受装置に流入することを防止できるので、円錐ころ軸受装置の攪拌抵抗を低減することができて、円錐ころ軸受装置の回転トルクを低減することができる。また、円錐ころ軸受装置の焼付を防止するのに最低限必要な量のオイルを、円錐ころ軸受装置に確実に流入されることができるので、円錐ころ軸受装置に焼付が発生することを防止できる。そして、特に、上記第1実施形態の円錐ころ軸受装置を、比較的高粘度のオイル(潤滑油)が大量に供給される自動車のデファレンシャルギヤのピニオン軸支持に用いるとその効果を大きくすることができる。   According to the tapered roller bearing device of the first embodiment, the oil inflow amount adjusting member for adjusting the amount of oil flowing into the bearing device is closed so as to close the annular opening on the oil inflow side of the outer ring 1 and the inner ring 2. Since it is arranged, the amount of oil flowing into the tapered roller bearing device can be adjusted. Therefore, since oil can be prevented from flowing into the tapered roller bearing device more than necessary, the stirring resistance of the tapered roller bearing device can be reduced, and the rotational torque of the tapered roller bearing device can be reduced. In addition, since a minimum amount of oil necessary to prevent seizure of the tapered roller bearing device can be reliably introduced into the tapered roller bearing device, seizure can be prevented from occurring in the tapered roller bearing device. . In particular, when the tapered roller bearing device of the first embodiment is used for supporting a pinion shaft of a differential gear of an automobile supplied with a large amount of oil (lubricating oil) having a relatively high viscosity, the effect can be increased. it can.

また、上記第1実施形態の円錐ころ軸受装置によれば、オイル流入調節部材として、可撓性を有するフェルト製のメッシュ部材5を用いているので、円錐ころ軸受装置が高速回転しているとき、すなわち、円錐ころ軸受装置のポンプ作用が大きくてオイルを吸い込む力が大きいときに、メッシュ部材5が軸方向に自動的に縮んでメッシュの空隙の大きさが自動的に小さくなり、オイルが必要以上に円錐ころ軸受装置に流入することを防止できる。また、円錐ころ軸受装置が低速回転しているとき、すなわち、円錐ころ軸受装置のポンプ作用が小さくてオイルを吸い込む力が小さいときには、メッシュ部材5が軸方向に自動的に緩んでメッシュの空隙の大きさが自動的に大きくなり、焼付を防止するのに最低限必要なオイルを、確実に円錐ころ軸受装置に流入させることができる。   In addition, according to the tapered roller bearing device of the first embodiment, since the flexible mesh member 5 made of felt is used as the oil inflow adjusting member, the tapered roller bearing device is rotating at high speed. That is, when the pumping action of the tapered roller bearing device is large and the oil suction force is large, the mesh member 5 is automatically contracted in the axial direction, and the size of the mesh gap is automatically reduced, so that oil is required. As described above, it can be prevented from flowing into the tapered roller bearing device. Further, when the tapered roller bearing device is rotating at a low speed, that is, when the pumping action of the tapered roller bearing device is small and the oil suction force is small, the mesh member 5 is automatically loosened in the axial direction and the mesh gap The size automatically increases, and the minimum oil required to prevent seizure can be surely flowed into the tapered roller bearing device.

また、上記第1実施形態の円錐ころ軸受装置によれば、オイル流入量調節部材であるメッシュ部材5が、可撓性を有し、かつ、取り扱いが容易でかつ安価なフェルトから成っているので、メッシュの空隙の大きさを自動的に最適に調整でき、かつ、オイル流入量調節部材を簡単安価に構成できる。   Further, according to the tapered roller bearing device of the first embodiment, the mesh member 5 that is the oil inflow adjustment member is made of felt that is flexible, easy to handle, and inexpensive. In addition, the size of the mesh gap can be automatically and optimally adjusted, and the oil inflow adjusting member can be easily and inexpensively configured.

また、上記第1実施形態の円錐ころ軸受装置によれば、上記メッシュ部材5の公称ろ過精度を略30μmに設定しているので、メッシュ部材を設けない従来の円錐ころ軸受と比較して、回転トルクを各段に低減でき、かつ、焼付の発生も確実に防止できる。   Further, according to the tapered roller bearing device of the first embodiment, since the nominal filtration accuracy of the mesh member 5 is set to about 30 μm, the rotational speed is higher than that of a conventional tapered roller bearing without a mesh member. Torque can be reduced at each stage, and seizure can be reliably prevented.

