JP2005273067A - Method for producing nonwoven fabric by electric charge-induced spinning method - Google Patents

Method for producing nonwoven fabric by electric charge-induced spinning method Download PDF

Info

Publication number
JP2005273067A
JP2005273067A JP2004086608A JP2004086608A JP2005273067A JP 2005273067 A JP2005273067 A JP 2005273067A JP 2004086608 A JP2004086608 A JP 2004086608A JP 2004086608 A JP2004086608 A JP 2004086608A JP 2005273067 A JP2005273067 A JP 2005273067A
Authority
JP
Japan
Prior art keywords
spinning
nonwoven fabric
polymer compound
electrode
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004086608A
Other languages
Japanese (ja)
Inventor
Kenji Ohashi
賢司 大橋
Yoji Yanagi
陽二 柳
Minoru Yagi
穣 八木
Ryoichi Nagashima
良一 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004086608A priority Critical patent/JP2005273067A/en
Publication of JP2005273067A publication Critical patent/JP2005273067A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum charging method of an accumulating part for accumulating a fiber structure obtained by electric charge-induced spinning, a drying method using the accumulating part having a shape suitable for drying the fiber structure, and a method for continuously conveying a nonwoven fabric to safely mass-produce the nonwoven fabric having uniform shape and characteristics by using an electric charge-induced spinning method. <P>SOLUTION: The method for producing the nonwoven fabric by the electric charge-induced spinning method involves inserting a flat structure (C) having many holes between a spinning part (A) and an electrode (B), and accumulating the fiber structure comprising a macromolecular compound on the surface of the structure (C) in the method for producing the nonwoven fabric by jetting a macromolecular compound solution from the spinning part (A) for spinning the solution containing the positively or negatively charged macromolecular compound to the plate-shaped electrode (B) charged in the polarity inverse to that of the spinning part (A), and accumulating the fiber structure composed of the macromolecular compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は不織布の製造方法に関する。さらに詳しくは、電荷誘導紡糸法により高分子化合物の不織布を製造する方法において、不織布が得られる堆積部の帯電方法、および連続的な不織布の搬送の方法に関する。   The present invention relates to a method for producing a nonwoven fabric. More specifically, the present invention relates to a method for producing a non-woven fabric of a polymer compound by a charge-induced spinning method, a charging method for a deposited portion where the non-woven fabric is obtained, and a method for continuously conveying the non-woven fabric.

種々の高分子化合物を紡糸する技術としては、溶融状態の高分子化合物をノズルより紡出させ、これを大気中もしくはある種の気体中で冷却・固化させて繊維を得る「溶融紡糸法」や、高分子化合物を含む溶液をノズルより紡出させ、これより溶媒成分を蒸発させて繊維を得る「乾式紡糸法」、同様にノズルより紡出された繊維状高分子化合物を凝固液中で固化させて繊維を得る「湿式紡糸法」などが一般的に知られている。   As a technique for spinning various polymer compounds, a melt-spinning method is used in which molten polymer compounds are spun from a nozzle and cooled and solidified in the air or in a certain gas to obtain fibers. `` Spinning spinning method '' in which a solution containing a polymer compound is spun from a nozzle and the solvent component is evaporated therefrom to obtain fibers, and the fibrous polymer compound spun from the nozzle is solidified in a coagulation liquid. The “wet spinning method” in which fibers are obtained by causing them to be generally known.

また不織布を製造する技術は、既述の紡糸技術を応用したものであり、「乾式法」や「湿式法」の他に、溶融紡糸後に延伸・開繊の工程を経て不織布を得る「スパンボンド法」や、溶融紡糸ノズル口に高温高圧空気流を吹き当て、繊維状高分子化合物を延伸・開繊して不織布を得る「メルトブローン法」などが一般的に知られている。   In addition, the technology for producing nonwoven fabrics applies the above-mentioned spinning technology. In addition to the “dry method” and “wet method”, “spunbond” is used to obtain nonwoven fabrics through melt spinning and drawing / opening processes. In general, there are known “method” and “melt blown method” in which a nonwoven fabric is obtained by blowing and opening a fibrous polymer compound by blowing a high-temperature and high-pressure air stream to a melt spinning nozzle port.

これらの紡糸技術および不織布製造技術を利用し、既存の繊維や不織布にない新たな特性を供すべく、様々な取り組みが為されている。中でも、繊維の直径を極小とし、単位重量当たりの表面積を向上させることで新たな機能を付与させる取り組みが盛んである。   Various efforts have been made to utilize these spinning technology and nonwoven fabric manufacturing technology to provide new characteristics not found in existing fibers and nonwoven fabrics. In particular, efforts are being made to impart new functions by minimizing the fiber diameter and improving the surface area per unit weight.

しかしながら、既述の紡糸技術および不織布製造技術を利用して得られた繊維の直径、および不織布を構成する繊維の直径は、既存の繊維と同等の直径(数〜数十μm程度)であり、サブミクロンやナノスケールの直径を有する繊維を製造することは困難である。また、高圧下での高分子化合物の押し出しや繊維状高分子化合物の冷却・固化に供される設備は複雑かつ高価であり、製造コストの増大や安定した製品供給を阻害する。   However, the diameter of the fiber obtained by using the above-described spinning technology and nonwoven fabric manufacturing technology, and the diameter of the fiber constituting the nonwoven fabric are the same diameter as existing fibers (several to several tens of μm), It is difficult to produce fibers with submicron or nanoscale diameters. In addition, facilities used for extruding a polymer compound under high pressure and cooling / solidifying a fibrous polymer compound are complicated and expensive, which hinders an increase in manufacturing cost and stable product supply.

