JP2005273010A - Toothed gear and manufacturing method therefor - Google Patents

Toothed gear and manufacturing method therefor Download PDF

Info

Publication number
JP2005273010A
JP2005273010A JP2005032077A JP2005032077A JP2005273010A JP 2005273010 A JP2005273010 A JP 2005273010A JP 2005032077 A JP2005032077 A JP 2005032077A JP 2005032077 A JP2005032077 A JP 2005032077A JP 2005273010 A JP2005273010 A JP 2005273010A
Authority
JP
Japan
Prior art keywords
mass
less
graphite
gear
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005032077A
Other languages
Japanese (ja)
Inventor
Hideto Kimura
秀途 木村
Akihiro Matsuzaki
明博 松崎
Takashi Iwamoto
隆 岩本
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005032077A priority Critical patent/JP2005273010A/en
Publication of JP2005273010A publication Critical patent/JP2005273010A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Gears, Cams (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a toothed gear which has extremely adequate machinability in machining for carving a gear tooth after hot working, and has superior fatigue characteristics. <P>SOLUTION: This toothed gear is formed of a carbon steel with a steel structure comprising ferrite, cementite and graphite, in which the graphite has an average particle diameter of 5 μm or smaller, and besides, a C content in precipitated graphite grains with particle diameters of 10 μm or smaller is 1 mass% to 50 mass% of the total C content. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の動力伝達装置などに用いる、疲労特性に優れた歯車およびその製造方法に関するものである。   The present invention relates to a gear excellent in fatigue characteristics used for a power transmission device of an automobile and the like and a method for manufacturing the same.

従来、自動車の動力伝達装置において、1つの軸から他の軸に動力を伝える機械要素として用いられる歯車は、熱間圧延棒鋼に、熱間鍛造、さらには切削、冷間鍛造などを施して所定の形状に加工したのち、高周波焼入れ−焼戻し、浸炭もしくは窒化処理等の表面硬化熱処理を行うことにより、この種用途として重要な特性である疲労強度を確保しているのが一般的である。
一方、近年の環境問題から、自動車用部品に対する軽量化への要求に代表されるように、上記部品のコンパクト化、軽量化および長寿命化への要求が強く、この観点からこの種部品の疲労強度の一層の向上が要求されている。
Conventionally, in a power transmission device of an automobile, a gear used as a mechanical element that transmits power from one shaft to another shaft is subjected to hot forging, further cutting, cold forging, and the like on a hot rolled steel bar. In general, fatigue strength, which is an important characteristic for this type of application, is ensured by performing surface hardening heat treatment such as induction hardening-tempering, carburizing, or nitriding after being processed into the shape.
On the other hand, due to recent environmental problems, there is a strong demand for downsizing, weight reduction, and long life of the above parts, as represented by the demand for weight reduction for automobile parts. There is a demand for further improvement in strength.

一般的に、疲労強度の向上に寄与する材質の高強度化には、鋼材の合金化と冷間加工条件の規制が有効であるが、合金添加は加工性および被削性の低下を招くため、工業生産の効率化および低コスト化の観点からは問題を残すものである。また、冷間加工において大きな加工率を付与するためには、冷間加工中に焼鈍工程を適宜挟まなければならず、この場合も、生産性と製造コストに問題を残すものである。   In general, the alloying of steel materials and the regulation of cold working conditions are effective for increasing the strength of materials that contribute to improving fatigue strength, but the addition of alloys causes a decrease in workability and machinability. From the viewpoint of improving the efficiency of industrial production and reducing the cost, problems remain. Moreover, in order to provide a large working rate in cold working, it is necessary to appropriately insert an annealing step during cold working, and in this case as well, problems remain in productivity and manufacturing cost.

上記の問題の解決策として、特許文献1には、鋼中のCを黒鉛化することによって、冷間鍛造性を維持しつつ被削性を向上させる技術が開示されている。しかし、当技術では、Si量が1.9 〜3.0 mass%と高いために冷間鍛造時における変形抵抗が大きく、また形成される黒鉛も大きく変形能が低いことから、この技術を工業的に利用することは難しい。   As a solution to the above problem, Patent Document 1 discloses a technique for improving machinability while maintaining cold forgeability by graphitizing C in steel. However, in this technology, since the Si content is as high as 1.9 to 3.0 mass%, the deformation resistance during cold forging is large, and the formed graphite is also large and has low deformability, so this technology is used industrially. It ’s difficult.

また、特許文献2には、同じく鋼中のCを黒鉛化することによって被削性を改善する技術が開示されているが、この方法では黒鉛化処理前の焼入れ処理が不可欠であることから、製造コストおよび製造能率に問題がある。   In addition, Patent Document 2 discloses a technique for improving machinability by graphitizing C in steel, but in this method, a quenching treatment before graphitization treatment is indispensable. There are problems in manufacturing cost and manufacturing efficiency.

さらに、特許文献3には、黒鉛を析出させて冷間加工性を向上させる技術が開示されているが、やはり黒鉛化に長時間を要するため、工業的に利用するには問題が残るものである。   Further, Patent Document 3 discloses a technique for improving the cold workability by precipitating graphite, but it still takes a long time for graphitization, so that there remains a problem for industrial use. is there.

一方、特許文献4には、C、Si、Mn、B、Al、NおよびCrの含有量を規定した鋼材を熱間加工するに当たり、熱間加工後の冷却速度を特定することによって、黒鉛を微細析出させて被削性を向上させる技術が開示されている。
特開昭51−57621 号公報 特開昭49−103817号公報 特開平3−140411号公報 特開2002−180185号公報
On the other hand, in Patent Document 4, in hot working a steel material in which the contents of C, Si, Mn, B, Al, N, and Cr are hot-worked, by specifying the cooling rate after hot work, graphite is specified. A technique for improving the machinability by fine precipitation is disclosed.
Japanese Patent Laid-Open No. 51-57621 JP 49-103817 A Japanese Patent Laid-Open No. 3-140411 JP 2002-180185 A

ここに、特許文献4に記載された技術によって、強度の劣化を招くことなしに被削性の向上をはかることが可能になったが、上述したように、近年の環境問題から疲労強度の一層の向上が求められる中、より高い疲労強度を得るためにCの固溶を抑制した際に、一方で黒鉛の析出も抑制されて被削性が大きく変動してしまい、この被削性と疲労強度とが高次にバランスした鋼材を安定して得ることが難しいところに改善の余地を残していた。   Here, the technique described in Patent Document 4 has made it possible to improve machinability without incurring strength deterioration. However, as described above, due to recent environmental problems, fatigue strength is further increased. In order to obtain higher fatigue strength, when the solid solution of C is suppressed, the precipitation of graphite is also suppressed and the machinability varies greatly. There remains room for improvement where it is difficult to stably obtain a steel material that balances strength with high order.

以上のように、従来開発されている黒鉛析出鋼を用いて冷間鍛造により、歯車を成形しようとすると、生産性や製造コストおよび品質管理の面で不利となる。特に、黒鉛析出鋼を歯車に適用する場合には、黒鉛の析出量および析出状態によって部品の疲労強度と部品製造過程での被削性との両立が難しいことが常に問題となる。   As described above, when a gear is formed by cold forging using a conventionally developed graphite precipitation steel, it is disadvantageous in terms of productivity, manufacturing cost, and quality control. In particular, when graphite precipitated steel is applied to a gear, it is always a problem that it is difficult to achieve both the fatigue strength of the part and the machinability in the part manufacturing process depending on the amount and state of precipitation of graphite.

そこで、本発明は、熱間加工後に歯を刻むための切削加工における被削性(以下、単に被削性という)が極めて良好であり、かつ優れた疲労特性を有する歯車と、その製造方法とを提供することを目的とする。   Accordingly, the present invention provides a gear having extremely good machinability (hereinafter simply referred to as machinability) in cutting for cutting teeth after hot working, and having excellent fatigue characteristics, and a manufacturing method thereof. The purpose is to provide.

さて、発明者らの検討によれば、鋼材中の炭素を黒鉛化して析出させることが歯車の被削性を高めるのに有効であるのは、炭素が黒鉛化されることによって鋼の母相の硬さ自体が低下し、しかも黒鉛が切削時に潤滑剤として作用することにより、工具の温度上昇を抑制する結果であることが判明した。また、被削性の向上には、黒鉛を微細に分散させることが不可欠である。その理由は、黒鉛の被削性向上効果が、黒鉛の潤滑効果と共に、切削時のせん断領域において材料が変形し黒鉛と母相の界面に亀裂が入り、その亀裂の連結によって切削の形成が容易になるという機構に基づくためである。即ち、黒鉛が微細に分散しかつ黒鉛と黒鉛との平均距離が短いほど、亀裂の連結は容易である。   According to the study by the inventors, graphitizing and precipitating carbon in steel is effective for improving the machinability of the gear because the carbon is graphitized to form a matrix of the steel. It has been found that the hardness itself is reduced, and that the graphite acts as a lubricant during cutting, thereby suppressing the temperature rise of the tool. In addition, it is indispensable to finely disperse graphite in order to improve machinability. The reason for this is that the machinability improvement effect of graphite, along with the lubrication effect of graphite, the material deforms in the shear region during cutting and cracks are formed at the interface between the graphite and the parent phase, and the formation of cutting is easy by connecting the cracks. This is based on the mechanism of becoming. That is, as the graphite is finely dispersed and the average distance between the graphite and the graphite is shorter, the cracks are more easily connected.