尚、上記第1実施形態の円錐ころ軸受装置では、オイル流入量調節部材として、フェルト製のメッシュ部材5を採用したが、この発明の転がり軸受装置では、オイル流入量調節部材として、ポリプロピレン製のメッシュ部材等のフェルト製のメッシュ部材5以外の可撓性を有するメッシュ部材を採用しても良く、この場合、フェルト製のメッシュ部材を採用したときと同様の作用効果を獲得できる。また、この発明の転がり軸受装置では、金属製のメッシュ部材を採用しても良い。   In the tapered roller bearing device of the first embodiment, the felt mesh member 5 is used as the oil inflow amount adjusting member. However, in the rolling bearing device of the present invention, the oil inflow amount adjusting member is made of polypropylene. A mesh member having flexibility other than the felt mesh member 5 such as a mesh member may be employed. In this case, the same effect as that obtained when the felt mesh member is employed can be obtained. In the rolling bearing device of the present invention, a metal mesh member may be employed.

また、上記第1実施形態の円錐ころ軸受装置では、メッシュ部材5の公称ろ過精度を30μmに設定したが、この発明の転がり軸受装置では、メッシュ部材5の公称ろ過精度を2μm以上100μm以下に設定しても良く、この場合、メッシュ部材5の公称ろ過精度を30μmに設定した場合と同様の作用効果を獲得することができる。   In the tapered roller bearing device according to the first embodiment, the nominal filtration accuracy of the mesh member 5 is set to 30 μm. However, in the rolling bearing device of the present invention, the nominal filtration accuracy of the mesh member 5 is set to 2 μm or more and 100 μm or less. In this case, the same effect as that obtained when the nominal filtration accuracy of the mesh member 5 is set to 30 μm can be obtained.

また、上記第1実施形態の円錐ころ軸受装置では、オイルを円錐ころ3の小径側から流入させる形式であったが、オイルを円錐ころの大径側から流入させる形式であっても良いことは勿論である。   In the tapered roller bearing device of the first embodiment, the oil is introduced from the small diameter side of the tapered roller 3, but the oil may be introduced from the large diameter side of the tapered roller 3. Of course.

(第2実施形態)
図3は、本発明の転がり軸受装置の第2実施形態の円錐ころ軸受装置の軸方向の断面図である。
(Second Embodiment)
FIG. 3 is an axial sectional view of a tapered roller bearing device according to a second embodiment of the rolling bearing device of the present invention.

第2実施形態の円錐ころ軸受装置は、円錐ころ軸受装置の軸方向のオイル流入側の端部に、フェルト製のメッシュ部材40を固定したことが、第1実施形態と同様である一方、以下に記載するように、オイル流出促進手段を設けたことが、第1実施形態と異なっている。   The tapered roller bearing device of the second embodiment is similar to the first embodiment in that the felt mesh member 40 is fixed to the end of the tapered roller bearing device on the oil inflow side in the axial direction. As described in the above, the provision of the oil outflow promotion means is different from the first embodiment.

第2実施形態の円錐ころ軸受装置では、第1実施形態の円錐ころ軸受装置と共通の作用効果および変形例については説明を省略することにし、第1実施形態の円錐ころ軸受装置と異なる作用効果および変形例についてのみ説明を行うことにする。   In the tapered roller bearing device of the second embodiment, the description of the operation and effect common to the tapered roller bearing device of the first embodiment will be omitted, and the operation and effect different from the tapered roller bearing device of the first embodiment. Only the modified example will be described.

第2実施形態では、円錐ころ33の個数は、その個数をz、円錐ころ33の平均径(円錐ころの大径側と小径側の中間の径)をDW、円錐ころ33のピッチ径をdmとしたとき、z≦0.85/(DW/(π・dm))を満たすような数に設定されている。   In the second embodiment, the number of tapered rollers 33 is z, the average diameter of the tapered rollers 33 (the intermediate diameter between the large diameter side and the small diameter side of the tapered rollers) is DW, and the pitch diameter of the tapered rollers 33 is dm. Is set to a number satisfying z ≦ 0.85 / (DW / (π · dm)).