そこで、新しい紡糸技術として、米国特許第6106913号明細書(特許文献1)や米国特許第6110590号明細書(特許文献2)でも取り上げられている「電荷誘導紡糸法」が注目を集めている。本法は、高分子化合物を含有する溶液を正または負に帯電させ、これとは逆の極性に帯電させた繊維状高分子化合物堆積部に対し、ノズルやニードルを介して紡出する方法である。一方の極性を帯びた繊維状高分子化合物は、当該堆積部に到達する間に、繊維内の電気的な斥力により細化が進む。本法によると、数nmの直径を有する繊維の製造が可能となる。   Thus, as a new spinning technique, “charge-induced spinning method”, which is also taken up in US Pat. No. 6,106,913 (Patent Document 1) and US Pat. No. 6,110,590 (Patent Document 2), is attracting attention. This method is a method in which a solution containing a polymer compound is charged positively or negatively, and spun through a nozzle or a needle to a fibrous polymer compound deposition portion charged in the opposite polarity. is there. The fibrous polymer compound having one polarity is thinned by an electric repulsive force in the fiber while reaching the deposition portion. According to this method, a fiber having a diameter of several nm can be produced.

一方、本法の課題とされている量産技術に関しても検討が盛んに行われている。特開2002−201559号公報(特許文献3)では、液状の高分子物質を貯蔵するバレル、当該バレルより液状の高分子物質を加圧供給するポンプ、当該ポンプより供給される液状の高分子物質を荷電されたノズルを通して噴射する紡糸部、液状の高分子物質を荷電させるための高電圧発生部、紡糸部とは異なる極性に帯電させたウェブ堆積部(コレクタ)から成る高分子ウェブ製造装置が教示されている。本法によると、研究用途で供される1つのニードルを用いた実験室規模の製造とは異なり、高分子ウェブを高速かつ大量に製造することが可能である。   On the other hand, studies on mass production technology, which is the subject of this method, are also being actively conducted. In Japanese Patent Application Laid-Open No. 2002-201559 (Patent Document 3), a barrel for storing a liquid polymer substance, a pump for supplying a liquid polymer substance under pressure from the barrel, and a liquid polymer substance supplied from the pump There is provided a polymer web manufacturing apparatus comprising a spinning section for injecting a liquid through a charged nozzle, a high voltage generating section for charging a liquid polymer substance, and a web deposition section (collector) charged to a polarity different from that of the spinning section. Taught. According to this method, it is possible to produce a polymer web at high speed and in large quantities, unlike laboratory-scale production using a single needle provided for research purposes.

しかし本法では、コンベヤベルトのみを帯電させることは構造上困難であり、高分子ウェブを堆積し、移送する部位全てを帯電させる必要がある。つまり、紡糸部を含むウェブ堆積部(コレクタ)を高電圧下に置く必要があり、均一な荷電分布が困難なだけでなく、溶媒蒸気が混在する故、著しく危険性が高い。帯電箇所の多寡は危険性の有無に直結する問題であり、帯電箇所を減らす工夫が望まれる。本課題を解消すべく、さらに別の高電圧発生部を設置し、紡糸部とウェブ堆積部を別々に帯電させる方法が教示されているが、高電圧発生部は非常に高価であり、設備コスト増大は避けられない。   However, in this method, it is structurally difficult to charge only the conveyor belt, and it is necessary to charge all the portions where the polymer web is deposited and transported. That is, it is necessary to place the web depositing part (collector) including the spinning part under a high voltage, and not only a uniform charge distribution is difficult, but also the solvent vapor is mixed, so the danger is extremely high. The number of charged parts is a problem directly related to the presence or absence of danger, and a device to reduce the charged parts is desired. In order to solve this problem, another high voltage generator is installed, and a method of charging the spinning unit and the web depositing unit separately is taught. However, the high voltage generator is very expensive and the equipment cost is low. An increase is inevitable.

また、高分子ウェブが含有する溶媒除去を目的とした熱風乾燥を行う場合、高分子ウェブの堆積および移送を目的としたコンベヤベルトが熱風の循環を阻害し、著しく乾燥効率を悪化させる。   In addition, when performing hot air drying for the purpose of removing the solvent contained in the polymer web, the conveyor belt for the purpose of depositing and transferring the polymer web inhibits the circulation of the hot air, and remarkably deteriorates the drying efficiency.

他に特開2002−249966号公報(特許文献4)でも同様の量産方法が教示されている。本法は、高分子溶液を製造する工程と電荷誘導紡糸法により高分子溶液を紡糸する工程、およびウェブ堆積部上に高分子ウェブを得る工程から成り、紡糸工程の相対湿度および高分子溶液の温度を制御することにより、所望の繊維径を有する高分子ウェブの大量製造を可能にしている。   In addition, JP 2002-249966 A (Patent Document 4) teaches a similar mass production method. This method comprises a step of producing a polymer solution, a step of spinning the polymer solution by a charge-induced spinning method, and a step of obtaining a polymer web on the web depositing portion. By controlling the temperature, it is possible to mass-produce a polymer web having a desired fiber diameter.