一方、疲労強度を上昇させるためには、母材組織を高硬度化すること、そして鋼材中に含有される非金属介在物量を最小限とすること、が重要である。特に、硬度上昇については、高C化のもたらす効果が著しい。さらに、この硬度上昇をもたらす高C化はまた同時に、鋼のC過飽和度を上昇させて黒鉛を析出しやすい状態とすることに着目し、高硬度化と同時に被削性向上を達成できる条件について、検討を重ねた。   On the other hand, in order to increase the fatigue strength, it is important to increase the hardness of the base metal structure and to minimize the amount of non-metallic inclusions contained in the steel material. In particular, regarding the increase in hardness, the effect of increasing C is remarkable. Furthermore, focusing on the fact that the high C that brings about this hardness increase also raises the C supersaturation degree of the steel to make it easy to precipitate graphite, and the conditions under which the machinability can be improved simultaneously with the high hardness. , Repeated examination.

ところで、歯車に求められる性能は、製造性(被削性)、そして高い疲労強度である。これらについては、前述のように、C添加が疲労強度を向上させる効果が著しいため、C量を増加することが安価かつ簡便に材料特性を改善するのに有効である。ここで、高い割合で含有されたCが黒鉛として析出してくる場合、黒鉛化したCは被削性を向上させるものの、その析出量に関する被削性向上効果には飽和点があり、逆に黒鉛の析出に伴う疲労強度の低下には、C自体の強化寄与分、すなわち固溶およびパーライトとして鋼の強化に寄与する割合自体の低下と、黒鉛のよる疲労亀裂の伝播との両面が関係して、疲労強度が低下することが明らかになった。   By the way, the performance required for gears is manufacturability (machinability) and high fatigue strength. As described above, as described above, the addition of C has a remarkable effect of improving the fatigue strength. Therefore, increasing the amount of C is effective for improving the material properties inexpensively and easily. Here, when C contained in a high proportion is precipitated as graphite, graphitized C improves machinability, but there is a saturation point in the machinability improvement effect related to the amount of precipitation. The decrease in fatigue strength accompanying the precipitation of graphite involves both the strengthening contribution of C itself, that is, the decrease in the ratio itself contributing to the strengthening of steel as a solid solution and pearlite, and the propagation of fatigue cracks due to graphite. As a result, the fatigue strength was found to decrease.

ここで、添加Cについて、黒鉛として切削性の向上に寄与する分、固溶分およびパーライト析出を通じた強化寄与分を、後述する方法で分離して評価した結果、まず黒鉛としての析出は、添加したCの1mass%未満ではほとんど寄与しないことが判明した。すなわち、黒鉛としてのC析出量が増加すれば、疲労強度の代償の下に被削性が向上するが、疲労強度と被削性との2特性を兼備させるには、添加C量の1mass%以上のCを黒鉛として析出させる必要があることを新規に知見した。   Here, as for the addition C, the amount contributing to improvement of machinability as graphite, the solid solution content and the strengthening contribution through pearlite precipitation were separated and evaluated by the method described later. It was found that less than 1 mass% of C contributed little. That is, if the amount of precipitated C as graphite increases, the machinability improves at the expense of fatigue strength, but in order to combine the two characteristics of fatigue strength and machinability, 1 mass% of the added C amount. It was newly found that the above C needs to be precipitated as graphite.

さらに、検討を加えたところ、Cの析出量は母相の過飽和成分の量に関係することから、添加Cの1mass%以上のCを黒鉛として析出させるには、熱間加工前の加熱温度を950℃以上とすることが有効であることも見出すに到った。すなわち、工業的には、鍛造等の熱間加工に先立つ加熱の温度として950 ℃以上を採用することによって、C固溶化の効果を得ることができ、その後の加工後の冷却中に所定の黒鉛量の析出を得ることができるのである。   Furthermore, as a result of investigation, since the amount of precipitation of C is related to the amount of supersaturated component of the parent phase, in order to precipitate 1 mass% or more of added C as graphite, the heating temperature before hot working must be set. It has also been found that it is effective to set the temperature to 950 ° C. or higher. That is, industrially, by adopting a temperature of 950 ° C. or higher as a heating temperature prior to hot working such as forging, the effect of C solid solution can be obtained, and a predetermined graphite is cooled during cooling after the subsequent working. An amount of precipitation can be obtained.

一方、疲労亀裂の伝播に関する鋼材の特性として、発明者らは次の点に注目した。
すなわち、強度の上昇にもかかわらず、必ずしも疲労強度が向上しないことがある点である。この疲労強度の低下は、直接部品の寿命を左右する問題点である。発明者らは、これを黒鉛の析出部が疲労亀裂の発生そして伝播のサイトとなりやすいことが原因と推定し、鋭意検討した結果、一定の析出寸法を下回って微細に析出した黒鉛は、析出量によらず実質的に疲労強度低下の原因とはならないことを明らかにした。また、黒鉛の微細析出は熱間加工時の総加工率を70%以上とし、金属組織全体を微細組織とすることで著しい効果をもって達成可能であることも、併せて明らかにした。
On the other hand, the inventors paid attention to the following points as characteristics of steel materials related to propagation of fatigue cracks.
That is, despite the increase in strength, the fatigue strength may not always improve. This reduction in fatigue strength is a problem that directly affects the life of the component. The inventors presumed that this is due to the fact that the precipitation part of graphite is likely to become a site of fatigue crack initiation and propagation, and as a result of intensive studies, the graphite precipitated finely below a certain precipitation size However, it was clarified that it does not cause the fatigue strength to decrease. It has also been clarified that the fine precipitation of graphite can be achieved with a remarkable effect by setting the total work rate during hot working to 70% or more and making the entire metal structure fine structure.

この知見を上記した被削性の向上と併せて検討した結果、熱間加工における加工率が70%以上の場合、黒鉛の粒子径が5μm以下という微細なレベルに達しており、疲労強度劣化の悪影響が無いばかりかむしろ強度は向上し、しかも被削性の向上も同時に容易に達成されることを明らかにした。すなわち、被削性と疲労強度とのバランスの観点から、添加するCの黒鉛としての析出量を制御すること、さらに被削性と疲労強度との両立の観点からは、黒鉛の析出形態を微細にすることが肝要になる。
以上の知見に基いて、本発明を導くに到った。
As a result of examining this knowledge together with the improvement of the machinability described above, when the processing rate in hot working is 70% or more, the particle size of the graphite has reached a fine level of 5 μm or less, and the fatigue strength deteriorated. It has been clarified that not only there is no adverse effect, but also the strength is improved and the machinability is easily improved at the same time. That is, from the viewpoint of the balance between machinability and fatigue strength, the amount of precipitation of added C as graphite is controlled, and from the viewpoint of compatibility between machinability and fatigue strength, the precipitation form of graphite is fine. It is important to make it.
Based on the above findings, the present invention has been led.

すなわち、本発明の要旨構成は、次の通りである。
(1)鋼組織が、フェライト、セメンタイトおよび黒鉛からなり、該黒鉛は平均粒径が5μm以下で、しかも粒径が10μm以下の黒鉛粒として析出したC量が全C量の1mass%以上50mass%以下である、炭素鋼からなることを特徴とする歯車。
That is, the gist configuration of the present invention is as follows.
(1) The steel structure is composed of ferrite, cementite, and graphite. The graphite has an average particle size of 5 μm or less, and the amount of C precipitated as graphite particles having a particle size of 10 μm or less is 1 mass% to 50 mass% of the total C content. A gear comprising the following, carbon steel.

(2)フェライト、セメンタイトおよび黒鉛からなり、該黒鉛は平均粒径が5μm以下で、しかも粒径が10μm以下の黒鉛粒として析出したC量が全C量の1mass%以上50mass%以下である組織と、少なくとも疲労特性が要求される部位に施された表面硬化熱処理による硬化組織とを有する、炭素鋼からなることを特徴とする歯車。 (2) It is composed of ferrite, cementite and graphite, and the graphite has an average particle size of 5 μm or less, and the amount of C precipitated as graphite particles having a particle size of 10 μm or less is 1 mass% to 50 mass% of the total C content. And a gear made of carbon steel having at least a hardened structure formed by surface hardening heat treatment applied to a portion requiring fatigue characteristics.

(3)上記(1)または(2)において、前記炭素鋼は、
C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物の組成を有することを特徴とする歯車。
(3) In the above (1) or (2), the carbon steel is
C: 0.2-1.5mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
A gear having a composition of balance Fe and inevitable impurities.