実験によると、円錐ころの数を0.85/(DW/(π・dm))よりも大きな数にすると、トルクが急激に増大する一方、第2実施形態のように、円錐ころの数を0.85/(DW/(π・dm))以下に抑えると、トルクが小さくなることが確認されている。   According to experiments, when the number of tapered rollers is larger than 0.85 / (DW / (π · dm)), the torque increases rapidly, while the number of tapered rollers is reduced as in the second embodiment. It has been confirmed that the torque is reduced when the pressure is reduced to 0.85 / (DW / (π · dm)) or less.

z≦0.85/(DW/(π・dm))を満たすような数に限定されたz個の円錐ころ3を、図3に示すように、その円錐ころ33の大径側をオイルの流出側に向けて、外輪31と内輪32との間に配置し、外輪31と内輪32の間における円錐ころ33が占めるスペースを小さくしてオイルの流路を広くしたこの配置構成は、オイル流出促進手段の一部分になっている。   As shown in FIG. 3, z tapered rollers 3 limited to a number satisfying z ≦ 0.85 / (DW / (π · dm)) are connected to the large diameter side of the tapered rollers 33 with oil. This arrangement is arranged between the outer ring 31 and the inner ring 32 toward the outflow side, and the space occupied by the tapered rollers 33 between the outer ring 31 and the inner ring 32 is reduced to widen the oil flow path. It is part of the promotion means.

また、上記外輪31の円錐状の軌道面35の法線が軸中心Rとなす角の余角で定義される外輪31の軌道面と円錐ころ33との接触角θは、25°に設定されている。   Further, the contact angle θ between the raceway surface of the outer ring 31 and the tapered roller 33, which is defined by the additional angle of the angle between the normal line of the conical raceway surface 35 of the outer ring 31 and the axis R, is set to 25 °. ing.

円錐ころ33との接触角が25°で、オイルの流出方向で末広がりになる度合が大きくて、オイルを外部に排出するポンプ機能が大きい外輪31の軌道面35は、オイル流出促進手段の一部分となっている。   The raceway surface 35 of the outer ring 31 that has a contact angle with the tapered roller 33 of 25 °, a large degree of diverging in the oil outflow direction, and a large pump function for discharging the oil to the outside is a part of the oil outflow promoting means. It has become.

また、上記保持器37における円錐ころ33の大径側の大径環状部38は、図3に示す軸方向の断面図において、円錐ころ33の中心軸と略平行に延びている。オイルが流出する側の端部付近に位置する上記大径環状部38は、オイルの流れに略平行な形状に形づくられており、オイルの流れを整流できるようになっている。上記保持器37の大径環状部38は、オイル流出促進手段の一部分となっている。   Further, the large-diameter annular portion 38 on the large-diameter side of the tapered roller 33 in the cage 37 extends substantially parallel to the central axis of the tapered roller 33 in the axial sectional view shown in FIG. The large-diameter annular portion 38 located in the vicinity of the end portion on the oil outflow side is formed in a shape substantially parallel to the oil flow so that the oil flow can be rectified. The large-diameter annular portion 38 of the retainer 37 is a part of the oil outflow promoting means.

上記第2実施形態の円錐ころ軸受装置によれば、円錐ころ33の個数zを、0.85/(DW/(π・dm))以下に抑えて、周方向に隣接する円錐ころ33の間のスペースを大きくして、オイルの流路を大きくしたので、オイルの流出を促進できる。したがって、軸受装置内部のオイルの量を低減できて、オイルの量に依存するオイルの攪拌抵抗を小さくできる。   According to the tapered roller bearing device of the second embodiment, the number z of tapered rollers 33 is suppressed to 0.85 / (DW / (π · dm)) or less, and between the tapered rollers 33 adjacent in the circumferential direction. Since the oil passage is enlarged and the oil flow path is enlarged, oil outflow can be promoted. Therefore, the amount of oil in the bearing device can be reduced, and the oil stirring resistance depending on the amount of oil can be reduced.

また、上記第2実施形の円錐ころ軸受装置によれば、外輪31の軌道面35と円錐ころ33との接触角を25°に設定して、外輪31が、オイルの流出方向で、末広がりになる度合いを大きくしたので、軸受装置の運転中に遠心力により外輪31の軌道面35に飛ばされたオイルが、軌道面35に沿って移動するときの速度を大きくできて、オイルを効率よく流出させることができる。したがって、オイルの攪拌抵抗が更に小さくできて、軸受装置自体のトルクの低減の度合いを更に大きくすることができる。   Further, according to the tapered roller bearing device of the second embodiment, the contact angle between the raceway surface 35 of the outer ring 31 and the tapered roller 33 is set to 25 ° so that the outer ring 31 spreads in the direction of oil outflow. Therefore, the speed at which the oil blown to the raceway surface 35 of the outer ring 31 by the centrifugal force during the operation of the bearing device moves along the raceway surface 35 can be increased, and the oil is efficiently discharged. Can be made. Therefore, the oil stirring resistance can be further reduced, and the degree of torque reduction of the bearing device itself can be further increased.