しかし本法においても、既述の帯電方法や乾燥方法に問題があり、均一な形状および特性を有する製品を供することは困難である。   However, even in this method, there are problems with the above-described charging method and drying method, and it is difficult to provide a product having a uniform shape and characteristics.

米国特許第6106913号明細書US Pat. No. 6,106,913 米国特許第6110590号明細書US Pat. No. 6,110,590 特開2002−201559号公報JP 2002-201559 A 特開2002−249966号公報JP 2002-249966 A

電荷誘導紡糸法を利用して、均一な形状および特性を有する不織布を高速かつ安全に量産するために紡糸により得られる繊維構造物を堆積させる堆積部の最適な帯電方法、また当該繊維構造物の乾燥に適した形状を有する堆積部を用いた乾燥方法および連続的な不織布の搬送の方法を提供することにある。   In order to mass-produce non-woven fabric having a uniform shape and characteristics at high speed and safely by using the charge-induced spinning method, an optimal charging method for the depositing portion for depositing the fiber structure obtained by spinning, and the fiber structure An object of the present invention is to provide a drying method using a depositing portion having a shape suitable for drying and a method for continuously conveying a nonwoven fabric.

発明者らは既述の問題を解消するために鋭意検討し、正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)と、当該部位とは逆の極性に帯電させた板状の電極(B)の間に、複数の孔を一定間隔で配列させた構造体(C)を挿入することで、当該構造体(C)表面上に高分子化合物が良好な秩序を保ちながら堆積し、均一な形状および特性を有する不織布が連続的に得られることを見出した。また本発明により、不織布の堆積部の余分な帯電部位を減少させ、設備費の軽減に大きく寄与できることを見出した。   The inventors have intensively studied in order to solve the above-mentioned problems, a spinning part (A) for spinning a solution containing a positively or negatively charged polymer compound, and a polarity opposite to that of the part. By inserting the structure (C) in which a plurality of holes are arranged at regular intervals between the plate-like electrode (B) charged to a high level, the polymer compound is excellent on the surface of the structure (C) It has been found that a nonwoven fabric having a uniform shape and characteristics can be continuously obtained while being deposited while maintaining proper order. Further, it has been found that the present invention can greatly contribute to the reduction of the equipment cost by reducing the number of charged portions of the non-woven fabric accumulation portion.

即ち本発明の第1は、電荷誘電紡糸法により高分子化合物の不織布を製造する方法において、正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)と、当該部位とは逆の極性に帯電させた板状の電極(B)の間に、複数の孔を一定間隔で配列させた平面状構造体(C)を挿入し、当該構造体(C)表面上に高分子化合物を堆積させて不織布を得ることを特徴とする不織布の製造方法に関する。本発明の第2は、当該構造体(C)より形成される堆積部が帯状であり、当該帯状堆積部を連続的に移動させることにより、得られた不織布を連続的に搬送することを特徴とする上記第1の発明の製造方法に関する。本発明の第3は、当該構造体(C)が網目状構造体であることを特徴とする上記第1および第2の発明の製造方法に関する。本発明の第4は、当該網目状構造体の目開きが5μm〜30mmの範囲であることを特徴とする上記第3の発明の製造方法に関する。   That is, the first aspect of the present invention is a method for producing a nonwoven fabric of a polymer compound by a charge dielectric spinning method, and a spinning section (A) for spinning a solution containing a polymer compound positively or negatively charged; A planar structure (C) in which a plurality of holes are arranged at regular intervals is inserted between plate-like electrodes (B) charged to a polarity opposite to that of the portion, and the surface of the structure (C) The present invention relates to a method for producing a nonwoven fabric, characterized in that a polymer compound is deposited thereon to obtain a nonwoven fabric. A second aspect of the present invention is characterized in that the deposited portion formed from the structure (C) has a strip shape, and the obtained nonwoven fabric is continuously conveyed by continuously moving the strip-shaped deposited portion. This relates to the manufacturing method of the first invention. 3rd of this invention is related with the manufacturing method of the said 1st and 2nd invention characterized by the said structure (C) being a network structure. 4th of this invention is related with the manufacturing method of the said 3rd invention characterized by the opening of the said mesh-shaped structure being the range of 5 micrometers-30 mm.

また本発明は、電荷誘電紡糸法により高分子化合物の不織布を製造する製造装置であって、
(1)正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)と、
(2)当該部位とは逆の極性に帯電可能な板状の電極(B)とを有し、
(3)前記紡出部(A)と電極(B)の間に、該高分子化合物からなる繊維構造物を堆積させるための複数の孔を有する平面状構造体(C)を挿入したことを特徴とする製造装置に関するものである。
Further, the present invention is a production apparatus for producing a nonwoven fabric of a polymer compound by a charge dielectric spinning method,
(1) a spinning section (A) for spinning a solution containing a polymer compound positively or negatively charged;
(2) having a plate-like electrode (B) that can be charged to a polarity opposite to that of the portion;
(3) A planar structure (C) having a plurality of holes for depositing a fiber structure made of the polymer compound is inserted between the spinning part (A) and the electrode (B). The present invention relates to a characteristic manufacturing apparatus.