(4)上記(3)において、前記炭素鋼は、さらに
Mo:3.0mass%以下、
W:3.0mass%以下、
Al:0.06mass%以下、
Ti:0.05mass%以下、
Ni:3.0mass%以下、
Co:3.0mass%以下、
V:0.1mass%以下、
Cu:1.5mass%以下、
Nb:0.07mass%以下および
Ta:0.20mass%以下
から選ばれる1種または2種以上を含有することを特徴とする歯車。
(4) In the above (3), the carbon steel further comprises
Mo: 3.0mass% or less,
W: 3.0mass% or less,
Al: 0.06 mass% or less,
Ti: 0.05 mass% or less,
Ni: 3.0mass% or less,
Co: 3.0mass% or less,
V: 0.1 mass% or less,
Cu: 1.5 mass% or less,
Nb: 0.07 mass% or less and
Ta: A gear characterized by containing one or more selected from 0.20 mass% or less.

(5)上記(3)または(4)において、前記炭素鋼は、さらに
Ca:0.008mass%以下、
Mg:0.005mass%以下、
Zr:0.10mass%以下、
Pb:0.30mass%以下、
Bi:0.30mass%以下、
Te:0.30mass%以下、
Se:0.30mass%以下および
REM:0.20mass%以下
から選ばれる1種又は2種以上を含有することを特徴とする歯車。
(5) In the above (3) or (4), the carbon steel further comprises
Ca: 0.008 mass% or less,
Mg: 0.005 mass% or less,
Zr: 0.10 mass% or less,
Pb: 0.30 mass% or less,
Bi: 0.30 mass% or less,
Te: 0.30 mass% or less,
Se: 0.30 mass% or less and
REM: A gear characterized by containing one or more selected from 0.20 mass% or less.

(6)C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物からなる組成を有する炭素鋼を素材とし、該素材に、950 ℃以上で加熱を施し、その後加工率が70%以上の熱間加工を施したのち、切削加工によって歯を形成することを特徴とする歯車の製造方法。
(6) C: 0.2 to 1.5 mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
Carbon steel having a composition comprising the balance Fe and inevitable impurities, and heating the material at 950 ° C. or higher, followed by hot working with a processing rate of 70% or more, followed by cutting A method for producing a gear, wherein teeth are formed by machining.

(7)C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物からなる組成を有する炭素鋼を素材とし、該素材に、950 ℃以上で加熱を施し、その後加工率が70%以上の熱間加工を施したのち、切削加工によって歯を形成し、さらに該歯および歯底に表面硬化熱処理を行うことを特徴とする歯車の製造方法。
(7) C: 0.2 to 1.5 mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
Carbon steel having a composition comprising the balance Fe and inevitable impurities, and heating the material at 950 ° C. or higher, followed by hot working with a processing rate of 70% or more, followed by cutting A method for producing a gear, wherein teeth are formed by processing, and further, a surface hardening heat treatment is performed on the teeth and the tooth bottom.

(8)上記(6)または(7)において、前記素材は、さらに
Mo:3.0mass%以下、
W:3.0mass%以下、
Al:0.06mass%以下、
Ti:0.05mass%以下、
Ni:3.0mass%以下、
Co:3.0mass%以下、
V:0.1mass%以下、
Cu:1.5mass%以下、
Nb:0.07mass%以下および
Ta:0.20mass%以下
から選ばれる1種または2種以上を含有することを特徴とする歯車の製造方法。
(8) In the above (6) or (7), the material further includes
Mo: 3.0mass% or less,
W: 3.0mass% or less,
Al: 0.06 mass% or less,
Ti: 0.05 mass% or less,
Ni: 3.0mass% or less,
Co: 3.0mass% or less,
V: 0.1 mass% or less,
Cu: 1.5 mass% or less,
Nb: 0.07 mass% or less and
Ta: One or two or more selected from 0.20 mass% or less.

(9)上記(6)乃至(8)のいずれかにおいて、前記素材は、さらに
Ca:0.008mass%以下、
Mg:0.005mass%以下、
Zr:0.10mass%以下、
Pb:0.30mass%以下、
Bi:0.30mass%以下、
Te:0.30mass%以下、
Se:0.30mass%以下および
REM:0.20mass%以下
から選ばれる1種又は2種以上を含有することを特徴とする歯車の製造方法。
(9) In any one of the above (6) to (8), the material further includes
Ca: 0.008 mass% or less,
Mg: 0.005 mass% or less,
Zr: 0.10 mass% or less,
Pb: 0.30 mass% or less,
Bi: 0.30 mass% or less,
Te: 0.30 mass% or less,
Se: 0.30 mass% or less and
REM: 1 or 2 types or more selected from 0.20 mass% or less, The manufacturing method of the gear characterized by the above-mentioned.

本発明によれば、優れた疲労特性さらには被削性を兼ね備えた、歯車を安定して得ることができる。その結果、例えば自動車用部品の軽量化の要求に対し偉功を奏する。   According to the present invention, a gear having excellent fatigue characteristics and machinability can be stably obtained. As a result, for example, it is excellent for the demand for weight reduction of automobile parts.

以下、本発明を具体的に説明する。
すなわち、図1に代表的な歯車1を示すように、歯車1はその周面に多数の歯2を刻んで成るのが通例である。さらに、本発明の歯車では、図2に示すように、多数の歯2とこれら歯2相互間の歯底3との表層部分に、高周波焼入れ、浸炭、窒化等による表面硬化層4を形成することも可能である。なお、図示例では、歯2および歯底3の表層部分に表面硬化層4を形成したが、その他の部分、例えば各種駆動軸が差し込まれる軸穴5の内周面に表面硬化層を設けることも可能である。
The present invention will be specifically described below.
That is, as shown in FIG. 1, a typical gear 1 is typically formed by cutting a large number of teeth 2 on its peripheral surface. Furthermore, in the gear of the present invention, as shown in FIG. 2, a hardened surface layer 4 is formed by induction hardening, carburizing, nitriding, etc. on the surface layer portion of a large number of teeth 2 and the tooth bottom 3 between these teeth 2. It is also possible. In the illustrated example, the surface hardened layer 4 is formed on the surface layer portions of the teeth 2 and the tooth bottom 3, but a surface hardened layer is provided on the other portion, for example, the inner peripheral surface of the shaft hole 5 into which various drive shafts are inserted. Is also possible.

かような歯車について、まず、フェライト、セメンタイト(鉄の炭化物)および黒鉛から成る鋼組織を有する炭素鋼からなることが必要である。なお、パーライトはフェライトとセメンタイトの層状組織であるため、上記に含まれるものとする。
ここで、上述したように、被削性と疲労強度とのバランスの観点から、添加するCの黒鉛としての析出量を制御すること、さらに被削性と疲労強度との両立の観点から、黒鉛の析出形態を微細にすることが肝要になる。従って、黒鉛は平均粒径を5μm以下に、しかも粒径が10μm以下の黒鉛粒として析出したC量を全C量の1mass%以上とし、被削性と疲労強度との高次での両立を実現する。
For such a gear, first, it is necessary to be made of carbon steel having a steel structure made of ferrite, cementite (iron carbide) and graphite. Since pearlite has a layered structure of ferrite and cementite, it is included in the above.
Here, as described above, from the viewpoint of the balance between machinability and fatigue strength, it is possible to control the amount of precipitation of added C as graphite, and also from the viewpoint of coexistence of machinability and fatigue strength, It is important to make the precipitate form fine. Therefore, graphite has an average particle size of 5 μm or less, and the amount of C deposited as graphite particles with a particle size of 10 μm or less is 1 mass% or more of the total C content, so that both machinability and fatigue strength can be achieved at a higher order. Realize.

すなわち、本発明においては、鋼組織が、フェライト、セメンタイトおよび黒鉛からなり、該黒鉛は平均粒径が5μm 以下であり、しかも粒径10μm 以下の黒鉛粒として析出したC量が全C量の1mass%以上である必要がある。
先ず、組織中に黒鉛が必要である理由は、鋼材に切削加工を加える際に黒鉛が析出していないと、被削性が劣るからである。黒鉛以外の残部をフェライトおよびセメンタイトとした理由は、鋼材において後述する量およびサイズの黒鉛粒を析出させると、鋼組織はフェライトおよびセメンタイトと、両者の混合組織であるパーライトとになるからである。
That is, in the present invention, the steel structure is composed of ferrite, cementite and graphite, and the graphite has an average particle size of 5 μm or less, and the amount of C precipitated as graphite particles having a particle size of 10 μm or less is 1 mass of the total C amount. % Or more.
First, the reason why graphite is necessary in the structure is that machinability is inferior if graphite is not deposited when the steel material is cut. The reason why the balance other than graphite is made ferrite and cementite is that when graphite particles of the amount and size described later are precipitated in the steel material, the steel structure becomes ferrite and cementite and pearlite which is a mixed structure of both.

また、黒鉛は平均粒径が5μm 以下である必要がある。すなわち、黒鉛粒の平均粒径が5μm を超えると、黒鉛粒が疲労亀裂の発生・伝播サイトとなり疲労強度が低下してしまう。特に、疲労強度は黒鉛の粒子径に敏感であるため、黒鉛の平均粒径は2μm以下とすることが好ましい。また、黒鉛の工具潤滑作用を十分に発現させるためには、黒鉛の平均粒径は1μm以上であることが好ましい。   Further, the graphite needs to have an average particle size of 5 μm or less. That is, if the average particle diameter of the graphite grains exceeds 5 μm, the graphite grains become fatigue crack initiation / propagation sites, and the fatigue strength is lowered. In particular, since fatigue strength is sensitive to the particle size of graphite, the average particle size of graphite is preferably 2 μm or less. Moreover, in order to fully exhibit the tool lubricating effect of graphite, it is preferable that the average particle diameter of graphite is 1 μm or more.