また、上記第2実施形態の円錐ころ軸受装置によれば、上記保持器37におけるオイルの流出方向側の大径環状部38が、オイルの流れを邪魔しないようなオイルの流れに略平行な形状をしているので、この大径環状部38でオイルの流れを整流できて、オイルを効率よく流出させることができる。   Further, according to the tapered roller bearing device of the second embodiment, the large-diameter annular portion 38 on the oil outflow direction side in the retainer 37 has a shape substantially parallel to the oil flow so as not to obstruct the oil flow. Therefore, the oil flow can be rectified by the large-diameter annular portion 38, and the oil can be efficiently discharged.

このように、上記第2実施形態の円錐ころ軸受装置によれば、上記3つ部分から成るオイル流出促進手段によって、軸受装置内部に浸入したオイルを速やかに軸受装置の外部に流出させることができるので、軸受装置内部にオイルが留まることがなくて、オイルの攪拌抵抗を小さくすることができる。さらに、円錐ころ33と外輪31の接触面、および、円錐ころ33と内輪32の接触面に介在する余力なオイル(潤滑油)が少ないため、転がり粘性抵抗も小さくできる(特に、上記第2実施形態では、転動体が、転動方向と直角方向の寸法が長く接触域が大きい円錐ころ33であるので、この効果を顕著にできる。)。よって、転がり軸受装置の回転トルクを小さくすることができて、第2実施形態の円錐ころ軸受装置を備えた自動車等の機械の運転コスト(燃費)を低減できる。   As described above, according to the tapered roller bearing device of the second embodiment, the oil that has entered the bearing device can be quickly spilled out of the bearing device by the oil outflow promotion means including the three parts. Therefore, the oil does not stay inside the bearing device, and the oil stirring resistance can be reduced. Further, since there is less surplus oil (lubricating oil) interposed between the contact surface of the tapered roller 33 and the outer ring 31 and the contact surface of the tapered roller 33 and the inner ring 32, the rolling viscous resistance can be reduced (particularly, in the second embodiment). In the embodiment, since the rolling element is a tapered roller 33 having a long dimension in a direction perpendicular to the rolling direction and a large contact area, this effect can be made remarkable.) Therefore, the rotational torque of the rolling bearing device can be reduced, and the operating cost (fuel consumption) of a machine such as an automobile provided with the tapered roller bearing device of the second embodiment can be reduced.

上記第2実施形態の円錐ころ軸受装置では、上記外輪31の軌道面35を、円錐ころ33と25°の接触角で接触するように形成したが、実験によると、外輪の軌道面を、円錐ころと25°以上の接触角で接触するように設定するとトルクを急激に低減できることが確認されており、外輪の軌道面を、円錐ころと25°より大きな角度の接触角で接触するように形成しても良い。
尚、上記第1および第2実施形態では、オイル流入量調節部材を有する円錐ころ軸受である円錐ころ軸受装置について説明を行ったが、オイル流入量調節部材を有する円筒ころ軸受や、オイル流入量調節部材を有する玉軸受等、オイル流入量調節部材を有する円錐ころ軸受以外の転がり軸受が、本発明の範疇に入ることは勿論である。
In the tapered roller bearing device of the second embodiment, the raceway surface 35 of the outer ring 31 is formed so as to come into contact with the tapered rollers 33 at a contact angle of 25 °. It has been confirmed that the torque can be drastically reduced when it is set to contact the roller at a contact angle of 25 ° or more, and the raceway surface of the outer ring is formed to contact the tapered roller at a contact angle larger than 25 °. You may do it.
In the first and second embodiments, the tapered roller bearing device which is a tapered roller bearing having an oil inflow amount adjusting member has been described. However, a cylindrical roller bearing having an oil inflow amount adjusting member, an oil inflow amount, and the like. It goes without saying that rolling bearings other than the tapered roller bearing having the oil inflow amount adjusting member such as a ball bearing having the adjusting member fall within the scope of the present invention.

本発明の転がり軸受装置の第1実施形態の円錐ころ軸受装置の軸方向の断面図である。It is sectional drawing of the axial direction of the tapered roller bearing apparatus of 1st Embodiment of the rolling bearing apparatus of this invention. 公称ろ過精度とトルク比との関係を示す図である。It is a figure which shows the relationship between a nominal filtration accuracy and a torque ratio. 本発明の転がり軸受装置の第2実施形態の円錐ころ軸受装置の軸方向の断面図である。It is sectional drawing of the axial direction of the tapered roller bearing apparatus of 2nd Embodiment of the rolling bearing apparatus of this invention.