電荷誘電紡糸法により高分子化合物の不織布を製造する方法において、正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)と、当該部位とは逆の極性に帯電させた板状の電極(B)の間に、複数の孔を一定間隔で配列させた構造体(C)を挿入することで、当該構造体(C)表面上に高分子化合物が良好な秩序を保ちながら堆積し、均一な形状および特性を有する不織布が得られる。また、高分子化合物の堆積部となる帯状の当該構造体(C)を連続的に移動させることにより、得られた不織布を連続的に搬送することが可能である。不織布の堆積部の帯電方法を既述の通りとすることで、設備の余分な帯電部位を減少させることができ、安定した不織布量産が可能となる。   In a method for producing a nonwoven fabric of a polymer compound by the charge dielectric spinning method, a spinning part (A) for spinning a solution containing a polymer compound positively or negatively charged and a polarity opposite to that of the part By inserting the structure (C) in which a plurality of holes are arranged at regular intervals between the charged plate-like electrodes (B), the polymer compound is excellent on the surface of the structure (C). A non-woven fabric having a uniform shape and properties is obtained while being deposited while maintaining order. Moreover, the obtained nonwoven fabric can be continuously transported by continuously moving the band-shaped structure (C) serving as a polymer compound deposition portion. By setting the charging method of the deposited portion of the nonwoven fabric as described above, it is possible to reduce the extra charged portions of the equipment and to enable stable mass production of the nonwoven fabric.

以下に本発明について詳述する。
製品の原料となる高分子化合物を、当該高分子化合物が可溶な溶媒で均一溶解させ、高分子化合物を含有する溶液を調製する。調製は密閉式の攪拌槽内で行い、均一溶解を助長する目的で槽内を加温する。
The present invention is described in detail below.
The polymer compound that is the raw material of the product is uniformly dissolved in a solvent in which the polymer compound is soluble to prepare a solution containing the polymer compound. The preparation is performed in a closed stirring tank, and the inside of the tank is heated for the purpose of promoting uniform dissolution.

本発明で使用される高分子化合物としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ナイロン、アラミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等の少なくとも1種が挙げられるが、特にこれらに限定されるものではない。   Examples of the polymer compound used in the present invention include polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, and polyvinylidene fluoride. , Polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, nylon, aramid, polycaprolactone , Polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, polypeptide etc. One, and the like, but not particularly limited thereto.

また、本発明で使用される溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、テトラエチレングリコール、トリエチレングリコール、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、フェノール、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、水等の少なくとも1種が挙げられるが、特にこれらに限定されるものではない。   Examples of the solvent used in the present invention include methanol, ethanol, 1-propanol, 2-propanol, tetraethylene glycol, triethylene glycol, methyl isobutyl ketone, methyl-n-hexyl ketone, methyl-n-propyl ketone, Diisopropyl ketone, diisobutyl ketone, acetone, phenol, methyl formate, ethyl formate, propyl formate, methyl benzoate, ethyl benzoate, propyl benzoate, methyl acetate, ethyl acetate, propyl acetate, dimethyl phthalate, diethyl phthalate, phthalic acid Dipropyl, methyl chloride, ethyl chloride, methylene chloride, o-chlorotoluene, p-chlorotoluene, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, dichloropropane, dibromoethane, dibro Examples include at least one of propane, methyl bromide, ethyl bromide, propyl bromide, benzene, toluene, hexane, cyclohexane, cyclopentane, o-xylene, p-xylene, m-xylene, water, and the like. It is not limited to.

密閉式攪拌槽内で均一溶解した高分子化合物を含有する溶液は、当該攪拌槽よりポンプを介して紡出部(A)に送液される。当該ポンプとしては、単段・多段遠心ポンプ、斜流ポンプ、回転ポンプ等を使用することができるが、中でも回転ポンプが好適である。紡出量はポンプ回転数で制御できる。   The solution containing the polymer compound uniformly dissolved in the closed stirring tank is fed from the stirring tank to the spinning section (A) via a pump. As the pump, a single-stage / multi-stage centrifugal pump, a mixed flow pump, a rotary pump, or the like can be used, and among them, a rotary pump is preferable. The spinning amount can be controlled by the number of revolutions of the pump.

紡出部(A)は、先端にノズル等を備えたシリンダーで構成されており、既述ポンプにより押し出された高分子化合物を含む溶液がノズルを介し、不織布を堆積させる堆積部に向かって繊維状に紡出される。   The spinning part (A) is composed of a cylinder provided with a nozzle or the like at the tip, and the solution containing the polymer compound pushed out by the pump described above passes through the nozzle toward the deposition part where the nonwoven fabric is deposited. It is spun into a shape.

ノズル形状としては、汎用の噴霧ノズル、ニードル、紡糸用キャップ等の中から好適な形状のものが選択できるが、好ましくはニードルである。   As the nozzle shape, a suitable shape can be selected from general-purpose spray nozzles, needles, spinning caps, and the like, but needles are preferred.

また、既述シリンダーは単筒式でも多筒式でもよいが、面状の不織布を大量生産するために、多くは多筒式が採用される。多筒式の場合、先端にノズル等を備えた単筒式シリンダーを、一定の間隔で複数配列させる。ポンプより送液された高分子化合物を含有する溶液は、複数のシリンダーに均等分割され、各シリンダーの先端に備えられたノズルを介し、不織布を堆積させる堆積部に向かって繊維状に紡出される。   In addition, the cylinder described above may be a single cylinder type or a multi-cylinder type, but in order to mass-produce planar nonwoven fabrics, many are used. In the case of the multi-cylinder type, a plurality of single-cylinder cylinders each having a nozzle or the like at the tip are arranged at regular intervals. The solution containing the polymer compound fed from the pump is equally divided into a plurality of cylinders, and is spun into fibers through a nozzle provided at the tip of each cylinder toward the deposition part where the nonwoven fabric is deposited. .