さらに、黒鉛として析出したC量は鋼中全C量の1mass%以上である必要がある。鋼中Cの1mass%以上が黒鉛として析出していないと、鋼材に切削加工を施す際に、鋼材の被削性が悪いために、切削工具の寿命が短くなり、生産性の悪化や製造コストの上昇を招くこととなる。好ましくは、析出C量を鋼中全C量の5mass%以上とする。
一方、本発明においては、疲労強度を上昇するために、固溶Cあるいは炭化物(セメンタイト)による高強度化を図ることが好ましく、従って黒鉛として析出するC量は、鋼中全C量に対して50mass%以下である必要がある。
Furthermore, the amount of C deposited as graphite needs to be 1 mass% or more of the total amount of C in the steel. If 1mass% or more of C in the steel is not precipitated as graphite, when cutting steel, the machinability of the steel is poor, so the life of the cutting tool is shortened, resulting in poor productivity and manufacturing costs. Will lead to an increase. Preferably, the amount of precipitated C is 5 mass% or more of the total amount of C in steel.
On the other hand, in the present invention, in order to increase the fatigue strength, it is preferable to increase the strength by solute C or carbide (cementite), and therefore the amount of C precipitated as graphite is relative to the total amount of C in steel. Must be 50 mass% or less.

ここで、鋼中全C量に対する黒鉛として析出したC量の比率は、走査型電子顕微鏡にて観察を行い、析出黒鉛の面積率を画像解析装置により測定し、これを析出黒鉛体積率として、黒鉛の比重と析出黒鉛体積率とから、黒鉛化したC量率を算出することにより求めることができる。本発明においては、微細に析出した黒鉛が全C量の1mass%以上であることを必要とするから、粒径10μm 以下の黒鉛粒について上記の面積率を測定して、C量率を算出するものとする。なお、粒径10μm 以下の黒鉛粒の面積率を測定することとした理由は、10μm 超の黒鉛粒は析出していても被削性向上に寄与しないからである。この被削性をより向上させるには、粒径が5μm以下の黒鉛粒として析出したC量が全C量の1mass%以上50mass%未満であることが、特に好ましい。   Here, the ratio of the amount of C deposited as graphite to the total amount of C in steel is observed with a scanning electron microscope, the area ratio of the precipitated graphite is measured with an image analyzer, and this is defined as the volume ratio of precipitated graphite. It can be determined by calculating the graphitized C content rate from the specific gravity of graphite and the volume fraction of precipitated graphite. In the present invention, since the finely precipitated graphite needs to be 1 mass% or more of the total C amount, the above-mentioned area ratio is measured for graphite grains having a particle size of 10 μm or less, and the C amount ratio is calculated. Shall. The reason for measuring the area ratio of graphite particles having a particle size of 10 μm or less is that graphite particles having a particle size exceeding 10 μm do not contribute to improvement of machinability even if they are precipitated. In order to further improve the machinability, it is particularly preferable that the amount of C deposited as graphite grains having a particle size of 5 μm or less is 1 mass% or more and less than 50 mass% of the total C amount.

次に、本発明の歯車を構成する炭素鋼について、その成分組成について具体的に説明する。
C:0.2 〜1.5 mass%
Cは、疲労強度の向上に直接作用する。C含有量が0.2 mass%未満であると、疲労強度向上の効果が十分でなく、一方1.5 mass%を超えると、組織制御を行っても黒鉛の析出の絶対量が多くなりすぎて疲労強度が低下するため、C含有量は0.2 〜1.5 mass%とする。より好ましいC量は、0.3〜0.9mass%である。
Next, about the carbon steel which comprises the gear of this invention, the component composition is demonstrated concretely.
C: 0.2-1.5 mass%
C directly affects the improvement of fatigue strength. When the C content is less than 0.2 mass%, the effect of improving the fatigue strength is not sufficient. On the other hand, when it exceeds 1.5 mass%, the absolute amount of precipitation of the graphite becomes too large even if the structure control is performed, and the fatigue strength is reduced. In order to decrease, the C content is set to 0.2 to 1.5 mass%. A more preferable amount of C is 0.3 to 0.9 mass%.

Si:0.3 〜2.0 mass%
Siは、黒鉛の析出形態を制御する上で重要な元素である。Si含有量が0.3 mass%未満であると、黒鉛の析出速度が遅くなり、後述する条件の熱間加工を行っても黒鉛を十分に析出させることができなくなる結果、被削性が悪くなる。一方、2.0 mass%を超えて含有すると、疲労強度が低下し、また黒鉛の寸法が大きくなって変形能が低下する傾向があるため、0.3 〜2.0 mass%の範囲に限定した。より好ましいSi量は、1.3〜2.0mass%である。
Si: 0.3 to 2.0 mass%
Si is an important element in controlling the precipitation form of graphite. If the Si content is less than 0.3 mass%, the deposition rate of graphite is slowed down, and even if hot working under the conditions described later is performed, graphite cannot be sufficiently precipitated, resulting in poor machinability. On the other hand, if the content exceeds 2.0 mass%, the fatigue strength decreases, and the size of graphite tends to increase and the deformability tends to decrease. A more preferable Si amount is 1.3 to 2.0 mass%.

Mn:1.5 mass%以下
Mnは、強度および疲労強度の向上に効果がある元素であり、好ましくは0.1 mass%以上、より好ましくは0.35mass%以上で含有させる。一方、1.5 mass%を超えて含有すると、強度の向上効果が飽和する上、疲労強度はかえって低下する傾向に転じるため、1.5 mass%以下の範囲に限定した。
Mn: 1.5 mass% or less
Mn is an element effective in improving strength and fatigue strength, and is preferably contained at 0.1 mass% or more, more preferably 0.35 mass% or more. On the other hand, if the content exceeds 1.5 mass%, the effect of improving the strength is saturated, and the fatigue strength tends to decrease. Therefore, the content is limited to the range of 1.5 mass% or less.

B:0.0005〜0.015 mass%
Bは、鋼中のNと結合してBNとして鋼中に存在することで黒鉛の析出サイトを増加させ、黒鉛の微細析出を促がす作用がある。Bの含有量が0.0005mass%未満では、その効果が十分でなく、微細な黒鉛粒を得ることができなくなる。一方、0.015 mass%を超えると、黒鉛が粗大化する傾向にあり、また、粒界強度が低下して疲労強度を低下させるため、Bの添加量は0.0005〜0.015 mass%の範囲に限定した。
B: 0.0005 to 0.015 mass%
B binds to N in the steel and exists in the steel as BN, thereby increasing the number of graphite precipitation sites and promoting the fine precipitation of graphite. When the B content is less than 0.0005 mass%, the effect is not sufficient, and fine graphite grains cannot be obtained. On the other hand, if it exceeds 0.015 mass%, the graphite tends to be coarsened, and the grain boundary strength is lowered to lower the fatigue strength. Therefore, the addition amount of B is limited to the range of 0.0005 to 0.015 mass%.

N:0.001〜0.015 mass%
前述のBNを形成するために、Nは0.001mass%以上を含有させる必要がある。一方、0.015 mass%を超えて含有すると、やはり疲労強度が低下するため、0.001〜0.015 mass%の範囲に限定した。
N: 0.001 to 0.015 mass%
In order to form the above-mentioned BN, N needs to contain 0.001 mass% or more. On the other hand, when the content exceeds 0.015 mass%, the fatigue strength also decreases, so the content is limited to the range of 0.001 to 0.015 mass%.

以上、基本成分について説明したが、本発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Mo:3.0mass%以下
Moは、強度向上を通じて疲労強度の向上に有用な元素であり、好ましくは0.1mass%以上で添加するが、3.0mass%を超えて添加すると被削性の劣化を招くため、3.0mass%以下の範囲とすることが好ましい。
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
Mo: 3.0mass% or less
Mo is an element useful for improving fatigue strength through strength improvement. Preferably, it is added at 0.1 mass% or more, but adding more than 3.0 mass% leads to deterioration of machinability, so that it is 3.0 mass% or less. It is preferable to be in the range.

W:3.0mass%以下
Wも強度の向上を通じて疲労強度の向上に有用な元素であり、好ましくは0.1mass%以上で添加するが、3.0mass%を超えて添加すると被削性の劣化を招くため、3.0mass%以下の範囲とする。
W: 3.0 mass% or less W is also an element useful for improving fatigue strength through strength improvement, and is preferably added in an amount of 0.1 mass% or more, but adding more than 3.0 mass% leads to deterioration of machinability. The range is 3.0 mass% or less.

Al:0.06mass%以下
Alは、鋼の脱酸剤として、好ましくは0.005mass%以上で添加する。しかしながら、含有量が0.06mass%を超えると、被削性および疲労強度の低下を招くため、0.06mass%以下の範囲とすることが好ましい。
Al: 0.06 mass% or less
Al is added as a steel deoxidizer, preferably at 0.005 mass% or more. However, if the content exceeds 0.06 mass%, the machinability and fatigue strength are reduced, and therefore, the content is preferably set to a range of 0.06 mass% or less.