符号の説明Explanation of symbols

1,31 外輪
2,32 内輪
3,33 円錐ころ
5,40 メッシュ部材
7,8,35 軌道面
38 大径環状部
1,31 outer ring 2,32 inner ring 3,33 tapered roller 5,40 mesh member 7,8,35 raceway surface 38 large-diameter annular portion

Claims (5)

内周に軌道面を有する外輪と、
外周に軌道面を有する内輪と、
上記外輪の軌道面と上記内輪の軌道面との間に配置された転動体と
を備え、
上記外輪と上記内輪との間に形成される円環状開口から流入するオイルの量を調節するオイル流入量調節部材を、上記円環状開口を塞ぐように配置していることを特徴とする転がり軸受装置。
An outer ring having a raceway surface on the inner periphery;
An inner ring having a raceway surface on the outer periphery;
A rolling element disposed between the raceway surface of the outer ring and the raceway surface of the inner ring,
A rolling bearing characterized in that an oil inflow adjustment member for adjusting the amount of oil flowing in from an annular opening formed between the outer ring and the inner ring is disposed so as to close the annular opening. apparatus.
請求項1に記載の転がり軸受装置において、
上記オイル流入量調節部材は、可撓性のメッシュ部材であることを特徴とする転がり軸受装置。
The rolling bearing device according to claim 1,
The rolling bearing device according to claim 1, wherein the oil inflow rate adjusting member is a flexible mesh member.
請求項2に記載の転がり軸受装置において、
上記メッシュ部材は、フェルトから成ることを特徴とする転がり軸受装置。
In the rolling bearing device according to claim 2,
The rolling bearing device according to claim 1, wherein the mesh member is made of felt.
請求項2または3に記載の転がり軸受装置において、
上記メッシュ部材は、公称ろ過精度が2μm以上100μm以下であることを特徴とする転がり軸受装置。
In the rolling bearing device according to claim 2 or 3,
The rolling bearing device, wherein the mesh member has a nominal filtration accuracy of 2 μm or more and 100 μm or less.
請求項1乃至4に記載の転がり軸受装置において、
上記内輪と上記外輪の間、または、上記オイルが流出する側の端部付近にオイル流出促進手段を設けることを特徴とする転がり軸受装置。
The rolling bearing device according to claim 1,
A rolling bearing device characterized in that an oil outflow promoting means is provided between the inner ring and the outer ring or in the vicinity of the end portion on the oil outflow side.
JP2004084989A 2004-03-23 2004-03-23 Rolling bearing device Pending JP2005273716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084989A JP2005273716A (en) 2004-03-23 2004-03-23 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084989A JP2005273716A (en) 2004-03-23 2004-03-23 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2005273716A true JP2005273716A (en) 2005-10-06

Family

ID=35173628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084989A Pending JP2005273716A (en) 2004-03-23 2004-03-23 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2005273716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211692A (en) * 2011-03-24 2012-11-01 Ntn Corp Roller bearing
WO2013191014A1 (en) * 2012-06-19 2013-12-27 Ntn株式会社 Rolling bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211692A (en) * 2011-03-24 2012-11-01 Ntn Corp Roller bearing
WO2013191014A1 (en) * 2012-06-19 2013-12-27 Ntn株式会社 Rolling bearing
JP2014001801A (en) * 2012-06-19 2014-01-09 Ntn Corp Rolling bearing
US9476457B2 (en) 2012-06-19 2016-10-25 Ntn Corporation Rolling bearing

Similar Documents

Publication Publication Date Title
JP4314430B2 (en) Tapered roller bearing
JP6458459B2 (en) Tapered roller bearing
EP1693584A1 (en) Oil lubrication-type rolling bearing device
JPH11201149A (en) Tapered roller bearing
JP2009192069A (en) Conical roller bearing
JP2010014193A (en) Tapered roller bearing
JP2008240769A (en) Double-row ball bearing
JP6458458B2 (en) Tapered roller bearing
JP2004076766A (en) Tapered roller bearing
JP5397505B2 (en) Tapered roller bearing
EP2119924A1 (en) Conical roller bearing
JP2005273716A (en) Rolling bearing device
JP2010159788A (en) Thrust roller bearing
US9903412B2 (en) Tapered roller bearing
JP4370907B2 (en) Ball bearing
JP5146189B2 (en) Rolling bearing
JP4385801B2 (en) Tapered roller bearings
JP2008223863A (en) Tapered roller bearing
JP2007321955A (en) Cage for tapered roller bearing, and tapered roller bearing using the same
JP2005291445A (en) Tapered roller bearing
JP4433842B2 (en) Tapered roller bearings
JPH11325087A (en) Conical roller bearing
JP2007177801A (en) Rolling bearing
JP2008008466A (en) Tapered roller bearing
JP2008025617A (en) Tapered roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804