既述の通り、紡出部(A)のシリンダーを多筒式とすることが好ましいが、さらに好ましくは、シリンダーを単筒式とし、その先端に、複数の孔を一定の間隔で配列させたスピンブロックを設ける方法である。スピンブロックは断面がハンガー形のTダイであり、その先端に複数の孔を一定の間隔で配列させた紡出面を有する。   As described above, it is preferable that the cylinder of the spinning part (A) is a multi-cylinder type, but more preferably, the cylinder is a single-cylinder type, and a plurality of holes are arranged at regular intervals at the tip thereof. This is a method of providing a spin block. The spin block is a hanger-shaped T-die having a spinning surface with a plurality of holes arranged at regular intervals at the tip.

高分子化合物を含有する溶液は、単筒式シリンダーに送液され、さらに先端のスピンブロックに供給され、複数の孔を一定の間隔で配列させた紡出面より、不織布を堆積させる堆積部に向かって繊維状に紡出される。本法によると、複数の繊維状高分子化合物を均一に紡出させることが可能である。   The solution containing the polymer compound is fed to a single cylinder cylinder, supplied to the spin block at the tip, and from the spinning surface in which a plurality of holes are arranged at regular intervals, toward the deposition part where the nonwoven fabric is deposited. And spun into fibers. According to this method, it is possible to uniformly spin a plurality of fibrous polymer compounds.

電荷誘導紡糸法では、紡出部(A)の末端であるノズルやスピンブロックを、正または負に帯電させる。ノズルやスピンブロックを帯電させることにより、高分子化合物を含有する溶液が正または負に帯電する。紡出された繊維状高分子化合物は、正または負の一方のみに帯電しているため、繊維内部で電荷同士の斥力が発生し、繊維径の細化が促進される。   In the charge induction spinning method, the nozzle or spin block which is the end of the spinning part (A) is charged positively or negatively. By charging the nozzle and the spin block, the solution containing the polymer compound is positively or negatively charged. Since the spun fibrous polymer compound is charged to only one of positive and negative, repulsive force between charges is generated inside the fiber, and the fiber diameter is reduced.

繊維状高分子化合物は、紡出部(A)の末端であるノズルやスピンブロックの帯電極性とは異なる極性に帯電させた電極(B)に向かって紡出される。当該電極上では超極細繊維が堆積して不織布を形成する。   The fibrous polymer compound is spun toward the electrode (B) charged to a polarity different from the charged polarity of the nozzle or spin block at the end of the spinning portion (A). Superfine fibers are deposited on the electrode to form a nonwoven fabric.

しかし既述の通り、堆積部として電極そのものを用いる既述の方法では、電極だけでなく、ロールやこれらを支持する構造物までもが高電圧下となり、製造の安定性や安全性を著しく悪くする。   However, as described above, in the above-described method using the electrode itself as the deposition part, not only the electrode but also the roll and the structure supporting the same are under a high voltage, and the stability and safety of production are significantly deteriorated. To do.

そこで本発明では、正または負に帯電させた紡出部(A)と、当該部位とは逆の極性に帯電させた板状の電極(B)の間に、同形の孔を一定間隔で複数配列させた構造体(C)を挿入し、当該構造体(C)表面上に高分子化合物を堆積させる。   Therefore, in the present invention, a plurality of holes having the same shape are provided at regular intervals between the spinning portion (A) charged positively or negatively and the plate-like electrode (B) charged to the opposite polarity to the portion. The arranged structure (C) is inserted, and a polymer compound is deposited on the surface of the structure (C).

また、当該構造体(C)は得られた繊維構造物を均一に堆積させかつ搬送する目的で帯状とし、さらに当該帯状堆積部をエンドレスに移送可能なベルトコンベア状とする。当該帯状堆積部をロールにより回転させ、得られた不織布を連続的に搬送する。   Moreover, the said structure (C) is made into strip | belt shape for the purpose of depositing and conveying the obtained fiber structure uniformly, and also makes the said strip | belt-shaped accumulation part into the belt conveyor form which can be transferred endlessly. The said strip | belt-shaped accumulation part is rotated with a roll, and the obtained nonwoven fabric is conveyed continuously.

当該構造体(C)は、均一な荷電分布を考慮した場合、電場を著しく阻害しない構造体であることが望ましい。よって、平織、綾織、平畳織等、種々の織り方が施された金網や打抜金網、多孔板などの網目状構造体が最適である。   The structure (C) is preferably a structure that does not significantly disturb the electric field when a uniform charge distribution is taken into consideration. Accordingly, a mesh structure such as a wire mesh, a punched wire mesh, a perforated plate, or the like, which has been subjected to various weaving methods such as plain weave, twill weave, and plain tatami weave, is optimal.

さらには原料の高分子溶液からの溶媒の揮発、乾燥という観点から通気性を有することが望まれることからも金網、打ち抜きされた多孔板などの網目状構造体が最適である。   Furthermore, from the viewpoint of volatilization and drying of the solvent from the polymer solution as a raw material, it is desired to have air permeability, and thus a network structure such as a wire mesh or a punched perforated plate is optimal.