Ti:0.05mass%以下
Tiは、TiNのピンニング効果により、結晶粒を微細化するために有用な元素であり、好ましくは0.002mass%以上で添加するが、0.05mass%を超えて添加すると疲労強度の低下を招くため、0.05mass%以下の範囲とすることが好ましい。
Ti: 0.05 mass% or less
Ti is an element useful for refining crystal grains due to the pinning effect of TiN, and preferably added at 0.002 mass% or more, but adding more than 0.05 mass% causes a decrease in fatigue strength. A range of 0.05 mass% or less is preferable.

Ni:3.0mass%以下
Niは、強度上昇およびCu添加時の割れ防止に有効であり、好ましくは0.05mass%以上で添加するが、3.0mass%を超えて添加すると焼割れを起こし易くなるため、3.0mass%以下の範囲とすることが好ましい。
Ni: 3.0mass% or less
Ni is effective in increasing the strength and preventing cracking when Cu is added, and is preferably added at 0.05 mass% or more, but if added over 3.0 mass%, it tends to cause fire cracking, so the range is 3.0 mass% or less. It is preferable that

Co:3.0mass%以下
Coも強度上昇に有効な元素であり、好ましくは0.1mass%以上で添加するが、3.0mass%を超えて添加すると焼割れを起こし易くなるため、3.0mass%以下の範囲とすることが好ましい。
Co: 3.0mass% or less
Co is also an element effective for increasing the strength. Preferably, it is added at 0.1 mass% or more, but if added over 3.0 mass%, it tends to cause fire cracking, so it is preferably within the range of 3.0 mass% or less.

V:0.1mass%以下
Vは、炭化物となり析出することでピンニングによる組織微細化効果を発する有用元素であり、好ましくは0.005mass%以上で添加するが、0.1mass%を超えて添加しても効果が飽和するばかりか、鋼材価格の上昇を招くため、0.1mass%以下の範囲とすることが好ましい。
V: 0.1 mass% or less V is a useful element that produces a microstructure refining effect by pinning by being precipitated as carbide, and is preferably added at 0.005 mass% or more, but even if added over 0.1 mass%, it is effective. Is not only saturated, but also causes an increase in the price of the steel material.

Cu:1.5mass%以下
Cuは、固溶強化および析出強化によって強度を向上させる有用元素であり、また焼入性の向上にも有効に寄与することから、好ましくは0.05mass%以上で添加する。しかし、含有量が1.5mass%を超えると熱間加工時に割れが発生し易くなり、製造が困難となるため、1.5mass%以下の範囲で含有しても良い。
Cu: 1.5 mass% or less
Cu is a useful element that improves the strength by solid solution strengthening and precipitation strengthening, and also contributes effectively to improving hardenability, so 0.05 mass% or more is preferably added. However, if the content exceeds 1.5 mass%, cracking is likely to occur during hot working, and manufacturing becomes difficult. Therefore, the content may be within a range of 1.5 mass% or less.

Nb:0.07mass%以下
Nbは、析出により粒成長をピンニングする効果があり、好ましくは0.005mass%以上で添加するが、0.07mass%を超えて添加してもその効果は飽和するため、0.07mass%以下の範囲とすることが好ましい。
Nb: 0.07 mass% or less
Nb has an effect of pinning grain growth by precipitation, and is preferably added at 0.005 mass% or more, but even if added over 0.07 mass%, the effect is saturated, so the range is 0.07 mass% or less. It is preferable.

Ta:0.2mass%以下
Taも析出により粒成長をピンニングする有用元素であり、好ましくは0.02mass%以上で添加するが、0.2mass%を超えて添加しても効果は飽和するばかりか、熱間加工性が低下する傾向にあるため、0.2mass%以下の範囲とする。
Ta: 0.2 mass% or less
Ta is also a useful element for pinning grain growth by precipitation, and it is preferably added at 0.02 mass% or more, but adding more than 0.2 mass% not only saturates the effect but also tends to reduce hot workability. Therefore, the range is 0.2 mass% or less.

Ca:0.008mass%以下
Caは、介在物を球状化し、疲労特性を改善する有用元素であり、好ましくは0.0001mass%以上で添加するが、0.008mass%を超えて添加すると介在物が粗大化し疲労特性を劣化させる傾向にあるため、0.008mass%以下の範囲とすることが好ましい。
Ca: 0.008 mass% or less
Ca is a useful element that spheroidizes inclusions and improves fatigue properties, and is preferably added at 0.0001 mass% or more, but if added over 0.008 mass%, inclusions tend to become coarse and deteriorate fatigue properties. For this reason, it is preferable that the range be 0.008 mass% or less.

Mg:0.005mass%以下
Mgは酸化物を形成して切削性向上に寄与する元素であり、0.0001mass%以上で添加することが好ましいが、過度の添加は酸化物の粗大化につながり疲労特性を低下させるため、0.005mass%以下の添加とすることが好ましい。
Mg: 0.005 mass% or less
Mg is an element that contributes to improvement of machinability by forming an oxide, and it is preferable to add it at 0.0001 mass% or more, but excessive addition leads to coarsening of the oxide and lowers fatigue properties, so 0.005 mass % Or less is preferable.

Zr:0.1mass%以下
Zrも酸化物を形成して切削性向上に寄与する元素であり、0.005mass%以上で添加することが好ましいが、過度の添加は酸化物の粗大化につながり疲労特性を低下させるため、0.1mass%以下の添加とすることが好ましい。
Zr: 0.1 mass% or less
Zr is also an element that forms an oxide and contributes to improved machinability, and is preferably added at 0.005 mass% or more. However, excessive addition leads to coarsening of the oxide and decreases fatigue characteristics, so 0.1 mass % Or less is preferable.

Pb、Bi、Te、SeおよびREM
Pb、Bi、Te、SeおよびREMはいずれも被削性向上に寄与する元素であり、Pbは0.003mass%以上、Biは0.003mass%以上、Teは0.005mass%以上、Seは0.005mass%以上、REMは0.001mass%以上で添加することが好ましいが、過度の添加は疲労強度に有害であるため、Pbは0.3mass%以下、Biは0.3mass%以下、Teは0.3mass%以下、Seは0.3mass%以下、REMは0.2mass%以下の添加とすることが好ましい。
Pb, Bi, Te, Se and REM
Pb, Bi, Te, Se, and REM are all elements that contribute to machinability improvement. Pb is 0.003 mass% or more, Bi is 0.003 mass% or more, Te is 0.005 mass% or more, and Se is 0.005 mass% or more. REM is preferably added at 0.001 mass% or more, but excessive addition is harmful to fatigue strength, so Pb is 0.3 mass% or less, Bi is 0.3 mass% or less, Te is 0.3 mass% or less, Se is It is preferable to add 0.3 mass% or less and REM 0.2 mass% or less.

上記した元素以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、P、S、OおよびCr等があげられる。
すなわち、Pは、粒界強度を低下させることにより疲労強度を低下させ、また焼割れを助長する弊害もあるが、0.05mass%までは許容できる。
Sは、鋼中でMnS を形成し、切削性を向上させる作用を有するが、0.02mass%を超えて含有されると粒界に偏析して粒界強度を低下させるため、0.02mass%までが許容できる。さらには、0.003mass%以下にまで低減することがより好ましい。
Oは、酸化物系介在物として鋼中に存在するが、O含有量が多いと疲労寿命が低下する。この点を考慮すると、許容できる上限は0.02mass%である。
Crは、黒鉛の析出を抑制するため、含有されることは好ましくない。しかし、0.1mass%以下であれば許容できる。
The balance other than the above elements is Fe and inevitable impurities. Inevitable impurities include P, S, O and Cr.
That is, P lowers the fatigue strength by lowering the grain boundary strength, and also has the detrimental effect of promoting cracking, but is acceptable up to 0.05 mass%.
S forms MnS in steel and has the effect of improving the machinability. However, if it is contained in excess of 0.02 mass%, it segregates at the grain boundary and lowers the grain boundary strength. acceptable. Furthermore, it is more preferable to reduce to 0.003 mass% or less.
O exists in steel as an oxide inclusion, but if the O content is large, the fatigue life is reduced. Considering this point, the allowable upper limit is 0.02 mass%.
Since Cr suppresses the precipitation of graphite, it is not preferable to contain Cr. However, 0.1 mass% or less is acceptable.

なお、被削性の向上に十分な黒鉛析出を安定して得るためには、C:0.7mass%以上、Si:1.3mass%以上とすることが特に好ましい。
以上、好適成分組成範囲について説明したが、本発明では、成分組成を上記の範囲に限定するだけでは不十分であり、歯車の鋼組織を上記のように調整することが重要である。
In order to stably obtain graphite precipitation sufficient for improving machinability, it is particularly preferable to set C: 0.7 mass% or more and Si: 1.3 mass% or more.
The preferred component composition range has been described above, but in the present invention, it is not sufficient to limit the component composition to the above range, and it is important to adjust the steel structure of the gear as described above.

次に、本発明の歯車を製造する条件について説明する。
まず、所定の成分組成に調整した鋼材を、棒鋼圧延または熱間鍛造後、必要に応じて冷間圧延または冷間鍛造を経て、切削加工を施して歯を刻んだのち、さらに必要に応じて高周波焼入れ又は、浸炭もしくは窒化処理等の公知の表面硬化熱処理を歯および歯底の表層に施して、製品とする。
Next, conditions for manufacturing the gear of the present invention will be described.
First, after rolling steel bars or hot forging, the steel material adjusted to a predetermined component composition is subjected to cold rolling or cold forging as necessary, cutting and carving teeth, if necessary A known surface hardening heat treatment such as induction hardening or carburizing or nitriding is applied to the surface layer of the teeth and the bottom of the teeth to obtain a product.

この際、熱間加工するに当っての加熱温度を950 ℃以上とし、次いで70%以上の加工率とする必要がある。熱間加工時の加熱温度を950 ℃以上とすることによって、鋼中のCを固溶させておき、さらに熱間加工時の加工率を70%以上とすることによって、組織を微細化する。そして、加工率70%以上という強加工による組織の微細化と、適量のBおよびN含有によるBN析出とにより、多量に黒鉛析出サイトを生成し、熱間加工後の冷却過程において、鋼中Cの1mass%以上を微細な黒鉛粒として析出させ、かつ黒鉛の平均粒径を5μm 以下の微細なものとする。   At this time, it is necessary to set the heating temperature for hot working to 950 ° C. or higher and then to a processing rate of 70% or higher. By setting the heating temperature during hot working to 950 ° C. or higher, C in the steel is dissolved, and the processing rate during hot working is set to 70% or higher to refine the structure. And, by refining the structure by strong processing with a processing rate of 70% or more and BN precipitation by containing appropriate amounts of B and N, a large amount of graphite precipitation sites are generated, and in the cooling process after hot working, 1 mass% or more is precipitated as fine graphite grains, and the average particle diameter of the graphite is 5 μm or less.

すなわち、熱間加工時の加熱温度が950 ℃未満であると、加工率を70%以上としたとしても、後の冷却過程でのCの黒鉛化が不十分となるため、全C量に対する黒鉛となったC量の比率を1mass%以上とすることができなくなる。なお、熱間加工時の加熱温度が1200℃超であると、結晶粒径の粗大化を招くので、1200℃以下が好ましい。   That is, if the heating temperature during hot working is less than 950 ° C., the graphitization of C in the subsequent cooling process becomes insufficient even if the processing rate is set to 70% or more. It becomes impossible to make the ratio of C amount 1 mass% or more. If the heating temperature during hot working is higher than 1200 ° C, the crystal grain size becomes coarse, so 1200 ° C or lower is preferable.

また、加工率が70%未満であると、黒鉛粒が粗大化するため、黒鉛粒の平均粒径を5μm 以下とすることができなくなる。ここで、Cを上記の量、平均粒径で黒鉛化するためには、熱間加工後の600℃までの冷却速度を0.2℃/s以下とすることが好ましい。また、600℃まで低下した後の冷却速度は10℃/s以下とすることが好ましい。なお、本発明において、熱間加工時の加工率とは、加工前後での、加工方向と直交する断面の面積の変化率のことを言い、加工前断面積S0 、加工後断面積S3 とから(S0 −S3)/S0 ×100 で求められる値(%)である。 On the other hand, when the processing rate is less than 70%, the graphite grains are coarsened, so that the average grain diameter of the graphite grains cannot be made 5 μm or less. Here, in order to graphitize C with the above amount and average particle diameter, it is preferable that the cooling rate to 600 ° C. after hot working is 0.2 ° C./s or less. Moreover, it is preferable that the cooling rate after decreasing to 600 degreeC is 10 degrees C / s or less. In the present invention, the processing rate at the time of hot processing means the rate of change in the area of the cross section perpendicular to the processing direction before and after processing, and the cross-sectional area before processing S 0 and the cross-sectional area after processing S 3. (S 0 −S 3 ) / S 0 × 100 (%).

ここで、熱間加工は、1150℃以上および/または980℃以下750℃以上の温度域における総加工率を70%以上とし、かつ1150℃未満980℃超の温度域においては加工を施さない(加工率0%)か、あるいは施す場合でも加工率を10%以下とすることが、特に好ましい。   Here, in the hot working, the total working rate in the temperature range of 1150 ° C. or higher and / or 980 ° C. or lower and 750 ° C. or higher is set to 70% or higher, and no processing is performed in the temperature range lower than 1150 ° C. and higher than 980 ° C. ( It is particularly preferable that the processing rate is 10% or less even when the processing rate is 0%.

すなわち、980℃以下750℃以上の温度域において、加工率を70%以上とした強加工を行って組織を微細化するとともに、上記したように、適量のBおよびNの含有にてBNを析出させて多量に黒鉛析出サイトを生成させることによって、熱間加工後の冷却過程において、鋼中Cの1mass%以上を微細な黒鉛粒として析出させ、かつ黒鉛の平均粒径を適度に微細なものとする。また、熱間加工を行う際、1150℃未満980℃超の温度領域は、BNの粗大析出が著しい温度域であるため、この温度域で加工すると、加工方向に伸長したオーステナイト粒界にBNが加工誘起析出するとともに整列し、連続した形態での析出もしくは加工方向に連結した長大な析出となる。該BNは、さらに低温での黒鉛析出温度域において黒鉛の優先析出サイトとなり、長大な黒鉛析出を誘発する傾向が著しい。かような事態を回避するため、1150℃未満980℃超の温度域における加工率を10%以下、好ましくは0%とすると、黒鉛の平均粒径を非常に微細にでき、平均粒径で1〜2μmが達成できる。   That is, in the temperature range of 980 ° C. or lower and 750 ° C. or higher, strong processing is performed with a processing rate of 70% or higher to refine the structure, and as described above, BN is precipitated with an appropriate amount of B and N contained. By generating a large amount of graphite precipitation sites, 1 mass% or more of C in the steel is precipitated as fine graphite grains in the cooling process after hot working, and the average particle size of graphite is moderately fine And In addition, when performing hot working, the temperature range of less than 1150 ° C. and over 980 ° C. is a temperature range in which coarse precipitation of BN is remarkable. Processing induced precipitation and alignment result in continuous form precipitation or long precipitation connected in the processing direction. The BN becomes a preferential precipitation site of graphite in a graphite precipitation temperature range at a lower temperature, and has a remarkable tendency to induce long graphite precipitation. In order to avoid such a situation, if the processing rate in the temperature range below 1150 ° C. and over 980 ° C. is 10% or less, preferably 0%, the average particle size of graphite can be made very fine, and the average particle size is 1 ˜2 μm can be achieved.

なお、1150℃以上および/または980℃以下750℃以上の温度域における総加工率、1150℃未満980℃超の温度域における加工率は、それぞれ次の定義によるものとする。すなわち、初期断面積S、1150℃以上で加工後の断面積S、1150℃未満980℃超で加工後の断面積S、980℃以下750℃以上で加工後の断面積Sとした時に、1150℃以上での加工率R1、1150℃未満980℃超での加工率R2、980℃以下750℃以上での加工率R3は、
R1(%)=(S−S)/S×100
R2(%)=(S−S)/S×100
R3(%)=(S−S)/S×100
とする。本発明の製造方法では、R1+R3を70%以上とし、R2を10%以下とすることが最も好ましい。
The total processing rate in the temperature range of 1150 ° C. or higher and / or 980 ° C. or lower and 750 ° C. or higher, and the processing rate in the temperature range lower than 1150 ° C. and higher than 980 ° C. shall be as follows. That is, an initial cross-sectional area S 0 , a cross-sectional area S 1 after processing at 1150 ° C. or higher, a cross-sectional area S 2 after processing above 1980 ° C. and higher than 980 ° C., a cross-sectional area S 3 after processing at 980 ° C. or lower and 750 ° C. or higher Processing rate R1 above 1150 ° C, processing rate R2 below 1150 ° C and above 980 ° C, processing rate R3 below 980 ° C and above 750 ° C,
R1 (%) = (S 0 −S 1 ) / S 0 × 100
R2 (%) = (S 1 -S 2) / S 0 × 100
R3 (%) = (S 2 −S 3 ) / S 0 × 100
And In the production method of the present invention, it is most preferable that R1 + R3 is 70% or more and R2 is 10% or less.

そして、1150℃以上および/または980℃以下750℃以上の温度域における総加工率を70%以上、1150℃未満980℃超の温度領域での加工が10%以下であれば、加工歪がBN析出形態に及ぼす影響は最小限で整列化はわずかであり、黒鉛の平均粒径を1〜2μm、粒径が5μm以下の黒鉛粒として析出したC量を全C量の1mass%以上50mass%未満とすることができ、黒鉛の工具潤滑作用を十分に発現させつつ、特に疲労強度に優れた歯車を得ることができる。   If the total processing rate in the temperature range of 1150 ° C or higher and / or 980 ° C or lower and 750 ° C or higher is 70% or higher, and the processing in the temperature range below 1150 ° C and higher than 980 ° C is 10% or lower, the processing strain is BN The effect on the precipitation form is minimal and the alignment is slight. The amount of C deposited as graphite grains having an average particle diameter of 1-2 μm and a particle diameter of 5 μm or less is 1 mass% or more and less than 50 mass% of the total C amount. In addition, a gear having excellent fatigue strength can be obtained while sufficiently exhibiting the tool lubricating effect of graphite.