しかし、当該網目状構造体の目開きが極端に大きい場合、紡出部(A)より紡出された繊維状高分子化合物が電極に到達してしまうため、当該網目状構造体上に不織布が堆積できず、また、目開きが極端に小さい場合は、均一な電荷分布を著しく阻害するため、良質な不織布を得ることができない。よって、当該網目状構造体の目開きの好適な範囲は5μm〜30mm、さらに好ましくは5μm〜1mmである。   However, when the mesh structure has an extremely large mesh opening, the fibrous polymer compound spun from the spinning portion (A) reaches the electrode, and therefore the nonwoven fabric is formed on the mesh structure. When it cannot be deposited and the aperture is extremely small, the uniform charge distribution is remarkably inhibited, so that a high-quality nonwoven fabric cannot be obtained. Therefore, the preferable range of the mesh structure is 5 μm to 30 mm, more preferably 5 μm to 1 mm.

網目状構造体の素材としては、ステンレス、アルミニウム、鉄等の金属類やこれら金属類の合金、各種化学合成樹脂等を教示できるが、長期安定性や耐溶媒性、強度等を考慮し、主としてステンレスが用いられる。   As materials for the network structure, metals such as stainless steel, aluminum and iron, alloys of these metals, various chemically synthesized resins, etc. can be taught, but considering long-term stability, solvent resistance, strength, etc. Stainless steel is used.

既述の方法を用いることにより、均一な形状および特性を有する不織布が連続的に得られる。不織布の堆積部の余分な帯電部位を減少させることで、製造の安定性および安全性が向上し、さらには設備費も削減することができる。   By using the method described above, a nonwoven fabric having a uniform shape and characteristics can be obtained continuously. By reducing the number of extra charged parts in the non-woven fabric deposit, the manufacturing stability and safety can be improved, and the equipment cost can be reduced.

以下に実施例を挙げて本発明を詳述するが、本発明はこれらに限定されるものではない。
[実施例1]
アンカー型攪拌翼を装備した攪拌機付ステンレス製攪拌槽(内容積:100mL)に、ポリ乳酸チップ5.0gと塩化メチレン45.0gを投入し、密閉した。加温のため、当該攪拌槽を25℃で一定制御された温水槽の中に浸漬させ、回転数:100rpmで攪拌を開始した。1時間後、攪拌槽を開放し、ポリ乳酸が塩化メチレンに均一溶解していることを確認した。当該攪拌槽底部に設けられた仕切弁に、ステンレス製パイプを接続し、もう一方の端点をギヤポンプに接続した。ギヤポンプの紡出側には、吸込側と同種のステンレスパイプを接続し、当該ステンレスパイプのもう一方の端点を、内容積:10mL、直径:10mmのステンレス製単筒式シリンダーに接続した。当該シリンダーの下部にはスピンブロックを接続した。当該スピンブロックの紡出面は、横:100mm、縦:20mmの長方形であり、孔径:50μmの孔が複数設けられている。当該紡出面より下部300mmの位置に板状電極をセットした。当該紡出面と電極の間、当該紡出面より下部150mmの位置に、目開き:170μmのステンレス製平織金網を配置し、堆積される不織布の連続搬送が可能となるよう、2本のロールを設置した。これら2本のロールは同方向に回転し、速度制御が可能な構造である。紡出部(A)を正極とし、紡出部(A)下方に設置した電極を負極とし、両者の間に10kVの高電圧を印加した。これと同時に、攪拌槽下部の仕切弁を開放し、ギヤポンプの駆動を開始した。また、不織布の堆積部ポリ乳酸−塩化メチレン溶液がギヤポンプを介してシリンダーに送液され、紡出部(A)より超極細の繊維が紡出され始めた。この時の紡出部(A)の温度は25℃、湿度は34%で、紡出量は0.9mL/分であった。ステンレス製平織金網上には不織布が堆積し、1.1m/分の搬送速度で目的の不織布を回収することができた。不織布のSEM観察を行ったところ、不織布を構成する繊維の繊維径は0.53±0.07μmであった。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
[Example 1]
A polylactic acid chip (5.0 g) and methylene chloride (45.0 g) were placed in a stainless steel stirring tank (internal volume: 100 mL) equipped with an anchor type stirring blade and sealed. For heating, the stirring tank was immersed in a hot water tank controlled at 25 ° C., and stirring was started at a rotational speed of 100 rpm. After 1 hour, the stirring tank was opened, and it was confirmed that polylactic acid was uniformly dissolved in methylene chloride. A stainless steel pipe was connected to the gate valve provided at the bottom of the stirring tank, and the other end point was connected to a gear pump. On the spinning side of the gear pump, a stainless steel pipe of the same type as that on the suction side was connected, and the other end of the stainless steel pipe was connected to a single cylinder cylinder made of stainless steel having an internal volume of 10 mL and a diameter of 10 mm. A spin block was connected to the bottom of the cylinder. The spinning surface of the spin block is a rectangle with a width of 100 mm and a length of 20 mm, and a plurality of holes with a hole diameter of 50 μm are provided. A plate electrode was set at a position 300 mm below the spinning surface. Between the spinning surface and the electrode, a stainless steel plain woven wire mesh with a mesh opening of 170 μm is placed at a position 150 mm below the spinning surface, and two rolls are installed to enable continuous conveyance of the deposited nonwoven fabric. did. These two rolls rotate in the same direction and have a structure capable of speed control. The spinning part (A) was the positive electrode, the electrode placed below the spinning part (A) was the negative electrode, and a high voltage of 10 kV was applied between the two. At the same time, the gate valve at the lower part of the stirring tank was opened, and the gear pump was started to be driven. Further, the polylactic acid-methylene chloride solution deposited on the nonwoven fabric was fed to the cylinder via the gear pump, and ultrafine fibers began to be spun from the spinning section (A). At this time, the temperature of the spinning part (A) was 25 ° C., the humidity was 34%, and the spinning amount was 0.9 mL / min. The nonwoven fabric was deposited on the stainless steel plain woven wire mesh, and the desired nonwoven fabric could be recovered at a conveyance speed of 1.1 m / min. When the SEM observation of the nonwoven fabric was performed, the fiber diameter of the fibers constituting the nonwoven fabric was 0.53 ± 0.07 μm.