その後、上記したように、切削加工を施せば、歯車が得られる。
かくして得られた歯車に、さらに表面硬化熱処理、例えば高周波焼入れ又は、浸炭もしくは窒化処理を施すことによって、極めて高い強度及び疲労強度を付与することが可能である。すなわち、析出した黒鉛が部品の外周部分で母相に再固溶し、焼き入れられることによって、硬化層を形成することができる。
Thereafter, as described above, if cutting is performed, a gear is obtained.
It is possible to impart extremely high strength and fatigue strength to the gear thus obtained by further subjecting it to surface hardening heat treatment such as induction hardening or carburizing or nitriding treatment. That is, the hardened layer can be formed by re-dissolving the precipitated graphite in the matrix at the outer peripheral portion of the part and quenching.

なお、表面硬化熱処理を行った場合には、その表面に硬化層が形成し、硬化組織となるため、上述のフェライト、セメンタイトおよび黒鉛からなる組織とならない場合があるが、硬化層以外の部分が、フェライト、セメンタイトおよび黒鉛からなる組織となる。   In addition, when the surface hardening heat treatment is performed, a hardened layer is formed on the surface and becomes a hardened structure. Therefore, a structure made of the above-described ferrite, cementite, and graphite may not be formed. , A structure composed of ferrite, cementite and graphite.

表1に示す化学組成の鋼を転炉で溶製し、連続鋳造機により400 ×540mm のブルームに鋳造した後、熱間圧延により150mm 角のビレットとした。このビレットを表2に示すように、種々の加熱温度および加工率の熱間圧延にて90mmφの棒鋼となした後、空冷した。
この空冷後に、棒鋼の断面の金属組織を観察すると共に、走査型電子顕微鏡組織において観察される、析出黒鉛の平均面積率を画像解析装置により測定し、比重と析出量率とから析出C量率を算出した。但し、一部の試料では、未固溶の大型黒鉛が組織中に残存していたが、これらと区別して、析出径10μm以下の黒鉛を析出した黒鉛とみなして処理した。
Steel having the chemical composition shown in Table 1 was melted in a converter, cast into a 400 × 540 mm bloom by a continuous casting machine, and then hot rolled into a 150 mm square billet. As shown in Table 2, the billet was formed into a 90 mmφ steel bar by hot rolling at various heating temperatures and processing rates, and then air-cooled.
After this air cooling, while observing the metal structure of the cross section of the steel bar, the average area ratio of the precipitated graphite observed in the scanning electron microscope structure was measured with an image analyzer, and the precipitated C amount ratio was determined from the specific gravity and the precipitated amount ratio. Was calculated. However, in some samples, undissolved large-sized graphite remained in the structure, but was distinguished from these and treated by treating graphite having a precipitation diameter of 10 μm or less as precipitated graphite.

ついで、この棒鋼から、下記の歯車を切削加工により作製した。

小径ギア:外径75mm、モジュール2.5 、歯数28、基準ピッチ円直径70mm
大径ギア:外径85mm、モジュール2.5 、歯数32、基準ピッチ円直径80mm
Next, the following gears were produced from this steel bar by cutting.
Small gear: Outer diameter 75mm, Module 2.5, Number of teeth 28, Standard pitch circle diameter 70mm
Large diameter gear: outer diameter 85mm, module 2.5, number of teeth 32, standard pitch circle diameter 80mm

また、一部の試料(No.75および76)については、比較のために、上記熱間圧延に続く空冷後に、黒鉛化処理(700℃×6h)を行って、黒鉛析出量/全C量を50%超としたものも作製した。   For comparison, some of the samples (Nos. 75 and 76) were graphitized (700 ° C. × 6 h) after air cooling following the hot rolling, and the amount of precipitated graphite / total C amount. A product with more than 50% was also produced.

かくして得られた歯車について、実体疲労試験を行った。
この実体疲労試験は、小径および大径の歯車を噛み合わせて、回転速度3000rpm および負荷トルク245 N・m の条件で回転させ、いずれかの歯車が破損するまでのトルク負荷回数で評価した。
A substantial fatigue test was conducted on the gear thus obtained.
In this substantial fatigue test, small and large gears were meshed and rotated under the conditions of a rotational speed of 3000 rpm and a load torque of 245 N · m, and the number of torque loads until one of the gears was damaged was evaluated.

また、被削性については、別途切削性試験を実施した。即ち、SKH4、4mmφのドリルを用い、1500rpmの切削速度で、上記のようにして得た棒鋼に対し穿孔を連続して行い、切削不能になるまでの穿孔全長を計測して評価した。穿孔全長がJIS S40C(表2中の試料No.33)より大きい値を得られた時を良好、それ以外を不良とした。
得られた結果を表2に併記する。
For machinability, a separate machinability test was conducted. That is, using a SKH4, 4 mmφ drill, the steel bar obtained as described above was continuously drilled at a cutting speed of 1500 rpm, and the total length of the drilling until cutting became impossible was evaluated. When the perforation total length was larger than JIS S40C (sample No. 33 in Table 2), it was judged good, and the others were judged as bad.
The obtained results are also shown in Table 2.

Figure 2005273010
Figure 2005273010

Figure 2005273010
Figure 2005273010

Figure 2005273010
Figure 2005273010

Figure 2005273010
Figure 2005273010

Figure 2005273010
Figure 2005273010

被削性は、組織中の黒鉛の存在と密接に関わり、表2に示したように、黒鉛が全C量の1mass%以上析出している素材でいずれも良好な被削性が得られることがわかる。また、疲労特性は、黒鉛の平均粒径が5μm以下である場合は良好である。   The machinability is closely related to the presence of graphite in the structure, and as shown in Table 2, good machinability can be obtained with any material in which graphite is precipitated by 1 mass% or more of the total C content. I understand. Further, the fatigue characteristics are good when the average particle size of graphite is 5 μm or less.

さらに、上記と同じ条件で作製した歯車に、周波数:200kHzの高周波焼入れ装置を用いて、表3に示す条件下で焼入れまたは焼入れ焼戻しを行った後、歯および歯底部分を仕上げ加工し、その際の加工速度を在来のS40C材の同等材と比較した。その結果を、仕上加工性として表3中に示す。また、上記と同様に実体疲労試験についても評価した。その結果をまとめて表3中に示すが、いずれも自動車部品として実用のS40C材の性能を上回る良好な特性が得られていることがわかる。   Furthermore, after gears manufactured under the same conditions as described above were quenched or tempered under the conditions shown in Table 3 using an induction hardening apparatus having a frequency of 200 kHz, the teeth and root portions were finished and processed. The processing speed was compared with that of conventional S40C material. The results are shown in Table 3 as finish workability. Moreover, the substantial fatigue test was also evaluated in the same manner as described above. The results are collectively shown in Table 3, and it can be seen that good characteristics are obtained that exceed the performance of S40C material that is practical for automobile parts.

Figure 2005273010
Figure 2005273010

歯車の斜視図である。It is a perspective view of a gear. 歯車の歯および歯底における表面硬化層を示す断面図である。It is sectional drawing which shows the surface hardened layer in the tooth | gear and tooth root of a gearwheel.

符号の説明Explanation of symbols

1 歯車
2 歯
3 歯底
4 表面硬化層
5 軸穴
1 gear 2 tooth 3 tooth bottom 4 hardened surface layer 5 shaft hole

Claims (9)