[実施例2]
不織布の堆積部となるステンレス製平織金網の目開きを510μmとし、紡出部(A)の温度を24℃、湿度を32%、紡出量を1.2mL/分とする以外は実施例1と同様に実施した。実施例1と同様、ステンレス製平織金網上には不織布が堆積し、ロールの回転による搬送で、目的の不織布を回収することができた。不織布のSEM観察を行ったところ、不織布を構成する繊維の繊維径は0.69±0.07μmであった。
[Example 2]
Example 1 except that the mesh size of the stainless steel plain woven wire mesh used as the non-woven fabric accumulation part is 510 μm, the temperature of the spinning part (A) is 24 ° C., the humidity is 32%, and the spinning amount is 1.2 mL / min. It carried out like. Similar to Example 1, a nonwoven fabric was deposited on the stainless steel plain woven wire mesh, and the target nonwoven fabric could be recovered by conveyance by rotation of a roll. When the SEM observation of the nonwoven fabric was performed, the fiber diameter of the fibers constituting the nonwoven fabric was 0.69 ± 0.07 μm.

[実施例3]
不織布の堆積部となるステンレス製平織金網の目開きを1.02mmとし、紡出部(A)の湿度を38%とする以外は実施例1と同様に実施した。実施例1と同様、ステンレス製平織金網上には不織布が堆積し、ロールの回転による搬送で、目的の不織布を回収することができた。不織布のSEM観察を行ったところ、不織布を構成する繊維の繊維径は0.81±0.06μmであった。
[Example 3]
This was carried out in the same manner as in Example 1 except that the mesh size of the stainless steel plain woven wire mesh used as the non-woven fabric accumulation portion was 1.02 mm and the humidity of the spinning portion (A) was 38%. Similar to Example 1, a nonwoven fabric was deposited on the stainless steel plain woven wire mesh, and the target nonwoven fabric could be recovered by conveyance by rotation of a roll. As a result of SEM observation of the nonwoven fabric, the fiber diameter of the fibers constituting the nonwoven fabric was 0.81 ± 0.06 μm.

[実施例4]
高分子化合物をポリカーボネートチップ5.0gとし、紡出部(A)の温度を22℃、湿度を35%とする以外は実施例3と同様に実施した。実施例1と同様、ステンレス製平織金網上には不織布が堆積し、ロールの回転による搬送で、目的の不織布を回収することができた。不織布のSEM観察を行ったところ、不織布を構成する繊維の繊維径は0.88±0.05μmであった。
[Example 4]
The same process as in Example 3 was performed except that the polymer compound was polycarbonate chip 5.0 g, the temperature of the spinning part (A) was 22 ° C., and the humidity was 35%. Similar to Example 1, a nonwoven fabric was deposited on the stainless steel plain woven wire mesh, and the target nonwoven fabric could be recovered by conveyance by rotation of a roll. When the SEM observation of the nonwoven fabric was performed, the fiber diameter of the fibers constituting the nonwoven fabric was 0.88 ± 0.05 μm.

本願発明の概念図である。It is a conceptual diagram of this invention.

符号の説明Explanation of symbols

1.紡出部(A)
2.電極(B)
3.構造体(C)
4.高電圧発生部
1. Spinning department (A)
2. Electrode (B)
3. Structure (C)
4). High voltage generator

Claims (8)