鋼組織が、フェライト、セメンタイトおよび黒鉛からなり、該黒鉛は平均粒径が5μm以下で、しかも粒径が10μm以下の黒鉛粒として析出したC量が全C量の1mass%以上50mass%以下である、炭素鋼からなることを特徴とする歯車。   The steel structure is composed of ferrite, cementite and graphite, and the graphite has an average particle size of 5 μm or less, and the amount of C precipitated as graphite particles having a particle size of 10 μm or less is 1 mass% or more and 50 mass% or less of the total C content. A gear made of carbon steel. フェライト、セメンタイトおよび黒鉛からなり、該黒鉛は平均粒径が5μm以下で、しかも粒径が10μm以下の黒鉛粒として析出したC量が全C量の1mass%以上50mass%以下である組織と、少なくとも疲労特性が要求される部位に施された表面硬化熱処理による硬化組織とを有する、炭素鋼からなることを特徴とする歯車。   A structure comprising ferrite, cementite and graphite, wherein the graphite has an average particle size of 5 μm or less, and the amount of C precipitated as graphite particles having a particle size of 10 μm or less is at least 1 mass% to 50 mass% of the total C amount; A gear made of carbon steel having a hardened structure formed by surface hardening heat treatment applied to a portion requiring fatigue characteristics. 請求項1または2において、前記炭素鋼は、
C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物の組成を有することを特徴とする歯車。
The carbon steel according to claim 1 or 2,
C: 0.2-1.5mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
A gear having a composition of balance Fe and inevitable impurities.
請求項3において、前記炭素鋼は、さらに
Mo:3.0mass%以下、
W:3.0mass%以下、
Al:0.06mass%以下、
Ti:0.05mass%以下、
Ni:3.0mass%以下、
Co:3.0mass%以下、
V:0.1mass%以下、
Cu:1.5mass%以下、
Nb:0.07mass%以下および
Ta:0.20mass%以下
から選ばれる1種または2種以上を含有することを特徴とする歯車。
4. The carbon steel according to claim 3, further comprising:
Mo: 3.0mass% or less,
W: 3.0mass% or less,
Al: 0.06 mass% or less,
Ti: 0.05 mass% or less,
Ni: 3.0mass% or less,
Co: 3.0mass% or less,
V: 0.1 mass% or less,
Cu: 1.5 mass% or less,
Nb: 0.07 mass% or less and
Ta: A gear characterized by containing one or more selected from 0.20 mass% or less.
請求項3または4において、前記炭素鋼は、さらに
Ca:0.008mass%以下、
Mg:0.005mass%以下、
Zr:0.10mass%以下、
Pb:0.30mass%以下、
Bi:0.30mass%以下、
Te:0.30mass%以下、
Se:0.30mass%以下および
REM:0.20mass%以下
から選ばれる1種又は2種以上を含有することを特徴とする歯車。
The carbon steel according to claim 3 or 4, further comprising:
Ca: 0.008 mass% or less,
Mg: 0.005 mass% or less,
Zr: 0.10 mass% or less,
Pb: 0.30 mass% or less,
Bi: 0.30 mass% or less,
Te: 0.30 mass% or less,
Se: 0.30 mass% or less and
REM: A gear characterized by containing one or more selected from 0.20 mass% or less.
C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物からなる組成を有する炭素鋼を素材とし、該素材に、950 ℃以上で加熱を施し、その後加工率が70%以上の熱間加工を施したのち、切削加工によって歯を形成することを特徴とする歯車の製造方法。
C: 0.2-1.5mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
Carbon steel having a composition comprising the balance Fe and inevitable impurities, and heating the material at 950 ° C. or higher, followed by hot working with a processing rate of 70% or more, followed by cutting A method for producing a gear, wherein teeth are formed by machining.
C:0.2 〜 1.5mass%、
Si:0.3 〜 2.0mass%、
Mn:1.5 mass%以下、
B:0.0005〜0.015 mass%および
N:0.001〜0.015 mass%
を含有し、残部Feおよび不可避的不純物からなる組成を有する炭素鋼を素材とし、該素材に、950 ℃以上で加熱を施し、その後加工率が70%以上の熱間加工を施したのち、切削加工によって歯を形成し、さらに該歯および歯底に表面硬化熱処理を行うことを特徴とする歯車の製造方法。
C: 0.2-1.5mass%,
Si: 0.3-2.0mass%,
Mn: 1.5 mass% or less,
B: 0.0005 to 0.015 mass% and N: 0.001 to 0.015 mass%
Carbon steel having a composition comprising the balance Fe and inevitable impurities, and heating the material at 950 ° C. or higher, followed by hot working with a processing rate of 70% or more, followed by cutting A method for producing a gear, wherein teeth are formed by processing, and further, a surface hardening heat treatment is performed on the teeth and the tooth bottom.
請求項6または7において、前記素材は、さらに
Mo:3.0mass%以下、
W:3.0mass%以下、
Al:0.06mass%以下、
Ti:0.05mass%以下、
Ni:3.0mass%以下、
Co:3.0mass%以下、
V:0.1mass%以下、
Cu:1.5mass%以下、
Nb:0.07mass%以下および
Ta:0.20mass%以下
から選ばれる1種または2種以上を含有することを特徴とする歯車の製造方法。
8. The material according to claim 6, wherein the material further includes
Mo: 3.0mass% or less,
W: 3.0mass% or less,
Al: 0.06 mass% or less,
Ti: 0.05 mass% or less,
Ni: 3.0mass% or less,
Co: 3.0mass% or less,
V: 0.1 mass% or less,
Cu: 1.5 mass% or less,
Nb: 0.07 mass% or less and
Ta: One or two or more selected from 0.20 mass% or less.
請求項6乃至8のいずれかにおいて、前記素材は、さらに
Ca:0.008mass%以下、
Mg:0.005mass%以下、
Zr:0.10mass%以下、
Pb:0.30mass%以下、
Bi:0.30mass%以下、
Te:0.30mass%以下、
Se:0.30mass%以下および
REM:0.20mass%以下
から選ばれる1種又は2種以上を含有することを特徴とする歯車の製造方法。
9. The material according to claim 6, wherein the material further includes
Ca: 0.008 mass% or less,
Mg: 0.005 mass% or less,
Zr: 0.10 mass% or less,
Pb: 0.30 mass% or less,
Bi: 0.30 mass% or less,
Te: 0.30 mass% or less,
Se: 0.30 mass% or less and
REM: 1 or 2 types or more selected from 0.20 mass% or less, The manufacturing method of the gear characterized by the above-mentioned.
JP2005032077A 2004-02-27 2005-02-08 Toothed gear and manufacturing method therefor Withdrawn JP2005273010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032077A JP2005273010A (en) 2004-02-27 2005-02-08 Toothed gear and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004054073 2004-02-27
JP2005032077A JP2005273010A (en) 2004-02-27 2005-02-08 Toothed gear and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005273010A true JP2005273010A (en) 2005-10-06

Family

ID=35172986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032077A Withdrawn JP2005273010A (en) 2004-02-27 2005-02-08 Toothed gear and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005273010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132575A1 (en) * 2012-03-05 2013-09-12 トヨタ自動車株式会社 Machined part manufacturing method and machined part
CN104195432A (en) * 2014-07-29 2014-12-10 锐展(铜陵)科技有限公司 Alloy steel material for automobile change gear and manufacturing method of alloy steel material
CN105671441A (en) * 2014-12-09 2016-06-15 Posco公司 Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
KR20220042709A (en) * 2020-09-28 2022-04-05 서울대학교산학협력단 Resettable gears

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132575A1 (en) * 2012-03-05 2013-09-12 トヨタ自動車株式会社 Machined part manufacturing method and machined part
CN104145032A (en) * 2012-03-05 2014-11-12 丰田自动车株式会社 Machined part manufacturing method and machined part
JPWO2013132575A1 (en) * 2012-03-05 2015-07-30 トヨタ自動車株式会社 Manufacturing method of machined parts and machined parts
KR101604562B1 (en) 2012-03-05 2016-03-17 도요타지도샤가부시키가이샤 Machined part manufacturing method and machined part
US9539675B2 (en) 2012-03-05 2017-01-10 Toyota Jidosha Kabushiki Kaisha Method for manufacturing machined part, and machined part
CN104195432A (en) * 2014-07-29 2014-12-10 锐展(铜陵)科技有限公司 Alloy steel material for automobile change gear and manufacturing method of alloy steel material
CN105671441A (en) * 2014-12-09 2016-06-15 Posco公司 Steel material for graphitization and graphite steel with excellent machinability and cold forging characteristic
CN105671441B (en) * 2014-12-09 2018-08-17 Posco公司 It is graphitized steel for heat treatment material and machinability and the excellent graphitic steel of forging
KR20220042709A (en) * 2020-09-28 2022-04-05 서울대학교산학협력단 Resettable gears
KR102569110B1 (en) 2020-09-28 2023-08-23 서울대학교산학협력단 Resettable gears
US11873548B2 (en) 2020-09-28 2024-01-16 Seoul National University R&Db Foundation Resettable gears and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN102378822B (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
WO2012046779A1 (en) Case hardened steel and method for producing the same
JP4609112B2 (en) Mechanical structural rod parts with excellent fatigue characteristics
JP2007217761A (en) Case hardening steel having excellent low cycle fatigue strength
JP2005273010A (en) Toothed gear and manufacturing method therefor
JP2007231337A (en) Hot rolled steel sheet and steel component
JP2007204794A (en) Steel component
JP5472063B2 (en) Free-cutting steel for cold forging
JP4608979B2 (en) Steel materials with excellent fatigue characteristics and steel materials for induction hardening
JP3733967B2 (en) Steel material with excellent fatigue characteristics and method for producing the same
JP4576913B2 (en) Manufacturing method of steel for machine structure having excellent fatigue characteristics and machinability
WO2019182054A1 (en) Steel material
JP5194474B2 (en) Steel material and manufacturing method thereof
JP2007107046A (en) Steel material to be induction-hardened
JP4507731B2 (en) Steel materials and steel products excellent in machinability and fatigue characteristics and methods for producing them
JP4281501B2 (en) Steel material excellent in machinability and fatigue characteristics and method for producing the same
JP2006028599A (en) Component for machine structure
JP2006045678A (en) Steel product having excellent fatigue property after induction hardening, and production method therefor
JP2005054216A (en) Steel material superior in machinability and fatigue characteristics, and manufacturing method therefor
JP4280923B2 (en) Steel materials for carburized parts or carbonitrided parts
JP4487749B2 (en) Constant velocity joint inner ring and manufacturing method thereof
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP4170294B2 (en) Steel for machine structures and drive shafts with excellent rolling, fire cracking and torsional properties
JP2007204798A (en) Method for manufacturing parts excellent in hardening crack resistance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060609

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513