(1)正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)から、(2)当該部位とは逆の極性に帯電させた板状の電極(B)に向けて高分子化合物溶液を吐出し、(3)当該高分子化合物からなる繊維構造物を堆積させる不織布の製造方法であって、
(4)紡出部(A)と電極(B)の間に、複数の孔を有する平面状構造体(C)を挿入し、
(5)当該構造体(C)表面上に高分子化合物からなる繊維構造体を堆積させて不織布を得ることを特徴とする電荷誘電紡糸法による不織布の製造方法。
(1) From a spinning part (A) for spinning a solution containing a positively or negatively charged polymer compound, (2) a plate-like electrode (B) charged to a polarity opposite to that of the part (3) A method for producing a nonwoven fabric in which a fiber structure made of the polymer compound is deposited,
(4) A planar structure (C) having a plurality of holes is inserted between the spinning portion (A) and the electrode (B),
(5) A method for producing a nonwoven fabric by charge dielectric spinning, wherein a nonwoven fabric is obtained by depositing a fiber structure composed of a polymer compound on the surface of the structure (C).
当該構造体(C)より形成される繊維構造体の堆積部が帯状であり、当該帯状堆積部を連続的に移動させることにより、得られた不織布を連続的に搬送することを特徴とする請求項1に記載の不織布の製造方法。   The accumulation part of the fiber structure formed from the structure (C) has a belt-like shape, and the nonwoven fabric obtained is continuously conveyed by continuously moving the belt-like deposition part. Item 10. A method for producing a nonwoven fabric according to Item 1. 当該構造体(C)が網目状構造体であることを特徴とする請求項1および2に記載の方法。   The method according to claim 1 or 2, characterized in that the structure (C) is a network structure. 当該網目状構造体の目開きが5μm〜30mmの範囲であることを特徴とする請求項3に記載の方法。   The method according to claim 3, wherein the mesh structure has an opening of 5 μm to 30 mm. 電荷誘電紡糸法により高分子化合物の不織布を製造する製造装置であって、
(1)正または負に帯電させた高分子化合物を含有する溶液を紡出する紡出部(A)と、
(2)当該部位とは逆の極性に帯電可能な板状の電極(B)とを有し、
(3)前記紡出部(A)と電極(B)の間に、該高分子化合物からなる繊維構造物を堆積させるための複数の孔を有する平面状構造体(C)を挿入したことを特徴とする製造装置。
A manufacturing apparatus for manufacturing a nonwoven fabric of a polymer compound by a charge dielectric spinning method,
(1) a spinning section (A) for spinning a solution containing a polymer compound positively or negatively charged;
(2) having a plate-like electrode (B) that can be charged to a polarity opposite to that of the portion;
(3) A planar structure (C) having a plurality of holes for depositing a fiber structure made of the polymer compound is inserted between the spinning part (A) and the electrode (B). A featured manufacturing device.
該構造体(C)が帯状であり、かつ該構造体(C)が連続的に移動し該高分子化合物からなる繊維構造体の堆積物が搬送可能な構造体であることを特徴とする請求項5記載の製造装置。   The structure (C) is a belt-like structure, and the structure (C) is a structure that can move continuously and transport a deposit of a fiber structure made of the polymer compound. Item 6. The manufacturing apparatus according to Item 5. 該構造体(C)が網目状構造体である請求項6記載の製造装置。   The manufacturing apparatus according to claim 6, wherein the structure (C) is a network structure. 該網目状構造体の目開きが5μm〜30mmの範囲であることを特徴とする請求項7に記載の製造装置。   The manufacturing apparatus according to claim 7, wherein the mesh structure has an opening of 5 μm to 30 mm.
JP2004086608A 2004-03-24 2004-03-24 Method for producing nonwoven fabric by electric charge-induced spinning method Pending JP2005273067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086608A JP2005273067A (en) 2004-03-24 2004-03-24 Method for producing nonwoven fabric by electric charge-induced spinning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086608A JP2005273067A (en) 2004-03-24 2004-03-24 Method for producing nonwoven fabric by electric charge-induced spinning method

Publications (1)

Publication Number Publication Date
JP2005273067A true JP2005273067A (en) 2005-10-06

Family

ID=35173039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086608A Pending JP2005273067A (en) 2004-03-24 2004-03-24 Method for producing nonwoven fabric by electric charge-induced spinning method

Country Status (1)

Country Link
JP (1) JP2005273067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196061A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Method for producing nano-fiber and apparatus for producing nano-fiber
CN102493000A (en) * 2011-11-30 2012-06-13 福建农林大学 Low-speed transmission belt type collector for electrostatic spinning equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196061A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Method for producing nano-fiber and apparatus for producing nano-fiber
CN102493000A (en) * 2011-11-30 2012-06-13 福建农林大学 Low-speed transmission belt type collector for electrostatic spinning equipment

Similar Documents

Publication Publication Date Title
Dadol et al. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications
Wang et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method
JP4346647B2 (en) Method for producing continuous filament made of nanofiber
Khan et al. Recent progress on conventional and non-conventional electrospinning processes
KR101143934B1 (en) A method of nanofibres production from a polymer solution using electrostatic spinning and a device for carrying out the method
US7740461B2 (en) Apparatus and method for manufacturing polymeric fibrils
US8632721B2 (en) Electrospinning in a controlled gaseous environment
Ali et al. Needleless electrospinning using sprocket wheel disk spinneret
US20050073075A1 (en) Electro-blowing technology for fabrication of fibrous articles and its applications of hyaluronan
Munir et al. Classification of electrospinning methods
JP2005226210A (en) Twisted yarn, method for producing the same and device for producing the same
JP5829554B2 (en) Method for producing nanofiber laminate
JP2009144289A (en) Method and device for producing composite yarn
KR101563599B1 (en) Electro-blown and electro-spinning devices of manufacture for nano fiber
JP2009068121A (en) Method and apparatus for doubling nanofiber
JP2005273067A (en) Method for producing nonwoven fabric by electric charge-induced spinning method
KR100595489B1 (en) Methods of manufacturing for high strength filament with nanofibers
KR100696285B1 (en) Method of manufacturing continuous high strength filament composed of nanofibers and filaments manufactured thereby
CZ303297B6 (en) Device for nozzleless centrifugal production of nanofibers and micro-fibers on surface of rotating cylinders
KR100702870B1 (en) Method of manufacturing continuous mats by electrospinning and mats manufactured thereby
KR20100070203A (en) Making apparatus and method of fiber aggregate composed of nanofibers using vertical flow and centrifugal force
KR100744483B1 (en) Method of manufacturing for nanofibers and the nanofibers manufactured thereby
TWM457736U (en) Screw fiber producer and static screw spinning device
JP2010084294A (en) Nano fiber production apparatus, and nano fiber production method
CZ305037B6 (en) Process for producing nanofibers and spinning element for making the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805